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Agricultural R&D Policy in the Face of Climate and Economic Uncertainty

Introduction

Despite abundant and affordable food throughout developed world, currently 12.9 percent of
population in developing countries is undernourished (World Food Program 2016). By 2050,
world population is expected to increase by 33 percent, from 7.3 to 9.7 billion (United Nations
2015). When coupled with increases in income and changing diets, this may translate into a very
substantial rise in the demand for agricultural production, by 70 percent (Bruinsma 2009).
Studies looking at the future supply and demand of food indicate that meeting this demand may
pose some challenges for the current food and environmental systems (Piesse and Thirtle 2010).
The extent of environmental pressure and the resulting food price changes will hinge critically on
the evolution of productivity growth in agriculture (Hertel 2015).

Since the 1950s, increased agricultural productivity has allowed food supply growth to
outpace demand on a global scale, resulting in a downward trend in world prices. Public and
private investments into agricultural research and development (R&D) have been the foundation
for this achievement. Studies have shown that public investment in agricultural research has
resulted in large economic benefits with annual rates of return between 20 and 60 percent
(USDA-ERS 2015a). These results are generally taken as evidence of underinvestment in
agricultural R&D and suggest that increasing investment will further increase agricultural output.
The rate of growth in global public agricultural R&D spending was declining over 1976-2000
and became negative in developed countries over the 1991-2000 decade (Peisse and Thirtle
2010). However, global R&D picked up strongly, rising by 22% over the 2000-2008 period, with

accelerated spending in China and India accounting for close to half of the increase (Beintema et



al. 2012). Several studies report estimates of additional investment in agricultural R&D needed
to meet projected increases in demand by 2050 (Beintema and Elliot 2009, von Braun et al.
2008, Rosegrant et al. 2008). It is likely that increasing part of the R&D expenditures in coming
decades will be targeted at counteracting disasters related to new pests and diseases which may
be amplified by climate change.

While investments into agricultural R&D play critical role in improvements of
agricultural productivity, the time lag involved in translating agricultural research expenditures
into realized productivity gains is extremely long. This means that research planning and
expenditures cannot simply be adjusted in the middle of 21 century if the world finds itself in
food shortfall at that point in time. Long run planning is required. However, this must be done in
an environment of uncertain future population, per capita incomes, and changes in climate.
According to the Shared Socioeconomic Pathways (SSPs) (O’Niell et al. 2014, 1IASA 2015), the
spread between low and high global population levels in 2100 is about 5.8 billion people, and
average global per capita income ranges between 22 and 138 thousand 2005USD. On the supply
side, future agricultural productivity plays a critical role in determining ability to meet increasing
demands for food, fiber and bioenergy. Agricultural productivity, as well as effectiveness with
which agricultural R&D spending translates into increased productivity growth, are also
influenced by climate change, the impacts of which are highly uncertain (Rosenzweig et al.
2014).

The goal of this analysis is to understand impacts of uncertainty in future population,
income and climate change on optimal level of global investment in agricultural R&D over the

21% century, taking into account the long lag in agricultural productivity response to R&D.



Methodology
To achieve this goal, we develop a dynamic model of global land use, following earlier work of
Steinbuks and Hertel (2013). In the model, a social planner maximizes sum of discounted
payoffs, subject to endowments and production function constraints. The social planner’s payoff
in each period takes into account size of global population and per capita utility. Utility is
derived from goods and services produced by the land-based economy, including food, timber
and bio-energy, as well as other goods and services. Consumer preferences are represented with
An Implicit, Directly Additive Demand System (Rimmer and Powell 1996) which has been
estimated on international cross-section data (Reimer and Hertel 2004). This demand system is
very flexible in its description of the evolution of consumer demands as per capita incomes rise.

Studies that quantify changes in agricultural productivity over time consider different
measures of productivity, including: physical crop yield, land and labor productivity, as well as
total factor productivity (TFP). TFP accounts for input substitution. Piesse and Thirtle (2010)
point out that although yield growth has slowed in aggregate and labor productivity growth
varies by region, TFP has improved in most regions. Studies on contributions of agricultural
research and extension to productivity growth often use TFP as a measure of agricultural
productivity. These studies highlight that technological innovation — from new technologies to
commercial development and transmission to farmers — takes time, and represent TFP as a
function of a weighted sum of R&D expenditures over some number of past years (Alston et al.
2010).

In our dynamic model of land use, both TFP and R&D are endogenous variables, with
increases in the global stock of R&D driving growth in TFP. The diffusion of innovations in

agriculture takes many years, so there is a lag between the R&D expenditures and the



productivity gains at the farm level that can be 25 to 40 years (Piesse and Thirtle, 2010). In the
model with decadal time step, current agricultural TFP is a concave function of agricultural R&D
expenditures 10, 20, 30 and 40 years ago (lwi), as well as historical productivity level (TFP3):
TFPyy = YoV + ¢TFP; (1)
Lagged TFP is included to prevent current TFP and agricultural production from falling to zero
in a situation of zero lagged R&D spending. In fact, a significant share of the R&D expenditures
is spent to support research aimed at preventing agricultural productivity from declining in the
face of co-evolving pests and diseases (Alston et al. 2009). To parameterize relationship (1), we
use U.S. annual time series data on agricultural TFP and R&D expenditures. We employ USDA-
ERS (2015b) data on U.S. agricultural TFP growth over 1948-2007. Information on R&D
expenditures for this time period is constructed using data available in USDA-ERS (2012) and
Huffman and Evenson (2008). When estimating equation 1, regression coefficients on lagged
R&D expenditure are restricted according to the Bayesian lag weights estimated in Baldos et al.
(2015). The relationship estimated on U.S. data informs relationship between agricultural R&D
and productivity at global scale over the coming century. Specifically, we assume that U.S.
investments, when scaled up to the global level, are capable of bringing a level of global TFP

comparable to that in the U.S.

Agricultural output depends on inputs used and overall level of technology, represented
by TFP, where TFP today depends on past investments into agricultural research according to
equation (1). Meta-analysis of crop impacts of climate change (Challionor et al. 2014) shows that
global yields will be damaged by global warming with yields dropping on average 4.9% per 1°C
increase in temperature. To reflect the impact of climate change on crop yields in the model, we

multiply variable TFP: by (1- T) with  =0.049, where T is change in global surface



temperature relative to beginning of the 21 century. This results in an outcome whereby past
R&D become less efficient in delivering agricultural output under warmer climate. In effect,

rising temperatures become a drag on productivity growth (IPCC 2014).

To represent uncertainty in future global population, income and change in global surface
temperature we use SSP1-5 scenarios (IIASA 2015) (Table 1). SSP2 is dubbed the ‘middle of the
road’ scenario, since population and income growth rates are based on business-as-usual (BAU)
conditions. SSP1 is the ‘sustainability scenario’ in which population growth peaks at mid-
century and the global mean temperature rise from today is just 2.5 degrees Celsius. SSP3
contrasts sharply with these scenarios, with ‘fragmentation’ of the world economy leading to low
income growth and population reaching nearly 13 billion at the end of the century. SSP5,
‘conventional development’ scenario, is characterized by high income growth and the highest
temperature increase of all -- almost +4 °C above current levels by 2100. SSP4, the ‘inequality

scenario’, has lower rates of income growth with slightly higher population in 2100 than SSP2.

One way to represent uncertainty in the dynamic model of land use is to build a Markov
chain over the SSPs, and then determine a range of optimal R&D paths and, by maximizing
expected value of objective function, find optimal path of R&D expenditures. This
representation, however, requires specification of a transition probability matrix, which is
unknown with respect to the SSPs scenarios. The alternative pathways represented by the SSPs
are just alternative storylines intended to encompass a wide range of possible future states of the
world. There are no associated probabilities, although some, like the middle of the road, appear
more likely than others. The essential challenge in this decision making problem boils down to
the following: what if we choose the optimal R&D action today with one SSP in mind, and then

discover that the world economy is, in fact, following a different SSP? Given the long lag



between R&D expenditures and productivity, it would be impossible to boost agricultural
productivity by investing more into agricultural R&D at the time food shortages are realized. A
natural approach to decision making under this type of uncertainty is to avoid choosing a path
which is tailored to just a single SSP. To find optimal path of investments into agricultural R&D,
we apply a non-Bayesian decision rule, the min-max regret (MMR) method (Cai and Sanstad
2016). It yields an optimal solution reflecting a form of robustness to the uncertainty: the
solution is an acceptable outcome irrespective of which candidate scenario may be correct, and

ameliorate the conservatism of the min-max criterion’s dependence upon the worst scenario.

Results

Optimal global R&D spending in the beginning, middle and end of the 21% century and the
resulting TFP for each of five SSPs are presented in figures 1a and 1b. Global annual spending
starts at around $36 billion observed at the beginning of the 21st century (Pardey et al. 2006).
SSP3 (high population) and SSP5 (high income) show the highest rates of R&D spending over
the first half of the century. In the second half of the century, SSP3 is surpassed by the SSP2. By
the end of the century, SSP5 shows the highest optimal level of R&D. The lowest R&D spending
is observed for the sustainability scenario, SSP1, which has both lower increases in global
average temperature and population growth, along with medium income per capita growth
(Table 1). Overall, optimal agricultural R&D spending in 2100 varies by a factor of 2.5 in 2100 —
ranging from about $260 billion to nearly $660 billion, depending on the SSP scenarios.
Depending on scenario, optimal growth rate in global annual R&D spending is from 3.4 % to
4.4% in the first half and from 0.6% to 2.3% in the second half of the century. In the end of the

century, pattern of optimal TFPs across scenarios (figure 1b) follows the one observed for R&D



spending, with highest TFP increase observed in SSP5 and lowest in SSP1. We also plot
historical TFP over 1964-2004 period using information presented in Fuglie (2010). Our results
indicate that optimal TFP in 21 century should grow faster, from 1% (SSP1) to 1.3% (SSP5) per
year, than it was observed historically, on average at 0.98% per year in the second half of the last

century.

We employ MMR method to find robust decisions regarding how much to invest into
agricultural R&D, given uncertainty in future global population, income and change in surface
temperature. First, we consider one source of uncertainty at a time. For example, with SSP2
chosen as a reference case, when looking at the effect of uncertainty in population, we keep
global income and change in temperature at levels suggested by SSP2 and vary only population
path according to the five SSPs. Figure 2 shows the optimal MMR paths of TFP and R&D
spending for models with only population uncertainty, only income uncertainty, or only climate
uncertainty, where the other two exogenous paths are chosen to be SSP2. The optimal MMR
path falls within the extreme solutions based on individual SSPs. Income uncertainty is,
individually, the greatest source of R&D uncertainty, although population is more important as a
driver of R&D under the MMR formulation. Uncertainty in climate change play a relatively
small role in the optimal investment decisions within our framework. When compared to the
demand-side uncertainty emanating from population and income, the supply side impacts of
temperature changes envisioned under the SSPs are modest. Population in 2100 varies by a
factor of nearly 2, while the ratio of high to low per-capita income in 2100 is almost 5. Against
this backdrop, the 1.5°C temperature difference in 2100 between the most extreme SSPs is quite

modest.



Finally, we include all three sources of uncertainty into the MMR analysis. MMR
solutions for R&D spending and TFP are shown in figures 1a and 1b, respectively (last set of
columns). MMR path of R&D spending involves ramping up spending strongly at the beginning
of the century, but moderating this growth rate after mid-century. Optimal rate of growth in
R&D spending is 3.8% per year to 2050 and then 1.3% until the end of the century. Note also
that the MMR path lies between the extremes of the deterministic paths, although at mid-century
it brushes up against the maximum R&D spending obtained when individual SSPs are treated as

being certain.

Conclusions

The outlined study offers a dynamic framework for analyzing optimal agricultural R&D
spending in the 21% century factoring in uncertainty in future population, incomes and climate
change. The feature that makes this problem interesting in the dynamic context is that
investment into agricultural productivity pays off with a lag. Most of the current projections of
future R&D spending are undertaken using deterministic framework and can only incorporate
uncertainty in the form of parametric sensitivity analysis (e.g. elasticity of output with respect to
R&D) or alternative scenarios. By drawing on technigques from the robust decision analysis
literature, we extend this earlier work, taking explicit account of the underlying sources of

uncertainty in determining the optimal path for future agricultural R&D.

This paper finds the optimal path of agricultural R&D spending over the 21% century for
each SSP. The global annual spending starts at about 36 bill USD in the beginning of the century
and grows to 260-660 bill USD, depending on scenario. Then, the maximum regret is minimized

to find a robust optimal R&D pathway that factors in key uncertainties and the long lag in



productivity response to R&D. The growth rate in global R&D was at 2.2% per year over 2000-
2008 period (Beintema et al. 2012). Our analysis indicates that this strong growth in R&D
spending should continue and even increase to 3.8% per year up to 2050, and then slow down
averaging at 2.6% over the course of the century. The central finding in this paper is that society
should move quickly to higher levels of R&D spending up to mid-century, thereafter moderating

this growth rate.
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Figure 1a Optimal global agricultural R&D spending in the beginning, middle and end of the 21
century.
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Figure 1b Historical and optimal global TFP in agriculture in the beginning, middle and end of
the 21% century (TFP in 2004 =1)
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Table 1. Population, global income and their associated per capita income, and change in global
surface temperature in five SSPs

2000 2050 2100
Population, bill
SSP1 6.0 8.5 6.9
SSP2 6.0 9.2 9
SSP3 6.0 10.0 12.7
SSP4 6.0 9.1 9.4
SSP5 6.0 8.6 7.4
Global World Product (GWP) per year, trill US$2005
SSP1 48 286 566
SSP2 48 231 539
SSP3 48 179 279
SSP4 48 221 354
SSP5 48 363 1018
Per capita annual GWP, 1000 US$2005
SSP1 8 34 82
SSP2 8 25 60
SSP3 8 18 22
SSP4 8 24 38
SSP5 8 42 138
Global surface temperature change relative to beginning
of the 21% century, °C
SSP1 0 1.2 2.5
SSP2 0 1.3 3.2
SSP3 0 1.3 3.2
SSP4 0 1.3 2.7
SSP5 0 1.5 4.0

Source: SSP database, 2012-1015. Population and GWP information presented in the table is
based on OECD Env-Growth model, change in global surface temperature correspond to
reference scenarios based on GCAM4.



