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Abstract

We investigate productivity development and its relation to resource reallocation effects in
the dairy sector in southeast Germany during the phasing-out of the European Union milk
quota. We use a farm level dataset containing financial accounting data for a period of 15
years. Farm-level productivity is estimated by applying a proxy approach recently
introduced in the literature. We compare this approach to other estimation approaches as
well as an index based analysis. After aggregation we decompose sector productivity into
unweighted mean productivity and a covariance term measuring the allocation of resources
toward more productive farms. We observe an increase in the covariance term coinciding
with a period of rather volatile milk prices. Therefore, we hypothesize that reallocation of
production resources due to market deregulation is triggered or even enforced by extreme
price levels. We seek to find support for this hypothesis by a regression analysis linking
the measure for the potential covariance between resource reallocation and productivity on
the one hand and price variability on the other. In this analysis we find some empirical

evidence for this hypothesis.



Introduction

In a well-functioning and free market, firms that cannot keep up with competitors are
forced to reduce their market share or even cease their market participation. Thereby these
firms release the resources bound by their production activity and make them available for
production by more productive firms. This process contributes to a more efficient
production at the sector level (i.e. aggregate productivity). Market regulation, however, is
suspected to hinder this resource flow by keeping firms with low productivity in the market.
This suspicion can also be applied to the case of the European Union (EU) milk quota
system. The milk quota was introduced by the European Community in 1984 to restrict
production volumes and avert high production surpluses that could only be removed from
the market by high intervention costs. Originally introduced as only a temporary instrument
for five years, the use of the quota was prolonged several times. With the quota regime in
place, the expansion of a dairy operation was, in general, hindered by the additional costs
of quota acquisition and ownership that can be seen as a source of additional rents for less
productive farms. European dairy farmers were restricted to a certain output level by
imposition of the “superlevy”, a farmer was usually obliged to pay for production volumes
exceeding the farm’s quota. The final date of the abolition of the quota was introduced in
the CAP reform of 2003 and confirmed in 2008. A phasing-out was performed by a
stepwise increase of the quota volumes (soft landing approach). It can be expected that in
the first years the distortionary effect imposed by the quota was strong considering the
large additional costs expanding producers faced due to high quota prices. Toward the end
of the quota system, the market disturbing effect might have become less significant since

quota prices significantly decreased?.



Deregulation cannot be regarded as the sole driver for resource reallocation among
farms. An important exogenous factor for a farmer’s investment decision is the output
price. The 2015/16 “milk crisis” in Europe and other parts of the world shows how
susceptible farmers are to output price risk. Insisting calls for financial aid illustrate the
serious effect on the farm structure and indicate that price plunges are possibly followed
by a significant resource reallocation in the sector. Our analysis considers both deregulation

and output prices as potential drivers for resource reallocation in the dairy sector.

Background
Restuccia (2016) described the underlying idea behind resource misallocation within an
industry sector. The optimal reallocation of input resources among farms is given, when
resources flow from farms with the smaller to farms with the greater marginal product. Any
policy that dissuades an industry sector from reaching an optimal point of resource
allocation will compromise aggregate output and productivity. In the following we review
part of the vast literature concerned with the effects of policy influence on the performance
of firms or industry sectors. We remark that this review is by no means exhaustive but is
meant to merely illustrate that policy distortions predominantly tend to be found negatively
related to firm or sector performance. This is not just the case for the agricultural economics
literature but also in studies examining other industry sectors.

Eslava et al. (2004) examined the influence of resource reallocation on aggregate
productivity of Colombian manufacturing firms in the context of labor market, trade,
financial, and social security reforms. They found that after the reforms in the early 1990s,

reallocation largely accounted to aggregate productivity growth.



Restuccia and Rogerson (2008) applied a growth model calibrated with US data.
They examined the effect of policy induced reallocations of resources among producers
with heterogeneous productivity. They concluded that these distortions can largely affect
industry productivity especially in the case when distortions are correlated with the
productivity of firms.

Hsieh and Klenow (2009) examined the dispersion of revenue productivity in the
manufacturing sector of China, India, and the US. They found that in all countries, but
especially in India and China, industry productivity could be increased by an optimal
resource reallocation that equalizes revenue productivities across firms within industry
sectors. In addition, they observed an improvement of allocation efficiency for China
during a period of market reforms. For India, however, they found ambiguous results with
declining allocation efficiency despite reforms.

In a growth model, Guner, Ventura, and Xu (2008) examined the effect of policies
that restrict production of large firms or encourage production of small firms, thereby
inducing a decrease of mean firm size. For taxes on capital use they found a reduction in
aggregate output as well as a decrease in labor productivity. If size restrictions were implied
by taxes on labor use they found a comparable decrease in labor productivity, however,
aggregate output remained nearly unchanged. Finally, by subsidies for small firms,
aggregate output was also unchanged and contrary to the other cases, labor productivity
tended to increase. These results indicate that different policies that have the same effect
on mean firm size might affect productivity measures in different ways.

As the agricultural sector is influenced by various policy measures in many
countries, the effect of (de-)regulation on sector performance is also of wide interest in the

agricultural economics literature. An example of intensive policy control is the European
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Common Agricultural Policy and the implied subsidies and production quotas. With the
abolition of the milk quota system the EU takes another step toward a more liberalized
agricultural market already in place in other industrialized regions. Gray, Oss-Emer, and
Sheng (2014), for example, examined productivity dynamics in the Australian broadacre
agriculture in the context of policy reforms. They concluded that facilitated by
comprehensive policy reforms, reallocation significantly influenced sectoral productivity
gains and helped offset farm-level total factor productivity (TFP) decline.

Production quotas might affect farm and industry productivity in several ways?.
Central to our study is the hypothesis of a hindered resource flow from less to more
productive firms. This should be reflected in decelerated structural change. The results of
Huettel and Jongeneel (2011) showed that this is not necessarily be the case. They applied
a Markov chain model on aggregate data for Dutch and German dairy farms and examined
the structural change quantified by mobility indicators for different size classes before and
after implementation of the quota system. They found that the overall mobility of dairy
farms increased rather than decreased with the milk quota and attributed this effect to the
stronger interdependency between growing and shrinking farms. However, they found exit
mobility to be decreased under the quota regime, indicating that small and possibly less
efficient farms stayed in the market despite a low and further declining efficiency of
production.

Nevertheless, the majority of studies that examine the effect of quotas on sector
performance, most often come to the conclusion that production quotas negatively impact
efficiency and productivity in the sector, however, the negative effect is reduced with

increasing quota tradability.



This result is e.g. confirmed in the study by Gillespie et al. (2015). They applied a
stochastic frontier framework and a Malmquist productivity index for a panel of Irish dairy
farmers reaching back to the pre-quota period. High productivity growth rates before the
quota implementation, low growth rates in the first years of the quota regime, and
increasing growth rates following policy reforms reflect the hypothesized effect of the
quota implementation and a liberalized quota trade on sector productivity.

Colman (2000) showed that tradability of quota rights reduces sector inefficiency
as quota can be transferred from less to more efficient farms. However, he demonstrated
that in the case of the UK (in 1996/97), the optimal allocation of quota was not achieved,
therefore, some inefficiency remained in the market. Furthermore, he also argued that with
high quota prices, the quota cost amounts to a significant share of total production cost,
thereby posing a barrier for expanding farmers.

Assimilar conclusion is drawn by Hennessy et al. (2009), who concluded that overall
cost inefficiency of milk production in Ireland could be reduced by a national quota trading
system compared with the existing regional trading system.

Kirwan, Uchida, and White (2012) examined the effect of the termination of
production quotas in the tobacco sector in Kentucky. After the sudden elimination of quotas
they found considerable resource reallocation flows accompanying the restructuring
process in the sector and showed their positive effect on aggregate productivity.

Before closing this section, a remark is in order about what is measured by the effect
of resource misallocation on sector productivity. With productivity we examine the
predominantly technical aspects of production and neglect other aspects that are of
importance for agricultural production. In the context of resource reallocation this might

be most prominently farm structure. If returns to scale are increasing, then efficient
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resource allocation impacts farm structure. In Bavaria, structural change in the agricultural
sector is primarily considered as an unwanted development by many policy makers and
sector representatives as small family businesses are regarded as an essential characteristic

for the region highly valued by consumers.

Conceptual Framework

The methodological difficulties of estimating production functions are known since
Marschak and Andrews, Jr. (1944) but have received renewed interest in more recent years
as new techniques became available to overcome the problem of endogenous input choice.
A comprehensive overview of techniques that have been proposed is provided by van
Beveren (2012). Firms choose production inputs according to factors potentially
unobservable by the econometrician. Assuming a Cobb-Douglas technology a firm’s

production process can be formalized as

(1) Vit = Bo + Bikic + Bilit + BrnMie + Vit

that is, firm i’s output y in year t is described by the production inputs capital k, labor I,
and intermediates m, all in logarithmic values. Besides the stochastic error, v captures a
firm’s productivity and a simple way of measuring productivity seems to consist of

estimating (1) by OLS and calculate productivity as

) Dit = .go + Vit = Vit — .ékkit - .éllit - .gmmit-

However, it must be assumed that v is not only determined by random effects but rather

has two components which can be shown by rewriting (1),

(3) Vit = Bo + Brkic + Bilit + Brnmir + wir + €,



where € represents a stochastic component due to measurement error or random shocks
experienced by the production process. Factors such as managerial ability, expected
weather events or livestock related characteristics are included in w. Both terms are not
observed by the econometrician, however, « may be known or predicted by the farmer
prior to choosing levels of variable inputs®. If this is the case, then variable inputs and v
are not independent and estimation of (1) using OLS yields biased results.

To counter this, Olley and Pakes (1996) developed a two-stage procedure where in
a first stage a reduced production function is estimated with investment used as a proxy for
the productivity shocks observed by the firm and correlated with variable inputs (for details
see Olley and Pakes 1996; Ackerberg, Caves, and Frazer 2006; van Beveren 2012;
Ackerberg et al. 2007). Petrin and Levinsohn (2012, “LP”) pointed out that the approach
suggested by Olley and Pakes (1996) can be problematic due to the fact that capital is an
input costly to adjust, probably leading to lumpy investment and datasets with a
considerable share of zero investments. In this case, the assumption that investment is
strictly increasing in unobservable productivity shocks does not hold, thus, w cannot be
formulated as a function of capital and investment. Hence, LP modified the approach and
suggested intermediate inputs rather than investment as the proxy for unobserved
productivity shocks.

The approaches by both Olley and Pakes (1996) and LP are challenged by
Ackerberg, Caves, and Frazer (2006). They pointed out that without additional
assumptions, the labor coefficient cannot be identified in the first stage of the algorithms
due to collinearity between labor input and the non-parametric function used to substitute

for productivity shocks. Wooldridge (2009) showed how the two-step approaches by Olley
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and Pakes (1996) and Levinsohn and Petrin (2003) can be reduced to an instrumental
variable procedure. This approach has two main advantages: it is robust to the criticism of
Ackerberg, Caves, and Frazer (2006) and standard errors can be easily obtained.

Several applications of these approaches exist in agricultural economics.
Kazukauskas, Newman, and Thorne (2010) applied a modified approach of Olley and
Pakes (1996) on a sample of Irish dairy farms. Kazukauskas et al. (2013) did not estimate
productivity but included in their estimation model a control function based on LP. Rizov,
Pokrivcak, and Ciaian (2013) extended the approach of Olley and Pakes (1996) to estimate
the effect of subsidies on farm-level productivity in the EU-15. In their study on the
Kentucky tobacco sector, Kirwan, Uchida, and White (2012) used the LP estimator to
generate production function estimates used then to construct aggregated industry
productivity. Petrick and Kloss (2013) applied the LP approach on European crop farms
comparing different estimators. They concluded that the LP estimator offers a viable
approach to productivity measurement also with respect to agricultural applications. In a
second article, Kloss and Petrick (2014) also found the Wooldridge (2009) LP modification
to be a viable alternative. However, they noted that the control function approach
incorporating intermediates as a proxy to control for productivity shocks may be
questionable in the agricultural context, as a farmer’s reaction to a positive productivity
shock might be to use fewer instead of more intermediate inputs (e.g. favorable weather or
livestock conditions requiring less intensive chemical plant protection or veterinary input).

Another widely applied approach to measure productivity at farm/firm level
consists of estimating stochastic production frontiers. Productivity change can then be
calculated indirectly applying a Malmquist index comprising technical efficiency change,

technical change, and possibly a scale efficiency change effect. The error term is divided
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into a random noise component and a stochastic inefficiency component. Endogenous
regressors can be correlated with either of these two components (see e.g. Mutter et al.
2013). Therefore, standard stochastic frontier approaches to productivity measurement are
expected to yield similarly biased results as obtained by OLS based estimation approaches.
However, there are numerous studies concerned with endogeneity-robust estimation of
production frontiers (Kutlu 2010; Shee and Stefanou 2015; Tran and Tsionas 2013;
Kazukauskas, Newman, and Thorne 2010).

Given these recent developments in endogeneity corrected productivity estimation,
we apply several approaches in this study. Using the estimations of farm-level productivity,
we examine the effect of the milk quota on the dynamics of dairy sector productivity in

southeast Germany to quantify possible distortionary effects.

Dataset

We employ a dataset on Bavarian dairy farms that is part of the European Farm
Accountancy Data Network (FADN). Bavaria is a German federal state (NUTS 1 region)
located in the southeast of Germany. Its raw milk production accounts for the largest share
of milk produced in the country. Agriculture in Bavaria is still characterized by relatively
small family farms. In 2013, the average farm in Bavaria cultivated about 33.6 hectares of
land. However, the average land per farm increased by 3.4% p.a. in the period 2005 to
2013, whereas the number of farms decreased by about 3.4% p.a. in the same period*. A
major goal of the Bavarian state government is to slow down the pace of structural change
for reasons of social and regional policy as well acceptance of modern agricultural

production in society (a relatively low yearly rate of 1.5% of all farms closing in the period
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2010 to 2013 is regarded as mid-term goal for regional agricultural policy, see (StMELF
2014).

The data we use contain financial records and additional socio-economic
information on the use of family labor, education of the farm manager, or physical input
quantities. The dataset covers a period of 15 years (2000-2014). Descriptive statistics of
output and input variables and details on their construction are discussed in the Appendix.
Although our dataset is based on a regional sample of farms, the results of the study are
highly relevant in a larger European context: (i) Bavaria is the largest milk producing
region in Germany and accounts for a significant proportion of the milk production in the
EU®, and (ii) dairy farming in Bavaria is characterized by a large share of small family
farms and slow structural change and, therefore, is representative for many other European

regions®.

Empirical modelling
To verify the robustness of our estimation results and to compare the performance and
robustness of different methodologies we measure productivity in various ways. We apply
(i, ii) two specifications of the Wooldridge (2009) LP modification approach (“WLP”), (iii)
a conventional stochastic frontier approach (“SFA”), where we calculate a Malmquist TFP
index as a result of technical efficiency change, technical change, and scale effects, (iv) a
second SFA approach using a reduced set of inputs and outputs to address problems due to
input aggregation, (v) an OLS approach based on fixed effects modelling (“FE”) and (vi)
a deterministic approach using a Térnqvist TFP index.

For the WLP approach the question of a suitable proxy to control for productivity

shocks must be considered. As mentioned before, not every category of intermediate inputs
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might be correlated with productivity shocks at farm level. We apply two different proxies:
(1) deflated costs for concentrated feed only, and (2) deflated costs for all intermediates by
following the ““standard” LP approach. We argue that the first model is based on a more
realistic approach since in dairy farming additional milk output caused by productivity
shocks must be balanced out with additional energy equivalents in feed rations (in simple
words: if a cow produces more milk, it needs to have greater feed intake to balance energy
output and input, see e.g. House 2011). We imagine a situation where a farmer achieves a
greater milk output relative to another or the same farmer in the previous year through
greater managerial effort; then, the more productive herd needs to have the greater feed
intake. Hence, assuming equal capital and labor endowments of the two farms, feed
consumption should be correlated with TFP. This might not be the case for other
intermediate inputs—take as an example veterinary costs, which might even be negatively
correlated with productivity (assuming that good managerial ability leads to greater milk
output and better health status of the herd). We also find a counter-argument for the feed
proxy. Consider two farms with the same feed inputs, and one farmer with greater
managerial ability; then, there is no connection between productivity and feed input if the
farmer with inferior managerial ability does not adapt his feeding strategy (or if lower feed
intake of the herd is not reflected in the accounting data, e.g., because of storage of
concentrates). As the choice of proxy is not straightforward, we employ two different
proxies: the feed proxy and the total intermediates proxy based on the “standard” LP
approach, which enables us to compare the outcomes of both specifications.

Table 1 compares the approaches applied in this study. Details for all estimated

models and calculations are given in the Appendix. The first WLP specification is our
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preferred model since it is robust to potential endogeneity and allows the estimation of TFP
levels rather than growth rates.

Following Baily, Hulten, and Campbell (1992) and Olley and Pakes (1996), we first
aggregate individual productivity levels to sector productivity as the output share weighted

mean

N
(4) Pe = 2 AitDits
i=1

where p, denotes aggregate sector productivity and p;; is individual productivity. A;;
represents farm i’s sample share of physical milk output in year t. Sector productivity is

then further decomposed according to

©) pe=Pe+ ) (i = 2 (e = 50,

where bars over variables denote unweighted means. The first term on the right-hand side
of equation (4) is the unweighted mean productivity in year t. We denote the second term
on the right-hand side as covariance-type term as it resembles the calculation of the sample
covariance without division by sample size’.

Petrin and Levinsohn (2012) indicate that such a definition of aggregate industry
productivity might be problematic. They argue that the definition of industry productivity
and reallocation effects used by Baily, Hulten, and Campbell (1992) and Olley and Pakes
(1996) might not correspond exactly to the true aggregate productivity and reallocation
dynamics. We cannot reject that our results might be flawed by this discrepancy between

the calculated aggregate productivity and the true aggregate productivity. Nevertheless, we
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still consider the method used in our study to be a valid index suitable for quantifying sector
productivity and reallocation effects. Finally, we do not experience problems with large
and volatile reallocation terms as Petrin and Levinsohn (2012) do with respect to their data

on manufacturing firms.

Results and Discussion

All estimated models show a satisfactory statistical significance at parameter and overall
model level. Detailed estimates and model results can be obtained from the authors upon
request. Estimated partial elasticities for the various model specifications are given in table
2. Returns to scale (rts) per model vary from about 0.95 (decreasing rts) to about 1.15
(increasing rts). For the Tornqvist index approach calculated cost shares are reported in
table 2. The WLP specifications show low elasticities for “other capital”” which could be

explained by multicollinearity with respect to the lagged value used in the control function.

Productivity Growth Rates

Unweighted mean productivity growth rates are given in table 3. Growth rates for the WLP
models start from 2003 since lags of up to order two are used to estimate productivity
levels. Relatively high values are obtained for the SFA2 model specification. For all
models, growth rates are positive apart from the last year in the time period considered,
further the levels of the estimated growth rates are similar across all models. Although the
productivity growth rates obtained by the first SFA specification and the FE model sum up
to the lowest total productivity levels, we fail to identify explicit differences between the
models not corrected for potential endogeneity (SFA and FE) and the ones that are

corrected (the WLP and the index approach).
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Table 4 reports the values for the respective correlation coefficients of the estimated
farm-level productivity growth rates between the different models. Strong correlations are
observed between the WLP and FE models as well as the index approach. Rather weak
correlations are observed between the second SFA specification and all other models,
questioning the results obtained by this specification based on a reduced set of inputs and

outputs.

Productivity Levels and Covariance

In table 5 we report sector and mean productivity levels and covariance terms for the
preferred model specification (WLP1). The second column shows that sector productivity
increased by approximately 14% over the total period, corresponding to an average annual
growth of approximately 1.1%. This is well in line with annual growth rates of productivity
in dairy production found by other studies (e.g. Kazukauskas, Newman, and Thorne 2010).
The third and fourth columns suggest that given deregulation-based reallocation of
production resources, the covariance term amounts to 4.8% in 2014. Contributions of farm-
level productivity growth and resource reallocation to sector productivity growth are
illustrated in figure 2. Notably, the covariance term lingers on a steady level in the first
years and then shows a significant increase starting from 2007. Several interpretations of
this pattern might be possible: (i) the development of milk prices, (ii) quota prices, and (iii)
the confirmation of the quota abolition in 2008 may have had implications on farmers’
(dis)investment decisions. As shown in table 5, quota prices showed more of a steady
decrease rather than experiencing sudden price shocks. We can, therefore, rule out that
plumping quota prices posed a sudden investment incentive to farmers. We cannot rule out,

that the confirmation of the abolition of the milk quota in 2008 had an impact on farmers’
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investment decisions. However, the level and development of milk prices seem to offer
more explanatory power. Milk prices were at a steady low level until 2007, then showed a
peak in 2008 and decreased again sharply to a low in 2010. The increase of the covariance
term, therefore, coincides with no clear price trend but with a period of volatile prices. One
could assume that the long period of low prices led to disinvestment decisions by less
productive farms, before high milk prices in 2008 posed an investment incentive for more
competitive farms with farmers willing to expand their production.

The reallocation of production resources should also be mirrored by an increased
trade of quotas between farms. We calculated the yearly means of the absolute (non-
negative) values of farm-level growth in quota stock as shown in the seventh column in
table 5. It can be seen that the increase of the covariance term was accompanied by a peak
in the mean of absolute growth rates of the quota stock in 2009. However, we cannot
explain the high mean quota growth rate in 2006 (see figure 2), which seems to have not
affected the reallocation term. The last column in table 5 shows that especially in the last
years, farmers seem to accept overproduction (and a possible superlevy) instead of
acquiring additional quota (see also figure 2). Therefore, the reallocation of resources may
no longer be captured in the quota stock growth of farmers. Sector and mean productivity
as well as the covariance term based on the alternative models are given in table 8 in the
Appendix. The magnitude of the reallocation effect differs between models, but, in general,
we find the same pattern of an increasing reallocation effect from 2007 onwards.

Increasing reallocation effects in the context of market deregulation are also found
by Gray, Oss-Emer, and Sheng (2014). They examined the extent of reallocation effects in
three different periods for the Australian broadacre agriculture. They found that following

elimination of the wool price support scheme and sector restructuring, resource reallocation
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effects played a significant role for sector TFP and partly offset average farm-level TFP
decreases.

Kimura and Sauer (2015) examined TFP development in dairy farms in the
Netherlands, Estonia, and the UK for a similar time period as we do in our study. For the
Netherlands, they found that sector input and output both increase from 2008 on, possibly
as a reaction to the confirmation of the phasing-out of the milk quota by the European
Commission. The starting point of this increase coincides with the increase of the
covariance term in our study. However, the reallocation effects found in their study show
a different pattern than our results. For the Netherlands, they found a stagnating
reallocation effect over the whole time period, whereas for the UK the reallocation effect
was declining due to a decreasing TFP gap between farms. Only for Estonia, the
reallocation effect was on a high level and increasing from 2003 to 2009, however, it

declined again thereafter.

Explaining Productivity Dynamics

In this second part of our study, we further explore the determinants of reallocation events.
Two factors are of special interest in this context: (1) the influence of the milk quota’s
regulatory power, quantified by the price at which farmers are able to trade quota rights on
guota exchanges. The lower the price for quota rights, the lower the investment barrier for
more productive farmers willing to expand their production. Hence, the market share of
more productive farms should increase, and lower quota prices should be associated with
a higher farm-specific covariance term. This would also correspond to the hypothesis stated

by Huettel and Jongeneel (2011). If the quota regime keeps the production volumes of
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farms tied together, decreasing quota prices would only further accelerate resource
reallocation toward more productive farms.

(2) The volatility of milk prices. We hypothesize that volatile milk prices force less
productive farms to exit the market, freeing resources that can be absorbed by more
productive farms with a more solid financial basis to cope with price volatility. On the
other hand, volatile milk prices might discourage more productive farms from expanding
their production: More productive farmers are more likely to expand their production, and
stable milk prices are required with respect to securing a stable financial basis for necessary
investment steps.

We examine these hypothesized links in a fixed effects panel estimation set-up. As

dependent variable we use the farm-level covariance term, given as
(6) Cov = (Ait - /Tt)(pit — Do)

with variables defined as before. Herewith, we focus on the individual farm level with
respect to the covariance term. A farm shows a positive cov;,, if it is more productive than
average and holds an above-average market share, or if it is less productive than average
and has a below average market share. As hypothesized, we expect quota exchange prices
to have a negative impact on the covariance term and farm-level milk price volatility to
have a positive impact on the covariance cov;;. We measure price volatility as the standard
deviation of the milk price the farmer received in the current and the preceding years. The
question is how many lags of the farm-level milk price are to be considered with respect to
the volatility measure, i.e. whether only the last year’s milk price change or also volatility
in earlier years has an influence on the farmer’s present behavior. We calculated several

standard deviations with differing time horizons from two years up to the last five years.
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To avoid collinearity in the model (as standard deviations show high correlation
coefficients) we decided to include only one volatility measure. The same applies to the
quota exchange price that shows a high correlation with its lagged values. We include only
last year’s quota price to account for the possibly delayed effect of the quota price on
investments. We control for farm-specific effects by the following variables: The
availability of a farm successor (a dummy variable indicating that there is at least one child
with agricultural education in the farmer’s household); the share of grassland cultivated;
the age of the farmer; a dummy variable indicating that farm income is only secondary
income for the farmer’s household; and a dummy variable for organic farming.
“Availability of a farm successor”, “age of farmer”, and “farming as secondary income”
are incorporated to control for the willingness of farm investments. “Share of grassland”
and “organic farming” are incorporated to control for available production alternatives.
Results of the model are summarized in table 6.

Despite the relatively modest model fit which we attribute to measurement error
rather than the omittance of important variables, the regression results provide support for
our hypotheses®. As expected, the coefficients for milk price volatility show a positive sign,
indicating that disinvestment decisions of less productive farmers (as a result of volatile
milk prices) possibly outweigh the effect of volatile milk prices discouraging more
productive farms from extending their production. Also, the estimates for quota prices
carry the expected signs supporting the hypothesis that declining regulatory power is
associated with an increasing significance of resource reallocation for sector productivity.
The result of an increasing sector productivity with an increasing tradability of the quotas
is finally in line with the conclusions drawn by Gillespie et al. (2015), Colman (2000), and

Hennessy et al. (2009).
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Conclusions

Using a sample of specialized dairy farms in southeast Germany, we find empirical
evidence that the reallocation of resources toward more productive farms increased
gradually during the phasing-out of the EU milk quota. However, we interpret our results
with caution. In light of steadily decreasing milk quota prices (and, therefore, steadily
decreasing distortionary power by quota regulations) during the period of study, one would
expect a steady increase in resource reallocations between individual farms. The SFA
models and the index approach show a more monotonic increase than the endogeneity-
robust WLP specifications. Both types of models, however, show an accelerated resource
reallocation effect from 2007 on that coincides with volatile milk prices but also the
confirmation of the abolition of the milk quota system in late 2008. Whether market prices
or quota restrictions show the stronger impact on resource reallocation in the dairy sector
is difficult to conclude, considering that the abolition of the quota could have an indirect
effect on reallocation by influencing market prices. Nevertheless, we hypothesize that
extremes in milk market prices can function as an ignition for major reallocation events
that are no longer restricted in their extent. Using a fixed effects model, we find some
evidence that volatile milk prices work in favor of resource reallocation toward more
productive farms. In light of the recent “milk crisis” in 2015 and 2016, evidence supporting
our view might be found in future studies. Methodologically, our study shows how the
recently emerged endogeneity-robust WLP approach to productivity estimation can also
be applied in an agricultural context. The results of the WLP model are insensitive to the
choice of the specific proxy variable and are validated by a comparison with other

estimation techniques. Given the relatively straightforward implementation based on
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existing software packages its importance for productivity measurement in agricultural

economics should increase in the future.
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Footnotes

1. The EU average quota price fell from approx. 60 cents per kg in 2005 to approx. 18
cents per kg in 2012 (European Comission 2012).

2. See Gillespie et al. (2015) who listed besides hindered resource flow and scale
restriction, the farmer’s risk behavior and impeded investment behavior as possible
reasons for lower technical efficiency under quota regimes.

3. Inputs are divided into variable inputs (which can be chosen at the time of production)
and fixed inputs (which are chosen before the time of production).

4. These numbers are calculated using the Eurostat database (European Comission 2015)
with data on total number of holdings and utilized agricultural area in NUTS 1 regions.

5. In 2004, Bavaria produced approximately 27 and 5% respectively of the milk in
Germany and the EU-27 (European Comission 2015).

6. Using numbers from the Eurostat database (European Comission 2015) aggregated for
NUTS 1 regions, it can be shown that from 2005 to 2013 the number of specialized
dairy farms in the European regions decreased at an average yearly rate of -4.8%. The
average yearly rate of 3.5% for Bavaria lies close to this value. Speaking of farm sizes
(2005-2013, 4 years available), the regions show an average of 94.4 livestock units
(LSUs) per farm, whereas in Bavaria the farms are smaller with an average of 52.4
LSUs per farm. Still, it lies close to the average of 58.1 LSUs per farm of the group of
regions with an average farm size up to 120 LSU per farm which represents 75% of all
regions in the database. On average, from 2005 to 2013 LSUs per farm grew by 4.7%
per year in all regions while in Bavaria specialized dairy farms grew at a similar rate of

3.3% per year.
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7. Omitting division by sample size makes the covariance measure sensitive to changes
in the sample size. Our sample indeed experiences growth in size to a level of 119% in
2006 compared with 2000. However, we do not assume this to be a problem for the
results of our study since the sample size decreases after 2006 and the fluctuation in the
number of observations does not coincide with variation in the covariance term.

8. For other model specifications with different combinations of varying time horizons
for the standard deviation and varying lags of the quota price we find in general the
same results. The coefficients for milk price standard deviation and milk quota are at

least significant at the 5% level.
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Tables

Table 1. Comparison of Approaches to Productivity Measurement

Approach Parametric/ TFP Endogeneity-
Nonparametric corrected?
Toérngvist TFP - Nonparametric ~ TFP growth rate: growth Deterministic
index of output index less growth approach,
approach of an input index endogeneity not

Fixed Effects
panel

estimation

Stochastic
Frontier

Analysis

Wooldridge-
Levinsohn-

Petrin

Parametric

Parametric

Parametric

TFP level: predicted input

elasticities and
rearrangement of the

production function,

following equation (2)

TFP growth rate: result of
technical change, technical
efficiency change and

scale efficiency change

TFP level: predicted input

elasticities and
rearrangement of the

production function

following equation (2)

relevant

If farm-level
productivity is
assumed to be time-

invariant

No

If farm-level
productivity is
assumed to be a
function of proxy

variable

Source: own compilation
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Table 2. Partial Elasticities Per Model Specification

WLP1 WLP2 FE SFA1l SFAZ2 Tornqvist
Cows 0.544 0.495 0.564 0.567 0.749 0.036
Other capital 0.017 0.045 0.129 0.071 - 0.359
Labor 0.085 0.113 0.044 0.091 0.075 0.287
Intermediates 0.223 0.349 0.215 0.377 0.291 0.318
Concentrates 0.121
Scale elasticity  0.990 1.003 0.953 1.106 1.115 1.000
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Table 3. Unweighted Mean TFP Growth Rates

Year WLP1 WLP2 FE SFAl SFA2 Torngvist
2001 - - 0.024 0.014 0.028 0.031
2002 - - 0.019 0.013 0.010 0.007
2003 0.013 0.012 0.009 0.010 0.015 0.004
2004 0.008 0.007 0.010 0.012 0.016 0.014
2005 0.012 0.011 0.006 0.012 0.015 0.015
2006 0.006 0.007 0.005 0.009 0.011 0.001
2007 0.021 0.019 0.020 0.012 0.018 0.018
2008 0.010 0.009 0.002 0.007 0.006 0.007
2009 0.007 0.011 0.013 0.010 0.011 0.017
2010 0.013 0.011 0.011 0.012 0.009 0.019
2011 0.007 0.008 0.010 0.008 0.013 0.011
2012 0.033 0.031 0.032 0.008 0.010 0.016
2013 0.007 0.008 0.000 0.005 0.004 0.009
2014 -0.017 -0.017 -0.008 -0.001 0.002 -0.029
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Table 4. Correlation Matrix for Productivity Growth Rates

WLP1 WLP2 FE SFAl1 SFA2 Torngvist

WLP1 1.00

WLP2 098 1.00

FE 094 09  1.00

SFAl 073 075 0.75 1.00
SFA2 042 044 047 050 1.00

Torngvist 0.86 090 089 0.71 045 1.00
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Table 5. Weighted Industry Productivity, Mean Productivity and Covariance Term
(WLP Specification I)

Mean
Milk Over-
Milk absolute

quota production
Year Dt De cov,  price? milk

price® (index,

(EUR/kg) quota
(EUR/kQ) 2000=1)°
growth

2002  1.000 0.971 0.029 0.38 0.76 3.0% 1.0
2003 1.011 0.984 0.027 0.35 0.50 3.0% 0.9
2004  1.019 0.991 0.028 0.33 0.52 4.2% 1.2
2005  1.030 1.003 0.027 0.33 0.48 4.3% 1.1
2006  1.037 1.009 0.028 0.33 0.55 103% 1.0
2007  1.061 1.030 0.031 0.33 0.37 4.8% 1.2
2008  1.077 1.040 0.036 0.44 0.37 4.3% 1.0
2009  1.089 1.047 0.042 0.36 0.24 6.0% 1.0
2010  1.106 1.061 0.044 0.32 0.10 4.7% 0.8
2011 1.114 1.069 0.045 0.38 0.11 5.1% 1.2
2012  1.150 1.104 0.046 0.40 0.09 4.0% 1.9
2013  1.164 1.112 0.053 0.39 0.04 3.8% 1.8
2014 1141 1.093 0.048 0.45 0.11 3.8% 2.6

& Milk prices are yearly averages of farm-level prices observed.
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b Milk quota prices are provided by the Bavarian State Research Center for Agriculture
(LfL 2015)
¢ The overproduction index is the yearly mean of farm-level production volumes that

exceed quota volumes, relative to 2002,

31



Table 6. Fixed Effects Regression to Explain Farm-Level Covariance

covj;
SD3? 0.51x1077 ***
(3.44x1077)
Quota exchange pricet1 —27.3x1078 ***
(2.78x10°)
Farm successor -1.69x10°7
(25.5x107)
Share of grassland —1.14x107°
(14.9x107)
Age of farmer 8.26x10°8
(11.9x10°8)
Farming as secondary 18.3x1076 **
income (8.30x10°%)
Organic farming 3.85x10°°
(5.89x107)
Constant 3.96x107° ***
(1.19x10°)
N 11,776
Within R2 0.015

2 SD3 is the standard deviation of the farm-level milk price in the last three years.
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Note: Standard errors are reported in parentheses. Significance levels are: ***1%, **5%,

and *10%.
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Figure 1. Contributions of farm-level productivity growth (within-effect) and
resource reallocation (between-effect) to sector productivity growth

34



12

32
S
P

o
S
o

*
S
P

‘19

P

P

S
S
2

>

>

>

(19

>

2.5

15

0.5

Overproduction Index

Mean absolute milk quota growth (%) =——Overproduction (index, 2000=1)
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Appendix

Data Preparation

To define our sample of specialized dairy farms, we include farms that generate at least
two thirds of their output from milk sales. We use the farm’s sales share averaged over the
whole sample period, to avoid the exclusion of observations where the farm operates below
this threshold in single years. As a single output we define total sales of the farm. Different
output categories are aggregated by deflating total sales using a Térngvist price index,
calculated by weighting price changes in various output categories (e.g., milk, cereals,
cattle, etc.) by the farm’s individual sales shares. The price changes are calculated based
on reported farm-individual prices and also based on price indices provided by the German
statistics agency (Destatis 2015), if prices are not available. For the second stochastic
frontier model we only use physical milk as output. Apart from the first WLP and the SFA
specification, we distinguish four different input categories. Intermediates are calculated
as total expenditures deflated with a Térnqgvist price index, again consisting of price
changes for intermediates categories weighted by expenditure shares. Since individual
prices for inputs are not reliably reported, we use price indices reported by the German
statistics agency. For the first WLP specification, we exclude costs for concentrated feed
from intermediates and use concentrated feed as a separate input. The number of milk cows
is included as a separate input. Other capital (buildings, machinery/equipment, and other
animals) is aggregated to one input by cumulating deflated investments and treating the
capital stock in the first year as initial investment. Land (owned and rented) is also

incorporated here by multiplying the number of hectares of cultivated land with an initial
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per hectare value and adding the value to the capital variable. Labor is given by reported

amounts of employed full-time equivalents.

Wooldridge-Levinson-Petrin Estimator
We estimate part of the Wooldridge-Levinson-Petrin GMM framework described in
Wooldridge (2009). We use a Cobb-Douglas production function including a quadratic

time trend as
(7) Vie = X136 + x35Y + Cie_1 A + St + Spet® + e

This corresponds to equation (2.11) in Wooldridge (2009). The exogenous regressors are
represented by x';;;. These are the state variable “other capital” and dummy variables for
agro-ecological zones as well as organic production. Row vector xj;, contains the
endogenous regressors: the variable inputs “number of cows”, “labor”, and “intermediates”
(only in the first specification) are instrumented by their one-period lags, the proxy variable
“concentrated feed” (in the first specification) or “intermediates” (in the second
specification) is instrumented by its two-period lag. ¢’;;_; consists of an intercept and a
polynomial of order three of the one-period lags of the state variable and the proxy variable.
u;; comprises random shocks not correlated with inputs, and the productivity innovation
component that is possibly correlated with variable inputs (for further details see
Wooldridge 2009). All production inputs are in logarithmic form. GMM estimation is

performed in Stata 13 using the command ivreg2. Productivity levels are calculated as

(8 In ﬁg/gLP =Yit — xiit.é - xéit?-
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Fixed Effects
In the fixed effects model, we assume that individual deviations from mean productivity

are time-invariant. Then, a production function can be represented as
9) Vie = XieB + 8¢t + 8y t? + w; + vy

We estimate (4) in translog form, with the row vector x;, including linear, quadratic, and
interactions of inputs as well as dummies for organic production and farm income as
secondary income. The column vector § contains the parameters to be estimated. We
include a quadratic time trend. v;; is an i.i.d. error term with N(0,c2). We use the Stata
command xtreg and the within regression estimator. Estimated productivity levels are then

given by

(10) In ﬁftE =Yit — x{tﬁ

Stochastic Frontier Models
We estimate stochastic frontier models in translog form with the Stata command sfpanel

following the model of Battese and Coelli (1995) as
(11) Vie = X'yt + vy — Uy

with the logarithmic output y;.. The row vector x';; contains logs of all linear, squared, and
interaction terms for the defined inputs (with a reduced set in the second model) as well as
the time trend, represented by a linear and squared term as well as interaction terms with
the inputs. Also included are dummy variables accounting for organic production, farm
income representing secondary income of the farmer, and agro-ecological zone. The

column vector B contains an intercept and the other parameters to be estimated. v;; is an
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i.i.d. error component with N(0,02). Technical efficiency is quantified by
u; ~N*(2'+8,02). We include in z';, dummies for educational status and age of the farm
manager, as well as dummies for farm income as secondary income, organic production,

and a linear time trend. Productivity change is then calculated as
(12) ln ﬁiFA = ln t/e\c,:t + ln EZ'it + ln S?Cit

with technical efficiency change In fec;, = In(e~%i/e~%it-1), technical change In fc;, =

n E;_q—1
it—1 *

‘L — 1 Ejt—1
), and scale efficiency change InSsec;, = EZ§=1[(;§—* €ire + 5
it

1 (637it—1 o it

2 at 31,' it—1

éikt—l) (Xiger — xl-kt_l)], with K inputs and scale elasticity E;, = YX_, é;, and partial

0Pt
Oxikt

elasticity of the kth input é;; =

Productivity levels are calculated by setting

In pir=2000 = 0 and cumulating growth rates: In p;74 = ¥'t_, In pe;F 4. Data gaps in single
years are assigned the sample average growth rate. Farms entering the dataset at a later

point in time start with the sample average productivity level.

Torngvist Index

We calculate a Tornqvist TFP growth index in logarithmic form for farm i in year t as

4
1
(13) Inpcl, = Wie — Yie-1) — EZ(Skit + Skit-1) Kkit — Xiit—1)
=1

where y denotes output, x the four inputs, and s the cost share of the kth input. Again, the
output and all inputs are in log form. As for the SFA approach, starting values are set and
growth rates are cumulated to generate productivity levels as Inp/, = ¥t_, Inpcl,. Data

gaps and “latecomers” are treated in the same way as in the SFA approach. For easier
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comparison productivity levels (p;;) of all models are adjusted to normalize industry

productivity to 1 in 2002.
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Table 7. Descriptive Statistics

2000 2014
Variable Mean Std. Dev.  Min Max Mean Std. Dev. Min Max
Output (EUR) 83,189 39,076 10,071 286,020 145,338 93,618 12,911 611,942
Cows (number) 33.3 13.6 4.6 135.0 47.6 25.5 2.0 182.2
Other capital (EUR) 865,438 422,448 152,443 6,052,293 1,328,346 701,914 199,943 5,850,496
Labor (FTE?) 1.54 0.45 0.35 3.12 1.65 0.53 0.30 4.97
Intermediates (EUR) 25,608 15,248 2,096 134,459 43,006 32,038 3,137 297,997
Concentrated feed (EUR) 9,668 6,899 52 61,247 14,830 11,521 55 109,749
Number of observations 947 1,022
Number of observations (all years) 15,833
Number of farms (all years) 1,470

8FTE = full-time equivalent
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Table 8. Industry Productivity, Mean Productivity, and Covariance Term Per Model

WLP2 FE SFA1 SFA2 Torngvist
Year
Pt 12 cov 12 123 cov 12 12 cov 12 128 cov 12 128 cov

2002 1.000 0.967 0.033 1.000 0.958 0.042 1.000 0.997 0.003 1.000 0.997 0.003 1.000 0.991 0.010
2003 1.010 0.978 0.032 1.007 0.967 0.040 1.012 1.007 0.004 1.017 1.012 0.005 1.005 0.995 0.010
2004 1.017 0.985 0.032 1.016 0.976 0.040 1.024 1.020 0.004 1.033 1.028 0.006 1.019 1.009 0.011
2005 1.029 0.996 0.033 1.020 0.982 0.039 1.037 1.032 0.005 1.048 1.042 0.006 1.033 1.024 0.011
2006 1.037 1.003 0.034 1.026 0.987 0.039 1.047 1.042 0.006 1.061 1.054 0.007 1.038 1.025 0.014
2007 1.059 1.022 0.037 1.047 1.007 0.040 1.061 1.054 0.006 1.080 1.074 0.007 1.060 1.043 0.016
2008 1.074 1.031 0.043 1.055 1.009 0.046 1.070 1.061 0.009 1.090 1.080 0.010 1.075 1.051 0.025
2009 1.089 1.043 0.047 1.070 1.022 0.048 1.083 1.072 0.012 1.105 1.091 0.013 1.096 1.069 0.028
2010 1.105 1.054 0.051 1.084 1.033 0.051 1.097 1.084 0.013 1.116 1.101 0.015 1.123 1.089 0.035
2011 1.116 1.063 0.053 1.095 1.044 0.051 1.108 1.093 0.014 1.132 1.115 0.016 1.142 1.100 0.041
2012 1.149 1.096 0.054 1.126 1.077 0.049 1.118 1.102 0.015 1.143 1.126 0.016 1.157 1.118 0.038
2013 1.165 1.105 0.060 1.131 1.077 0.054 1.126 1.108 0.018 1.149 1.130 0.018 1.173 1.128 0.046
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2014 1.141 1.086 0.055 1.117 1.068 0.049 1.127 1.107 0.020 1.157 1.133 0.024 1.138 1.096 0.041

Note: The starting point of the reallocation term differs for the SFA models and the index approach since we are bound to calculate
productivity levels from growth rates. Therefore both industry and mean productivity start with a common value in 2000 and the covariance

effect is accordingly zero in the first year.
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