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1. INTRODUCTION 

The coupling of RIN prices appears to be the result of an ethanol market subject to RFS 

mandates that exceed the blend wall and non-binding mandates in the biodiesel market. It is 

thought that the ethanol mandate is binding beyond the market absorption ability, and thus the 

primary drivers of D6 ethanol RIN price are unobserved thresholds in renewable volume 

obligations, and deterministic variables such as corn price and ethanol blend margins. In regard 

to the market for biodiesel, the hypothesis is that biodiesel producers are over-complying with 

the RFS biodiesel mandates to meet an ethanol mandate which has crossed some threshold in 

proximity to the ethanol blend wall.  Therefore biodiesel mandates are essentially non-binding. 

Nonlinear threshold models are applied to address nonlinearities occurring in the prices. These 

types of models are well suited to handling nonlinearities and regime changes, such as those 

which occur with RFS revisions. A candidate set of models are fitted to the data and model 

selection techniques are carried out to determine the most appropriate fit. 

Two key variables are thus proposed as threshold variables. In modeling D6 RIN prices, a 

variable is constructed to represent weekly renewable volume obligations for ethanol. This 

variable represents the weekly amount of ethanol blended into the national supply of gasoline. 

The variable is constructed by multiplying the annual percentage standard by weekly product 

supplied for gasoline. The annual percentage standard is the percentage of ethanol that must be 

blended into gasoline by producers or importers of gasoline. The percentage is set by the U.S. 

Environmental Protection Agency and is determined on an annual basis with revisions possible 

to occur year to year. The weekly product supplied for gasoline is provided by the U.S. Energy 

Information Association. . Weekly product supplied is an approximation of weekly consumption 

as it measures the disappearance of gasoline from primary sources such as refiners, blenders and 
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distribution terminals (USDOE EIA 2016). In modeling D4 RIN prices, the proposed threshold 

variable is past values of D4 RIN price.  

The Renewable Fuel Standard is implemented by requiring Obligated Parties, producers or 

importers of gasoline or diesel fuel, to meet four Renewable Volume Requirements (RVOs): (1) 

Total Renewable Fuel, (2) Advanced Biofuel, (3) Biomass-based Diesel, and (4) Advanced 

Cellulosic Biofuel. The RVOs are based on RFS percentages, which may be amended from year-

to-year. The RFS percentages are the ratio of renewable fuels to all non-renewable gasoline and 

diesel fuels. 

Obligated Parties demonstrate compliance with RVOs using a tracking system developed by the 

USEPA. In this system, every gallon qualifying as a renewable fuel produced or imported is 

assigned a renewable identification number (RIN), a 38-character numeric code which biofuel 

producers self-generate every time a gallon of qualifying renewable fuel is produced or imported. 

The RIN system was designed to provide a flexible way of meeting annual RVOs by Obligated 

Parties.  

The type of RIN generated depends on the type of renewable fuel being produced, feedstock and 

production process. Each type of renewable fuel generates RINs which are denominated with 

different D-codes. Conventional biofuels (i.e. corn ethanol) generate D6 RINs, advanced biofuels 

(sugar cane ethanol) generate D5 RINs, biodiesel (biomass-based diesel) generates D4 RINs and 

cellulosic biofuels (cellulosic ethanol or cellulosic diesel) generate either D3 or D7 RINs. The D-

codes, representing sub-mandates, are hierarchically nested. The nested nature of the sub-

mandates means that biofuels that qualify for multiple RIN categories have a higher value. So, a 

D5 advanced biofuel RIN will be worth at least as much as a D6 conventional biofuel RIN and 

D4 biodiesel RINs will be worth at least as much as D5 advanced biofuel RINs. How much of a 
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premium exists for D4 over D5 and D6 depends on the relative levels of advanced mandates 

versus conventional mandates and market equilibriums. Other factors affecting RIN prices 

include a speculative component. Non-obligated parties may participate in the RIN market by 

trading RINs much like any other commodity. Furthermore, obligated parties may either bank or 

borrow RINs, implying that RIN prices will capture market expectations. Prices also reflect 

current and expected marginal compliance costs, along with expected RFS mandates. 

2. LITERATURE 

Previous literature examining the RIN market is growing. Providing an early framework of the 

RIN market, Thompson et al. (2009) discuss core RIN values, and the hierarchal nature of RIN 

values. To demonstrate the core value of RINs, Thompson et al. (2010) use complementary 

slackness equations, and supply-and-use tables to simulate RIN price. McPhail et al. (2011), 

provide a conceptual model of RIN prices and discuss the factors affecting RIN price.  Lade et 

al. (2015), show that prices reflect current and expected marginal compliance costs, along with 

expected RFS mandates. 

As discussed in Lade et al. (2015), the coupling of the RINs suggests that the industry 

expectation was for biodiesel to be the marginal fuel pushing the industry beyond the blend wall 

and thus over-complying with the biodiesel mandates. In other words, the biodiesel mandates 

were no longer binding. This appears to suggest that the D4 core RIN value is essentially zero 

and only being supported by its nested characteristic which prevents the price from falling below 

D5 and D6 prices. This notion would support the hypothesis that D4 RIN prices are primarily 

driven by changes in D6 RIN price and regime changes in ethanol mandates, while D6 RIN 

prices are primarily driven by regime change in their own mandates, and deterministic variables, 

such as corn price and ethanol blending margin. 
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3. DATA 

RIN price data is provided by EcoEngineers, a private consulting firm and project developer in 

the renewable energy sector. EcoEngineers provides comprehensive compliance management, 

market data, facility-planning and project development services for biofuel companies operating 

under US regulations. All price indices utilize volume-weighted averages either in the 

calculation of the index or as a component of the calculation of the Index. Weighted averages are 

utilized in an effort to minimize any trading anomalies or distress trading activity that might 

otherwise distort the data sample (EcoEngineers, 2012). 

Data ranges from January 6 2010 to April 15 2016 for D4, D5 and D6 RIN credits. To examine 

the movements of these three RIN credits over time and in relation to each other it is useful to 

plot them together against time.  Ethanol RINs began trading in April of 2008, biodiesel RINs 

began trading in September of 2009 and advanced biofuel RINs began trading in January of 2011 

(Agricultural Marketing Resource Center (AGMRC)). Data in this study begins in January of 

2010 when biodiesel RINs and ethanol RINs were trading at similar prices. The two prices 

diverged with biodiesel RINs trading at a premium over ethanol RINs between 2010 and 2013. 

The three RIN prices began to converge following jumps in D6 RIN value which began in early 

2013. On January 2, the first trading day of 2013, the price of a D6 ethanol RIN was just seven 

cents. Over the next 41 trading days, D6 RINs jumped from 7 cents to 74 cents per RIN. 

By March 4 2013, the D4 premium was just five cents and on December 5 2013 ethanol RINs 

eliminate the biodiesel RIN premium when D6 RINs trade almost two cents higher. 



5 

 

Figure 1 

 

The D4 premium over D5 advanced biofuel RINs narrowed in October of 2012 when D4 is 

priced just eight cents over D5 on October 11 2013. Between the start of D5 trading in January 

of 2011 and October 10 2012, the average D4 premium was $0.5677. This premium is to be 

expected from the nested nature of the RIN credits. Biodiesel RINs can be retired to meet 

biodiesel obligations, advanced biofuel obligations or ethanol blending obligations, so D4 

Biodiesel RINs are expected to be worth at least as much as D5 and D6 RINs. The average D4 

premium over D6 RINs between January 6 2010 and March 4 2013 is $0.8758. The D4 premium 

over D5 from March 4 2013 to December 21 2015 averages $0.0306, while the D4 premium over 

D6 during the same period averages $0.1218. The convergence pattern is strongest between 

March 4 2012 and December 31 2014. The total spread is the sum of the individual spread 

between D4 and D6 and the spread between D4 and D5. During this period of strong 

convergence, the mean total spread is $0.1068.  

The first trading day of 2015, January 2, is responsible for a significant departure from the strong 

convergence pattern. On this day, D4 RIN prices increase by more than 10 cents per RIN, 

signaling the beginning of a weakly convergent pattern.  From this point, the convergence is 

much weaker with the total spread between the three RIN prices calculated to be a mean of 
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$0.2435. The weakly convergent period is mostly attributable to diverging D6 ethanol RIN price, 

as D4 and D5 RINs continue to closely track each other in trading price. 

Figure 2 

 

Figure 3 

 

The convergence of ethanol, advanced biofuel and biodiesel RIN price is an interesting 

phenomenon. Understanding the fundamentals of the RIN market, drivers of RIN price and 

uncertainties in blending obligations help to determine the conditions under which RIN prices 

will significantly diverge in the future. A likely starting point is to understand what factors 

determine the convergence observed in 2013. It is clear from Figure 2, that a strengthened 

market for D6 ethanol RINs is not the only factor in the convergence. Prior to 2013, biodiesel 
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RINs are traded at a significant premium to advanced biofuel and conventional biofuel RINs. 

During the 2013 year, traders signal that all three RINs are nearly equal in value and it appears 

that the only difference in market price is attributable to the inherent nested structure of these 

three RINs. 

4. RIN PRICING 

The fundamental value, also known as the core value of a RIN, is determined by the gap-if 

positive-between the cost of supplying biofuel, and the price at which blenders are willing to pay 

for biofuel at mandated quantities. If there is no gap between the cost of supplying biofuel at the 

mandated quantity and the price blenders are willing to pay for RFS2-mandated quantities, then 

the market would be in equilibrium and there would be no need for the RIN markets. 

Disequilibrium necessitates the market for RINs and determines the value at which RINs are 

traded. RINs credits subsidize the biofuel market by providing an incentive for the market to 

trade at quantities greater than the market equilibrium when the mandate is not in place. When 

the mandate is binding, RIN prices are positive. When the mandate is non-binding, RIN prices 

are zero. A non-binding mandate implies renewable fuel production levels in equilibrium are 

greater than RFS mandated requirements, rendering the mandate superfluous. Conversely a 

binding mandate implies renewable fuel production levels in equilibrium are lower than RFS 

mandated requirements, necessitating the market for RINs. A binding mandate is necessary for a 

strong RIN market.  
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Figure 4: Core Value of RINs 

 

Other factors affecting RIN prices include a speculative component. Non-obligated parties may 

participate in the RIN market by trading RINs much like any other commodity. If speculators 

anticipate an increase or decrease in RIN prices they may buy or sell excess RINs, further 

increasing or decreasing RIN prices. An example of a non-obligated party is a producer or 

importer with an output of less than 75,000 barrels per day, or producers or importers of jet fuel 

and other fuel s not falling under the umbrella of the RFS. Aside from the speculative 

component, other factors include feedstock prices, crude oil prices, and blender tax credits. The 

price of imports also impact RIN prices by causing a shift in the domestic supply of renewable 

fuels. When Brazilian sugarcane ethanol prices drop, the volume imported increases, increasing 

the supply of renewable ethanol domestically available and, thus, decreasing the price of RINs. 

Blender tax credits incentivize blending with more biofuels, increasing biofuel demand and 

decreasing RIN prices. Increases in crude oil prices also create stronger demand for alternative 

fuels, further incentivizing blending with biofuels and thereby reducing RIN value. Increased 

costs of feedstock production reduce feedstock supply and increase RIN value, while decreases 

in feedstock production costs increase feedstock supply and negatively affect the value of RINs.  
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The nested nature of the sub-mandates means that biofuels which qualify for multiple RIN 

categories have a higher value. So, an advanced biofuel RIN will be worth at least as much as a 

conventional biofuel RIN because advanced biofuel RINs count towards both the advanced 

biofuel RVO and the ethanol RVOs. Similarly, biodiesel D4 RINs will be worth at least as much 

as D5 advanced biofuel RINs because they count towards the advanced biofuel RVO and either 

the Biomass-based Diesel or the conventional ethanol RVOs. How much of a premium exists for 

D4 over D5 and D6 depends on the relative levels of advanced mandates versus conventional 

mandates and market equilibriums.  

5. NONLINEARITY IN RIN PRICE 

5.1 Visually inspecting for nonlinearity 

One method of identifying nonlinearity in a time series 𝑌𝑡   is to examine the joint distribution of 

𝑌𝑡 and 𝑌𝑡−1 or 𝑌𝑡−𝑠  where 𝑡 ≠ 𝑠. If the two time series 𝑌𝑡  and 𝑌𝑡−𝑠  are not jointly normal, there is 

evidence of nonlinearity. The Wold decomposition shows that the best linear predictor is the best 

one-step-ahead predictor if and only if innovation terms 𝑒𝑡 satisfy the martingale condition. The 

martingale condition states that the conditional mean of  𝑒𝑡 given 𝑒𝑡−𝑠 is identically equal to zero 

and this condition holds when 𝑒𝑡 is a sequence of independent, identically distributed random 

variables with zero mean. Conversely, when the martingale condition fails, a nonlinear predictor 

will be the best one-step-ahead predictor. Given the Wold decomposition, the best linear 

predictor is approximated by finite ARIMA models. In linear ARIMA models, the errors are 

assumed to be independent and identically normally distributed.  The normal error assumption 

implies the time series is also normally distributed and thus any two sets of time series are jointly 

normal. If the normality assumption is maintained and an ARIMA model results in a normally 

distributed process, then a nonlinear time series is generally not normally distributed. Therefore 
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nonlinearity can be identified by finding a non-normal joint distribution of 𝑌𝑡 and 𝑌𝑡−𝑠 . To 

perform this task, a scatter diagram of 𝑌𝑡 against 𝑌𝑡−𝑠 is plotted (Cryer & Chan, 2008).  

In the first case 𝑌𝑡 represents the log-differenced transformation of D4 biomass-based diesel 

RINs. In the second case 𝑌𝑡 represents the log-differenced transformation of D6 renewable fuel 

RINs. By taking the log-difference transformation, both series are stationary processes.  

To aid in the visualization, a nonparametric nearest neighbor regression is fit to the data in each 

scatter plot. The nearest neighbor method fits locally weighted polynomial regression. Each 

nearest neighbor regression is specified as a first degree polynomial using 30% of the sample to 

calculate the bandwidth and local (Tricube) weighting. By weighting the observations, those 

points furthest from the local regression point are weighted less. Therefore the weighted 

regression minimizes the weighted sum of squared residuals providing a locally weighted 

scatterplot smoothing (Lowess) technique (Cleveland & Loader, 1996). 

By fitting the nearest neighbor regression, the nonlinearity becomes more evident. In the case of 

D4 RIN series, the nonlinearity is particularly evident in the scatterplot of lags 1, 2 and 6. In the 

case of D6 RIN series the scatterplots and nearest neighbor fit also indicate nonlinearity in lags 

1, 2 and 3.  
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Figure 5: Log-differenced D4 lag plots 
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Figure 6: Log-differenced D6 lag plots 
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By plotting each time series multiple regimes can be observed. In the case of D4 RINs there 

appears to be at least three regimes of low, medium and high volatility. Similarly D6 RINs 

appear to exhibit multiple regimes with one regime displaying large jumps over short periods of 

observation. Surprisingly, or perhaps not, it appears the timing of regime change are shared 

among the D4 and D6 series. 

Figure 7 
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5.2 Testing for Nonlinearity 

Beyond visual inspection, empirical tests provide further evidence of nonlinearity. Two 

particular tests have gained in popularity over the years, the test for quadratic nonlinearity, 

(Tsay, 1986), and a Tukey non-additive type test for nonlinearity (Keenan, 1985).  

Keenan’s test for nonlinearity is based upon a general form of nonlinear stationary time series 

models that are known as Volterra expansions (Cryer & Chan, 2008).  Volterra expansions take 

the form 

𝑌𝑡 = 𝜇 + ∑ 𝛼𝜇𝜀𝑡−𝜇

∞

𝜇=−∞

+ ∑ ∑ 𝛼𝜇𝑣𝜀𝑡−𝜇𝜀𝑡−𝑣

∞

𝑣=−∞

∞

𝜇=−∞

+ ∑ ∑ ∑ 𝛼𝜇𝑣𝑤𝜀𝑡−𝜇𝜀𝑡−𝑣𝜀𝑡−𝑤

∞

𝑤=−∞

∞

𝑣=−∞

∞

𝜇=−∞

+⋯ 

where { 𝜀𝑡, −∞ < 𝑡 < ∞ } is a strictly stationary process, assumed to be independently and 

identically distributed with a zero mean.  The right hand side terms in the expansion include an 

intercept, linear, quadratic and cubic terms. However, test of linearity is equivalent to a test of no 

multiplicative terms. So the null hypothesis tests whether or not higher order expansion terms 

vanish. 

Keenan (1985), provides a three step process to estimate the test for nonlinearity. 

(i) Regress 𝑌𝑡 on {1, 𝑌𝑡−1, 𝑌𝑡−2, … , 𝑌𝑡−𝑝} where  𝑝 is a predetermined lag order. Obtain the 

fitted values 𝑌𝑡̂ and predicted residuals 𝑒̂𝑡 for 𝑡 = 𝑝 + 1,… , 𝑛 and calculate the sum of 

squared residuals 𝑒̂𝑡
2
. 

(ii) Regress 𝑌𝑡̂
2
 on {1, 𝑌𝑡−1, 𝑌𝑡−2, … , 𝑌𝑡−𝑝} and obtain the predicted residuals 𝜖𝑡̂ for 𝑡 =

𝑝 + 1,… , 𝑛. 

(iii) Regress 𝑒̂𝑡 on ∈̂𝑡 with no intercept for 𝑡 = 𝑝 + 1,… , 𝑛. This allows the user to 

obtain 𝜂̂ = 𝜂̂0√∑ 𝜖𝑡̂
2𝑛

𝑡=𝑝+1   𝜂̂0 is the regression coefficient. 

Keenan’s test statistic is thus 

𝐹̂ =
𝜂̂2(𝑛 − 2𝑝 − 2)

𝑒̂𝑡
2 − 𝜂̂2
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Under the null hypothesis of linearity  𝐹̂ approximately follows an F-distribution with degrees of 

freedom 1 and 𝑛 − 2𝑝 − 2. Keenan’s test is equivalent to testing that the coefficient 𝜂̂ = 0 in the 

regression model 

𝑌𝑡 = 𝑐 + 𝛽1𝑌𝑡−1 + 𝛽𝑝𝑌𝑡−𝑝 + exp{𝜂 (∑𝛽𝑗𝑌𝑡−𝑗

𝑝

𝑗=1

)

2

} + 𝜀𝑡. 

If the coefficient  𝜂 equals zero, then exp(0) = 1 and the model simply becomes an AR (p). 

Tsay (1986), extended Keenan’s test improving the power of the test to account for more general 

nonlinear terms.  These more general terms are accounted for by 

replacing  exp {𝜂(∑ 𝛽𝑗𝑌𝑡−𝑗
𝑝
𝑗=1 )

2
} with  

exp {𝛿1,1𝑌𝑡−1
2 + 𝛿1,2𝑌𝑡−1𝑌𝑡−2 +⋯𝛿1,𝑝𝑌𝑡−1𝑌𝑡−𝑝 +⋯ 

+𝛿2,2𝑌𝑡−2
2 + 𝛿2,3𝑌𝑡−2𝑌𝑡−3 +⋯𝛿2,𝑝𝑌𝑡−2𝑌𝑡−𝑝 +⋯ 

𝛿𝑝−1,𝑝−1𝑌𝑡−𝑝+1
2 + 𝛿𝑝−1,𝑝𝑌𝑡−𝑝+1𝑌𝑡−𝑝 + 𝛿𝑝,𝑝𝑌𝑡−𝑝

2 } . 

The null hypothesis in Tsay’s test is that all coefficient terms 𝛿𝑖,𝑗 are equal to zero. The test 

statistic follows an F-distribution and thus an F-test that all 𝛿𝑖,𝑗′𝑠 equal zero tests the null 

hypothesis that the true process is linear. 

The following table summarizes the test results for both the Keenan and Tsay tests for linearity. 

Table 1: Tsay and Keenan tests for nonlinearity 

Log-differenced D4   Log-differenced D6 

Test   AR(p)*  F-stat  p-value  Test   AR(p)*  F-stat  p-value 

Tsay  1  6.98  0.0086  Tsay  1  8.0260  0.0049 

Keenan   1  6.22  0.0132  Keenan   1  7.8965  0.0053 

*AR (p) lag orders are estimated by fitting an autoregressive model, choosing the lag order which minimizes Akaike’s information criteria (AIC). 



16 

 

The null hypothesis of linearity in the log-differenced D4 series is rejected with p-values of 

0.0086 and 0.0132 in the Tsay and Keenan tests. Similarly, the null the hypothesis of linearity in 

the log-differenced D6 series is rejected in both the Tsay and Keenan tests with associated p-

values of 0.0049 and 0.0053 respectively. Therefore, both series are concluded to exhibit 

nonlinearity. 

6. THRESHOLDS IN THE RIN MARKET 

6.1 Testing for Threshold Nonlinearity 

A central hypothesis in this paper is that coupling patterns observed in the RIN market are 

brought about by some proximity to the ethanol blend wall. In other words, there is some 

unobservable threshold, that when crossed, brings about a change in the behavior of the RIN 

market. Therefore a key variable in this paper is weekly renewable volume obligations for 

producers and importers of gasoline. The variable is constructed by multiplying the annual 

renewable fuel standard percentages by weekly gasoline product supplied. Weekly product 

supplied is an approximation of weekly consumption because it measures the disappearance of 

gasoline from primary sources such as refiners, blenders and distribution terminals (USDOE EIA 

2016). The ethanol blend wall is generally thought to be 10 percent of gasoline consumption. 

Weekly renewable volume obligations estimate the weekly volume of ethanol blended into the 

nation’s gasoline supplies. Where this observed data lies in relation to some unobserved 

threshold is presumed to trigger regime changes in the D6 renewable fuel RIN price. This type of 

model is called a threshold autoregressive (TAR) model.  

Prices for D4 biomass-based diesel RINs are thought to be driven primarily by biodiesel blend 

margins and other market forces unrelated to the ethanol blend wall. Therefore the primary 

threshold variable is not expected to be the weekly renewable volume obligations for ethanol. 
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Rather, it is hypothesized that regime changes in D4 RIN prices are triggered by endogenous 

factors to the D4 RIN market. Therefore the key threshold variable becomes lagged values of D4 

RIN price. This type of model is called a self-exciting threshold autoregressive (SETAR) model.  

To test for the presence of threshold nonlinearities, (Chan, 1990) developed a likelihood ratio test 

to determine if TAR models provide a significantly better fit than linear AR models. 

A two-regime TAR model takes the form 

𝑌𝑡 = {
𝛽0,1 + 𝛽1,1𝑌𝑡−1 +⋯+ 𝛽𝑝1,1𝑌𝑡−𝑝1 + 𝜎1𝜀𝑡, 𝑖𝑓 𝑍𝑡−𝑑 ≤ 𝑟 

𝛽0,2 + 𝛽1,2𝑌𝑡−1 +⋯+ 𝛽𝑝2,1𝑌𝑡−𝑝2 + 𝜎2𝜀𝑡, 𝑖𝑓 𝑍𝑡−𝑑 > 𝑟
} 

where 𝑍𝑡−𝑑 is the threshold variable. In the SETAR model 𝑍𝑡−𝑑  is equivalent to 𝑌𝑡−𝑑. The null 

hypothesis in the likelihood-ratio test for threshold nonlinearity is that 𝛽0,2 = 𝛽1,2𝑌𝑡−1 = ⋯ =

𝛽𝑝2,1 = 0. In practice it assumed that 𝑑 ≤ 𝑝 and the LR-test statistic is equivalent to 

𝐿𝑅𝑛 = (𝑛 − 𝑝)𝑙𝑜𝑔 {
𝜎̂2(𝐻0)

𝜎̂2(𝐻1)
} 

where 𝜎̂2(𝐻0) is the maximum likelihood estimation of the noise variance from the linear AR(p) 

fitted model and 𝜎̂2(𝐻1) from the TAR fit. Under the null, the threshold parameter is absent 

(Cryer & Chan, 2008).  The test depends on the interval over which the threshold is being 

searched. This interval is defined as 𝑎 ∗ 100𝑡ℎ percentile to the 𝑏 ∗ 100𝑡ℎ percentile of the time 

series data. It is necessary to restrict the threshold search over this interval to prevent threshold 

estimators that are close to the minimum or maximum tails of the time series. A threshold 

estimator very close to the minimum or maximum tail of a time series would results in too few 

observations in the resulting regime. 

The test for threshold nonlinearity is carried out for the D4 and D6 series. For purposes of this 

test, the lag order (𝑝) is set to 1 lag, and the test is estimated while allowing the delay parameter 
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(𝑑) to vary from 1 to 8. The interval is restricted to the 25th percentile and 75th percentile of the 

D4 time series. 

Table 2: Test for Threshold Nonlinearity with lag order 1 

Test for Threshold Nonlinearity in biomass-based diesel D4 RIN series 

delay 1 2 3 4 5 6 7 8 

LR-stat 15.53 9.94 3.51 18.81 8.47 9.002 14.603 11.14 

P-value 0.0086 0.0795 0.3245 0.0021 0.1321 0.1105 0.0127 0.0507 

 

The presence of threshold nonlinearity is detected in several cases, where the delay parameter 

takes on values of one, four, seven and eight. Therefore, the null hypothesis is rejected and the 

log-transformed D4 price series is concluded to have significant nonlinearity. Next, the log-

transformed D6 price series is tested using the same specification as above. 

Table 3: Test for Threshold Nonlinearity with lag order 1 

Test for Threshold Nonlinearity in renewable fuel D6 RIN series 

delay 1 2 3 4 5 6 7 8 

LR-stat 4.1673 17.69 9.332 10.771 6.6976 6.5844 13.55 7.029 

P-value 0.3351 0.0034 0.0984 0.0583 0.2209 0.2265 0.0196 0.2006 

 

Testing for threshold nonlinearity in the D6 RIN series results in the null hypothesis being 

rejected in two cases. Based on the test results in Table 3, the log-transformed D6 price series is 

concluded to have significant threshold nonlinearity.  

6.2 Estimation of SETAR and TAR models 

The two-regime threshold autoregressive model is defined as  

𝑌𝑡 = {
𝑋′𝛿1 + 𝛽1,1𝑌𝑡−1 +⋯+ 𝛽𝑝1,1𝑌𝑡−𝑝1 + 𝜎1𝜀𝑡, 𝑖𝑓 𝑍𝑡−𝑑 ≤ 𝑟 

𝑋′𝛿2 + 𝛽1,2𝑌𝑡−1 +⋯+ 𝛽𝑝2,1𝑌𝑡−𝑝2 + 𝜎2𝜀𝑡, 𝑖𝑓 𝑍𝑡−𝑑 > 𝑟
}. 

The autoregressive lag orders of the two sub models are not necessarily identical and are thus 

labeled as 𝑝1 and 𝑝2. Other regime specific variables are in the vector  𝑋  and the coefficient 
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𝛿𝑗varies among regimes where. Extending the two-regime model to any 𝑚 regimes is done by 

further partitioning the thresholds so that −∞ < 𝑟1 < 𝑟2 < ⋯𝑟𝑚−1 < ∞ . The location 

of  𝑍𝑡−𝑑 in relation to the thresholds will determine the sub models. For example a four regime 

threshold autoregressive model is represented as the piecewise regression of 

𝑌𝑡 =

{
 
 

 
 

𝑋′𝛿4 + 𝛽1,4𝑌𝑡−1 +⋯+ 𝛽𝑝4,4𝑌𝑡−𝑝4 + 𝜎4𝜀𝑡, 𝑟3 ≤ 𝑍𝑡−𝑑 

𝑋′𝛿3+ 𝛽1,3𝑌𝑡−1 +⋯+ 𝛽𝑝3,3𝑌𝑡−𝑝3 + 𝜎3𝜀𝑡,       𝑟2 ≤ 𝑍𝑡−𝑑 < 𝑟3 

𝑋′𝛿2 + 𝛽1,2𝑌𝑡−1 +⋯+ 𝛽𝑝2,2𝑌𝑡−𝑝2 + 𝜎2𝜀𝑡, 𝑟1 ≤ 𝑍𝑡−𝑑 < 𝑟2 

𝑋′𝛿1 + 𝛽1,1𝑌𝑡−1 +⋯+ 𝛽𝑝1,1𝑌𝑡−𝑝1 + 𝜎1𝜀𝑡,           𝑍𝑡−𝑑 < 𝑟1 }
 
 

 
 

. 

An indicator function 𝐼𝑗(𝑍𝑡−𝑑  , 𝑟𝑗) where 𝑗 = 1,2,3, …𝑚, which takes the value of 1 if the 

expression is true and zero if false, can be used to combine the piecewise regression. The above 

piecewise regression of four regimes can be combined into a single nonlinear regression of 

𝑌𝑡 = {(𝑋′𝛿1 + 𝛽𝑝1,1𝑌𝑡−𝑝1 + 𝜎1𝜀𝑡)𝐼1(𝑍𝑡−𝑑 , 𝑟1) + (𝑋
′𝛿2 + 𝛽𝑝2,2𝑌𝑡−𝑝2 + 𝜎2𝜀𝑡)𝐼2(𝑍𝑡−𝑑  , 𝑟1, 𝑟2)

+ (𝑋′𝛿3 + 𝛽𝑝3,3𝑌𝑡−𝑝3 + 𝜎3𝜀𝑡)𝐼3(𝑍𝑡−𝑑 , 𝑟2, 𝑟3) + (𝑋
′𝛿4 + 𝛽𝑝4,4𝑌𝑡−𝑝4

+ 𝜎4𝜀𝑡)𝐼4(𝑍𝑡−𝑑 , 𝑟3)}. 

The identity of the specification is determined by the threshold variable 𝑍𝑡−𝑑. If  𝑍𝑡−𝑑 is the d-th 

lagged dependent variable then the model is a self-exciting threshold autoregressive (SETAR) 

model. If  𝑍𝑡−𝑑 is some other exogenous variable then the model becomes the conventional 

threshold autoregressive (TAR) model. 

The problem is therefore to estimate the coefficients 𝛿𝑗  , 𝛽𝑝𝑗,𝑗 and the threshold values 𝑟𝑗. To do 

so nonlinear least squares is performed to minimize the sum of squares objective function. The 

least square estimator  𝜃 = (𝛿𝑗  , 𝛽̂𝑝𝑗,𝑗, 𝑟̂𝑗) solves the minimization problem 

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑{𝑌𝑡 − (𝑋
′𝛿1 + 𝛽𝑝1,1𝑌𝑡−𝑝1)𝐼1(𝑍𝑡−𝑑  , 𝑟1) − ⋯− (𝑋

′𝛿4

𝑛

𝑡=1

+ 𝛽𝑝4,4𝑌𝑡−𝑝4)𝐼4(𝑍𝑡−𝑑 , 𝑟3)}
2
 . 
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6.3 Model Selection for renewable fuel D6 RIN time series 

The first step in building a nonlinear model whether the resulting model is a TAR, STAR or 

SETAR, is to specify a linear model to form a starting point for further analysis. The proposed 

linear model for D6 RINs is one of lagged dependent variables, and three exogenous variables 

including, ethanol blend margins, end of week corn prices and D4 RIN prices. Ethanol blend 

margins are defined as the difference between wholesale ethanol price and wholesale gasoline 

price, plus applicable blend credits for the time periods when such tax incentives were in effect. 

The blend margins are thought to approximate the core value of RINs as depicted in Figure 8. 

Corn prices are for nearest future contract price at end of week closing price on the Chicago 

Board of Trade exchange. Biodiesel D4 RIN prices are included to capture the nested structure 

and relationship of the two RIN prices. When blending mandates are pushed beyond the blend 

wall, ethanol RINs should be in high demand and in fact there may be a deficit of available D6 

RINs to fulfill the ethanol mandate. If that is the case, the deficit may be made up by submitting 

D5, D4, D3 or D7 RINs as discussed earlier. In this state of the world, D6 RIN prices ought to be 

driven to their ceiling, which is defined by the floor of D5 and D4 RIN prices. Since D5 RIN 

prices are bounded by D6 and D4 RINs, they are excluded from the analysis. Therefore D4 RINs 

prices should be highly correlated with D6 RIN prices, at least in certain regimes. The aim of this 

study is to determine when the transition between regimes is made, and which transition variable 

(or threshold variable) is most significant in explaining the regime change.  

First the optimal lag length of D6 RIN series is determined using an iterative process where the 

optimal lag is chosen to minimize Akaike’s Information Criteria (AIC). 
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Table 4: D6 Lag Selection 

D6 RIN 

AR-Order 

 Akaike’s 

Information 

Criteria 

 0.000000 -0.525712 

 1.000000 -0.544843 

 2.000000 -0.538805 

 3.000000 -0.532636 

 4.000000 -0.526221 

 5.000000 -0.519637 

 6.000000 -0.512976 

 7.000000 -0.506842 

 8.000000 -0.503419 

 9.000000 -0.511798 

 10.00000 -0.505944 

 

With a lag length of one selected to minimize the AIC, the linear model is estimated via ordinary 

least squares.  

 
Table 5: Linear model of D6 RIN price 

Dependent Variable: LRD6   

Method: Least Squares   

Included observations: 278 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LRD6(-1) 0.130925 0.051442 2.545076 0.0115 

ETHMRGN 0.009565 0.017389 0.550088 0.5827 

DLCORN 0.017965 0.225647 0.079614 0.9366 

LRD4 0.572233 0.097061 5.895577 0.0000 

     
     R-squared 0.139290     Mean dependent var 0.008203 

Adjusted R-squared 0.129866     S.D. dependent var 0.175814 

S.E. of regression 0.164001     Akaike info criterion -0.763609 

Sum squared resid 7.369559     Schwarz criterion -0.711413 

Log likelihood 110.1417     Hannan-Quinn criter. -0.742669 

Durbin-Watson stat 1.910228    

     
      

From the linear model D4 RIN prices are highly significant and positively related to D6 RIN 

prices. While ethanol blend margins and end of week corn prices are not statistically significant 

they remain in the model as this result may change under different regimes. 



22 

 

Before proceeding with any model selection a test for conditional heteroskedasticity in the AR 

(p) is performed. The presence of heteroskedasticity is likely to have a significant effect on 

inference and thus model selection results. An autoregressive conditional heteroskedasticity 

(ARCH) test is carried out by regressing the squared residuals on lagged values of the squared 

residual. However, the presence of serial correlation will invalidate any ARCH test so a Breusch-

Godfrey test for serial correlation is first performed. The null hypothesis is of no serial 

correlation in residuals up to a specified lag order. In this case tests are carried out for second-

order serial correlation. 

Table 6 

Breusch-Godfrey Serial Correlation LM Test:  

     
     F-statistic 4.150832     Prob. F(2,272) 0.0168 

Obs*R-squared 8.233496     Prob. Chi-Square(2) 0.0163 

     
     Test Equation:    

Dependent Variable: RESID   

Method: Least Squares   

Included observations: 272   

 

Table 6 indicates a failure to reject the null hypothesis of second-order serial correlation in D6 

RINs. One way to visualize serial correlation is to generate a scatter plot of residuals against 

lagged values.  



23 

 

Figure 9: Visualizing Possible Serial Correlation 
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Plotting the residuals against lagged values is particularly useful in the case of extreme outliers, 

which is precisely the case here. Figure 9, depicts the relationship between D6 residuals and their 

lagged values. Contrary to the Breusch-Godfrey test results, the residuals do not appear to be 

strongly correlated with their lagged values. However, there are several outliers which may cause 

misleading inference in B-G tests. (Ann & Midi, 2011). The presence of large outliers in the 

residual terms motivates a test for higher order serial correlation. Testing for fourth-order serial 

correlation results in a p-value of 0.1018 signaling a failure to reject the null hypothesis of no 

serial correlation of the fourth-order. Another method of detecting serial correlation is to plot the 

autocorrelation function and partial autocorrelation function.  
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Figure 10: Correlogram of residuals for D6 Linear Model 

 

Figure 10 shows the empirical pattern of correlation between residuals and their own past values. 

As can be seen, all autocorrelation and partial autocorrelation values are near zero and all Q-

statistics are insignificant. This provides more evidence that the linear model for D6 RINs does 

not actually suffer from serial correlation. With no serial correlation tenable, tests for 

heteroskedasticity are carried out. 

Table 7 reports the results of the test for first-order autoregressive conditional heteroskedasticity. 

Results strongly indicate the null hypothesis of homoscedasticity cannot be rejected. Therefore it 

is concluded that D6 RINs do not suffer from conditional heteroskedasticity. 

Table 7: D6 test for ARCH 

Heteroskedasticity Test: ARCH   

     
     F-statistic 0.131655     Prob. F(1,263) 0.7170 

Obs*R-squared 0.132590     Prob. Chi-Square(11) 0.7158 

     
     Test Equation:    

Dependent Variable: RESID^2   

Method: Least Squares   

Included observations: 265 after adjustments  
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The proposed model for the D6 RIN series is a threshold autoregressive model with exogenous 

variables.  The proposed threshold parameter for D6 RIN price is weekly renewable volume 

obligation (rvo) defined earlier. Log-transforming the weekly rvo ensures stationarity. This 

model will be tested against the competing SETAR model, where the threshold variable is the 

endogenous lagged dependent variable. First, the best fitting threshold delay parameter is chosen 

for the transition variable RVO. The delay parameter is allowed to vary from 0 to 5 while 

specifying the model and choosing the delay parameter which minimizes the sum of squared 

residual (SSR). While setting the maximum number of possible regimes to four, the delay 

parameter which minimizes the SSR is 𝑙𝑛(𝑟𝑣𝑜)𝑡−2 with a SSR of 5.102857.  

In the SETAR model, the threshold variable is the endogenous lagged dependent variable. 

Before testing the TAR model against the SETAR model, the best fitting delay parameter for 

lagged values of D6 are found by minimizing the SSR of the null hypothesized SETAR model. 

The delay parameter is allowed to vary from 0 to 5 while specifying the model and choosing the 

delay parameter which minimizes the SSR. Again the maximum number of regimes is set to four 

and the models are iteratively estimated, capturing the SSR for each specification. In this case 

the best fitting threshold variable for the SETAR model is found to be 𝑑𝑙𝑛(𝑑6)𝑡−2 with a SSR of 

5.335060. 

Next, the number of thresholds for each model is determined. Visual inspection of Figure 6 

indicates there are possibly four regimes in the D6 RIN series, but not likely to exceed four. 

However it is possible there is less than four regimes and to determine this, a sequential 

estimation of the number of thresholds and the associated threshold values is performed (Bai & 

Perron, 1998). 
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In the case of the TAR model with the exogenous threshold variable of  𝑑𝑙𝑛(𝑟𝑣𝑜)𝑡−2 the 

maximum number of thresholds is set to three, thus limiting the maximum number of regimes to 

four. However, using the Bai-Perron method of L+1 vs L sequentially determined thresholds, it 

is found that only two thresholds and thus three regimes are chosen. In Table 4 the threshold 

specification is summarized. The table reports the estimated number of thresholds and the 

associated threshold values.   

 
Table 8 

    
    Summary of Threshold Specification 

    
    Threshold variable: LRVO(-2)  

Estimated number of thresholds: 2  

Method: Bai-Perron tests of L+1 vs. L sequentially determined 

        thresholds   

Maximum number of thresholds: 3  

Thresholds values estimated: -0.2984065, -0.215888 

    
     

When specifying the TAR model for D6 RIN prices, the threshold specification indicates there 

are two thresholds and thus three regimes. In the case of the SETAR model, the maximum 

number of thresholds is again set to 3, limiting the possible number of regimes to four. Using the 

same Bai-Perron sequential estimation, the number of thresholds is estimated to be two, thus 

predicting three regimes.  

Table 9 

    
    Summary of Threshold Specification 

    
    Threshold variable: LRD6(-2)  

Estimated number of thresholds: 1  

Method: Bai-Perron tests of L+1 vs. L sequentially determined 

        thresholds   

Maximum number of thresholds: 3  

Threshold value used: -0.09779775  
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The next task is to determine whether the TAR model or the SETAR model is a better fit for the 

D6 RIN series. To do so, each model is specified with the established delay parameters, and 

number of thresholds found in the threshold specifications. The model which minimizes the sum 

of squared residuals is deemed to be the best fitting model for D6 RINs. Results indicate the 

TAR with three regimes (TAR (3)) significantly outperforms the SETAR with two regimes 

(SETAR (2)). The TAR (3) model results in a SSR of 5.708684, while the SETAR (2) results in 

a SSR of 6.099091.  

Table 10 

   
   Threshold Variable SSR Regimes 

   
   LRVO(-2)  5.708684  3 

LRD6(-2)  6.099091  2 

   
    

Table 10 reports the associated SSR for each model. Based on these results the exogenous 

threshold variable of weekly renewable volume obligations outperforms endogenous lagged 

values of the dependent variable. 

The model of choice for D6 RINs is  

𝑌𝑡 = {𝛽0 + (𝑋
′𝛿1 + 𝛽𝑝1,1𝑌𝑡−𝑝1 + 𝜀𝑡)𝐼1(𝑍𝑡−𝑑  <  𝑟1)

+ (𝑋′𝛿2 + 𝛽𝑝2,2𝑌𝑡−𝑝2 + 𝜀𝑡)𝐼2(𝑟1 ≤ 𝑍𝑡−𝑑  <  𝑟2)

+ (𝑋′𝛿3 + 𝛽𝑝3,3𝑌𝑡−𝑝3 + 𝜀𝑡)𝐼3(𝑟2 ≤ 𝑍𝑡−𝑑 )} 

𝑋 = vector of exogenous variables 

𝑍𝑡−𝑑 = log − transformed renewable volume obligation 

𝑟𝑗 = threshold values where 𝑗 = 1: 2 

𝐼𝑚 = indicator variable equal to one if the argument is true,where 𝑚 = 1: 3 

𝛽0 = intercept term assumed constant across regimes 
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𝑌𝑡−𝑝𝑚 = lagged dependent variables where 𝑚 = 1: 3  

Notice that the order of lagged dependent variable is allowed to vary between regimes. The 

model is estimated assuming a lag order of one in each regime, but there is nothing to prevent the 

lag order to vary between regimes. Also notice that 𝑚 represents the number of regimes. The 

vector of exogenous variables includes ethanol blend margins, D4 RIN price, and end of week 

corn price. End of week corn prices are log-differenced to ensure stationarity, however ethanol 

blend margins were found to be stationary without transformation.  

6.4 Model Selection for biomass-based diesel D4 RIN time series 

Similar to the linear model for D6 RIN prices the linear model for D4 RIN price is specified with 

three exogenous variables including biodiesel blend margin, end of week soybean price and D6 

RIN price. Motivation for the choice of exogenous variables are similar to those of D6 RIN 

prices. The optimal lag length is chosen and the linear model is estimated using ordinary least 

squares. As was the case with D6 RINs the optimal lag length is found to be of lag order one.  

 

Table 11: D4 Lag Selection 

D4 RIN 

AR-Order 

Akaike’s 

Information 

Criteria 

 0.000000 -2.116010 

 1.000000 -2.142083 

 2.000000 -2.134952 

 3.000000 -2.127835 

 4.000000 -2.134066 

 5.000000 -2.129076 

 6.000000 -2.122169 

 7.000000 -2.115057 

 8.000000 -2.108795 

 9.000000 -2.102204 

 10.00000 -2.096068 
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With a lag length of one selected to minimize the AIC, the linear model is estimated via ordinary 

least squares.  

 
Table 12: Linear Model of D4 RIN price 

Dependent Variable: LRD4   

Method: Least Squares   

Included observations: 271 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LRD4(-1) 0.191933 0.055036 3.487388 0.0006 

BDMRGN 0.003367 0.006705 0.502152 0.6160 

DLSOY -0.077259 0.152564 -0.506405 0.6130 

LRD6 0.170539 0.028903 5.900316 0.0000 

     
     R-squared 0.153066     Mean dependent var 0.004856 

Adjusted R-squared 0.143550     S.D. dependent var 0.091734 

S.E. of regression 0.084895     Akaike info criterion -2.080147 

Sum squared resid 1.924324     Schwarz criterion -2.026979 

Log likelihood 285.8599     Hannan-Quinn criter. -2.058799 

Durbin-Watson stat 1.851852    

     
      

Table 12 reports the results of the proposed linear model of D4 RIN price. Similar to the linear 

model of D6 RIN price, only the lagged dependent variable and D6 RIN price is statistically 

significant. Although the biodiesel blend margin and end of week soybean prices are not 

statistically significant, they remain in the model as this result may change under different 

regimes. 

Tests for serial correlation and autoregressive conditional heteroskedasticity are performed 

before proceeding with any nonlinear model selection procedures. The test for serial correlation 

is carried out by regressing the AR (1) residuals on the lagged value of D4, plus two lagged 

residuals, thus testing for second-order serial correlation.  Table 13 reports the results of the 

second-order serial correlation test. With a p-value of 0.2004 the null hypothesis of no serial 
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correlation cannot be rejected, and it is concluded that D4 RINs do not suffer from serial 

correlation. 

Table 13 

Breusch-Godfrey Serial Correlation LM Test:  

     
     F-statistic 1.617083     Prob. F(2,265) 0.2004 

Obs*R-squared 3.267514     Prob. Chi-Square(2) 0.1952 

     
     Test Equation:    

Dependent Variable: RESID   

Method: Least Squares   

Included observations: 271   

 

 

Table 14 reports the results of the autocorrelation conditional heteroskedasticity test for the D4 

time series. With a p-value of 0.0000 the null hypothesis of homoscedasticity is rejected. 

Therefore it is concluded that D4 RIN prices suffer from conditional heteroskedasticity. 

Table 14 

Heteroskedasticity Test: ARCH   

     
     F-statistic 18.32108     Prob. F(1,256) 0.0000 

Obs*R-squared 17.23105     Prob. Chi-Square(1) 0.0000 

     
     Test Equation:    

Dependent Variable: RESID^2   

Method: Least Squares   

Included observations: 88 after adjustments  

 

Correcting for conditional heteroskedasticity is done by specifying Newey-West standard errors 

which correct for heteroskedasticity and autocorrelation (HAC). Estimating the linear model with 

Newey-West standard errors does not significantly change the outcome of statistical significance 

for the explanatory variables. 
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Table 15: HAC corrected Linear Model of D4 price 

Dependent Variable: LRD4   

Method: Least Squares   

Included observations: 271 after adjustments  

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed 

        bandwidth = 5.0000)   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     LRD4(-1) 0.191933 0.062164 3.087521 0.0022 

BDMRGN 0.003367 0.006076 0.554145 0.5799 

DLSOY -0.077259 0.131455 -0.587725 0.5572 

LRD6 0.170539 0.046437 3.672462 0.0003 

     
     R-squared 0.153066     Mean dependent var 0.004856 

Adjusted R-squared 0.143550     S.D. dependent var 0.091734 

S.E. of regression 0.084895     Akaike info criterion -2.080147 

Sum squared resid 1.924324     Schwarz criterion -2.026979 

Log likelihood 285.8599     Hannan-Quinn criter. -2.058799 

Durbin-Watson stat 1.851852    

     
      

The proposed model for D4 RIN series is the self-exciting threshold autoregressive model with 

exogenous variables (SETAR). The proposed threshold variable is lagged values of the 

dependent variable D4 RIN price, hence the name self-exciting. However, a competing threshold 

variable will be introduced to test against the alternative. The competing threshold variable is the 

lagged values of renewable D6 RIN price. Due to the nested structure of RINs, the price of D4 

RINs should always be worth at least as much as D6 RINs as discussed earlier. Due to the 

ethanol blend percentage standards nearing the ethanol blend wall, obligated parties may over 

comply with the biodiesel annual standards in order to generate D4 RINs which are worth 1.5 D6 

RINs. By over complying, the biodiesel blending mandate may effectively be nonbinding, which 

would drive the price of D4 RINs down to until there in an effective zero premium over D6 

RINs. If that is indeed the case, then one would expect the price of D6 RINs to be a suitable 

threshold variable for the D4 RIN price series. 
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First, the best fitting threshold delay parameter is chosen for the lagged dependent variable. The 

delay parameter is allowed to vary from 1 to 5 while specifying the model and choosing the 

delay parameter which minimizes the sum of squared residual (SSR). While setting the 

maximum number of possible regimes to four, the delay parameter which minimizes the SSR is 

𝑑𝑙𝑛(𝑑4)𝑡−3 with a SSR of 1.643880. This process is repeated while specifying the external 

threshold of lagged D6 prices. Again the maximum number of possible regimes is four and the 

delay parameter is allowed to vary between 1 and 5. The lagged value of D6 price which 

minimizes the SSR is found to be 𝑑𝑙𝑛(𝑑6)𝑡−3 with a SSR of 1.757713.  

Visual inspection of Figure 5 indicates there are possibly four regimes in the D4 RIN series, 

similar to the D6 RIN series. However it is possible there are less than four regimes and to 

determine this, a sequential estimation of the number of thresholds and the associated threshold 

values is performed using the Bai-Perron method of L+1 vs L sequentially determined 

thresholds. In the case of the SETAR model with a  𝑑𝑙𝑛(𝑑4)𝑡−3 as the threshold variable, two 

thresholds are chosen, indicating three regimes. Table 16 reports the summary of threshold 

specification 

Table 16 

    
    Summary of Threshold Specification 

    
    Threshold variable: LRD4(-3)  

Estimated number of thresholds: 2  

Method: Bai-Perron tests of L+1 vs. L sequentially determined 

        thresholds   

Maximum number of thresholds: 3  

Thresholds values estimated: -0.06234626, 0.0788706 
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When specifying the TAR model for D4 RIN prices, where the threshold variable is 𝑑𝑙𝑛(𝑑6)𝑡−3 

the maximum number of thresholds is again set to 3, limiting the possibility to four regimes. 

Using the same Bai-Perron sequential method, the number of thresholds is found to be two, 

indicating a three regime TAR model. Table 8 reports the summary of threshold specification for 

the TAR model for D4 RIN prices.  

Table 17 

    
    Summary of Threshold Specification 

    
    Threshold variable: LRD6(-3)  

Estimated number of thresholds: 2  

Method: Bai-Perron tests of L+1 vs. L sequentially determined 

        thresholds   

Maximum number of thresholds: 3  

Thresholds values estimated: -0.007395268, 0.07113479 

    
     

 

The next task is to determine whether the SETAR (3) or the TAR (3) model is a better fit for the 

D4 RIN series. To do so, each model is specified with the established delay parameters, and 

number of thresholds found in the threshold specifications. The model which minimizes the sum 

of squared residuals is deemed to be the best fitting model for D4 RINs. 

Results indicate the SETAR with three regimes outperforms the TAR with three regimes. The 

SETAR (3) model results in a SSR of 1.896741, while the TAR (3) results in a SSR of 2.011920.  

Table 15 reports the associated SSR for each model and Figure 6 depicts the sizable difference in 

associated sum of squared residuals for each model. 
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Table 18 

   
   Threshold Variable SSR Regimes 

   
   LRD4(-3)  1.896741  3 

LRD6(-3)  2.011920  3 

   
    

In the next section, the best fit models as determined by the above model selection procedures 

will be estimated.  

The model of choice for D4 RINs is  

𝑌𝑡 = {𝛽0 + (𝑋
′𝛿1 + 𝛽𝑝1,1𝑌𝑡−𝑝1 + 𝜀𝑡)𝐼1(𝑍𝑡−𝑑  <  𝑟1)

+ (𝑋′𝛿2 + 𝛽𝑝2,2𝑌𝑡−𝑝2 + 𝜀𝑡)𝐼2(𝑟1 ≤ 𝑍𝑡−𝑑  <  𝑟2)

+ (𝑋′𝛿3 + 𝛽𝑝3,3𝑌𝑡−𝑝3 + 𝜀𝑡)𝐼3(𝑟2 ≤ 𝑍𝑡−𝑑 )} 

𝑋′ = vector of exogenous variables 

𝑍𝑡−𝑑 = lagged values of log − differenced D4 RIN price 

𝑟𝑗 = threshold values where 𝑗 = 1: 2 

𝐼𝑚 = indicator variable equal to one if the argument is true,where 𝑚 = 1: 3 

𝛽0 = intercept term assumed constant across regimes 

𝑌𝑡−𝑝𝑚 = lagged dependent variables where 𝑚 = 1: 3  

The vector of exogenous variables includes biodiesel blend margins, D6 RIN price and end of 

week corn price. End of week corn prices are log-differenced to ensure stationarity, however 

biodiesel blend margins were found to be stationary without transformation.  

6.5 Results of TAR estimation for D6 RIN series 

Results indicate a presence of three regimes with three threshold values. The threshold values are 

estimated to be -0.2984065 and -0.21588. The threshold variable is the logarithmic value of 

weekly renewable volume obligations for ethanol blends. Therefore the threshold values 

represent the log of weekly ethanol quantities blended. The first regime includes 58 observations 



35 

 

and occurs where 𝑑𝑙𝑛(𝑟𝑣𝑜)𝑡−2 is strictly less than -0.2984065. In this first regime, the lagged 

value of D6 RIN price is not statistically different from zero. The one explanatory variable which 

is highly significant is the price of biomass-based diesel D4 RINs. With a p-value of 0.0000 and 

a coefficient of 1.6879, the price of D6 RINs is strongly and positively correlated with D4 RINs. 

In this first regime, the ethanol blend margins are statistically significant at the 10 percent level 

and the coefficient is positive as expected, meaning that as the gap between gas price and ethanol 

price increases, so does the RIN price. 

The second regime consists of 93 observations and is defined as those periods where the weekly 

ethanol blend quantities are greater than or equal to -0.2984065 and strictly less than -0.215888 

or −0.2984065 ≤ 𝑑𝑙𝑛(𝑟𝑣𝑜)𝑡−2 < −0.215888. In this regime, only the lagged dependent 

variable of D6 RIN price is significant. With a p-value of 0.0001 and a coefficient of 0.542026, 

𝑑𝑙𝑛(𝐷6)𝑡−1 is somewhat persistent.  

In the third regime there are 117 observations and is defined as those periods 

where−0.215888 ≤ 𝑑𝑙𝑛(𝑟𝑣𝑜)𝑡−2. In this regime, the lagged dependent variable is highly 

significant and positive with a p-value of 0.0061 and a coefficient of 0.262230.  The only 

significant exogenous variable is D4 RIN price with a p-value of 0.0000 and a coefficient of 

0.888960.  

The intercept which was not specified to vary between regimes is not statistically different from 

zero with a p-value of 0.2902.  Table 27 in the appendix reports the detailed results of the TAR 

model for D6 RIN series. Comparing the sum of squared residuals and the information criteria of 

to the linear model, the nonlinear TAR model with three regimes provides a better fit. Table 19 

reports the R-squared, SSR and AIC for both the linear model and the TAR model and it appears 

the TAR model is superior to the linear specification. 
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Table 19 

     
     Linear model versus TAR model for D6 RIN price 

     
     Linear Model  TAR (3) Model  

R-squared 0.139290     R-squared 0.297332 

Sum squared resid 7.369559     Sum squared resid 5.798687 

Akaike info criterion -0.763609     Akaike info criterion -0.898463 

     
      

6.6 Results of SETAR estimation for D4 RIN series 

An application of the SETAR model to D4 RIN series results in two thresholds with values of -

0.06234626 and 0.0788706. Recall that the threshold variable chosen in this case is the third lag 

of log-differenced D4 RIN price. The first regime consists of 39 observations and is defined as 

the periods where the growth rate of D4 RIN price is strictly less than -0.06234626. During this 

period only the biodiesel blend margin and D6 RIN prices are statistically significant. The 

biodiesel blend margin is just significant at the 5 percent level with a p-value of 0.0521 and a 

positive coefficient of 0.059332, indicating the positive relationship between blend margins and 

RIN values as depicted in Figure 8 of section 5. Ethanol D6 RIN prices are highly significant 

with a p-value of 0.0004 and a coefficient of 0.375024, indicating the positive relationship 

between the two RIN prices. 

The second regime consists of 177 observations and is defined as the periods where the growth 

rate of D4 RINs is greater than or equal to -0.06234626 and strictly less than 0.0788706 such 

that −0.06234626 ≤ 𝑑𝑙𝑛(𝐷6)𝑡−3 < 0.0788706. In this regime, the lagged value of the 

dependent variable is highly significant with a p-value of 0.0000 and a coefficient of 0.544318 

The price of D6 ethanol RIN also has a statistically significant relationship with D4 RIN prices 

with a p-value of 0.0013. With a coefficient of 0.108048, D6 RINs are positively associated with 
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D4 RINs, which is also consistent with expectations. Due to the nested structure of RIN prices a 

negative relationship between the prices of any two RINs would be alarming and raise concerns 

to the model specification. 

The third regime consists of 42 observations and is defined as those periods where the growth 

rate of D4 RINs is greater than or equal to 0.0788706 such that 0.0788706 ≤ 𝑑𝑙𝑛(𝐷6)𝑡−3. In 

this regime only the D6 RIN price is highly significant with a positive coefficient of 0.715988. 

The lagged value of D4 RIN price is significant at the 10 percent level with a p-value of 0.0856. 

The intercept which is specified to be invariant among regimes is found to be statistically 

insignificant with a p-value of 0.1788. Table 28 in the appendix, reports the complete results of 

the SETAR model for D4 RIN price. Comparing the linear model of D4 RIN prices to the 

SETAR model shows that while the SETAR model does improve the SSR and R-squared, it also 

introduces enough added complexity that the AIC is not minimized in the SETAR model.   

Table 20 

     
     Linear model versus SETAR model for D4 RIN price 

     
     Linear Model  SETAR(3) Model  

R-squared 0.153066     R-squared 0.329722 

Sum squared resid 1.924324     Sum squared resid 1.896741 

Akaike info criterion -2.080147     Akaike info criterion -1.974170 

     
      

Table 20 indicates, that while the SETAR model improves the goodness of fit over the linear 

model, the number of parameters added to the estimation also introduces substantial complexity. 

This is a drawback of the quick switching TAR and SETAR models. These models are 

essentially a piecewise linearization through the introduction of indicator variables that are equal 

to one if the threshold is crossed and zero if not, operating much like a light switch. In the next 
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section, a smooth transition autoregressive (STAR) model is fitted to the data. In a STAR model, 

the switch from one regime to the next occurs through a smooth transition function of the 

threshold variable. The number of regimes will equal the number of unique values taken on by 

the transition function.  

7. SMOOTH TRANSITION AUTOREGRESSIVE MODEL 

The smooth transition autoregressive (STAR) model is represented by the equation 

𝑦𝑡 = 𝜶′𝒙𝑡 + 𝜽
′𝒙𝑡𝐺(𝑧𝑡; 𝛾, 𝑐) + 𝑢𝑡 

where, 𝒙𝑡 = (1, 𝑦𝑡−1, … 𝑦𝑡−𝑝;  𝑥1𝑡, … , 𝑥𝑘𝑡)′ , 𝜶 = (𝛼0, 𝛼1, … 𝛼𝑚)′ , 𝜽 = (𝜃0, 𝜽1
′ ) = (𝜃0, 𝜃1, … 𝜃𝑚) 

and 𝑢𝑡~𝑖. 𝑖. 𝑑(0, 𝜎
2). The function 𝐺(𝑧𝑡; 𝛾, 𝑐) , identifies transition thresholds, 𝑧𝑡 is a transition 

variable,  𝛾 and 𝑐 are slope and location parameters respectively. The transition function is a 

continuous function between zero and unity, assumed to take a logistic form of 𝐺(𝑧𝑡; 𝛾, 𝑐) =

 [1 + exp{−𝛾(𝑧𝑡 − 𝑐)}]
−1  so that the model is also known as the logistic STAR or LSTAR. As 

𝑧𝑡 increases, the logistic function changes monotonically from zero to unity. The STAR model 

with a logistic transition function is a regime switching model, where the transition from one 

regime to the next is smooth, and the regime that occurs at time  𝑡 is determined by 𝑧𝑡. 

7.1 Linearity testing against the LSTAR model 

Given a specific nonlinear alternative to the linear model, Lagrange Multiplier tests can be 

calculated which are optimal in terms of power against that nonlinearity (Granger & Terasvirta, 

1993). The following steps can be taken to calculate these LM type tests. 

1. Regress 𝑦𝑡 on 𝑥𝑡 and compute the residuals 𝑢̂𝑡 = 𝑦𝑡 − 𝑎
′𝑥𝑡 and 𝑆𝑆𝑅0 = ∑ 𝑢̂𝑡

2  
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2. If the transition variable is known to be  𝑧𝑡𝑑 compute the auxiliary regression of 

𝑢̂𝑡=𝛽
′𝒙𝑡 + ∑ (𝜑𝑑𝑗𝑧𝑡𝑑𝑥𝑡𝑗 + 𝜓𝑑𝑗𝑧𝑡𝑑

2 𝑥𝑡𝑗 + 𝜅𝑑𝑗𝑧𝑡𝑑
3 𝑥𝑡𝑗) + 𝑣𝑡

𝑚
𝑗=1   and obtain the SSR 

3. Calculate the statistic 𝐿𝑀 =
𝑇(𝑆𝑆𝑅0−𝑆𝑆𝑅)

𝑆𝑆𝑅0
  

The null hypothesis is thus 𝜑𝑑𝑗 = 𝜓𝑑𝑗 = 𝜅𝑑𝑗 = 0 and the LM statistic has an asymptotic 

𝜒2(3𝑚) where 𝑚 is the number of parameters.  

Performing the above test on D6 and D4 RIN series, results in LM-test statistics of 78.465 and 

51.015 respectively for p-values of 0.0000 in both cases, rejecting the null hypothesis of linearity 

against the alternative LSTAR nonlinear model. 

7.2 Testing the significance of the transition variable 

A form of the auxiliary regression used in testing for linearity may be used to select the best 

transition variable.  

𝑢̂𝑡 = 𝛽0
′𝑥𝑡 + 𝛽1

′𝑥𝑡𝑧𝑡𝑑 + 𝛽2
′𝑥𝑡𝑧𝑡𝑑

2 + 𝛽3
′𝑥𝑡𝑧𝑡𝑑

3 + 𝜂𝑡 

When the correct transition variable is selected the auxiliary regression is indeed the 

appropriately specified auxiliary regression against the true nonlinear alternative. An incorrect 

transition variable would render it misspecified (Granger & Terasvirta, 1993). If linearity is 

rejected for several candidate transition variables, then the transition variable with the smallest p-

value or the largest test statistic is selected. In this procedure the same candidate transition 

variables used in TAR and SETAR models are considered here for the STAR models. Namely 

this includes the log of weekly renewable volume obligations (LRVO), and lagged values of D6 

and D4 RIN price. 
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Table 21: Test for most significant D6 transition variable 

Transition variable tests for D6 RINs 

H0: The transition variable is not significant  

      
      Transition variable 

(STR) F-statistic P-value 

Transition variable 

(STR) F-statistic P-value 

      
      LRVO(-1)  121.034  0.000 LRD6(-1)  38.892  0.000 

LRVO(-2) 50.166  0.000 LRD6(-2)  48.172  0.000 

LRVO(-3) 29.371  0.000 LRD6(-3)  80.889  0.000 

LRVO(-4) 69.877  0.000 LRD6(-4)  43.491  0.000 

LRVO(-5)  119.244  0.000 LRD6(-5)  54.027  0.000 

      
       

Table 21, indicates the weekly renewable volume obligations is a more appropriate transition 

variable than lagged values of D6 RINs. Weekly RVO’s with a delay parameter of 1st lag and 5th 

lag have the highest test statistic by a large margin, so these two delay parameters are utilized in 

the STAR estimation of D6 RINs. 

Table 22: Test for most significant D4 transition variable 

Transition variable tests for D4 RINs 

H0: The transition variable is not significant  

      
      Transition variable 

(STR) F-statistic P-value 

Transition variable 

(STR) F-statistic P-value 

      
      LRD4(-1)  70.812  0.000 LRD6(-1)  11.304  0.000 

LRD4(-2)  58.150  0.000 LRD6(-2)  21.374  0.000 

LRD4(-3)  92.631  0.000 LRD6(-3)  14.816  0.000 

LRD4(-4)  37.584  0.000 LRD6(-4)  28.587  0.000 

LRD4(-5)  17.819  0.000 LRD6(-5)  27.713  0.000 

      
       

Table 22, indicates that endogenous lagged dependent variables are the most appropriate 

transition variables for D4 RIN prices as evidenced by the larger test statistics. Delay parameters 

of the 1st lag and 3rd appear to be the best fitting transition variables for D4 RINs and these will 

be utilized in the estimation of the D4 STAR model. 
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7.3 Estimation of the STAR Model 

Estimation is performed with non-linear least squares using a Gauss-Newton optimization 

procedure with Marquardt iteration steps. The log-likelihood function is constructed under the 

assumption of normality and is thus represented as 

ln(𝑙) = −
1

2
ln(2𝜋) − ln(𝜎) −

1

2
(
𝑦𝑡 − 𝜶

′𝒙𝑡 − 𝜽
′𝒙𝑡𝐺(𝑧𝑡; 𝛾, 𝑐)

𝜎
)

 2

  

In the LSTAR model, the function 𝐺(𝑧𝑡; 𝛾, 𝑐) is normalized in the exponential function by the 

standard deviation of the transition variable 𝜎̂(𝑧𝑡). Doing so rescales the slope parameter of the 

transition function 𝛾 since its value could be much larger than other parameters. To be clear the 

transition function takes the form 

𝐺(𝑠𝑡; 𝛾, 𝑐) =  [1 + exp{−𝛾(𝑧𝑡 − 𝑐)/𝜎̂(𝑧𝑡)}]
−1 . 

Based on Table 21, the LSTAR is estimated for D6 RIN price while specifying the first lag of 

weekly renewable volume obligations. Starting values for the optimization procedure are chosen 

randomly using a normal random number generator which generates a vector of starting values 

using a random draw from a normal distribution with a mean of zero and variance on unity. The 

model is specified with the same explanatory variables as the linear and TAR models so that a 

direct comparison of goodness of fit can be made.  

Newey-West Heteroskedastic and autocorrelation corrected (HAC) standard errors are estimated 

to correct for any possible serial correlation and heteroskedasticity. Recall that serial correlation 

of the second-order was found in the case of the linear model. Although residual outliers are 

suspected of triggering this result, HAC standard errors are estimated in an attempt to make 

inference more reliable. 
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Table 23: D6 STAR estimation 

 

Dependent Variable: LRD6   

Method: Least Squares (Gauss-Newton / Marquardt steps) 

Included observations: 269 after adjustments  

HAC standard errors & covariance using observed Hessian (Bartlett 

kernel, 

        Newey-West fixed bandwidth = 5.0000)  

LRD6=C(1)+C(2)*LRD6(-

1)+C(3)*ETHMRGN+C(4)*DLCORN+C(5)*LRD4 

        +(C(6)+C(7)*LRD6(-

1)+C(8)*ETHMRGN+C(9)*DLCORN+C(10)*LRD4) 

        /(1+@EXP(-C(11)*(LRVO(-1)-C(12))/0.185725335183854)) 

     
      Coefficient Std. Error t-Statistic Prob.   

     
     C(1) 0.023274 0.010950 2.125594 0.0345 

LRD6(-1) 0.127293 0.073590 1.729756 0.0849 

ETHMRGN 0.045740 0.017859 2.561260 0.0110 

DLCORN -0.213122 0.200608 -1.062382 0.2891 

LRD4 0.492432 0.150171 3.279134 0.0012 

C(2) 4.467668 0.995157 4.489411 0.0000 

LRD6(-1)’ 11.58177 2.571800 4.503371 0.0000 

ETHMRGN’ 6.991539 1.462763 4.779679 0.0000 

DLCORN’ 27.75939 4.042605 6.866709 0.0000 

LRD4’ 8.492061 1.257257 6.754433 0.0000 

GAMMA -405.7669 55.20474 -7.350219 0.0000 

THRESHOLD -0.374341 8.51E-05 -4399.660 0.0000 

     
     R-squared 0.513805     Mean dependent var 0.011282 

Adjusted R-squared 0.492996     S.D. dependent var 0.175581 

S.E. of regression 0.125021     Akaike info criterion -1.277084 

Sum squared resid 4.016981     Schwarz criterion -1.116726 

Log likelihood 183.7678     Hannan-Quinn criter. -1.212684 

F-statistic 24.69045     Durbin-Watson stat 1.625610 

Prob(F-statistic) 0.000000    

     
      

 

Table 23 reports the estimation results of the D6 STAR model. A large value for the smoothness 

parameter 𝛾 indicates the regime switch may be a quick transition rather than a smooth one. 

However, large values of  𝛾 are not of significant concern.  As 𝛾  → ∞ the transition 

function  𝐺(𝑠𝑡; 𝛾, 𝑐)  becomes steeper which means the transition is faster.  The threshold 
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variable 𝑐̂ is estimated to be -0.374341 which is within the range of the transition 

variable ln(𝑟𝑣𝑜)𝑡−1.  

Figure 11: Evaluation of D6 Transition Function 

 

Figure 11 indicates the transition function for D6 RINs takes on only three values and is largely 

clustered around zero. This would indicate the transition between regimes is not smooth, but 

occurs rapidly much like a TAR model. Initially this might provide evidence that the TAR model 

estimated in section 8 is the more appropriate model. To compare the overall goodness of fit 

between the D6 TAR model and the D6 STAR model, the SSR, R-squared and AIC are 

evaluated. 

Table 24: D6 Model Comparison 

       
Linear model versus TAR and STAR model for D6 RIN price 

       Linear Model  TAR (3)  STAR   

R-squared 0.139290     R-squared 0.297332     R-squared  0.513805 

SSR 7.369559     SSR 5.798687     SSR 4.016981 

AIC -0.763609     AIC -0.898463     AIC -1.277084 
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Table 24, indicates that the STAR model provides the best fit for D6 RIN prices. Both the SSR 

and the AIC are improved by large margins, and the R-squared is nearly twice as large as the 

TAR model. 

Estimating the STAR model for D4 RINs is carried out in a similar fashion. As indicated by 

Table 22 the transition variable chosen for D4 RINs is the third lag of D4 RINs. 

 
Table 25: D4 STAR estimation 

Dependent Variable: LRD4   

Method: Least Squares (Gauss-Newton / Marquardt steps) 

Included observations: 252 after adjustments  

HAC standard errors & covariance using observed Hessian (Bartlett 

kernel, 

        Newey-West fixed bandwidth = 5.0000)  

LRD4=C(1)+C(2)*LRD4(-

1)+C(3)*BDMRGN+C(4)*DLSOY+C(5)*LRD6 

        +(C(6)+C(7)*LRD4(-

1)+C(8)*BDMRGN+C(9)*DLSOY+C(10)*LRD6)/(1 

        +@EXP(-C(11)*(LRD4(-3)-C(12))/0.0888091548199191)) 

     
      Coefficient Std. Error t-Statistic Prob.   

     
     C(1) -0.001065 0.020869 -0.051028 0.9593 

LRD4(-1) 0.350813 0.106685 3.288297 0.0012 

BDMRGN 0.000756 0.024364 0.031040 0.9753 

DLSOY -0.032501 0.154418 -0.210477 0.8335 

LRD6 0.147205 0.040533 3.631694 0.0003 

C(2) -0.050522 0.027390 -1.844576 0.0663 

LRD4(-1)’ -0.465275 0.148342 -3.136511 0.0019 

BDMRGN’ 0.161773 0.041676 3.881660 0.0001 

DLSOY’ -2.192636 0.572821 -3.827787 0.0002 

LRD6’ 0.619476 0.136913 4.524608 0.0000 

GAMMA -40.55228 142.7554 -0.284068 0.7766 

THRESHOLD -0.107872 0.016007 -6.739126 0.0000 

     
     R-squared 0.293940     Mean dependent var 0.005438 

Adjusted R-squared 0.261579     S.D. dependent var 0.093707 

S.E. of regression 0.080524     Akaike info criterion -2.154085 

Sum squared resid 1.556172     Schwarz criterion -1.986017 

Log likelihood 283.4147     Hannan-Quinn criter. -2.086458 

F-statistic 9.083128     Durbin-Watson stat 1.620708 

Prob(F-statistic) 0.000000    
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Table 25 reports the estimation of D4 STAR model. Similar the D6 STAR model the estimated 

value of 𝛾 is large and indicates the regime switch occurs quickly. The threshold variable 𝑐̂ is 

estimated to be -0.107872 which is within the range of the transition variable 𝑙𝑛∆𝐷4𝑡−3.  To 

evaluate the transition function and determine if the regime switch occurs smoothly or rapidly, 

the values of the transition function are plotted. 

Figure 12: Evaluation of D4 Transition Function 

 

Figure 12, indicates the transition function for D4 STAR model does not take on many values 

and the regime changes occur rapidly as opposed to smoothly. However, to determine the 

goodness of fit, the R-squared, SSR and AIC are compared. 

Table 26: D4 Model Comparison 

       
Linear model versus SETAR and STAR model for D4 RIN price 

       Linear Model  SETAR (3)  STAR   

R-squared 0.153066     R-squared 0.329722     R-squared  0.293940 

SSR 1.924324     SSR 1.896741     SSR 1.556172 

AIC -2.080147     AIC -1.974170     AIC -2.154085 

              
 

Table 26 indicates the STAR model outperforms both the SETAR model and the linear model in 

regards to minimizing the SSR and AIC. The SETAR model has a larger R-squared than the 
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STAR model, but in choosing the best fitting model, the minimized criteria of SSR and AIC 

trump the smaller R-squared. 

8. CONCLUSION 

The market for renewable identification numbers (RINs) is complex and constantly evolving. 

Understanding the behavior of the RINs can provide important insights into an industry which 

may be critical to long tem energy independence. Federal regulation which determines annual 

renewable volume obligations is often uncertain year to year, causing market participants, 

obligated parties and other agents to adapt their behaviors to the changing regulations. It is the 

behavior of these agents which is reflected in the multiple regimes and structural breaks of the 

RIN price. 

Nonlinearities in the RIN market are examined by fitting threshold autoregressive and smooth 

transition autoregressive models to historical RIN data. Theoretical RIN price is primarily driven 

by the core value of the RIN which is determined by the gap between the price of the biofuel and 

conventional fuel, also known as the blend margin. Therefore, ethanol and biodiesel blend 

margin variables are introduced as exogenous variables and thought to be primary determinants 

of RIN price. The cost of corn and soybeans are also included in the model as they’re thought to 

influence the price at which the biofuels are supplied.  

RIN prices are found to exhibit significant nonlinearity and regime change. The regime change is 

found to occur quickly as opposed to smoothly over time. However, the smooth transition 

autoregressive (STAR) model is found to be the best fit. STAR models are capable of taking on 

smooth transitions and quick abrupt transitions, making them well suited to model RIN prices.  
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It is believed that coupling patterns observed in the RIN market are brought about by some 

proximity to the ethanol blend wall. In other words, there is some unobservable threshold, that 

when crossed, brings about a change in the behavior of the RIN market. Therefore a key variable 

in this paper is weekly renewable volume obligations for producers and importers of gasoline. 

Weekly renewable volume obligations are found to be the most significant transition variable for 

D6 RIN price regime changes. In regards to D4 RIN prices, past values of D4 RIN price are 

found to be the most significant variable in determining regime change. This is in line with 

expectations. The ethanol blend wall represents a real challenge to producers and importers 

which are obligated to meet annual blend mandates. Therefore, obligated parties are over 

complying with the biodiesel mandate in order to generate D4 biodiesel RINs which can be 

submitted for compliance with the ethanol mandate. 
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APPENDIX 

 
Table 27: TAR estimation results for D6 RINs 

Dependent Variable: LRD6   

Method: Threshold Regression   

Included observations: 268 after adjustments  

Threshold type: Bai-Perron tests of L+1 vs. L sequentially determined 

        thresholds   

Threshold variables considered: LRD6(-2) LRVO(-2)  

Threshold variable chosen: LRVO(-2)  

Threshold selection: Trimming 0.15, Max. thresholds 3, Sig. level 0.05 

Threshold values used: -0.2984065, -0.215888  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LRVO(-2) < -0.2984065 -- 58 obs 
     
     LRD6(-1) -0.018821 0.062136 -0.302900 0.7622 

ETHMRGN 0.072367 0.038806 1.864852 0.0634 

DLCORN 0.346328 0.430657 0.804184 0.4220 

LRD4 1.687900 0.301359 5.600962 0.0000 
     
     -0.2984065 <= LRVO(-2) < -0.215888 -- 93 obs 
     
     LRD6(-1) 0.542026 0.133448 4.061714 0.0001 

ETHMRGN -0.006226 0.030661 -0.203074 0.8392 

DLCORN -0.613931 0.381963 -1.607305 0.1092 

LRD4 -0.057746 0.162934 -0.354416 0.7233 
     
     -0.215888 <= LRVO(-2) -- 117 obs 
     
     LRD6(-1) 0.262230 0.094836 2.765082 0.0061 

ETHMRGN 0.035021 0.038309 0.914157 0.3615 

DLCORN 0.213230 0.317800 0.670957 0.5029 

LRD4 0.888960 0.149973 5.927472 0.0000 
     
     Non-Threshold Variables 
     
     C 0.014854 0.014016 1.059802 0.2902 
     
     R-squared 0.297332     Mean dependent var 0.011649 

Adjusted R-squared 0.264265     S.D. dependent var 0.175806 

S.E. of regression 0.150798     Akaike info criterion -0.898463 

Sum squared resid 5.798687     Schwarz criterion -0.724274 

Log likelihood 133.3941     Hannan-Quinn criter. -0.828501 

F-statistic 8.991887     Durbin-Watson stat 1.898439 

Prob(F-statistic) 0.000000    
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Table 28: SETAR estimation results for D4 RINs 

Dependent Variable: LRD4   

Method: Threshold Regression   

Included observations: 258 after adjustments  

Threshold type: Bai-Perron tests of L+1 vs. L sequentially determined 

        thresholds   

Threshold variables considered: LRD4(-3) LRD6(-3)  

Threshold variable chosen: LRD4(-3)  

Threshold selection: Trimming 0.15, Max. thresholds 3, Sig. level 0.05 

Threshold values used: -0.06234626, 0.0788706  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LRD4(-3) < -0.06234626 -- 39 obs 
     
     LRD4(-1) 0.084483 0.099846 0.846134 0.3983 

BDMRGN 0.059332 0.030396 1.951986 0.0521 

DLSOY -0.910617 0.658333 -1.383216 0.1679 

LRD6 0.375024 0.104542 3.587308 0.0004 
     
     -0.06234626 <= LRD4(-3) < 0.0788706 -- 177 obs 
     
     LRD4(-1) 0.544318 0.091176 5.969974 0.0000 

BDMRGN 0.023248 0.020093 1.156983 0.2484 

DLSOY -0.046817 0.179469 -0.260863 0.7944 

LRD6 0.108048 0.033272 3.247400 0.0013 
     
     0.0788706 <= LRD4(-3) -- 42 obs 
     
     LRD4(-1) 0.173871 0.100721 1.726261 0.0856 

BDMRGN 0.023698 0.028186 0.840743 0.4013 

DLSOY 0.700899 0.477459 1.467977 0.1434 

LRD6 0.715988 0.098420 7.274821 0.0000 
     
     Non-Threshold Variables 
     
     C -0.021219 0.015736 -1.348430 0.1788 
     
     R-squared 0.329722     Mean dependent var 0.005733 

Adjusted R-squared 0.296892     S.D. dependent var 0.104933 

S.E. of regression 0.087988     Akaike info criterion -1.974170 

Sum squared resid 1.896741     Schwarz criterion -1.795145 

Log likelihood 267.6679     Hannan-Quinn criter. -1.902183 

F-statistic 10.04334     Durbin-Watson stat 1.926641 

Prob(F-statistic) 0.000000    
     
     

 
 


