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Spatial and Temporal Variation in the Optimal Provision of Forest-based Carbon Storage 

Abstract 

 

Establishing new or expanding forest areas through afforestation, reforestation, and 

mitigation of deforestation can be an effective policy tool for offsetting greenhouse gas 

emissions. Despite the positive perspective, incentive payment approaches intended to 

encourage forest-based carbon sequestration are deemed to suffer inefficiency primarily due to 

asymmetric information between landowners and government agencies seeking to purchase 

environmental benefits. Failing to at least partially resolve this asymmetry may lead to some 

landowners receiving payments far exceeding their costs, and thus may result in deviation from 

optimal provision of ecosystem services. The objective of our research is to determine optimal 

provision of forest-based carbon storage, focusing particularly on how the optimal provision 

changes over space and time. This analysis occurs through the estimation of site-specific 

opportunity costs of supplying carbon storage that are used to derive cumulative carbon supply 

curves and to identify optimal spatial targeting of incentive payments. The empirical results for 

the 18-county case study show that optimal provision of forest-based carbon storage are 

309,000, 435,171, and 356,171 metric tons per year for the periods of 1992-2001, 2001-2006, 

and 2006-2011, respectively, at the annual costs of about $5.8 million, $8.7 million, and $7.9 

million, respectively. We found that the optimal provision of forest-based carbon storage differs 

across space and time because of the spatial and temporal heterogeneities in the marginal cost of 

carbon storage and the maximum potential gain of carbon storage. These findings have 

significant meanings in the literature since few studies, if any, explicitly consider both the 

temporal and spatial dynamics of the cost efficiency to come up with optimal budget outlays 

and corresponding carbon storage levels, payment amounts, and would-be participants. Our 

finding can be used in ways similar to the decision-making guide for Conservation Reserve 

Program (CRP) enrollment. 

 

Keywords: Carbon sequestration, Forest, Spatial heterogeneity, Temporal heterogeneity, 

Economic efficiency  
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Spatial and Temporal Variation in the Optimal Provision of Forest-based Carbon Storage 

1. INTRODUCTION 

1.1.  Background and objective 

Evidence of the role of human activity on the global climate and of the impacts of 

climate change on people and ecosystems is clear and growing, as are the benefits of mitigating 

the effects of climate change by reducing the accumulation of greenhouse gases (GHG) in the 

atmosphere (IPCC, 2013). After water vapor, carbon dioxide (CO2) is the most abundant and 

impactful GHG (Schmidt et al. 2010). Thus, capturing atmospheric carbon through carbon 

sequestration can provide substantial GHG mitigation benefits (Silver, Ostertag and Lugo 

2000). Subsidy programs to promote the establishment, expansion, or maintenance of forest 

areas through afforestation, reforestation, or deforestation mitigation can be an effective policy 

tool for offsetting GHG emissions (Schroeder, 1992; Dixon, Winjum and Schroeder, 1993).  

Many studies have focused on the cost efficiency of different incentive payment 

approaches intended to encourage forest-based carbon sequestration (Zhao et al., 2003; 

Lubowski et al., 2006; Fraser, 2009; Mason and Plantinga, 2011). Forest-based carbon 

sequestration is a type of ecosystem service and a public good, which, once provided, is 

available to everyone regardless of whether they pay. Given that private landowners may bear 

the cost of providing this service, it may be “under-provided” absent some form of market 

intervention to cure the market failure associated with public goods (Daily, 1997; Millennium 

Ecosystem Assessment, 2005; Polasky et al., 2014). 

There is a number of existing payments for ecosystem services (PES) programs around 

the world (Schomers and Matzdorf, 2013). For example, Costa Rica’s PES program pays 

private landowners $64 per hectare per year for 10 years for forest conservation (Pagiola, 2006). 

China’s Slopping Land Conversion Program is another example that helped to increase China’s 
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forest area by 10 to 20% by compensating land owners for retiring land and reforestation (Hyde 

et al., 2003). Despite these successes, designing incentive programs is difficult when the 

provision of ecosystem services depends on landowners’ private information about the costs of 

providing these services (Pagiola, 2005; Bennet, 2008; Engel et al., 2008; Polasky et al., 2014). 

Failing to at least partially resolve this information asymmetry may lead to some landowners 

receiving payments far exceeding their costs, and thus limit the ability of these programs to 

generate optimal provision of ecosystem services (Ferraro, 2008; Gorte and Ramseur, 2010).  

The objective of this research is to determine the optimal provision of forest-based 

carbon storage focusing particularly on how the optimal level changes over space and time. The 

hypothesis is that the optimal provision of forest-based carbon storage differs across space and 

time because of the spatial and temporal heterogeneities in the costs of supplying forest-based 

carbon storage. This hypothesis is tested by estimating the site-specific opportunity costs of 

supplying carbon storage and using these estimates to derive cumulative carbon supply curves 

and identify optimal spatial targeting of incentive payments.  

This research provides relevant and important information to help policymakers select 

an incentive payment mechanism by anticipating optimal budget outlays, estimating payment 

amounts, and identifying would-be participants. Previous studies on the cost efficiencies of 

different incentive payment approaches have focused on spatial heterogeneity in the capacity of 

land to sequester carbon emanating from spatial variation in quality, elevation, and geological 

conditions and in spatial and temporal variations in climatic conditions (Wear and Bolstad, 

1998; Antle et al., 2003; Jandl et al., 2005; Frimpong, Ross-Davis, Lee and Broussard, 2006). 

This study extends this literature by accounting for spatial heterogeneity in sequestration 

capacity, and also for spatial and temporal heterogeneity in the site-specific opportunity costs of 
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retaining forestland by comparing the optimal provision of forest-based carbon storage and the 

optimal spatial targeting of incentive payments under different time periods.  

 

1.2. Literature review 

Three strands of the literature associated with the optimal provision of land-based 

ecosystem services such as forest-based carbon storage are of particular relevance to this study: 

(1) examinations of the relationship between land use and net returns from land use, (2) 

estimates of the opportunity costs of carbon storage through afforestation, reforestation and/or 

avoiding deforestation, and (3) analyses of the optimal incentive payment and its relation to the 

optimal provision of ecosystem services.  

Land-use change models have been used to estimate the relationship between land-use 

choices and relative returns in the forestry and agricultural sectors for the purposes of 

generating carbon-sequestration cost functions (e.g., Stavins 1999; Plantinga et al. 1999; Newell 

and Stavins 2000; Antle et al. 2003; Kurkalova et al. 2003; Lubowski et al. 2006). Accordingly, 

two types of land-use models are commonly used. One model estimates the share of land for 

counties or larger geographic areas shifting from one type of land-use to another over some 

transition period (e.g., Hardie et al. 2000; Ahn, Platinga and Alig, 2001; Cho, Wu and Alig 

2005; Broniak, 2007; Sohngen and Brown, 2006; Ahn 2008, and Cho et al. 2014). Alternatively, 

discrete choice models have commonly been used for modeling land-use transitions at the parcel 

level (e.g., Bockstael, 1996; Bockstael and Bell, 1998; Miller and Plantinga, 1999; Bell and 

Irwin, 2002; Irwin and Bockstael, 2002, 2004; Irwin et al., 2003; Cho and Newman, 2005; 

Lubowski et al., 2006; Cho et al. 2008; Langpap and Wu, 2008, 2011). 
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Share models can cover a large study area but fail to capture spatial heterogeneity over 

aggregated areas. In contrast, parcel-level models work on a disaggregated enough scale to 

capture spatial heterogeneity in costs but are difficult to extend over a large study area. An 

alternative that can resolve both difficulties is to use a pixel-level land-use model. Pixel-level 

land-use models, which are based on satellite imagery and other raster type data (e.g., 30 m × 30 

m resolution land cover change data), have gained popularity as a result of the development of 

remote sensing capabilities and GIS databases (Brewer et al. 2012; Myint et al. 2011).  

A number of different approaches have been used to assess the opportunity costs of 

sequestering carbon. The sector model approach uses a spatial and market equilibrium model to 

assess a wide range of economic, environmental, and policy issues of interest to forestry and 

agricultural sectors (e.g., the U.S. agricultural sector model (USMP) and the forestry and 

agricultural sector optimization model (FASOM)). The second approach is to utilize an 

econometric model derived from a general, random utility model framework. For this approach, 

discrete choice models (i.e., multinomial logit and nested logit models) have been used to 

simulate landowner responses to forest-based carbon incentive programs (e.g., Plantinga 1997; 

Plantinga et al. 1999; Stavins 1999; and Lubowski et al. 2006). Other factors affecting land-use 

change, such as the cost of acquiring the skills and knowledge needed to manage forested land 

and non-market benefits, were controlled in the discrete choice models. This spatial resolution 

(i.e., 1km
2
 pixel level, county level) is required as scheme performance depends on the site-

specific opportunity costs of supplying an amount of carbon storage.  

This research takes advantage of advances in carbon simulation modeling and improved 

data on forest disturbance, management, and land-use change through a suite of more fully-

resolved, process-based biogeochemical models. A subset of these models incorporate 
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observational and inventory data on forest disturbance, management, and land use conversion to 

estimate carbon sources and sinks with consideration of a more comprehensive set of the major 

controlling factors (e.g., Hayes et al. 2011). Comparisons among these main scaling approaches 

for carbon budget accounting can yield improved constraints on estimates of sources and sinks 

in regional-scale applications (Hayes and Turner 2012).   

Accounting for heterogeneity in the land’s capacity to store carbon and heterogeneity in 

the opportunity cost of retaining forestland is important for the optimal provision of ecosystem 

services. This is accomplished by achieving optimal cost efficiency of incentive payments. 

Spatial heterogeneity in the costs of supplying environmental services plays a critical role in 

incentive payment design (Hanley et al. 2012). The smaller the scale at which public agencies 

can resolve spatial variation in costs, use this information to allocate contracts, and set payment 

rates, the more cost effective payment programs become (Babcock et al. 1997a, 1997b; Antle et 

al. 2003; Zhao et al. 2003; Mason and Plantinga 2011; Armsworth et al. 2012). Although spatial 

heterogeneity has received much attention, few studies, if any, have explicitly focused on the 

potential for forest-based payment programs that account for both spatial and temporal 

heterogeneity to improve cost efficiency, and further, to link the improved cost efficiency to the 

optimal provision of ecosystem services. 

 

2. STUDY REGION 

The study region for this project is Bureau of Economic Analysis (BEA) Economic Area 

88 (U.S. Department of Commerce 2016), consisting of 17 Tennessee counties and 1 Kentucky 

county (Figure 1). The study is divided into three time periods1992-2001, 2001-2006, and 2006-

2011 (referred to as periods 1, 2, and 3, respectively). This region it was chosen to represent the 



6 
 

Appalachian region, which accounts for 20% of U.S. forestland (Smith et al., 2009) and the 

southeastern United States, which is considered to be the largest carbon sink among the six 

bioclimatic regions of the conterminous U.S. (Schimel et al. 2000; Tian et al., 2010a). 

Furthermore, the large stock of young pine trees in Southern forests  provide an opportunity to 

continuously function as a carbon sink in the future and make the region the most productive in 

terms of timber production (Turner et al., 1995; Wear, 1995; Birdsey et al., 2006; Malmsheimer 

et al., 2008). In addition, the majority of the region’s forest land is owned by private entities, 

and the region’s timber industry has lately experienced substantial disinvestment in 

landholdings. For example, around 88% of the relevant timberland in the Appalachian region is 

owned by private entities while, in 2004, six of the nine largest timberland transactions in the 

Southeastern US  featured industrial sellers (Clutter et al., 2005; Smith et al., 2009). Privately 

held forestland and the disinvestment by timber companies provide an opportunity and an 

impetus for programs to incentivize forest-based carbon sequestration.  

 

3. METHODOLOGY 

The optimal level of provision of forest carbon storage, accounting for spatial and 

temporal heterogeneities in the ability of the land to store carbon and the opportunity cost of 

forestland, is estimated by: (1) developing a one km
2 

pixel-level land-use model to link forest-

based carbon incentive payments with deforestation and afforestation based on maximizing net 

returns from different land-uses;(2) employing a carbon simulation model to project site-

specific carbon storage levels for the forest sector based on climate, forest type, disturbance and 

management history, and other environmental characteristics; (3) deriving the site-specific 

annual supply curves for carbon storage for each of the three time periods based on predicted 
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land-use change and carbon storage for an incrementally increasing net return of forestland; (4) 

developing payment systems that allow payment allocations to each pixel for the cost-efficient 

provision of carbon storage for all three periods using the annual supply curves for carbon 

storage for each pixel for each period; (5) deriving three separate marginal cost curves of 

cumulative carbon storage using the cost-efficient payment distributions obtained from (4) and 

determining three separate optimal provisions of carbon storage by identifying equilibrium 

points between the three marginal cost curves and the U.S. Environmental Protection Agency’s 

(USEPA’s) estimate of the marginal benefit of carbon sequestration (USEPA, 2015); and (6) 

contrasting and mapping cost efficiencies for all three time periods. 

 

3.1. Estimating a land use model 

Suppose a landowner chooses a combination of land-use types that maximizes net 

returns for the landowner. The shares of land-use types are then functions of net returns from 

the land-uses and other factors that influence land-use decisions. Following the notation from 

Miller and Plantinga (1999), the general functional form of the land-share allocated to a 

particular type of land-use is expressed as:  

                ),(),),,((),( ikiikk ntuntntXfnts        (1) 

where, at time t by a landowner in  of a parcel i ),...,1( Ni  , ),( ik nts  is observed land-share 

using k , ),( intX includes factors that influence land-use decisions (i.e., net returns from 

alternative land uses and physical characteristics of land such as slope), and ),( ik ntu is the error 

term.  

The net returns from different land-uses are observed after the allocation of land is 

designated across different time periods, or land-use decisions have intertemporal linkages. To 
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accommodate these temporal dynamics in converting the general functional form (equation 1) to 

an empirical framework, it is essential to understand the factors affecting land-use change and 

the land-use transition probabilities among land-use categories over different time periods. To 

accomplish such tasks, a Markov decision process in a logistic form with time-varying 

transition probabilities (referred to as “maximum entropy model”) can be used to determine the 

shift of land from one use to another: 
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where ( , , )j k t  is the transition probability for land use j to k during a time period t , ),( btjs  

represents observed land share in use j at the beginning of each time period bt , ),( kh is the 

parameter  associated with an explanatory variable h in land-use k , and ),( itX e

h is the vector of 

explanatory variables at the end of each time period et on a parcel i (MacRae,1977). 

The multinomial logistic form is used to estimate the transition probabilities (equation 2) 

for five land-use categories (i.e., crop, pasture, urban, forest, and other uses) at the one km
2
 

pixel level, which represents the spatial structure of the decision-making units, over the three 

periods with the constraints of non-stationary Markov transition probabilities (i.e., the transition 

probabilities are all positive, the row sum of the transition probabilities from one land use to the 

others sums to one, and the land shares in each pixel sumto one for each time period). The 

transition of land from one use to another must be consistent with the following conditions:  

  
K

j jitkjitkit ss
1 ,,1,,,,,   ,  


K

j kits
1 ,, 1 and  


K

k kjit1 ,,, 1                     (3) 

By estimating equation (2), we hypothesize that land-use shares in 2001, 2006, and 2011 

are functions of expected annual returns from each land-use for the same time period (i.e., net 
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returns in 2001, 2006 and 2011, respectively).
1
 The slope of pixels as physical characteristics of 

land that influence land-use decisions is included because land-use choices are affected by 

landscape attributes (e.g., Nelson and Geoghegan, 2002). We also include two dummy variables 

indicating whether the allocation of land-use share is made in 2001 or 2006 (2011 as a reference 

year). These time period dummy variables control for trends from one time period to another 

(see Table 1 for variable names, definitions, and descriptive statistics). Standard errors were 

adjusted for spatial dependences using a spatial heteroskedastic robust covariance estimator 

(Lambert, Boyer, and He, 2015). 

Once the transition probability of land-use change for each pixel across the three periods 

is estimated, the transition matrices of land shares are estimated to simulate the effect of 

hypothetical carbon incentive payments which directly impacts the expected net returns of 

forestland on carbon storage. Specifically, the transition matrices of land-shares are calculated 

by matrix multiplication between the relative transition probability matrices (i.e., transpose of 

the transition probability matrix correspondent to the land-use) and the land-use share in time-

lagged period. 

 

3.2. Estimating a carbon simulation model 

The changes in carbon storage are estimated for three periods: 1992-2001, 2001-2006, 

and 2006-2011 at a Terrestrial Ecosystem Model (TEM) cohort level based on climate, forest 

type, disturbance and management history, and other environmental characteristics of a 

particular pixel. This process-based ecosystem model uses spatially-related information (i.e. 

climate, elevation, soils and vegetation) to make estimates of carbon, nitrogen and water fluxes 

(Hayes et al., 2011). The choice of the model was based on its precise implementation of cohort 

                                                           
1
  See S1 in the supplementary materials for details about the net returns. 
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structure which allows for spatially- and temporally-explicit simulation of carbon dynamics by 

tracking the TEM cohort heterogeneity in different forest types, along with any disturbance 

histories (i.e. change in land-use) (Hayes et al., 2011).  

Carbon storage is calculated using monthly estimates provided by the TEM cohort level 

carbon pools over the three time periods, separately. The carbon sequestration is reported for 

each of the three time periods in grams of carbon per square meter (C/m
2
) for different biomes 

in each grid cell, based on integrating the monthly fluxes to account for the net total of carbon 

uptake through photosynthesis against carbon losses. The area of each biome is consistent with 

our pixel spatial resolution, which is also measured in one km
2
. Once the annual estimates for 

the three periods are derived, the total of carbon sequestrated is then computed by multiplying 

the model results by the actual area of each biome.
2
 The total carbon storage estimated for each 

period in each land-use category (forest, pasture, crop, urban and other land uses) is then used to 

derive the 5 × 5 transition matrices of changes in carbon storage in tons per square kilometer 

(ton/km
2
) across the three periods. These matrices correspond to the 5 × 5 land use transition 

matrices of changes for each pixel across the three periods discussed above.  

  

3.3. Deriving annual carbon storage supply curves for each pixel for each period 

 Carbon storage without payments are estimated using the land-share and associated 

carbon storage transition matrices as a baseline. Changes in land use transition are then 

simulated by incrementally increasing forestland return per hectare by from $1 to $750 per 

hectare in each of the three periods in the land-use transition model. These changes are 

translated into changes in carbon storage by multiplying the simulated land use transition 

                                                           
2
 Please see S2 in the supplemental material section for more details about the carbon model used in this 

simulation. 
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matrices by the carbon storage transition matrices. Using the information, we derive three 

separate annual supply curves for carbon storage in tons per hectare for each pixel for the three 

periods where (1) conversion of forestland to crop, pasture, range, and urban uses under the 

baseline without payment is refrained and (2) crop, pasture, and range lands are afforested, as 

we incrementally increase the expected net return of forestland in the land-use transition model. 

By establishing three supply curves for carbon storage, we identify the payment required to 

reach the maximum potential of additional carbon storage at each pixel for the three periods, 

which occurs when the maximum forestland area available through afforestation, reforestation, 

and mitigation of deforestation is reached. 

 

3.4. Developing payment systems for the cost-efficient provision of carbon storage  

Using the three annual supply curves for carbon storage at each pixel for the three time 

periods, we develop payment systems for the cost-efficient provision of carbon storage under 

the assumption that (i) the one km
2
 pixels represent the spatial structure of the decision-making 

units, (ii) there is no payment price discrimination between pixels (i.e., A payment will be 

allocated to each 1km
2
 pixel), and (iii) private landowners are all risk averse in the face of 

uncertainties that influence net returns from alternative land-uses.   

The most efficient distribution of each dollar of the payment among the pixels for each 

of the three time periods separately is found by: (1) Calculating marginal carbon stored per 

dollar paid for each payment level (i.e., payment from $1 to $750 per hectare from the annual 

supply curves for carbon storage) at each pixel; (2) Calculating average carbon stored per dollar 

paid for each payment level and identifying the payment level for each pixel with the maximum 

average carbon stored per dollar paid from all the payment levels; (3) Sorting the pixels by the 
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descending order of the maximum average carbon stored per dollar paid; (4) Allocating 

payment to the pixed with the highest marginal or average carbon stored per dollar paid until 

each pixel the marginal carbon stored decreases to zero for each pixel.  

 

3.5. Deriving the marginal cost curves of cumulative carbon storage and determining 

optimal provisions of carbon storage  

Marginal cost curves for the project region are derived for each time period based on the 

allocation of payments across the pixels described above  To make the interpretation more 

meaningful, we derive the net present value (NPV) from the annual payment received by the 

landowner, assuming the annual payments were to continue in perpetuity, essentially assuming 

that the program would continue indefinitely and that landowners would not convert covered 

forest to any other uses, or harvest timber from the forest. A discount rate of 3% is used to 

calculate NPV following examples the literature (Hope, 2006; Link and Tol 2011; Anthoff and 

Tol, 2011) based on the 2010 US dollar.  

Determining the economically efficient level of carbon storage requires both marginal 

cost and marginal benefit curves. As estimating the benefits of sequestering carbon is beyond 

the scope of this research, the U.S. government’s estimate of the annual social cost of carbon is 

used. The social cost of carbon is an estimate of the economic damages incurred (avoided) with 

an increase (decrease) of one metric ton of CO2 emissions (USEPA, 2010). Thus, the social cost 

of carbon can be interpreted as an estimate of the marginal benefits of sequestering or storing 

(avoiding release) of a metric ton of CO2 in a forest-based system. social benefit of carbon 

storage that is capable of reducing CO2 emissions annually. Given the interpretation, we first 

convert the social price of carbon from 2010 dollars per metric ton of CO2 to 2010 dollars per 
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metric ton of carbon using the price of $69 per metric ton at the 3% discount rate in the 2050 

emission year. We use the marginal benefit of carbon storage in dollars per metric ton of carbon 

stored to determine the optimal point, the equilibrium level for the provision of carbon storage 

in each period on our three separate marginal cost curves at 3% discount rate based on the 2010 

US $. We convert social costs of carbon in dollar per metric tons of CO2 to dollar per metric 

tons of carbon storage (i.e., $253) using a simple conversion factor: one ton of stored carbon in 

forestland removes 3.67 tons of CO2 from the atmosphere (IPCC, 2010). We interpret the 

converted value as an annual marginal benefit of cumulative carbon storage. Using this value 

and our estimates of annual marginal cost curves, we obtain equilibrium points that identify 

optimal prices and optimal provisions of carbon storage for three different periods. The 

marginal benefit of cumulative carbon storage is kept constant across the three periods to test 

the temporal heterogeneity of optimal carbon storage. 

 

3.6. Contrasting and mapping cost efficiencies for the three time periods 

Once the optimal price and cumulative carbon storage are identified for each time 

period, the budget needed to reach the equilibrium levels (referred to as “optimal budgets”) can 

be determined. Given the optimal budgets, we test for differences in spatial heterogeneity of the 

relative cost efficiency of the payment systems across different periods. Here, we calculate 

average cost efficiency for each pixel from the total assigned dollars divided by the total 

additional carbon generated for each selected pixel ($ per metric ton) following the payment 

rule described above separately for the three periods where the average cost efficiency is 

mapped to visually highlight spatial variations between the three periods. The cost-efficiency 
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maps will help identify optimal spatial targeting of incentive payments for forest-based carbon 

storage for different periods. 

 

4. DATA 

A variety of datasets are needed for the land-use and carbon-simulation models. The 

land-use model uses the following datasets: land-use data, data used for the estimation of annual 

returns for specific land-uses, and other socio-economic and geophysical data. Land-use data at 

a 30 m
 
× 30 m resolution for all five land-use categories in 1992, 2001, 2006, and 2011 are from 

the National Land-Cover Dataset (NLCD) (US Department of the Interior and US Geological 

Survey, 2016). The 21 NLCD classifications were merged into five land-use categories as 

follows: cultivated cropland as “cropland” category; pasture/hay and grassland/herbaceous land-

cover as “pasture land-use”; developed open space, developed low intensity, developed medium 

intensity, and developed high intensity classifications as “urban land-use” category; deciduous 

forest, evergreen forest, and mixed forest as “forestland” category, and the rest of NLCD 

classifications (i.e., open water, barren land rock/sand/clay, dwarf scrub, shrub/scrub, woody 

wetlands, and emergent herbaceous wetlands) as “other use” category. The 30 m
 
× 30 m areas 

were aggregated within each one km
2
 pixel for each land use category. 

The expected annual return per hectare of cropland at the county level was estimated 

based on total county net cash farm income (gross cash farm income less all cash expenses) and 

harvested hectares of cropland for 2001 and 2006 from the USDA Census of Agriculture (2012) 

and the National Agricultural Statistical Service (NASS, 2014). County-level rent per hectare of 

pastureland was used as the expected return per hectare of pastureland using the pasture rent 

data from National Agricultural Statistical Service (National Agricultural Statistics Service, 
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2014) and data on cattle inventories from the USDA Census of Agriculture (2012). The 

expected urban return at the census-block group level was estimated using census-block group 

data for median housing price (U.S. Census Bureau, 2000) and parcel-level data for assessed 

land value (excluding structures), total assessed value (land and structures), and lot size from 

the tax assessors’ offices of two counties of the study area (i.e., Blount and Roane counties in 

Tennessee) and five counties. (i.e., Franklin, Fentress, Morgan, Monroe, and Pickett) adjacent to 

the study area. Distance variables were created using ArcGIS 10.1 (ESRI, 2012). These 

variables represent the distance between parcel centroids and either the centroids of the nearest 

park, golf course, hospital, or school or the nearest point of a polyline representing a highway. 

Data on stumpage price, timber harvest volume, and timber harvest age were used to 

estimate net returns to forestland. The stumpage price data for Tennessee was obtained from 

Timber Mart-South (TMS, 2001, 2006) while the stumpage price data for Kentucky was 

collected from Growing Gold (KDF, 2001, 2006). The timber harvest volume data came from 

the Forest Inventory and Analysis (FIA) database (FIA, Gray et al., 2012; Woudenberg et al., 

2010) and the timber harvest age data came from Smith et al. (2006). Other socio-economic and 

geophysical data include data for distance of a forestland parcel to the nearest protected area, 

mean slope, mean elevation, and other data, including vacancy rate and median household 

income. Protected area boundaries (including those for federal, state and privately protected 

areas within the study region) were obtained from the Protected Areas Database of the United 

States (PAD-US) (USGS, 2013). Mean slope and mean elevation for each one km
2
 were 

measured using raster grids derived from the 30 m × 30 m Digital Elevation Model (DEM) 

(USGS, 2013) and calculated using the Zonal Statistics tool in ArcGIS 10.1 (ESRI, 2012).
3
 

                                                           
3
 Additional information on the calculation of returns to the four land uses can be found in the supplementary 

material. 
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5. EMPIRICAL RESULTS AND DISCUSSION 

5.1. Land-use model 

The estimated coefficients and goodness-of-fit information from the maximum entropy 

model are reported in Table 2. The estimated coefficients of the net returns of the four land-uses 

and slope were significant at the 5% level (hereafter, referred to as “significant”) across all four 

land-uses, while four of eight estimated coefficients of the time dummy variables were 

significant. The results suggest that economic incentives, reflected in the net returns for the 

land-uses, and physical characteristics of land, represented by slope, influence land-use 

allocations. In addition, at least half of the time trends captured through two-year dummy 

variables (i.e., 2006 and 2011 year dummy variables) were found to influence land-use 

decisions. 

We use the transition elasticities of the non-stationary Markov transition probabilities 

reported in Table 3 to analyze the impact of the change in explanatory variables since the 

interpretation of the signs and magnitudes of the estimated coefficients is difficult when more 

than two transition states are involved in the decision choices. The transition eslaticities are 

reported in averages over the three time periods, and then over the spatial units while using the 

marginal effects, following Miller and Plantinga (1999). In the discussion of the transition 

elasticities, we focus on the role of forest net return on the land-use transition probabilities. An 

increase in the forest net return by 1% increases the probability of retaining the forestland as 

forestland by 0.50% and also increases the transition probability from pasture, cropland, urban 

land, and other land to forestland by 0.31%, 0.04%, 0.15%, and 0.09%, respectively. Likewise, 

an increase in forest net return by 1% decreases the transition probability from forestland to 
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pasture, cropland, urban land, and other land by 2.04%, 32.71%, 1.53%, and 2.30%, 

respectively.  

The differences in the elasticity of different land-use returns may be related to 

differences in the flexibility of land-use conversions. For example, the larger magnitude of the 

negative effect of forest net return on the transition probability from forestland to cropland may 

be related to the conversion of forestland to cropland being more preventable than the 

conversion of forestland to the other land-uses. This is an interesting finding in a sense that 

forest-based carbon payment is likely more effective for reversing the decision of deforestation 

for cropland than the decision of deforestation for any other land-uses. Collectively, these 

findings suggest that an increase in the forest return increases the probability of forestland being 

chosen, implying forest-based carbon payment is a viable approach for promoting carbon 

storage in forest in the study region. 

 

5.2. Carbon simulation model 

 The annual changes in forestland based on the observed land-use change and the annual 

changes in carbon storage estimated from the carbon model (referred to as “baseline scenarios”) 

at the pixel level are mapped in each of the three time periods (see Figures 2 and 3). Net forest 

gain/loss and corresponding annual average net gain/loss of carbon storage in each county 

across the three periods are summarized in Table 4.  

The spatial pattern of the annual change in carbon storage varies across the three time 

periods with different extents. For example, Morgan County experienced the biggest loss of 

carbon storage for each of the three periods among the 18 counties. The loss of carbon storage is 

a direct result of the loss of forestland. In contrast to the other counties from the BEA 88 area, 
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the large degree of deforestation in Morgan County is likely associated with its rapid population 

growth of 13% between 1990 and 2010 (U.S. Census, 2010). The county’s population growth 

has been credited to the creation of manufacturing facilities and solar power farms in the area, 

thus, significantly increasing manufacturing employment in the region (Kline and Moretti, 

2014).   

Some counties in the study region gained carbon storage over some of the time periods. 

For example, Hamblen County experienced a net gain of forestland (i.e., 698 and 91 hectares for 

periods 2 and 3, respectively), resulting in a net gain in carbon storage (i.e., 1.17 and 2.77 

metric tons per hectare per year for periods 2 and 3, respectively). Those gains are mostly due to 

the conversion of pasture to forest (net losses of 962 and 628 hectares of pasture land in 

Hamblen County for periods 1 and 2, respectively). This change might be attributed to natural 

resource conservation programs conducted in Hamblen and neighboring counties that aimed at, 

among other objectives, supporting afforestation and erosion control (Tennessee Valley 

Authority, 2010). 

  

5.3. Site-specific annual supply curve 

 We derive site-specific annual supply curves for carbon storage for each of the 14,680 

pixels for each of the three time periods. Figure 4 shows the three supply curves for three 

randomly selected pixels for period 1 (i.e., 1992-2001) to illustrate the spatial heterogeneity in 

the carbon supply curves given a fixed period. The carbon supply curves increase at increasing 

rates and become vertical at the maximum carbon-storage capacities of 17.50, 24.10, and 30.09 

metric tons per year at $99, $125, and $198 per hectare per year for these three pixels. Figure 5 

shows the three supply curves for a randomly selected pixel during the three periods to illustrate 
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the temporal heterogeneity in the carbon supply curves given a fixed location. The carbon 

supply curves increase at increasing rates and become vertical at the maximum carbon-storage 

capacities of 18.11, 37.15, and 39.02 metric tons per year at $125, $200, and $300 per hectare 

annually, for the periods 1, 2, and 3, respectively. The maximum carbon storage capacities 

occur when the maximum amount of forestland that would not be converted to other uses and 

non-forestland that would have been converted to forestland if the incentive payment program 

were implemented.  

   

5.4. Optimal provision of the forest-based carbon storage 

Figure 6 shows the socially optimal provision of carbon storage at 309,000, 435,171, and 

356,171 metric tons per year for periods 1, 2, and 3, respectively, at the annual costs of $5.8 

million, $8.7 million, and $7.9 million, respectively. The total cost in each period reflects the 

sum of the annual NPV of each payment made at the socially optimal provision level of carbon 

storage. The equilibrium points were identified given the annual marginal cost curves based on 

the cumulative carbon storage across different payment levels for the entire study area and the 

annual marginal benefit of carbon storage (i.e., $253.22 per metric ton of carbon stored) 

borrowed from USEPA (2010), all at the 3% discount rate based on the 2010 US dollar.  

The different socially optimal provision levels of carbon storage for periods 1, 2, and 3 

stem from the differences in the marginal cost of metric ton of carbon storage. Figure 6 shows 

that marginal costs are lowest in period 2 and highest in period 1. If marginal benefits remain 

constant over the three periods, then the efficient level of storage will be highest in period 2 and 

lowest in period 1. This finding suggests that payment systems for a given target level of carbon 

storage can improve their cost efficiencies if they incorporate temporal heterogeneity. This 
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finding is particularly important and interesting as the growing literature on the cost efficiency 

of payment programs for ecosystem services has not considered the potential room for 

improvement of their cost efficiencies using temporal heterogeneity.  

 

5.5. Optimal spatial targeting of incentive payments 

Figure 7 shows the spatial distribution of cost efficiency of carbon storage across the 

three time periods at the optimal levels of carbon storage. At the optimum level, annual program 

payments of $5.8 million, $8.7 million, and $7.9 million are made generating 102,767, 203,963, 

and 202,348 hectares of additional forest, which generate 309,000, 435,171, and 356,171 metric 

tons of carbon storage annually, yielding cost efficiency of 21.93, 20.29, and 23.45 in dollars 

per metric ton of carbon, respectively, for the three periods. Table 5 summarizes this 

information at the county level to illustrate spatial heterogeneity across the study region. It 

shows that the largest area of land (i.e., 11,700, 24,464, and 24,810 hectares for periods 1, 2, 

and 3, respectively) were selected to participate with the highest total payment amounts (i.e., 

$0.7 million, $1.1 million, and $1.0 million) in Knox County. In contrast, the least area of land 

(i.e., 413, 1,698, and 2,130 hectares) were selected to participate with the lowest total payment 

amounts (i.e., $39,933, $75,967, and $68,567) in Bell County.  

The reason behind the differences in area of participation amounts of carbon supply, and 

payments are illustrated by comparing the county-level supply curves for carbon storage of 

Knox and Bell Counties for period 1 in Figure 8. The different shapes of the county-level supply 

curves for carbon storage between the two counties in Figure 8 are derived from the following 

reasons: (1) lower costs per metric ton for any given level of carbon storage for Knox County 

(i.e., $20.67) than for Bell County (i.e., $40.46) and (2) higher maximum carbon storage for 
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Knox County (i.e., 55,000 metric tons per year) than for Bell County (i.e., 1,500 metric tons per 

year).  

 

6. CONCLUSION 

The empirical results for the 18-county case study show that optimal provision of forest-

based carbon storage are 309,000, 435,171, and 356,171 metric tons per year for periods 1, 2, 

and 3, respectively, with annual costs of about $5.8 million, $8.7 million, and $7.9 million, 

respectively. We found that the optimal provision of forest-based carbon storage differs across 

space and time because of the spatial and temporal heterogeneities in the marginal cost of 

carbon storage. These findings have significant implications because few, if any, studies have 

explicitly considered both the temporal and spatial dynamics of the cost efficiency to come up 

with optimal budget outlays and corresponding carbon storage levels, payment amounts, and 

would-be participants. 

 In process of achieving our objective, we derived 14,680 site-specific annual supply 

curves for carbon storage for each of the three time periods at the one km
2
 pixel level. These 

site-specific annual supply curves can be used in ways similar to the decision-making guide for 

Conservation Reserve Program (CRP) enrollment. For example, maximum annual payment per 

hectare corresponding to the maximum potential gain of carbon storage at the pixel level can be 

used in ways comparable to the maximum ceiling on acceptable bid prices for CRP set by the 

USDA-Farm Service Agency (Hellerstein et al., 2015). Similarly, the pixel-level carbon storage 

rates and pixel-level annualized costs of carbon storage can be used in ways comparable to the 

Environmental Benefits Index (EBI) – an index to rank farmers’ request to enroll land into CRP 

set by USDA-Farm Service Agency since 1996 (Congressional Research Service, 2014). This 
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information can be easily used at a more spatially granular level (e.g., counties and ecoregions) 

by taking averages of the estimates from our estimated supply curves and their corresponding 

values at the pixel level. In addition, the temporal heterogeneities in the supply curves and their 

corresponding values caution us of the need to update these values for more efficient 

implementation of the payment programs. 

Despite the clear implication of our study, it is important to understand its caveat as well. Our 

land-use model is static and, therefore, is not able to accommodate dynamic processes of nature 

(e.g., climate shifts, and natural disturbances). Dynamic processes of these types are 

increasingly important to incorporate when spatially targeting investments for ecosystem 

services as climate changes and natural disturbances pose an increasingly imminent threat to 

ecosystem services. Future analyses connecting this dynamic nature of land-use changes to the 

costs of a payment program for forest-based carbon sequestration would be useful in improving 

the cost efficiency of payment programs.  
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Table 1. Variable names, definitions, and descriptive statistics 

Variable Description    Mean 

Return from  

forestland  

Expected annual net return from forest-use at the county 

level ($ per hectare)   

50.15 

(-12.15) 

Return from 

pastureland 

Expected annual net return from pasture-use at the county 

level ($ per hectare) 

49.54 

(-3.13) 

Return from 

cropland 

Expected annual net return from crop-use at the county 

level ($ per hectare) 

54.31 

(-383.52) 

Return from urban 

land 

Expected annual net return for urban-use at the census-

block group level ($ per hectare) 

1059.35 

(-1541.02) 

Slope Average slope at pixel-level (degrees) 10.6 

(-4.62) 

Elevation Average elevation at pixel-level (meters) 392.08 

  (-107.43) 

2006 Year dummy  1 if the land-use decision was in 2006, 0 otherwise 0.5 

(-0.5) 

2011 Year dummy  1 if the land-use decision was in 2011, 0 otherwise 0.5 

(-0.5) 

Note: Numbers in parentheses are standard deviations. 
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Table 2. Parameter estimates (PE) from the Maximum Entropy model for land-use allocations  

Variables Forestland Pastureland Cropland Urban-land 

 
Parameter estimates Parameter estimates Parameter estimates Parameter estimates 

Constant -10.5893* 

(0.7039) 

-6.0800 

(0.7000) 

-38.9779* 

(2.6418) 

-10.9107 

(0.7654) 

Forest Return 0.2975* 

(0.0128) 

0.0272* 

(0.0126) 

-3.2323* 

(0.0608) 

0.0815* 

(0.0135*) 

Pasture Return 0.2853* 

(0.0318) 

0.2810* 

(0.0317) 

1.8621* 

(0.1182) 

0.3475* 

(0.0345) 

 

Crop Return -0.0008* 

(0.0002) 

-0.00042* 

0.0002) 

0.0109* 

(0.0005) 

-0.0031* 

(0.0002) 

Urban Return 0.0009* 

(0.0001) 

0.0002* 

(0.0001) 

-0.00452* 

(0.0004) 

0.0031* 

(0.0001) 

     

Slope 0.5467* 

(0.0197) 

 

0.4607* 

(0.0197) 

0.9564* 

0.0670) 

0.4900* 

(0.0210) 

Year dummy 06 2.2729* 

(0.1267) 

1.0192 

(0.1248) 

 

0.7736* 

(0.4248) 

0.6322* 

(0.1356) 

Year dummy 11 3.6713* 

(0.1922) 

1.4835 

(0.1903) 

1.2578 

(0.4916) 

1.7043 

(0.2053) 

Note: Adjusted R-square is 0.045 and log-likelihood is -300,440. The category of other uses was used as the reference group. 

* Indicates statistical significance at the 5% level. Numbers in parentheses are standard errors. 
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Table 3. Transition elasticity of the non-stationary Markov transition probabilities for the land-use model 

Variables 
 

Forest Share Pasture Share Crop Share Urban Share Other Share 

Intercept   Forest  -0.6043 2.161 -18.0117 -0.8014 5.8889 

 

Pasture  -0.5295 0.4829 -6.9026 -0.6016 1.8478 

 

Crop  -0.0147 0.0535 -0.4444 -0.0197 0.1455 

 

Urban  -0.1592 0.2905 -2.9907 -0.1913 0.897 

 

Other  -0.1001 0.1139 -1.447 -0.1153 0.4023 

       Forest Returns Forest  0.5015 -2.0412 -32.707 -1.5302 -2.2978 

 

Pasture 0.313 -0.1587 -5.8473 -0.0639 -0.2063 

 

Crop 0.041 0.0124 -0.3294 0.0181 0.0095 

 

Urban 0.151 -0.029 -2.1995 0.0072 -0.0472 

 

Other 0.0885 -0.0016 -1.0883 0.0165 -0.0107 

       Pasture Returns  Forest  -0.014 -0.0653 18.9239 0.733 -3.4411 

 

Pasture -0.0081 -0.0262 6.6856 0.2559 -1.2194 

 

Crop -0.0252 -0.0265 0.465 -0.0058 -0.1139 

 

Urban -0.0464 -0.0543 2.8711 0.0687 -0.5743 

 

Other -0.0261 -0.03 1.4022 0.0302 -0.2846 

       Crop Returns Forest  -0.004 -0.0005 0.0876 -0.0217 0.0028 

 

Pasture -0.007 -0.0031 0.0949 -0.0267 0.0005 

 

Crop -0.0019 -0.0011 0.0185 -0.0058 -0.0004 

 

Urban -0.0043 -0.005 -0.0236 -0.0005 -0.0057 

 

Other -0.0027 -0.0018 0.0198 -0.007 -0.001 
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 Table 3. Continued 

Variables 
 

Forest-Share Pasture-Share Crop-Share Urban-Share Other-Share 

Urban Returns  Forest  -0.0378 -0.1688 -1.0542 0.3749 5.8889 

 

Pasture  -0.0107 -0.0745 -0.5056 0.1902 1.8478 

 

Crop  0.0016 -0.0034 -0.0373 0.0175 0.1455 

 

Urban  -0.1322 -0.2052 -0.6980 0.0975 0.8970 

 

Other  -0.0011 -0.0178 -0.1308 0.0515 0.4023 

       Slope Forest  0.167 -0.4762 3.2282 -0.2564 -2.2978 

 

Pasture 0.1557 -0.0059 0.9262 0.0494 -0.2063 

 

Crop 0.0111 0.0019 0.0553 0.005 0.0095 

 

Urban 0.0725 0.0037 0.4004 0.0272 -0.0472 

 

Other 0.036 0.0041 0.1741 0.0142 -0.0107 

       Year Dummy 06 Forest  0.07 -0.1645 -0.2105 -0.2369 -3.4411 

 

Pasture 0.0813 -0.0241 -0.0448 -0.0567 -1.2194 

 

Crop 0.0034 -0.0001 -0.0008 -0.0011 -0.1139 

 

Urban 0.0511 -0.0031 -0.0137 -0.0199 -0.5743 

 

Other 0.0184 -0.0018 -0.0058 -0.008 -0.2846 

       Year Dummy 11 Forest  0.1133 -0.2864 -0.3276 -0.246 0.0028 

 

Pasture 0.1243 -0.0631 -0.0825 -0.0442 0.0005 

 

Crop 0.0051 -0.0009 -0.0015 -0.0003 -0.0004 

 

Urban 0.0761 -0.0235 -0.0338 -0.0135 -0.0057 

 

Other 0.0292 -0.0074 -0.0112 -0.0037 -0.0010 
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Table 4. Net gain/loss of forestland and pasture land and annual average net gain/loss of carbon storage in each county across 

the three time periods  

  Period 1 (1992-2001) Period 2 (2001-2006) Period 3 (2006-2011) 

County  

Annual 

Carbon 

Storage 

(Metric 

ton/ha) 

Net 

Change in 

Forest 

(ha/year) 

Net  

Change in 

Pasture 

(ha/year) 

 

Annual 

Carbon 

Storage 

(Metric 

ton/ha) 

Net 

 Change in 

Forest 

(ha/year) 

 

Net  

Change in 

Pasture 

(ha/year) 

 

Annual 

Carbon 

Storage 

(Metric 

ton/ha) 

Net 

Change in 

Forest 

(ha/year) 

Net 

Change in 

Pasture 

(ha/year) 

Bell  0.24 54 26 0.02 -489 330 0.18 -148 44 

Anderson -3.19 -1273 798 -0.2 -594 -6 -0.3 -407 -75 

Blount -3.46 -2018 237 -0.13 330 -794 -0.23 -172 -332 

Campbell -1.34 -714 599 0.25 -960 514 0.5 -304 -237 

Claiborne -3.62 -2117 1157 0.29 -774 -166 0.38 -328 -560 

Cocke -3.25 -1091 625 -0.54 -515 -363 -0.64 -225 -270 

Grainger -2.17 -910 367 1.7 -290 -166 1.32 -88 -587 

Hamblen -5.25 -958 374 1.17 698 -962 2.77 91 -628 

Hancock -2.81 -541 717 -1.7 -536 8 -1.26 -185 -255 

Jefferson -3.1 -905 222 1.84 667 -940 2.08 -109 -907 

Knox -4.29 -3185 755 -1.22 -2921 -343 -0.67 -207 -198 

Loudon -4.35 -1330 881 0.35 86 -914 1.88 -58 -407 

Monroe -5.93 -2460 1588 -3.01 246 -530 -0.58 80 -1018 

Morgan -7.45 -3451 3043 -8.25 -3557 113 -6.49 -871 -868 

Roane -3.89 -1793 1172 -0.48 -655 -2 -0.2 -568 -300 

Scott -2.54 -1216 936 -2.3 -1699 777 -2.2 -802 112 

Sevier -2.89 -1518 128 0.77 190 -369 0.32 -592 28 

Union -3.4 -907 740 -2.27 -413 56 -1.33 -267 -383 
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Table 5.  Selected area of participation, net present value of payment, cost efficiency across the three time periods 

  Period 1 (1992-2001)  Period 2 (2001-2006)  Period 3 (2006-2011)  

County  

Total 

Area 

(ha) 

Net 

Present 

Value of  

Payment 

($/year) 

Total 

Carbon 

Storage  

(metric 

ton/year) 

CE 

 

 

 

 

Total 

Area 

(ha) 

Net 

Present 

Value of  

Payment 

($/year) 

Total 

Carbon 

Storage  

(metric 

ton/year) 

CE 

 

 

 

 

Total 

Area 

(ha) 

Net 

Present 

Value of  

Payment 

($/year) 

Total 

Carbon 

Storage  

(metric 

ton/year) 

CE 

 

 

 

 

Knox 11,700 687,971 33,289 20.67 24,464 1,012,500 54,286 18.65 24,810 1,003,100 47,670 21.04 

Blount 9,282 597,676 29,300 20.4 16,929 728,400 36,640 19.88 15,652 658,700 30,409 21.66 

Jefferson 7,815 472,000 28,079 16.81 12,911 554,533 30,827 17.99 12,796 526,033 26,798 19.63 

Monroe 7,058 439,667 26,521 16.58 14,581 616,300 27,290 22.58 13,661 547,133 22,984 23.81 

Loudon 6,789 381,700 22,130 17.25 11,061 539,233 25,215 21.39 11,180 505,800 22,335 22.65 

Morgan 9,478 362,200 29,052 12.47 20,540 672,733 38,627 17.42 20,620 622,833 31,166 19.98 

Grainger 4,625 359,756 14,655 24.55 8,479 419,400 22,025 19.04 8,506 369,500 16,650 22.19 

Hamblen 4,534 359,633 21,903 16.42 6,944 375,300 21,296 17.62 7,022 355,800 19,517 18.23 

Claiborne 7,023 347,867 20,291 17.14 16,390 604,333 31,542 19.16 14,569 539,267 23,909 22.55 

Roane 7,637 344,300 20,436 16.85 13,041 584,167 26,783 21.81 14,253 575,133 24,338 23.63 

Sevier 5,311 339,167 19,757 17.17 9,422 450,567 21,971 20.51 11,350 438,600 19,932 22.01 

Anderson 4,636 334,113 12,404 26.94 8,914 418,133 19,276 21.69 7,503 388,967 16,334 23.81 

Cocke 3,691 197,033 7,965 24.74 7,113 313,900 15,542 20.2 7,307 267,733 10,499 25.5 

Union 3,346 184,773 6,541 28.25 7,387 311,900 15,151 20.59 7,543 246,967 9,432 26.18 

Scott 4,142 156,071 5,337 29.24 8,938 350,200 16,433 21.31 8,359 348,967 14,668 23.79 

Campbell 1,583 122,367 5,327 22.97 7,411 338,100 15,954 21.19 7,584 282,167 11,158 25.29 

Hancock 3,702 109,400 4,228 25.88 7,740 264,367 13,168 20.08 7,502 190,500 6,157 30.94 

Bell 413 39,933 987 40.46 1,698 75,967 3,146 24.15 2,130 68,567 2,355 29.12 

Note: CE denotes annualized cost efficiency in dollar per metric ton. 
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Figure 1. Overview of study area 
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Figure 2. Annual changes in forestland based on the observed land-use changes  
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Figure 3. Annual changes in carbon storage estimated from the carbon model 
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Figure 4. Three supply curves for carbon storage for three randomly selected pixels for a 

given period (i.e., 1992-2001)
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Figure 5. Three supply curves for carbon storage for a randomly selected pixel during the 

three time periods 
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Figure 6. Socially optimal provisions of carbon storage across three time periods 
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Figure 7. Spatial distribution of cost efficiency of carbon storage across the three time periods at the socially optimal levels of 

carbon 
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Figure 8. County-level supply curves for carbon storage between two counties (Knox and 

Bell) for period 1 
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SUPPLEMENTARY MATERIAL 

S1.  Expected annual return of four land uses 

We use Soil Expectation Value (SEV) to estimate the expected annual return per hectare 

of forestland. In the SEV estimation, the harvest age is determined by setting the average 

stumpage value equal to the annual incremental change in stumpage value. The harvest volume 

data is obtained from the Forest Inventory and Analysis (FIA) database (USDA Forest Service, 

2015). The stumpage price for Tennessee is obtained from Timber Mart-South (Timber Mart-

South, 2015), and the stumpage price for Kentucky is collected from Growing Gold (Kentucky 

Division of Forestry, 2015).  

We use county-level rent per hectare of pastureland as the expected return per hectare of 

pastureland. County-level data for 2001 and 2006 is not available. The data is predicted by 

regressing county-level pastureland rent on state-level pastureland rent and county-level cattle 

numbers and pastureland area for the 2008-2012 period. The pastureland rent data is from 

National Agricultural Statistical Service (National Agricultural Statistics Service, 2014) and 

cattle number data is from the USDA Census of Agriculture (2012).  

The expected annual return per hectare of cropland at the county level is estimated using 

the following ad hoc procedure. First, the ratio of livestock and poultry cash expenses to total 

farm production expenses is derived. Second, this ratio is multiplied by total county net farm 

cash farm income to arrive at an estimate of net farm cash income from livestock and poultry. 

Third, the estimated net cash farm income from livestock and poultry is subtracted from total 

net cash farm income, resulting in an estimate of net cash farm income from cropland. Fourth, 

county-level net cash farm income from cropland is divided by hectares of harvested cropland 

in the county.  



52 
 

The expected annual net return per hectare of urban land is calculated using the 

following ad hoc procedure. First, parcel-level land value ratios are obtained for counties for 

which parcel-level data is available by dividing assessed land value by total assessed value. 

Second, the parcels’ land value ratios are divided by their respective plot sizes to obtain land 

value ratios per hectare. Third, the land value ratios per hectare is regressed against population 

density and a vector of distance variables (i.e., distances between the census-block groups and 

the nearest city center with population greater than 10,000, park, golf course, hospital, school, 

and highway). Fourth, the regression coefficients and the respective census-block group data are 

used to estimate the average land value ratio per hectare for each census-block group. Fifth, the 

average land value ratio per hectare for each census-block group is multiplied by the respective 

median housing price to obtain an estimate of the median assessed land value per hectare, which 

is used as a proxy for the expected net return per hectare of urban land at the census-block 

group level.  
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S2. Terrestrial Ecosystem Model 

The Terrestrial Ecosystem Model (TEM) is a process-based ecosystem model that 

simulates carbon, nitrogen, and water dynamics of vegetation and soils in terrestrial ecosystems 

at multiple spatial scales. The TEM uses spatially referenced information for climate, land-use 

and land-cover, land-disturbance (i.e., fire, insect & disease, forest harvest, hurricane & storm), 

atmospheric composition (e.g., nitrogen deposition, tropospheric ozone and atmospheric CO2 

concentration), elevation, soil, and vegetation properties to make estimates of important carbon, 

nitrogen, and water fluxes and pool sizes, as well as soil thermal conditions of terrestrial 

ecosystems. The TEM normally operates on a monthly time step, but extends to daily and sub-

daily time steps with recent improvements. TEM has extensively applied to explore the spatial 

and temporal change patterns of net primary productivity, net ecosystem carbon balance, and 

carbon stocks at site, regional, and global scales as influenced by multiple environmental factors 

(e.g., McGuire et al. 1992, 1993, 2001; Raich et al. 1991; Pan et al. 1996; Schimel et al. 2000; 

Melillo et al. 1993; Tian et al. 1998; Hayes et al. 2011; Yuan et al. 2012; Zhuang et al. 2002; 

Felzer et al. 2009; Yi et al. 2009). 

            In TEM, the net ecosystem carbon balance (NECB) is estimated as (McGuire et al., 

2001): 

𝑁𝐸𝐶𝐵 = 𝐺𝑃𝑃 − 𝑅𝑎 − 𝑅ℎ − 𝐸𝑐 − 𝐸𝑝 − 𝐸𝑑 − 𝐸𝑙                     

Where, GPP is the gross primary productivity, Ra is plant autotrophic respiration, Rh is 

heterotrophic respiration, Ec is carbon emission during the conversion of natural ecosystems to 

agriculture, Ep is the sum of carbon emission from the decomposition of agricultural and wood 

product,  Ed is direct carbon emission from disturbance, and El is carbon leaching from 

terrestrial ecosystem to aquatic system. NECB represents the change in total carbon storage 
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across all pools, or the sum of all carbon fluxes into (sink, positive) and out of (source, 

negative) the ecosystem over a given time step. The net ecosystem productivity (NPP) is 

calculated as the difference between GPP and Ra (GPP - Ra). 

Since its emergence, many branches of the TEM versions have been developed to meet 

specific requirements of research tasks. The TEM development and application history was 

described in detail at the website: http://ecosystems.mbl.edu/TEM/.  In this study, the TEM6.1 

version, which was improved based on the TEM6.0 version (Hayes et al. 2011), was applied. As 

compared to its previous versions, TEM6.1 is characterized by several improvements as follows 

1) Land-use and stand age cohorts are dynamically tracked in the model simulation. This 

version has no vegetation dynamic module to track vegetation succession after land disturbance. 

The application of large numbers of cohorts are able to more realistically mimic the complex 

plant functional type (PFT) and age-dependent responses of plants to disturbance and changing 

environmental factors, and thus, greatly reduce the simulation uncertainty resulted from lack of 

vegetation dynamic sub-model; 2) The vegetation has been divided into four components: leaf, 

stem, coarse root, and fine root; 3) the soil carbon pool was partitioned into four pools: 

aboveground fine litter, coarse woody debris, belowground litter, and soil organic matter. 

Within each pool, three decomposition conditions are further partitioned: fast, slow, and 

resistant decomposition rates; 4) A standing dead wood pool is added. The standing dead wood 

is a very important pool under the impacts of extreme climate events and land-disturbance.      

Model input data description 

Two types (static and dynamic variables) of model input data are used to drive the TEM. 

The static variables include soil texture (percent of sand, clay and loam), soil drainage condition 

(wet or dry), soil topography information (elevation, slope, aspect), and potential vegetation 

map (assumed vegetation types in 1700 with no human activities). The dynamic variables 
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include atmospheric CO2 concentration (annual), annual historical land-use data (i.e., cropland, 

urban, pasture, and deforestation proportion) before 1992, monthly transient climate data 

(precipitation, air temperature, and short-wave radiation), monthly tropospheric ozone, and 

annual nitrogen deposition data. The data source and generation methods for static data and for 

monthly climate data, land-use data, nitrogen deposition are described in Wei et al. (2014). All 

of the data have a spatial resolution of 0.25
o
 × 0.25

o
 by latitude and longitude. We specifically 

mask these data out for our study region.  The land use-data after 1992 is replaced with the 

classified 30 m Landsat TM/ETM remote sensing images at four time periods (i.e., 1992, 2001, 

2006, and 2011). To fit the TEM model plant functional types (PFTs), we regrouped the 

classified Landsat TM/ETM land-use categories into six types: cropland, pasture, urban, 

temperate evergreen forest, temperate deciduous forest, and shrub-land. This dynamic approach 

for generating vegetation and age cohorts based on the land-use data has been described in 

Hayes et al. (2011). In this study, land-use cohorts before 1992 are directly based on the 0.25
o
 

land use data, while the 0.25
o
 cohort data for the four time periods after 1992 is rescaled from 

the 30 m Landsat data. The total 30 m grid cell numbers and area within each 0.25
o
 grid cells for 

each specific PFT are summed to form a PFT cohort. Due to different disturbance history for 

each PFT cohort is further divided into several age-structure cohorts. Finally, for each 0.25
o
 grid 

cell, we obtain a series of cohorts with different PFTs and stand age-structure. Therefore, we 

generate the land-use cohorts for the four time periods. The tropospheric ozone concentration 

data (AOT40 ozone exposure index: the accumulated hourly ozone concentration over a 

threshold of 40 ppb-hr) was from Felzer et al. (2005). 

Carbon sequestration rate under a specific land-use condition could be significantly 

influenced by the time since land-use change and by variations in other environmental factors. 
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Therefore, in this study, we applied the potential carbon sequestration rate (i.e., the maximum 

carbon stocks under a specific environmental and land-use condition) to represent the influences 

of land-use change effects on carbon sequestration rate under the four land-use scenarios (1992, 

2001, 2006, 2011). To analyze the land-use change effects, we design the following model 

simulation experiments: 1) equilibrium experiment: the environmental and land-use data 1700 

(represented by potential vegetation map, mean climate data during 1979-2008, nitrogen 

deposition and atmospheric CO2 concentration in 1860, and no ozone) was used to run TEM 

and obtain a equilibrium model output for experiment 2; 2) baseline experiment: the 

environmental and land-use data during 1700-1991 are used. The equilibrium outputs from 

experiment 1 are used as the starting carbon, nitrogen, and water stocks to run TEM and obtain 

baseline model outputs for model further uses; 3) 1992 land-use experiment:  the land-use in 

1992 (generated based on the Landsat satellite data), nitrogen deposition, ozone concentration, 

and atmospheric in 1992, as well as the mean climate for the period (1979-2008) are used to run 

TEM. The baseline data from experiment 2 is used as the starting carbon, nitrogen, and water 

stocks, then the model runs for 500 years to arrive at the model equilibrium status and gets the 

potential carbon stocks for each land-use type in each grid cell; 4) 2001 land-use experiment: 

the model driving data is the same as that in experiment 3 except that the 1992 land-use data is 

replaced by 2001 land-use data; 5) 2006 land-use experiment: the model driving data is the 

same as that in experiment 3 except that the 1992 land-use data is replaced by 2006 land-use 

data; 6) 2011 land-use experiment: the model driving data is the same as that in scenario 3 

except that the 1992 land-use data is replaced by 2011 land-use data.  

 To ensure the accuracy of ecosystem carbon, nitrogen, and water dynamics, the model 

parameters have to be recalibrated first against field observation and regional inventory data at 
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or around the study region. We find one observational site and collect carbon related data for 

each land-use category (i.e., cropland, evergreen needle leaf forest, deciduous broadleaf forest, 

pasture/grassland, and deciduous shrub land) in the study region. The selected calibration sites 

are mostly from the AmeriFlux sites: Chestnut Ridge (US-ChR; deciduous broadleaf forest), 

Canaan Valley (US-CaV, grassland), Duke Forest Loblolly Pine (US-Dk3, evergreen needle 

leaf forest), and Alabama’s Old Rotation site (corn, soybean and cotton cropland). The collected 

target variables for calibration include monthly GPP, NPP, leaf, stem and root biomass, leaf 

area index, soil organic carbon, soil available nitrogen, nitrogen uptake rate, aboveground and 

belowground litter carbon, coarse woody debris, evapotranspiration, etc.  


