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Optimal Monitoring and Controlling of Invasive Species: 

The Case of Spotted Wing Drosophila in the United States 

 

Abstract 

Spotted wing drosophila (SWD) is an invasive pest having a devastating effect on soft-skinned 

fruits such as blueberries, raspberries, blackberries, strawberries, and cherries. Due to zero 

tolerance of SWD infested fruit in both fresh and frozen markets, current SWD management 

strategies consist mainly of preventive broad-spectrum insecticide sprays. Extension services 

across the United States are calling for management strategies that incorporate monitoring to 

reduce unnecessary insecticide sprays. Nonetheless, little is known about the economic benefits 

of these management strategies over the broad-spectrum insecticide sprays. In this paper, we 

develop a dynamic bioeconomic model to identify the cost-minimizing mix of SWD 

management strategies. We employ Bayesian methods in a dynamic simulation setting to 

evaluate the economic outcomes of alternative strategies involving insecticide sprays and 

monitoring combinations. We apply this model to a blueberry farmer making decisions to control 

SWD infestation. We find that the economic impacts of different SWD control strategies depend 

on the efficacy of the insecticide applied, the efficiency of monitoring traps, and also the action 

threshold selected. Overall, as the efficiency of monitoring traps improves, the management 

strategies which include monitoring are superior to the spray-only strategy. Also, growers can 

choose more liberal action thresholds when using monitoring traps with higher efficiency. In 

addition, monitor-to-initiate spray strategies perform better than the monitor-to-guide spray 

strategies in general.  
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1. Introduction 

Spotted wing drosophila (SWD, Drosophila suzukii), native to eastern Asia, is a devastating pest 

of soft-skinned fruits and has rapidly expanded its global range in the past decade to include the 

United States (U.S.), Mexico, Europe, Canada and South America (Walsh et al. 2011; Cini et al. 

2012; Depra et al. 2014). While most Drosophila species are considered harmless or nuisance 

pests (e.g. one species is attracted to spoiled and overripe fruit), SWD exhibits a strong 

preference for ripe or ripening fruit that has market value (Asplen et al. 2015; Cini et al. 2012). 

The crops most significantly affected by SWD include blueberries, blackberries, raspberries, 

strawberries, and cherries. These crops are highly valued in the market, at nearly $4.5 billion 

annually (USDA NASS 2013) and grown on over 40,000 farms (USDA Census of Agriculture 

2012) in the United States alone. 

In addition to its preference for commercial fruit crops, SWD exhibits a formidable 

reproductive capacity relative to other members of the species. It is able to complete between 13 

and 16 generations per year and a female can produce up to 350 eggs during its lifespan (Asplen 

et al. 2015; Burrack et al. 2015). This high reproductive potential combined with a short 

generation time results in rapid population growth, and increasing pest pressures during the crop-

ripening period (Wiman et al. 2014). Moreover, it is difficult to distinguish SWD from other 

harmless Drosophila species in the field. Perfect identification requires a magnifying glass and 

that SWD reaches adulthood (Asplen et al. 2015). Thus, pest management relies primarily on 

imperfect observation of the population density – often with the help of monitoring traps. 

Economic damages due to SWD are a growing concern among businesses in the soft-skin 

fruit sector. In most cases, buyers have zero tolerance for SWD infested fruit, particularly for the 

fresh market and for whole frozen products. Detection of infestation in a shipment, even if small, 
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can results in complete rejection of the product (Burrack and Bhattarai 2015). Economic impacts 

of SWD are substantial. Goodhue et al. (2011) estimate SWD annual damages of $500 million in 

fruit producing regions of Western U.S. assuming 30% damages. Likewise, NC State 

Cooperative Extension (2016) estimate over $200 annual losses due to SWD in Eastern 

production regions of the U.S. Controlling for SWD has also increased insecticide use and labor 

associated with management. In a 2015 winter survey of 436 fruit growers in the United States, 

respondents from 31 states reported crop losses due to SWD estimated at over $133 million and 

increases in insecticide costs of between $100 and $300 per acre (NC State Cooperative 

Extension 2016). 

Current SWD management strategies tend to be very conservative, consisting mainly of 

preventative broad-spectrum insecticide sprays (Haye et al. 2016; Wise et al. 2015; Wiman et al. 

2014; Van Timmeren and Isaacs 2013). Current strategies may not be sustainable, given 

problems associated with overuse of insecticide in agriculture, including insecticide resistance, 

traces of insecticide in fruit that may render product unmarketable (mainly in international 

markets), and adverse effects of both consumers and farm workers, among others (Van 

Timmeren and Isaacs 2013). Moreover, farmers may be overspending in insecticide sprays as the 

current applications are in excess of what is really needed (Wise et al. 2014). The industry needs 

alternative management strategies that contribute to the reduction of insecticide use. 

One possible alternative to preventative broad-spectrum insecticide sprays consists of 

strategies that combine monitoring with insecticide applications. Nevertheless, very few growers 

include monitoring in their SWD management strategies (NC State Extension Service 2016). 

Extension services across the U.S. are calling for two primary ways to incorporate monitoring in 

farm-level SWD management. One is called monitor-to-initiate spray strategy, in which the 
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farmer starts weekly monitoring at the beginning of the cropping season, starts sprays after the 

number of SWD caught by traps reaches a predetermined threshold; and subsequently continues 

weekly sprays while stops monitoring. The other is called monitor-to-guide spray strategy, in 

which the farmer monitors weekly throughout the cropping season, sprays weekly if the number 

of SWD caught by traps reaches a predetermined threshold, and does not spray if the number of 

flies caught is smaller than the threshold. 

SWD control strategies that incorporate monitoring are promising, yet little is known 

about the economic benefits of these strategies over preventative broad-spectrum insecticide 

sprays. Relevant questions include: What strategies are likely to minimize losses due to SWD? 

And what threshold (i.e. number of SWD caught in traps) should be employed, so that 

monitoring strategies are superior to insecticide spay-only strategies? An economic analysis 

addressing these critical questions is complex given the inability of farmers to observe the true 

SWD population as well as the dynamic nature of SWD infestations.  

To fill this gap in the literature, we develop a dynamic bioeconomic model of SWD 

control to identify the cost-minimizing SWD management strategy. We employ Bayesian 

methods in a dynamic simulation setting to evaluate the economic outcomes of alternative 

strategies involving insecticide spray and monitoring combinations. We apply this model to a 

blueberry farmer making decisions to control SWD infestations. The objective function of the 

model is to minimize the sum of expected damages and management costs. To do this, the model 

takes into account: 1) the economic losses accruing to SWD infestation;  2) the value of the crop; 

3) the alternative strategies available to monitor and control for SWD; and 4) the cost of 

strategies to control and monitor for SWD. 
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We find that the economic impacts of control strategies depend on the efficacy of 

insecticides, the efficiency of monitoring traps, and the action threshold (i.e. number of SWD 

caught in traps). Spray-only strategies minimize total costs when the efficiency of monitoring 

traps is low. In contrast, monitor-to-initiate strategies tend to minimize SWD losses when using 

more efficient monitoring traps and high efficacy insecticide. Overall, monitor-to-initiate spray 

strategies performs better than monitor-to-guide spray strategies. Only when using relative 

conservative action thresholds, spraying high efficacy insecticide, and using relatively efficient 

monitoring traps, monitor-to-guide spray strategy have lower total cost than monitor-to-initiate 

spray strategy. 

 

2. Literature Review 

Since the detection of SWD in the U.S. in 2008, significant research have been undertaken to 

study the invasion biology of the pest (Cini et al. 2012; Pfeiffer et al. 2012; Burrack et al 2013; 

Asplen 2015; Wang et al. 2016) and document its economic impacts (Bolda et al. 2009; Goodhue 

et al. 2011). Building on recent knowledge on the pest biology, one of the key research areas 

identified is the study of cost-effective management strategies. Such research would build on 

recently developed temperature-dependent pest population models to inform decision making in 

an integrated pest management (IPM) framework (Asplen 2015; Wiman et al. 2014). Given the 

zero tolerance for SWD infested fruit in both fresh and frozen markets, current management 

strategies consist mostly of proactive insecticides applications (Beers et al. 2011). There are 

limited effective insecticide options for managing SWD and insecticide resistance is expected to 

become a major issue unless its use is optimized (Haye et al. 2016). Such optimization would 
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rely on a mix of chemical (i.e., pesticide use), cultural (e.g., monitoring), and biological (e.g., 

natural enemies) control strategies (Haye et al. 2016).       

 Recent economic impact studies estimate reduction in revenues of 20% and 37% on 

strawberry and raspberry farms, respectively, if SWD is not controlled (Goodhue et al. 2011). 

Although this economic impact is well understood, there is a lack of ecological-economic or 

bioeconomic frameworks that can guide the optimization of SWD control while preventing 

insecticide resistance through the integration of monitoring and treatment within an IPM 

framework. The importance of monitoring has been recognized in invasive species detection and 

management (Berec et al. 2015; Epanchin-Niell et al. 2012) and natural resource management 

(White 2000) when the true state of the system can only be partially observed. In the case of 

SWD, the current available attractants are not selective for SWD, making it very difficult to 

differentiate SWD from other fruit flies. Researchers have developed several frameworks to deal 

with the partial observability problem. One such approach is modelling the management problem 

as a partially observed Markov decision process (POMDP) (Monahan 1982; Haight and Polasky 

2010). A POMDP is a generalization of a Markov decision process which allows modeling the 

uncertainty in the state of the underlying Markov process (Monahan 1980). Applications of 

POMDP include invasive species control (Moore 2008; Haight and Polasky 2010), endangered 

species management (Tomberlin 2010), decision making by fishermen (Lane 1989), and survey 

and management of cryptic threatened species (Chadès et al 2008). One of the advantages of 

POMDP is that it embeds the complexity of imperfect state information into a decision making 

framework. However, because of its computational complexity, this method has the drawback of 

handling only small state-spaces and representing simplistic problems (Fackler and Haight 2014).  
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 Adaptive decision-making or adaptive management (AM) is another approach that is 

appropriate to model a partially observed population (White 2000; Williams 2011). According to 

this approach, a resource manager simultaneously manages and learns about the states of the 

population through the process of management. Adaptive management applications include 

wetlands management (Williams 2011), invasive species control (Moore 2008), pest 

management and weed control (Shea et al. 2002), habitat restoration (McCarthy and Possingham 

2007), and harvest management (Hauser and Possingham 2008, Moore et al 2008). Despite its 

attractive feature of incorporating learning by doing, the adaptive management approach is 

characterized by key emerging difficulties that are yet to be overcome. These include, among 

others, the treatment of uncertainty over time; the necessary assumption of stationarity of 

resource dynamics over the management time frame; and the choice of a spatial scale that is 

consistent with both the decision-making and the ecological processes (Williams and Brown 

2016). 

 Bayesian state-space modeling offers an alternative framework to address population 

uncertainty and partial observability. State-space models, most common in ecological research, 

are partitioned into an underlying process (e.g., real SWD population) describing the transitions 

of the true states of the system over time and an observed process (e.g., trapped SWD population) 

that links the observations of the system to the true states. The models are then fitted using a 

Bayesian data augmentation approach (King 2012). Bayesian state-space modeling has been 

extensively used among ecologists to study fisheries (Lewy and Nielsen 2003; McAllister and 

Kirkwood, 1998; Millar and Meyer 2000), conservation (Chaloupka and Balazs 2007), harvest 

regulation (Walters 1975; Trenkel, elston and Buckland 2000), animal invasion (Hooten et al. 

2007), and animal movements (Jonsen, Flemming, and Myers 2005), among other study systems. 
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Although Bayesian state space models are known for being able to address uncertainties in both 

state process and observation process, and for their flexibility in modelling complex population 

dynamics, they do not provide a framework for identifying optimal management policies. In this 

paper, we use the case of SWD to extend the applicability of Bayesian state space modeling to 

decision making. We do so by combining a Bayesian state-space model of SWD infestations 

with simulations of alternative SWD control strategies currently recommended for an IPM 

approach. 

 

3. Model 

In this section, we first develop a Bayesian state-space model to represent the population 

dynamics of SWD. We estimate parameters of the population dynamics model using a Bayesian 

Markov Chain Monte Carlo (MCMC) approach. Based on these estimated parameters, we then 

run simulations to evaluate the performance of 19 alternative management strategies when 

efforts are being made to control the population of SWD.  

3.1 Population Dynamics 

Bayesian state-space models have been applied to many ecological problems to describe the 

population dynamics of different systems. Generally, the quantities of interests (e.g., the 

population density of a species) are unknown and evolving over time. Observable variables 

provide only noisy information about the true population dynamics. State-space models generally 

consist of two equations which describing: 1) the state process that captures the stochastic 

dynamics of the unobserved state variables, and 2) the observation process that associates the 

data at hand to the state variables, which may involve some observation noise. Mathematically: 

(1) �+ = �, � , �� , the state process, and 
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(2) �� = �, � , �� , the observation process. 

The state process (Equation 1) describes the population dynamics, where � is a hidden 

(not observed) state variable (i.e., population size) at period , �  is a vector of parameters, and �� is an iid process noise which captures the stochastic dynamics of �. The observation process 

(Equation 2) relates the observation (data) at hand �� (e.g., abundance index, or observed number 

of captured individuals) to the state variable � through an observation function involving 

parameters �  and some iid observation noise ��.  

We employ a classical Schaefer (logistic) population function (Equation 3) and assume 

that population at each period is not affected by the number of SWD caught in monitoring traps, 

yielding: 

(3) �+ = [ � + × � × − ��� ] × ��+1 

where  is the intrinsic growth rate,  is the carrying capacity, ��+  is a normally distributed , �  random term representing environmental noise (e.g., rain, temperature, humidity, etc.). 

We assume that the fate of each individual SWD facing a trap (i.e. being captured or 

escaping) is ruled by the same Bernoulli mechanism. Then, the number of captures can be 

thought of as a binomial sampling from the population. We define the likelihood of �� conditional on � as:  

(4) �� ~ � � �, �  

where � is the trapping efficiency, defined as the probability of an individual being captured by 

monitoring traps. 

From here on, we use brackets to denote probability distributions. Let � = , , � , the 

stochastic transition defined in Equation 3 can be written as: 

(5) [ �+ | �, � ] 
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Let = [ , … , ] denote the time series for which observations are available. 

Conditional on � , the sequence of unknown states ( , … , �) follows a first-order Markov 

chain. Assuming an initial value for   and using the transition kernel defined by Equation 5, 

the prior distribution can be formulated as: 

(6) [ , … , � , � ] = [� ] × [ |� ] × ∏ [ �+ | �, � ]��=  

Conditional on state � and parameter � = �, the likelihood of �� can be factorized as: 

(7) [ � , … , �� , � ] = ∏ [��| �, � ]��=  

Combining the prior on the parameters [�] = [� , � ], and applying Bayes’ rule, the full 

posterior distribution of all unknowns can be decomposed as: 

(8) [ , … , � , �| � , … , �� ] ∝ [�] × [ ] × ∏ [ �+ | �, � ]��= × ∏ [��| �, � ]��=  

A sample of the full joint posterior distribution in equation (8) can be easily obtained 

from MCMC sampling using the OpenBUGS software. The trap data used for the MCMC 

estimation are presented in figure 1. These data were obtained from a blueberry farm located in 

western New York State. Adult SWD were monitored for 13 weeks in the 2014 growing season, 

starting from fruit coloring stage, generally two weeks before harvest started, and until the 

harvest ended.   

[Insert figure 1 here] 

 

3.2 Economic Model  

In this section, we explain how the results from the population model can be used to test the 

response of the SWD population levels under different management strategies. We develop an 

economic model of managing SWD infestation based on noise observation of the population 

level. 
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Our economic model describes the decision process of a blueberry farm manager 

controlling SWD infestations. At the beginning of each period, nature decides the population 

level and damage of SWD, the farm manager then chooses management actions. At each period, 

the manager needs to make two decisions. The first decision is whether to monitor for SWD 

population or not. We define a binary variable � to denote the monitoring decision ( � =  if 

monitoring takes places and 0 otherwise). The other decision is whether to apply insecticide or 

not. Let � denote the spraying decision ( � =1 if the farm manger decides to spray at period  

and 0 otherwise). Note that the spraying decision may depend on the monitoring results. 

Following the management actions, the state of the infestation may change and will transit to the 

next period. Taking into account the effect of control actions, the population transition equation 

(3) can be reformulated as:  

(9) �+ = {[ − � � × � + × − � � × � × − ��� ] × ��+1 , if � =[ � + × � × − ��� ] × ��+1 , otherwise                                                                     
where � � denotes the efficacy of the insecticide applied, which can take two values � �  and � ����.  

The objective of the farm manager is to minimize the expected total cost across time, by 

choosing an optimal SWD management strategy (�). The difference between alternative 

management strategies falls into the two abovementioned control decisions at each period. We 

formulate the optimal SWD control problem as follows:  

 (10) min�  � = � {∑ � � � +  � � � +��=
� � } 

where � is the expectation operator over the random quantities due to the stochastic nature of the 

dynamic system. At each period , the manager faces two types of costs: damages and 
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management costs. We assume that damages depend on the population level at the start of each 

period and SWD only cause damage by reducing yields. Let  be the probability that blueberry 

fruits are damaged by one individual SWD. The probability that fruits are not damaged by any 

SWD at period  is − �� and the probability that fruits are damaged by SWD of population 

size � is − − ��. The damage for period  is thus the product of weekly blueberry yields, 

the price of blueberry, and the probability of SWD damage (Equation 11). The weekly relative 

yields (weekly blueberry yield as percentage of total yield) are shown in figure 2. These yields 

are approximated by a gamma distribution using yield data obtained from field observations 

(Gregory Loeb, personal communication, 2016).  

[Insert figure 2 here] 

(11) � � = �   �� × � � �  �� � × � � ×[ − − ��] 
Management costs are the sum of monitoring costs and spraying costs. Although 

management costs may depend on the level of SWD population, for simplicity we assume a 

single level of monitoring and spraying costs. Management costs can be expressed as:   

 (12)  � = �  ��  �  × �  + �  ��   × � + �  � �  �  × � + �  � �   × � 

We design and implement Monte Carlo experiments to evaluate 19 different strategies for 

managing a SWD infestation in a one acre blueberry farm. Each experiment consists of 10,000 

simulation runs, over a growing season of 13 weeks (the period between fruit coloring and 

harvest). The 19 alternative strategies can be classified into four categories: laissez-faire, spray 
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throughout the season, monitor-to-initiate spray and monitor-to-guide spray (table 1). The farm 

manager does not take any control action under the laissez-faire strategy. The most commonly 

adopted management strategy by growers to prevent SWD infestation is applying insecticide 

throughout the season. We choose this strategy as the baseline to compare outcomes of 

alternative strategies. Two additional types of sustainable strategies recommended by research 

and extension professionals are monitor-to-initiate spray strategies and monitor-to-guide spray 

strategies. For simplicity, we will refer these two types of strategies as initiate strategies and 

guide strategies from here on. The interest on these strategy types lien on the ability to avoid 

unnecessary insecticide sprays. The difference between these two strategy types is that growers 

stop monitoring for SWD activities once they start insecticide sprays under the initiate strategies; 

while under the guide strategies, growers monitor SWD activity throughout the season and only 

spray if the number of trapped SWD reaches a predetermined threshold. To find the optimal 

SWD control strategy, we run simulations using the objective function (Equation 10) to rank 

them according to total cost. The model parameters used to run simulations are shown in table 2. 

These parameters are based on existing literature and estimates from entomologists and 

extension personnel (Gregory Loeb and Juliet Carroll, personal communication, 2016).  

[Insert table 1 here] 

[Insert table 2 here] 

 

4. Results & Discussion  

We find that the economic impacts of different SWD control strategies depend on the efficiency 

of monitoring traps, the efficacy of the insecticide applied, and also the action threshold selected. 

When employing monitoring traps with very low efficiency, the baseline spray-only strategy 
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performs better than most initiate and guide strategies. Nonetheless, as the efficiency of 

monitoring traps improves, initiate strategies not only result in lower total costs but also require 

less insecticide sprays. However, our results suggest that using high efficacy insecticides is 

necessary for initiate strategies to be superior to baseline spray-only strategy. In addition, we find 

that conservative thresholds are preferred when the trapping efficiency is low and liberal 

thresholds should be chosen with more efficient traps. Finally, our results suggest that initiate 

strategies perform better than guide strategies in most cases.  

4.1 Population Dynamics Results 

The prior distributions and main statistics of the marginal posterior distributions of the key 

parameters used in the Bayesian state-space population model are shown in table 3. The weekly 

intrinsic growth rate , the per capita rate of population growth, is 1.115, which is relatively high 

and indicates that the population size can grow very fast without proper management. The 

posterior median of carrying capacity  is 2,887 files per acre, indicating the maximum 

population size of SWD the studied farm can sustain.  

[Insert table 3 here] 

The model also provides estimates of the time series of the latent (unobserved) SWD 

population size (figure 3). The time series of the population size exhibits the typical S-shape of 

logistic growth curves. From week 1 to 11, the population quickly grows to more than 2,000 flies 

per acre. Starting from week 11, the population grows at a relatively slower rate and reaches its 

maximum around 3,000 flies per acre in week 12. The population size then decreases in week 13 

to around 2,400 flies per acre.  

[Insert figure 3 here] 
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4.2 Performance of Alternative Management Strategies 

Simulations over 13 weeks were performed given the management strategies 1-19 and the 

parameter values described above. Table 4 shows the main results when we assume a trapping 

efficiency of 0.1, which is consistent with the traps currently used by growers. The laissez-faire 

(no action) strategy has the highest damage and total cost. Under this strategy, growers lose 

about 45% of the crop. The baseline strategies, which are also the most commonly used 

strategies, have the lowest damage and total cost. However, the spraying costs of baseline 

strategies are the highest because growers are employing proactive calendar spray programs to 

prevent SWD infestation. When applying high efficacy insecticide, the initiate strategies have 

lower total costs than the baseline strategy if the threshold to trigger insecticide spray is 1 and 3 

flies per acre. This is largely due to the reduction in insecticide applications. Although other 

initiate strategies of using either higher thresholds or low efficacy insecticide are more expensive 

than baseline strategies, these strategies have lower spraying cost and are more environmentally 

sustainable. The guide strategies generate even lower spraying costs but higher damages. For 

example, the damage of guide strategy when using 10 flies per acre as a threshold and a low 

efficacy insecticide is $1214, which is almost twice the damage of initiate strategy ($644). 

[Insert table 4] 

The results showed in table 4 are based on the assumption that trapping efficiency is 0.1. 

This trapping efficiency is relatively low because the currently available lure/attractants are not 

selective for SWD, thus making it difficult to differentiate SWD from other harmless fruit flies. 

Researchers are making efforts to improve the selectivity of the traps. Should the efficiency of 

traps improve in the future, initiate strategies and guide strategies may be superior to the baseline 

strategies.  
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4.2.1 Initiate Strategies 

Figure 4 shows the costs of initiate strategies using high efficacy insecticide relative to the 

baseline spray strategy. We find that most initiate strategies have lower costs than the baseline 

strategy. For example, the percentage changes of total costs are below 0% when using threshold 

of 5 flies per acre, except when trapping efficiency is 0.1. The optimal action threshold changes 

with trapping efficiency. When the trapping efficiency is as low as 0.1, threshold 1 is optimal. 

The optimal threshold is 3 when the trapping efficiency is 0.2 and 5 when trapping efficiency is 

between 0.3 and 0.5. The liberal threshold of 10 flies per acre is the best when trapping 

efficiency is improved to be equal to or higher than 0.6.  

[Insert figure 4 here] 

The results of using low efficacy insecticide are shown in figure 5. It is interesting to note 

that the percentage changes in total costs are all above 0% in this case, which indicates that the 

baseline strategy is superior to all initiate strategies when the insecticide efficacy is low. This 

suggest that using high efficacy insecticides is necessary when employing initiate strategies. 

Otherwise, it is always more economical to just spray throughout the season.  

[Insert figure 5 here] 

 

4.2.2 Guide Strategies 

The results of guide strategies when using high efficacy insecticide are shown in figure 6. The 

figure indicates that a guide strategy is superior to the baseline only when using a threshold of 3 

flies per acre and when trapping efficiency is between 0.3 and 0.6. Depending on the threshold 

selected, the impact of efficiency improvement on total cost differs. There is a trade-off between 

damages and spraying costs. More efficient traps result in insecticide sprays being triggered 
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earlier, thus reducing damages and potentially increasing spraying costs. When using 

conservative thresholds, increases in spraying cost dominate the decreases in damage and vice 

versa.  

[Insert figure 6 here] 

Similarly to the initiate strategies, if low efficacy insecticides are used, then baseline 

strategies are superior to all guide strategies (figure 7). We find similar trade-offs between 

damages and spraying cost for guide strategies when using high efficacy insecticides. 

[Insert figure 7 here] 

 

4.2.3 Initiate Strategies vs. Guide Strategies 

Although many growers have used monitoring traps to inform their insecticide spray decisions, it 

is not clear to them which monitor strategy is better. Should growers only use monitoring traps to 

initiate insecticide spray or should they keep monitoring SWD population level and apply 

insecticide only if trapped number of flies is above certain action threshold? To answer this 

question, we compare the performance of these two types of management strategies. Detailed 

results are shown in figures 8-11. Overall, initiate strategies perform better than guide strategies. 

Only when using a threshold of 3 flies per acre, spraying high efficacy insecticide, and trapping 

efficiency is between 0.3 and 0.5, guide strategies yield lower total costs than initiate strategies 

(figure 8-a).  

[Insert figure 8 here] 

When using a very conservative threshold (1 fly per acre), the total cost of guide strategies 

is higher than the cost of initiate strategies, regardless the efficacy of the insecticide used (figure 

8). The reason is that the monitoring cost of guide strategies is much higher than the monitoring 
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cost of initiate strategies. We note that, when using a high efficacy insecticide, the total cost of 

both initiate strategies and guide strategies increases as the efficiency of SWD traps improves. 

However, the cost of guide strategies increase at a higher rate than initiate strategies. When using 

more efficient traps, the guide strategy triggers more frequent insecticide sprays, resulting in 

higher spraying costs. When using low efficacy insecticides, the cost of initiate strategies is not 

very sensitive to the efficiency of traps used. The cost of guide strategy decreases first and then 

increases as the trapping efficiency improves. When the trapping efficiency increases from 0.1 to 

0.2, the decrease in cost are mainly due to decreases in crop damages. These suggest that when 

using very conservative thresholds, efforts to improve trapping efficiency are beneficial only 

when trapping efficiency increases from 0.1 to 0.2. Using traps with efficiency greater than 0.2 

results in higher total costs. 

Figure 9 compares costs of initiate and guide strategies for a threshold of 3 flies per acre. 

The costs of both initiate and guide strategies when using high efficacy insecticides decrease first 

and then gradually increase as the trapping efficiency improves. The cost of guide strategies is 

more sensitive to changes in trapping efficiency than the cost of initiate strategies. For trapping 

efficiency between 0.3 and 0.5, a guide strategy generates lower total costs than an initiate 

strategy. The outcome of using low efficacy insecticides is different than when using high 

efficacy insecticides. Both guide and initiate strategies exhibit similar patterns as efficiency of 

monitoring traps increases. Improvement in trapping efficiency decreases the cost of both 

strategies.     

[Insert figure 9 here] 

The results of using more liberal thresholds of 5 and 10 flies per acre are very similar to 

the results of the threshold of 3 flies per acre with a low efficacy insecticide (figure 10 and 11). 
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The rationale behind the similarities is the same as above. The only difference is that, when using 

thresholds of 5 and 10 flies per acre with high efficacy insecticide, the initiate strategy performs 

better than the baseline strategy when using more efficient traps whereas the guide strategy 

always performs worse.  

[Insert figure 10 here] 

[Insert figure 11 here] 

5. Conclusion 

In this paper, we developed a dynamic bioeconomic model to identify cost-minimizing SWD 

management strategies. We employed a Bayesian state-space model to simultaneously take into 

account uncertainties of SWD population dynamics in both the state transitioning process and the 

observation process. We then used estimated parameters to evaluate the performance of 19 

alternative management strategies which consist of different combinations of monitoring and 

spraying actions. We find that the economic impacts of different SWD control strategies depend 

on the efficacy of the insecticide applied, the efficiency of monitoring traps, and also the action 

threshold selected. Our results show that including monitoring in SWD management strategies 

can help reduce insecticide sprays. Moreover, these strategies can be both economically and 

environmentally superior to the spray-only strategies, when using more efficient traps.  

Our findings are valuable to fruit growers, extension personnel and other stakeholders in 

advancing their SWD management practices. Nevertheless, our model has several limitations 

that should be addressed in future research. For example, in our model the sequence of control 

actions in each management strategy is predetermined. Future research should extend our model 

to solve for optimal control actions in each period. In addition, when modelling population 

dynamics, we only used data from adult monitoring traps. Including data obtained from fruit 
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sampling to detect SWD larvae will improve the accuracy of SWD population estimation. Also, 

our model considers SWD control in a single farm. Future research should include spatial 

features such as SWD diffusion across regions or externalities caused by SWD from neighboring 

infested farms. Finally, we considered SWD infestation of one growing season only. Our model 

can be extended to examine a multi-year problem to take into account possible resistance 

developed due to insecticide overuse.  
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Table 1. Alternative SWD Control/Management Strategies 

Strategy Description Monitor Spray 

Laissez-faire (No Actions)   

1 Never monitor; Never spray Never Never 

Baseline Strategies: Spray throughout the Season 

2 Spray using high efficacy insecticide Never Always 

3 Spray using low efficacy insecticide Never Always 

Monitor-to-initiate Spray Strategies 

4 Threshold=1; High efficacy insecticide Sometimes Sometimes 

5 Threshold=1; Low efficacy insecticide Sometimes Sometimes 

6 Threshold=3; High efficacy insecticide Sometimes Sometimes 

7 Threshold=3; Low efficacy insecticide Sometimes Sometimes 

8 Threshold=5; High efficacy insecticide Sometimes Sometimes 

9 Threshold=5; Low efficacy insecticide Sometimes Sometimes 

10 Threshold=10; High efficacy insecticide Sometimes Sometimes 

11 Threshold=10; Low efficacy insecticide Sometimes Sometimes 

Monitor-to-guide Spray Strategies 

12 Threshold=1; High efficacy insecticide Always Sometimes 

13 Threshold=1; Low efficacy insecticide Always Sometimes 

14 Threshold=3; High efficacy insecticide Always Sometimes 

15 Threshold=3; Low efficacy insecticide Always Sometimes 

16 Threshold=5; High efficacy insecticide Always Sometimes 

17 Threshold=5; Low efficacy insecticide Always Sometimes 

18 Threshold=10; High efficacy insecticide Always Sometimes 

19 Threshold=10; Low efficacy insecticide Always Sometimes 
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Table 2. Parameter Values Used to Calculate Economic Cost 

Parameter Value Description � �ℎ�  0.9 Proportion of SWD killed by insecticide of high 
efficacy � ���� 0.8 Proportion of SWD killed by insecticide of low 
efficacy 

 0.001 Probability blueberry fruit damaged by one 
individual SWD fly 

Baseline annual yield 5000 Baseline yield of blueberry, unit: lb/acre 

Price $2.17 Pick your own (PYO) price, 2012 blueberry 
pricing survey 

Unit spraying material cost  20.84 Weekly material cost of spraying high efficacy 
pesticide 

Unit spraying labor cost 11.11 Weekly labor cost of spraying high efficacy 
pesticide 

Spraying relative cost 0.8 Cost for low efficacy insecticide as % of hi 
efficacy insecticide 

Unit monitoring material cost 9.3 Weekly cost for monitoring traps and lures 

Unit monitoring labor cost 6 Weekly labor cost to check monitoring traps 
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Table 3. Main Statistics of the Marginal Posterior Distributions of the Key Parameters  

Parameter Prior Distribution 
Posterior distributions of key parameters 

Mean Sd 2.5% pct. Median 97.5% pct. 

 ~ Uniform(0.01, 20) 1.115 0.4823 0.3697 1.065 2.153 

 ~ Uniform(100, 10000) 3316 1388 1846 2887 7480 �  log �  ~ Uniform(-20, 20) 0.3555 0.4126 0.0669 0.2467 1.306 
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Table 4. Estimated Economic Costs of SWD Infestation under Various Management 

Strategies 

Strategy Description 
Monitoring 

Cost 
Spraying 

Cost 
Damage 

Cost 
Total 
Cost 

Laissez-faire (No Actions)     

1 Never monitor; Never spray 0  0  5015 5015 

Baseline Strategies: spray throughout the season 

2 Spray using high efficacy insecticide 0 383 35 419 

3 Spray using low efficacy insecticide 0 307 39 345 

Monitor-to-initiate Spray Strategies 

4 Threshold=1; High efficacy insecticide 36  341 38 415 

5 Threshold=1; Low efficacy insecticide 35  273 49 358 

6 Threshold=3; High efficacy insecticide 69  272 78 418 

7 Threshold=3; Low efficacy insecticide 69  218 155 441 

8 Threshold=5; High efficacy insecticide 82  243 141 466 

9 Threshold=5; Low efficacy insecticide 83  194 297 574 

10 Threshold=10; High efficacy insecticide 99  208 329  636 

11 Threshold=10; Low efficacy insecticide 99  166 644  910 

Monitor-to-guide Spray Strategies 

12 Threshold=1; High efficacy insecticide 184  166  83  432  

13 Threshold=1; Low efficacy insecticide 184  168  144  496  

14 Threshold=3; High efficacy insecticide 184  99  244  526  

15 Threshold=3; Low efficacy insecticide 184  133  427  743  

16 Threshold=5; High efficacy insecticide 184  89  418  690  

17 Threshold=5; Low efficacy insecticide 184  120  683  987  

18 Threshold=10; High efficacy insecticide 184  78  813  1075  

19 Threshold=10; Low efficacy insecticide 184  105  1214  1503  

 

 

 

  



30 
 

 

 
Figure 1. Weekly adult SWD trap captures  
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Figure 2. Blueberry weekly yield as percentage of total yield 
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Figure 3. Marginal posterior distributions of the estimated SWD population size  
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Figure 4. Relative total cost of monitor-to-initiate spray strategies using high efficacy 

insecticide 
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Figure 5. Relative total cost of monitor-to-initiate spray strategies using low efficacy 

insecticide 
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Figure 6. Relative total cost of monitor-to-guide spray strategies using high efficacy 

insecticide  
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Figure 7. Relative total cost of monitor-to-guide spray strategies using low efficacy 

insecticide 
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(a) High Efficacy Insecticide (b) Low Efficacy Insecticide 

Figure 8. Monitor-to-initiate strategy vs. monitor-to-guide strategy: threshold =1 
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(a) High Efficacy Insecticide (b) Low Efficacy Insecticide 

Figure 9. Monitor-to-initiate strategy vs. monitor-to-guide strategy: threshold =3 
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(a) High Efficacy Insecticide 

 

(b) Low Efficacy Insecticide 

Figure 10. Monitor-to-initiate strategy vs. monitor-to-guide strategy: threshold =5 
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(a) High Efficacy Insecticide 

 

(b) Low Efficacy Insecticide 

Figure 11. Monitor-to-initiate strategy vs. monitor-to-guide strategy: threshold =10 
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