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ABSTRACT 

The Energy Independence and Security Act (EISA) of 2007 states an increase in ethanol 

production to 36 billion gallons per year by 2022. Biofuels mainly are produced from agricultural 

commodities, so that increasing demand of biofuels would have an impact on agricultural 

commodity prices. The linear relationships among crude oil prices and prices for agricultural 

commodities are well documented, but not appropriate to explain the asymmetric dependency. 

Vine copula modeling which is used in this study can be extended to higher dimensions easily and 

provide a flexible measurement to capture an asymmetric dependence among commodities. The 

purpose of this study is to analyze the degree and the dependence structure of commodities with 

the policy effect of EISA 2007 along the biofuel supply chain in the United States agricultural 

market. We employ vine copulas in order to better capture an asymmetric dependence among 

commodities using five U.S. agricultural commodities’ and crude oil. The empirical results provide 

that vine Copula-based ARMA-EGARCH (1, 1) is an appropriate model with the skewed student 

t innovations to analyze returns dependency of crude oil and agricultural commodities before EISA 

2007 (January 1st, 2003- January 17th, 2007) and after EISA 2007 (January 18th, 2007-December 

31st, 2012). Our findings on the relationship among energy and agricultural commodities can 

provide policymakers and industry participants appropriate strategies for risk management, 

hedging strategies, and asset pricing.  
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1. INTRODUCTION 

     Petroleum reserves are limited natural resources and cannot be consumed forever. Over the last 

decade, there has been raised interest in the potential for biofuel as an alternative source in order 

to reduce consumption on fossil fuels and to improve environmentally friendly and renewable 

energy. The biomass based resource includes a wide variety of forestry and agricultural resources, 

industrial-process residues, and all plant and plant-derived materials (Perlack et al., 2005). 

Biofuels mainly are produced based on biomass that are generally from agricultural crops. The 

U.S. biofuel production has been increased in a rapid expansion because of high energy prices and 

government policies proposed to reduce the U.S. imported crude oil for energy needs (Tyner, 2008). 

In addition, the Energy Independence and Security Act of 2007 (EISA 2007) points that an increase 

in ethanol production to 36 billion gallons per year by 2022. Thus, an increase in demand of 

biofuels that are mainly composed of agricultural crops would have a certain impact on agricultural 

commodity prices. 

     The linear relationships among crude oil prices and agricultural commodities prices are well 

documented. Myers et al. (2014) indicated that the relationship between energy and agricultural 

feedstock prices will be less important in the long-run by running an econometric model in the 

short-run and long-run co-movements. Many studies have found that a significantly connection 

between agricultural feedstocks and oil prices from biofuel production since the biofuel boom in 

2005-2006 (Harri et al., 2009; Frank and Garcia, 2010). Moreover, Serra and Zilberman (2013) 

mentioned that energy prices have driven long-run agricultural price levels and influenced food 

markets from instability in energy markets. Furthermore, Natanelov et al. (2011) concluded that 

the biofuel policy impacts the co-movement of crude oil and corn futures until the crude oil prices 

surpass in a certain threshold from a comprehensive study on the interaction between crude oil 

futures market and agricultural futures markets. 

     Jiang et al. (2015) investigated the new relationships among the U.S. crude oil, corn and plastics 

markets by using a vector error correction model (VECM), and concluded that plastics prices and 

corn futures prices have the strong co-movements and EISA 2007 has improved relationships 

between the corn futures and crude oil futures markets. Agricultural commodity prices have 

influenced by oil prices (Abbott et al., 2008; FAO, 2008; Mitchell, 2008; OECD, 2008; Piesse and 

Thirtle, 2009), especially after 2006, when raising biofuel production lifted the emerging demand 

for agricultural commodities (see, e.g., Chen et al., 2010).  



     The Energy Independence and Security Act of 2007 (EISA 2007) was signed into law in 2007 

by President Bush, and his response “Twenty in Ten” challenge is to reduce gasoline consumption 

by 20% in 10 years (Bush, 2007). The idea of EISA 2007 is to promote different forms of 

alternative energy by moving the United States toward greater energy independence and security. 

In 2008, the United States has produced 9 billion gallons of ethanol fuel from an increase of more 

than 5000 percent since 1980 (Renewable Fuels Association, 2009). In addition, EISA 2007 

followed another major energy legislation, the Energy Policy Act of 2005 (EPA 2005) that 

enhances economic security and stability by increasing the production and development of clean 

renewable fuels and materials, such as biofuels or bio-based products. The EPA 2005 has fortified 

the linkage between crude oil and agricultural commodity markets (Wu et al., 2011; McPhail, 

2011). The environmental impacts of this mandate are unresolved and significant, such as net 

energy budget, effect on corn based commodities, greenhouse emissions, etc. (Food and Energy 

Security Act of 2007; Tilman et al., 2009).   

     Even though the linear relationships among crude oil prices and agricultural commodities prices 

are well documented, the objective of this study is to analyze the degree and the dependence 

structure of along the biofuel supply chain in the United States agricultural market. There is 

extensive literature studying dependence structures of crude oil futures and agricultural futures 

markets. For examples, Reboredo (2011) examined several copula models to evaluate the 

dependence structure between crude oil benchmark prices and concluded crude oil prices are 

moving together with the same intensity in the global markets. Ahmed and Goodwin (2015) 

studied the dependence structure between commodity prices among international food grain 

markets by using copula-based modeling, and found that strong and significant dependence 

structures of most price pairs among global food grain markets. 

     In this study, we employ vine copula modeling which can be extended to higher dimensions 

and provide a flexible measurement to capture an asymmetric dependence among commodities. It 

is well known that the dependence structures of the returns of financial assets are non-Gaussian 

and exhibit volatility clustering. Sklar (1959) introduced the copula, which describes the 

dependence structure among variables. Patton (2002) extended Sklar’s theorem to the time series 

analysis. Cherubini et al. (2004) indicated descriptions and applications of a copulas methodology 

in the fields of mathematical finance and risk management.  

https://en.wikipedia.org/wiki/George_W._Bush
https://en.wikipedia.org/wiki/Energy_Policy_Act_of_2005


     Many studies showed that the agricultural commodities future market plays an important role 

in the agricultural and biofuel markets. Thus, this study investigates the dynamic relationship 

among agricultural commodities by studying the dependence structure of percentage changes of 

agricultural prices within the agriculture future market in the United States. Following Jiang et al. 

(2015), vine Copula-based ARMA-EGARCH (1, 1) with skewed student t innovations is used to 

analyze prices dependency of crude oil and agricultural commodities before EISA 2007 (January 

1st, 2003- January 17th, 2007) and after EISA 2007 (January 18th, 2007-December 31st, 2012). This 

strong asymmetric dependence between crude oil and agricultural commodity markets might play 

a crucial role in the commodity price boom in 2007 and 2008. Our findings on the relationship 

among energy and agricultural commodities can provide policymakers and industry participants 

appropriate strategies for risk management, hedging strategies and asset pricing.      

     The paper is organized as follows. Section II describes the methodology. Section III shows the 

data collection and variable selection. Section IV presents the results and corresponding analysis. 

Finally, Section V draws conclusions and implications. 

 

2. METHODOLOGY 

     Copula modeling has become a popular and frequently used tool in the fields of financial 

economics (Joe, 1997; Nelsen, 1999). In order to assess the degree and the structure of dependency 

among the percentage changes of the agricultural prices and crude oil prices in the United States, 

this study investigates the dynamic relationships among agricultural commodities and energy by 

using the vine Copula-based ARMA-EGARCH (1, 1) model within the agricultural and crude oil 

futures markets in the United States. This section is organized as follows: in Section 2.1, Univariate 

ARMA-EGARCH Model, in Section 2.2, Sklar’s Theory, in Section 2.3, Parametric Copulas, in 

Section 2.4, Vine Copulas, in Section 2.5, Estimation Method.  

2.1 Univariate ARMA-EGARCH Model 

In order to deal with the volatility clustering that usually referred to as conditional 

heteroscedasticity, Engle introduced the ARCH model. The volatility of prices today would result 

in a higher volatility of prices next day, so that the variance of returns series changes over time. 

Bollerslev (1986) extended the ARCH model to the generalized ARCH (GARCH) model, and 

Nelson (1991) proposed the exponential GARCH (EGARCH) model in handling asymmetric 

effects between positive and negative asset returns. In this study, we apply ARMA (p, q)-



EGARCH (1, 1) with the skewed student’s t distributed innovations into the marginal to account 

for the time-varying volatility 

𝑟𝑡 = 𝜇𝑡 + ∑ 𝜑𝑖𝑟𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝜃𝑗𝜖𝑡−𝑗

𝑞

𝑗=1

+ 𝜖𝑡, 

𝜖𝑡 = 𝜎𝑡𝑧𝑡, 

log(𝜎𝑡
2) = 𝛾𝑡 + 𝛼𝑡

|𝜎𝑡−1𝜖𝑡−1| + 𝜉𝑡𝜎𝑡−1𝜖𝑡−1

𝜎𝑡−1
+ 𝛽𝑡 log(𝜎𝑡−1

2 ), 

where 𝑟𝑡 is the log return, 𝜇𝑡 is the drift term, 𝜖𝑡 is the error term, 𝜉𝑡 captures leverage effect of 

𝜖𝑡−1 and the innovation term 𝑧𝑡 is the skewed student’s t distribution (Lambert et al., 2001).  

 

2.2 Sklar’s Theory 

     Sklar’s theorem (1959) states that given random variables 𝑋1, 𝑋2, … , 𝑋𝑛  with continuous 

distribution functions 𝐹1, 𝐹2, … , 𝐹𝑛  and joint distribution function 𝐻 , and there exists a unique 

copula 𝐶 such that for all 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑅𝑛 

𝐻(𝑥) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛))  

Patton (2002) defined the conditional version of Sklar’s theorem. Let 𝐹1,𝑡  and 𝐹2,𝑡  be the 

continuous conditional distriubtions of 𝑋1|ℱ𝑡−1 and 𝑋2|ℱ𝑡−1 given the conditioning set ℱ𝑡−1, and 

let 𝐻𝑡 be the joint conditional bivariate distribution of (𝑋1, 𝑋2|ℱ𝑡−1). Then, there exists a unique 

conditional copula 𝐶𝑡 such that  

𝐻𝑡(𝑥1, 𝑥2|ℱ𝑡−1) = 𝐶𝑡(𝐹1,𝑡(𝑥1|ℱ𝑡−1), 𝐹2,𝑡(𝑥2|ℱ𝑡−1)|ℱ𝑡−1) 

 

2.3 Parametric Copulas 

Joe (1997) and Nelsen (1999) defined a comprehensive copula for each family. 

(1) The bivariate Gaussian copula is defined as: 

 

𝐶(𝑢1, 𝑢2; 𝜌) = 𝛷𝜌(𝛷−1(𝑢1), 𝛷−1(𝑢2)) 

where 𝛷𝜌 is the bivariate joint normal distribution with linear correlation coefficient 𝜌.  

(2) The bivariate student’s t copula is defined by the following: 

𝐶(𝑢1, 𝑢2; 𝜌, 𝜈) = 𝑡𝜌,𝜈(𝑡𝜈
−1(𝑢1), 𝑡𝜈

−1(𝑢2)) 

where 𝜌 is the linear correlation coefficient and 𝜈 is the degree of freedom. 

(3) The Clayton generator is given by 𝜑(𝑢) = 𝑢−𝜃 − 1, its copula is defined by  

𝐶(𝑢1, 𝑢2; 𝜃) = (𝑢1
−𝜃 + 𝑢2

−𝜃 − 1)−
1
𝜃, with 𝜃 ∈ (0, ∞) 

 



(4) The Gumbel generator is given by 𝜑(𝑢) = (− 𝑙𝑛 𝑢)𝜃, and the bivariate Gumbel copula is given 

by  

𝐶(𝑢1, 𝑢2; 𝜃) = exp (−[(− 𝑙𝑛 𝑢1)𝜃 + (− 𝑙𝑛 𝑢2)𝜃]
1
𝜃) , with 𝜃 ∈ [1, ∞) 

(5) The Frank generator is given by 𝜑(𝑢) = 𝑙𝑛(
𝑒−𝜃𝑢−1

𝑒−𝜃−1
), and the bivariate Frank copula is defined 

by  

𝐶(𝑢1, 𝑢2; 𝜃) = −
1

𝜃
𝑙𝑜𝑔 (1 +

(𝑒−𝜃𝑢1 − 1)(𝑒−𝜃𝑢2 − 1)

𝑒−𝜃 − 1
),  

with 𝜃 ∈ (−∞, 0) ∪ (0, ∞) 

(6) The Joe generator is 𝜑(𝑢) = 𝑢−𝜃 − 1, and the Joe copula is given by 

𝐶(𝑢1, 𝑢2) = 1 − (𝑢1̅̅ ̅𝜃 + 𝑢2̅̅ ̅𝜃 − 𝑢1̅̅ ̅𝜃𝑢2̅̅ ̅𝜃)
1
𝜃,  

with 𝜃 ∈ [1, ∞) 

(7) The BB1 (Clayton-Gumbel) copula is given by  

𝐶(𝑢1, 𝑢2; 𝜃, 𝛿) = (1 + [(𝑢1
−𝜃 − 1)𝛿 + (𝑢2

−𝜃 − 1)𝛿]
1
𝛿)

−1
𝜃 ,  

with 𝜃 ∈ (0, ∞) ∩ 𝛿 ∈ [1, ∞) 

(8) The BB6 (Joe-Gumbel) copula is  

𝐶(𝑢1, 𝑢2; 𝜃, 𝛿) = 1 − (1 − exp {−[(−𝑙𝑜 𝑔(1 − 𝑢1̅̅ ̅𝜃))𝛿 + (− 𝑙𝑜𝑔( 1 − 𝑢2̅̅ ̅𝜃))𝛿]
1
𝛿})

1
𝜃, 

 with 𝜃 ∈ [1, ∞) ∩ 𝛿 ∈ [1, ∞) 

(9) The BB7 (Joe-Clayton) copula is given by  

𝐶(𝑢1, 𝑢2; 𝜃, 𝛿) = 1 − (1 − [(1 − 𝑢1̅̅ ̅𝜃)−𝛿 + (1 − 𝑢2̅̅ ̅𝜃)−𝛿 − 1]−
1
𝛿)

1
𝜃, 

 with 𝜃 ∈ [1, ∞) ∩ 𝛿 ∈ [0, ∞) 

(10) The BB8 (Frank-Joe) copula is  

𝐶(𝑢1, 𝑢2; 𝜃, 𝛿) =
1

𝛿
(1 − [1 −

1

1 − (1 − 𝛿)𝜃
(1 − (1 − 𝛿𝑢1)𝜃) (1 − (1 − 𝛿𝑢2)𝜃)]

1
𝜃),  

with 𝜃 ∈ [1, ∞) ∩ 𝛿 ∈ (0,1] 

 

2.4 Vine Copulas 

It is limited to capture the dependence structure with one or two parameters by multivariate 

Archimedean copulas. Therefore, vine copula method that is a more flexible measure to capture 

the dependence structure among assets allows a joint distribution to be established based on 

bivariate and conditional bivariate copulas arranged together according to the graphical structure 



of a regular vine. Bedford and Cooke (2002) introduced canonical vine copulas, in which one 

variable plays a pivotal role. Kurowicka and Joe (2011) summarized vine copulas, and the general 

𝑛-dimensional canonical vine copula can be written as 

𝑐(𝑥1, … , 𝑥𝑛) = ∏ ∏ 𝑐𝑖,𝑖+𝑗|1,… ,𝑖−1(𝐹(𝑥𝑖|𝑥1, … , 𝑥𝑖−1), 𝐹(𝑥𝑖+𝑗|𝑥1, … , 𝑥𝑖−1))

𝑛−𝑖

𝑗=1

𝑛−1

𝑖=1

 

Similarly, D-vines are also constructed by choosing a specific order for the variables. The 

general 𝑛-dimensional D-vine copula can be written as 

𝑐(𝑥1, … , 𝑥𝑛) = ∏ ∏ 𝑐𝑗,𝑗+𝑖|𝑗+1,… ,𝑗+𝑖−1(𝐹(𝑥𝑗|𝑥𝑗+1, … , 𝑥𝑗+𝑖−1), 𝐹(𝑥𝑗+𝑖|𝑥𝑗+1, … , 𝑥𝑗+𝑖−1))

𝑛−𝑖

𝑗=1

𝑛−1

𝑖=1

 

Table 1 presented that the automated algorithm for searching an appropriate R-vine tree structure, 

the pair-copula families, and the parameter values of the chosen pair-copula families based on AIC 

criterion (Dissmann et al., 2013). 

 

TABLE 1 

SEQUENTIAL METHOD TO SELECT AN R-VINE MODEL 
Algorithm. Sequential method to select an R-Vine model 

1. Calculate the empirical Kendall’s tau for all possible variable pairs. 

2. Select the tree that maximizes the sum of absolute values of Kendall’s taus. 

3. Select a copula for each pair and fit the corresponding parameters based on AIC. 

4. Transform the observations using the copula and parameters from Step 3. To obtain 

the transformed values. 

5. Use transformed observations to calculate empirical Kendall’s taus for all possible 

pairs.  

6. Proceed with Step 2. Repeat until the R-Vine is fully specified. 

 

2.5 Estimation Method 

Joe (1997) proposed the two-step separation procedure to estimate the parameters by 

maximum log-likelihood, where marginal distributions and copulas are estimated separately. 

log 𝑓(𝑥) = ∑ 𝑙𝑜𝑔𝑓𝑖(𝑥𝑖) + 𝑙𝑜𝑔𝑐(𝐹1(𝑥1), … , 𝐹𝑛(𝑥𝑛))

𝑛

𝑖=1

 

 



3. DATA  

     We use the daily future data on Bloomberg1 from January 1st, 2003 until December 31st, 2012 

for a total of 2,512 observations to evaluate the dependence relationship for the crude oil future 

price2 and agricultural commodity prices - corn futures3, soybean futures4, soybean meal futures5, 

rice futures6, and wheat futures7 in the United States. Corn, soybean, rice, and wheat are mainly 

used in biofuels or biodiesel in the transportation sector, and they compete with the derived demand 

for alternative energy production, especially when oil prices are high. Thus, this is why we focus 

on those abovementioned prices. In addition, the initial version of H.R. 6 - EISA 2007 passed the 

House of Representatives on January 18, 2007. Thus, we would like to investigate the effect of 

Energy Independence and Security Act (EISA) of 2007 on the spillover parameters. Therefore, we  

separate our sample into two time windows, the prior to EISA 2007 is from January 1st, 2003 to 

January 17th, 2007 (1,011 observations) and the after EISA 2007 is from January 18th, 2007 to 

December 31st, 2012 (1,501 observations). Table 3 presents all variables and abbreviations used 

with a short description through the entire paper. The summary statistics for price returns of six 

commodities before EISA 2007 presented in table 4, which shows that the standard deviation of 

crude oil returns is higher than those of other commodities returns, consistent with the similar 

results in previous studies that commodities have higher volatilities. The skewness statistics of 

crude oil, soybean, soybean meal, and rice are negative and significant, which means that those 

commodities returns are significantly skewed to the left and with a greater probability of large  

 

1 Bloomberg: http://www.bloomberg.com/markets/commodities. 

2 Crude oil future contract is continuous contract number 1, and crude oil future price (cent/ bushel) is 

adjusted price from Bloomberg. Raw futures data is collected from Chicago Board of Trade (CBOT). 

 
3 Corn future contract is continuous contract number 1, and corn future price (cent/ bushel) is adjusted 

price from Bloomberg. Raw futures data is collected from Chicago Board of Trade (CBOT). 
 

4 Soybean future contract is continuous contract number 1, and soybean future price (cent/ bushel) is 

adjusted price from Bloomberg. Raw futures data is collected from Chicago Board of Trade (CBOT). 
 

5 Soybean meal future contract is continuous contract number 1, and soybean meal future price (cent/ 

bushel) is adjusted price from Bloomberg. Raw futures data is collected from Chicago Board of Trade 

(CBOT). 
 

6 Rice future contract is continuous contract number 1, and rice future price (cent/hundredweight) is 

adjusted price from Bloomberg. Raw futures data is collected from Chicago Board of Trade (CBOT). 
 

7 Wheat future contract is continuous contract number 1, and wheat future price (cent/ bushel) is adjusted 

price from Bloomberg. Raw futures data is collected from Chicago Board of Trade (CBOT). 



decreases in returns. However, the skewness statistics of corn and wheat are positive and 

significant, which means that their returns are significantly skewed to the right. Moreover, the 

values of the excess kurtosis statistics for all commodities are significantly positive, which implies 

that the distribution of returns has larger, thicker tails than the normal distribution. 

     Table 5 reports the summary statistics for price returns of six commodities after EISA 2007, 

and the standard deviation of wheat returns become the highest value among those of other 

commodities returns. The skewness statistics of all commodities become negative and significant, 

which indicates that all commodities returns are significantly skewed to the left. Furthermore, the 

values of the excess kurtosis statistics for all commodities are still significantly positive, which 

implies that the distribution of returns has larger, thicker tails than the normal distribution.  

     We use the augmented Dickey-Fuller (ADF) test to examine stationarity for each of these 

commodity price return series (Banerjee et al., 1993). The test statistics for all commodities shows 

that the null hypothesis of a unit root can be rejected at the 5% significant level, which confirmed 

stationarity. Moreover, the Jarque-Bera (J-B) test to examine normality for each commodity price 

return series, and the test statistics shows that the null hypothesis can be rejected at the 5% 

significant level, whereby indicating price return series of all commodities are not normally 

distributed. Similarly, the autoregressive conditional heteroscedasticity – Lagrange multiplier 

(ARCH) test to examine heteroscedasticity for all commodities price return series (Engle, 1982), 

conducted using ten lags. The test statistics indicates that the null hypothesis can be rejected at the 

5% significant level, whereby implying the data are not independently distributed so that ARCH 

effects are most likely to be found in all price return series. Thus, we apply the EGARCH model 

to deal with the volatility clustering effect. 

      Table 6 and table 7 show the Pearson linear correlations for all commodities prices return pairs 

before and after EISA 2007, respectively. The positive and high correlation values demonstrate 

that two markets move together toward the same direction. The soybean and soybean meal pairs 

have the strongest positive linear dependence before and after EISA 2007. The weakest 

dependences are for the wheat and crude oil return pair with the positive correlation before EISA 

2007 and the soybean and crude oil pair with the negative correlation after EISA 2007. 

     Figure 1 shows the trends of crude oil and agricultural futures prices, and we can see that all 

trends are similar over time. The relationship among oil and agricultural commodity prices remains 

weak before 2007, when oil prices are below 80 US dollars. However, this relationship becomes 

https://en.wikipedia.org/wiki/Robert_Engle
https://en.wikipedia.org/wiki/Volatility_(finance)


stronger when oil prices started to move up from 2007. In addition, all of commodity price series 

have increasing trends after the policy mandated until the financial crisis between 2008 and 2009. 

After the financial crisis, they all follow the similar path with an upward movement and reach 

another price spikes in 2011. Figure 2 illustrates prices returns of crude oil and agricultural futures 

prices, and we can find that volatility in price series are somewhat clustered for each commodity 

markets which imply that large changes in prices followed by large change. However, wheat 

futures returns are more volatile than other commodities and rice future returns seem to be smooth.  

 

Table 3: Descriptions of the Variables 

Predictor Short description 

C1 Corn future contract with continuous contract number 1 

S1 Soybean future contract with continuous contract number 1 

SM1 Soybean meal future contract with continuous contract number 1 

CL1 Crude oil future contract with continuous contract number 1 

RR1 Rice future contract with continuous contract number 1 

W1 Wheat future contract with continuous contract number 1 

 

Table 4: Descriptive statistics before EISA 2007 (Jan. 1st, 2003 – Jan. 17th, 2007) 

Before 1 (C1) 2 (S1) 3 (SM1) 4 (CL1) 5 (RR1) 6 (W1) 

Mean 0.00054 0.00021 0.00022 0.00048 0.00098 0.00037 

Std. Dev. 0.01631 0.01738 0.01869 0.02108 0.01919 0.01829 

Skewness 0.57974 -1.07116 -0.78070 -0.13648 -1.73299 0.44692 

Kurtosis 5.08853 12.52763 11.22256 3.47959 35.05021 4.04583 

Obs. Num. 1011 1011 1011 1011 1011 1011 

ADF test 1 1 1 1 1 1 

J-B test 1 1 1 1 1 1 

ARCH test 1 1 1 1 1 1 

 

Table 5: Descriptive statistics after EISA 2007 (Jan. 18th, 2007 – Dec. 31st, 2012) 

After 1 (C1) 2 (S1) 3 (SM1) 4 (CL1) 5 (RR1) 6 (W1) 

Mean 0.00035 0.00045 0.00046 0.00038 0.00023 0.00033 

Std. Dev. 0.02238 0.01825 0.02041 0.02504 0.01677 0.02504 

Skewness -0.03197 -0.61947 -0.74838 -0.02817 -0.27956 -0.03560 

Kurtosis 4.56260 6.06343 6.70432 6.99344 5.82116 4.06132 

Obs. Num. 1501 1501 1501 1501 1501 1501 

ADF test 1 1 1 1 1 1 

J-B test 1 1 1 1 1 1 

ARCH test 1 1 1 1 1 1 
 



 

Table 6: Pearson correlation before EISA 2007 (Jan. 1st, 2003 – Jan. 17th, 2007) 

Before 1 (C1) 2 (S1) 3 (SM1) 4 (CL1) 5 (RR1) 6 (W1) 

1 (C1) 1 0.533027 0.457651 0.033531 0.157231 0.625248 

2 (S1) 0.533027 1 0.883107 0.035683 0.184391 0.363982 

3 (SM1) 0.457652 0.883107 1 0.046295 0.197504 0.301078 

4 (CL1) 0.033531 0.035683 0.046295 1 -0.04317 0.030905 

5 (RR1) 0.157231 0.184391 0.197504 -0.04317 1 0.117788 

6 (W1) 0.625248 0.363982 0.301078 0.030905 0.117788 1 

 

 

Table 7: Pearson correlation after EISA 2007 (Jan. 18th, 2007 – Dec. 31st, 2012) 

After 1 (C1) 2 (S1) 3 (SM1) 4 (CL1) 5 (RR1) 6 (W1) 

1 (C1) 1 0.627218 0.537464 -0.02281 0.301967 0.659937 

2 (S1) 0.627218 1 0.894134 -0.00948 0.350928 0.500912 

3 (SM1) 0.537464 0.894134 1 0.010359 0.285491 0.416561 

4 (CL1) -0.02281 -0.00948 0.010359 1 -0.04623 -0.02642 

5 (RR1) 0.301967 0.350928 0.285491 -0.04623 1 0.322004 

6 (W1) 0.659937 0.500912 0.416561 -0.02642 0.322004 1 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 1: Crude oil and agricultural futures prices 

 

 

Figure 2: Returns of crude oil and agricultural futures prices 

 

 



4. EMPIRICAL RESULTS 

     Table 8 and table 9 present the ARMA-EGARCH (1, 1) results and parameter estimations for 

crude oil, corn, soybean, soybean meal, rice, and wheat before and after EISA 2007, respectively. 

We use the Ljung-Box Q test to examine each commodity price return serial correlation in the 

model residuals, computed with 10 lags (Ljung and Box, 1978; Hamilton, 1994). The test statistics 

for all commodities shows that the null hypothesis of the serial correlation in the volatility of the 

commodity prices return series is independent distributed can be rejected at the 5% significant 

level, which confirmed autocorrelation (Elyasiani et al., 2011). Then, we select a copula family 

from forty copulas based on AIC model-fitting criterion that capture asymmetries for a multivariate 

analysis of six different prices return series. Finally, the ARMA-EGARCH (1, 1) with the skewed 

student t innovation is an appropriate model for the appropriate marginal distributions. We 

evaluate different combinations of the parameters for the lags of autoregressive and moving 

average terms ranging from zero up to a maximum lag of ten, with the most suitable model selected 

according to AIC values. We also consider that the characteristics of price returns are usually non-

normal and skewed. Therefore, the parameter estimates are shown in table 8 and table 9.  

     From figure 3 and figure 4, we can see that the skewed student’s t distribution fit better than 

normal distribution for each commodity’s residuals before and after EISA 2007. This result is 

consistent with the evidence reported in table 4 and table 5. Ahmed and Goodwin (2015) also 

found that the skewness coefficients, that capture asymmetry in the distribution, are significant for 

each series which justify the rationale of using the skewed student t innovation and EGARCH 

model. On the other side, there are not every joint distributions follow multivariate normal 

distributions based on residual plots in figure 5 and figure 6.  

Taking the characteristics of non-normal and skewed price changes into consideration, we 

employ the ARMA-EGARCH (1, 1) model with the skewed student t innovation to capture the 

asymmetry in the distribution and to fit the marginal distributions for the copula model. Following 

the ARMA-EGARCH model, the cumulative distributions of standardized residuals are formed to 

plug into copula model.  

     In Figure 7, we can see crude oil, rice, and wheat prices return series are more volatile after the 

policy changed than other prices return series. Corn, soybean, and soybean meal are stable and 

smooth over time.  

 



 

 

Table 8: ARMA-EGARCH (1, 1) Results and Parameter Estimates (Before EISA 2007) 

Before 1 (C1) 2 (S1) 3 (SM1) 4 (CL1) 5 (RR1) 6 (W1) 

P 8 8 10 9 8 10 

q 7 10 8 10 9 10 

𝜇 0.0004265687 0.0009404608 0.0004347039 7.317087e-05 0.001545908 0.000320729 

𝜑1 -0.5826011764 -0.2104289683 -0.9603089937 -3.904272e-01 -0.185706956 0.027774537 

𝜑2 -0.6090476599 -0.3921743920 0.2682299054 -1.427517e+00 -0.279168905 -1.501880087 

𝜑3 -0.4482085240 -0.8766508310 0.8195893881 -1.781563e-01 -1.042461122 -0.168621433 

𝜑4 -0.4509241807 -0.2153982431 0.3168902341 -1.289594e+00 0.175810417 -0.984061938 

𝜑5 -0.5962593011 0.3535320407 0.6091294094 -7.426339e-02 -0.857739166 -0.018085582 

𝜑6 -0.6298437302 0.1111454183 0.1292583834 -4.237565e-01 -0.554232309 0.509905349 

𝜑7 -0.9376832040 -0.0311425015 -0.8268063298 3.904573e-01 -0.046137096 0.136585799 

𝜑8 0.0100163393 0.7201934004 -0.7828077654 -2.915472e-02 -0.645780208 0.742063172 

𝜑9 * * 0.0142431204 1.793996e-02 * 0.246749723 

𝜑10 * * -0.0049947966 * * 0.436157538 

𝜃1 0.6099473263 0.1566925868 1.0072202622 2.558288e-01 0.217546427 -0.037923764 

𝜃2 0.6707076737 0.2827149851 -0.2783044131 1.482649e+00 0.170660499 1.520908952 

𝜃3 0.4756441607 0.9226570718 -0.8264233080 2.474217e-03 1.038941181 0.177525851 

𝜃4 0.4904050950 0.2157460681 -0.2216768758 1.390929e+00 -0.178766937 0.938431912 

𝜃5 0.6109074783 -0.4621813068 -0.6172422533 -1.640053e-01 0.781668698 0.033791441 

𝜃6 0.6371931843 -0.0669347806 -0.2232406665 4.767390e-01 0.655574935 -0.726322907 

𝜃7 1.0050907265 0.1405547957 0.8494284955 -5.579882e-01 -0.005050825 -0.127745375 

𝜃8 * -0.7658165921 0.9104568491 6.424045e-02 0.607543292 -0.969553426 

𝜃9 * 0.0443849583 * -1.141783e-01 0.074447024 -0.281908654 

𝜃10 * 0.0843972733 * -1.015538e-02 * -0.537257564 

γ -0.2684593087 -0.1057662351 -0.2481236186 -2.355105e+00 -0.001254839 -0.609762775 

𝛼 0.0461966023 0.0377448723 0.0742702744 -2.169837e-01 0.020440315 0.045506301 

𝛽 0.9676943476 0.9873005319 0.9695878490 6.982784e-01 0.999809287 0.924575541 

𝜉 0.1408081864 0.1440664222 0.1585968674 -3.096027e-02 -0.023036339 0.020488385 

𝜂 1.1643003184 0.9966480666 1.0630150726 9.214036e-01 1.102913683 1.184878953 

𝜈 5.8899085648 6.5944098231 5.1689062897 2.496524e+01 4.648123149 8.963658642 

Log-likelihood 2833.982 2809.523 2747.484 2527.227 2765.384 2680.982 

AIC -5562.774 -5508.453 -5385.724 -4948.025 -5423.114 -5250.211 

Ljung-Box Q (10) 0.5386 0.1699 0.8497 0.2458 0.672 0.4673 

* Parameters not present in a lag 

 

 

 

 

 

 

 

 



 

 

Table 9: ARMA-EGARCH (1, 1) Results and Parameter Estimates (After EISA 2007) 

After 1 (C1) 2 (S1) 3 (SM1) 4 (CL1) 5 (RR1) 6 (W1) 

P 9 9 4 9 9 10 

Q 10 4 5 8 10 7 

𝜇 0.0001938312 0.0009952867 0.0002748034 0.0006380165 0.0005417257 0.000992924 

𝜑1 1.6073252286 1.1139331072 -1.9094502496 -0.9530309081 0.9778186917 -1.674768562 

𝜑2 -2.6074894528 -2.1567504537 -1.9897254626 0.6934357681 -0.5861881362 -2.390846236 

𝜑3 3.0788446525 1.1654659055 -0.9293541586 1.1605057135 0.2591891117 -2.604808920 

𝜑4 -3.0677805400 -1.0592150142 -0.3221310004 0.1147961748 -0.4149097899 -2.234515875 

𝜑5 3.1147056611 0.0529046702 * -1.0659856432 0.2414643421 -1.67730884 

𝜑6 -2.8022109377 -0.0283244200 * -0.8733372117 -0.4611353545 -0.469454724 

𝜑7 1.8570125245 -0.0138830663 * 0.7737992233 0.8728575629 0.010381795 

𝜑8 -1.1686327097 0.0033480795 * 1.0464282479 -1.0676274089 0.163039119 

𝜑9 0.2212914134 -0.0023346705 * 0.1145603120 0.1256106718 0.125162314 

𝜑10 * * * * * 0.070757271 

𝜃1 -1.4965391756 -1.1005792592 1.9613558207 0.8473305968 -0.8932970342 1.662106705 

𝜃2 2.4137473582 2.1283371776 2.1117679912 -0.7763729725 0.4950474040 2.418642615 

𝜃3 -2.7818399334 -1.1061740203 1.0553943884 -1.0971681690 -0.2308645038 2.632313656 

𝜃4 2.7204107588 0.9866932423 0.3847584208 0.0017341923 0.4276734837 2.313454117 

𝜃5 -2.7939969161 * 0.0131207205 1.0920943331 -0.2437816003 1.843169955 

𝜃6 2.4622356211 * * 0.7737372324 0.4924499207 0.650686131 

𝜃7 -1.5601938040 * * -0.8951549127 -0.8995962397 0.190678281 

𝜃8 0.9317097025 * * -0.9871284280 1.0567615493 * 

𝜃9 -0.0638837270 * * * -0.0501190134 * 

𝜃10 -0.0220971341 * * * 0.0040858151 * 

γ -0.2103548293 -0.0956713252 -0.1902339933 -0.0835465513 -0.0530740221 -0.099678684 

𝛼 -0.0541879596 -0.0083188071 -0.0176586934 -0.0622241433 0.0009350205 0.034634873 

𝛽 0.9727006239 0.9882647479 0.9758562202 0.9889731076 0.9936791254 0.986642943 

𝜉 0.1230037988 0.1299258569 0.1337529398 0.1169392620 0.0895314169 0.098457916 

𝜂 0.9835184461 0.8943444812 0.8842152117 0.8670271412 1.0962430373 1.057106818 

𝜈 7.5518792499 5.6405013293 6.9397662811 12.5454836609 9.3053085591 8.371462399 

Log-likelihood 3688.991 4070.234 3856.541 3694.421 4146.561 3494.009 

AIC -4880.734 -5396.714 -5117.310 -48906.34 -5490.421 -4623.596 

Ljung-Box Q (10) 0.24 0.8304 0.1969 0.01395 0.5981 0.4747 

* Parameters not present in lags 

 

 

 

 

 

 

 

 



Figure 3: Marginal distribution of prices return series (Before EISA 2007) 

 

Figure 4: Marginal distribution of prices return series (After EISA 2007) 

 



Figure 5: The scatterplot of residuals (Before EISA 2007) 

 

Figure 6: The scatterplot of residuals (After EISA 2007) 

 



 

 

Figure 7: Conditional volatility of prices return series with the policy mandated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. CONCLUSION 

     The purpose of this study is to evaluate the degree and the dependence structure of returns with 

the policy effect along the biofuel supply chain in the United States agricultural market before 

EISA 2007 (January 1st, 2003 – January 17th, 2007) and after EISA 2007 (January 18th, 2007 – 

December 31st, 2012). We use the daily futures data from January 1st, 2003 until December 31st, 

2012 to examine linkages among the crude oil futures, corn futures, soybean futures, soybean meal 

futures, rice futures, and wheat futures markets in the United States. In modeling the dependency 

of agricultural futures price returns in the United States, we use the skewed student’s t to describe 

the marginal distribution and vine copulas to build the joint distribution of residuals according to 

the lowest AIC values. The empirical results provide that vine Copula-based ARMA-EGARCH 

(1, 1) is an appropriate model to analyze returns dependency of crude oil and agricultural 

commodities. Moreover, crude oil, rice, and wheat prices return series are more volatile after the 

policy changed than other prices return series. The strong asymmetric dependence between crude 

oil and agricultural commodity markets might play a crucial role in the commodity price boom in 

2007 and 2008. From a research standpoint, it is critical to recognize the relationship among energy 

and agricultural commodities for policymakers or agricultural producers to allocate portfolios, 

manage risks, or adjust strategies. 
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