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Agricultural R&D Policy in the Face of Climate and Economic Uncertainty 

 

Introduction 

Despite abundant and affordable food throughout developed world, currently 12.9 percent of 

population in developing countries is undernourished (World Food Program 2016). By 2050, 

world population is expected to increase by 33 percent, from 7.3 to 9.7 billion (United Nations 

2015). When coupled with increases in income and changing diets, this may translate into a very 

substantial rise in the demand for agricultural production, by 70 percent (Bruinsma 2009). 

Studies looking at the future supply and demand of food indicate that meeting this demand may 

pose some challenges for the current food and environmental systems (Piesse and Thirtle 2010). 

The extent of environmental pressure and the resulting food price changes will hinge critically on 

the evolution of productivity growth in agriculture (Hertel 2015).  

Since the 1950s, increased agricultural productivity has allowed food supply growth to 

outpace demand on a global scale, resulting in a downward trend in world prices. Public and 

private investments into agricultural research and development (R&D) have been the foundation 

for this achievement. Studies have shown that public investment in agricultural research has 

resulted in large economic benefits with annual rates of return between 20 and 60 percent 

(USDA-ERS 2015a).  These results are generally taken as evidence of underinvestment in 

agricultural R&D and suggest that increasing investment will further increase agricultural output. 

The rate of growth in global public agricultural R&D spending was declining over 1976-2000 

and became negative in developed countries over the 1991-2000 decade (Peisse and Thirtle 

2010). However, global R&D picked up strongly, rising by 22% over the 2000-2008 period, with 

accelerated spending in China and India accounting for close to half of the increase (Beintema et 



al. 2012). Several studies report estimates of additional investment in agricultural R&D needed 

to meet projected increases in demand by 2050 (Beintema and Elliot 2009, von Braun et al. 

2008, Rosegrant et al. 2008). It is likely that increasing part of the R&D expenditures in coming 

decades will be targeted at counteracting disasters related to new pests and diseases which may 

be amplified by climate change. 

  While investments into agricultural R&D play critical role in improvements of 

agricultural productivity, the time lag involved in translating agricultural research expenditures 

into realized productivity gains is extremely long. This means that research planning and 

expenditures cannot simply be adjusted in the middle of 21st century if the world finds itself in 

food shortfall at that point in time.  Long run planning is required. However, this must be done in 

an environment of uncertain future population, per capita incomes, and changes in climate. 

According to the Shared Socioeconomic Pathways (SSPs) (O’Niell et al. 2014, IIASA 2015), the 

spread between low and high global population levels in 2100 is about 5.8 billion people, and 

average global per capita income ranges between 22 and 138 thousand 2005USD. On the supply 

side, future agricultural productivity plays a critical role in determining ability to meet increasing 

demands for food, fiber and bioenergy. Agricultural productivity, as well as effectiveness with 

which agricultural R&D spending translates into increased productivity growth, are also 

influenced by climate change, the impacts of which are highly uncertain (Rosenzweig et al. 

2014). 

The goal of this analysis is to understand impacts of uncertainty in future population, 

income and climate change on optimal level of global investment in agricultural R&D over the 

21st century, taking into account the long lag in agricultural productivity response to R&D. 

 



Methodology 

To achieve this goal, we develop a dynamic model of global land use, following earlier work of 

Steinbuks and Hertel (2013). In the model, a social planner maximizes sum of discounted 

payoffs, subject to endowments and production function constraints.  The social planner’s payoff 

in each period takes into account size of global population and per capita utility. Utility is 

derived from goods and services produced by the land-based economy, including food, timber 

and bio-energy, as well as other goods and services. Consumer preferences are represented with 

An Implicit, Directly Additive Demand System (Rimmer and Powell 1996) which has been 

estimated on international cross-section data (Reimer and Hertel 2004).  This demand system is 

very flexible in its description of the evolution of consumer demands as per capita incomes rise. 

Studies that quantify changes in agricultural productivity over time consider different 

measures of productivity, including: physical crop yield, land and labor productivity, as well as 

total factor productivity (TFP). TFP accounts for input substitution. Piesse and Thirtle (2010) 

point out that although yield growth has slowed in aggregate and labor productivity growth 

varies by region, TFP has improved in most regions. Studies on contributions of agricultural 

research and extension to productivity growth often use TFP as a measure of agricultural 

productivity. These studies highlight that technological innovation – from new technologies to 

commercial development and transmission to farmers – takes time, and represent TFP as a 

function of a weighted sum of R&D expenditures over some number of past years (Alston et al. 

2010). 

In our dynamic model of land use, both TFP and R&D are endogenous variables, with 

increases in the global stock of R&D driving growth in TFP. The diffusion of innovations in 

agriculture takes many years, so there is a lag between the R&D expenditures and the 



productivity gains at the farm level that can be 25 to 40 years (Piesse and Thirtle, 2010). In the 

model with decadal time step, current agricultural TFP is a concave function of agricultural R&D 

expenditures 10, 20, 30 and 40 years ago (It-i) , as well as historical productivity level (TFPt-3): 

𝑇𝐹𝑃𝑡+1 = ∑ 𝑐𝑖
3
𝑖=0 √𝐼𝑡−𝑖 + 𝜙𝑇𝐹𝑃𝑡−3         (1)                                                              

Lagged TFP is included to prevent current TFP and agricultural production from falling to zero 

in a situation of zero lagged R&D spending. In fact, a significant share of the R&D expenditures 

is spent to support research aimed at preventing agricultural productivity from declining in the 

face of co-evolving pests and diseases (Alston et al. 2009). To parameterize relationship (1), we 

use U.S. annual time series data on agricultural TFP and R&D expenditures. We employ USDA-

ERS (2015b) data on U.S. agricultural TFP growth over 1948-2007. Information on R&D 

expenditures for this time period is constructed using data available in USDA-ERS (2012) and 

Huffman and Evenson (2008). When estimating equation 1, regression coefficients on lagged 

R&D expenditure are restricted according to the Bayesian lag weights estimated in Baldos et al. 

(2015). The relationship estimated on U.S. data informs relationship between agricultural R&D 

and productivity at global scale over the coming century. Specifically, we assume that U.S. 

investments, when scaled up to the global level, are capable of bringing a level of global TFP 

comparable to that in the U.S.  

Agricultural output depends on inputs used and overall level of technology, represented 

by TFP, where TFP today depends on past investments into agricultural research according to 

equation (1). Meta-analysis of crop impacts of climate change (Challionor et al. 2014) shows that 

global yields will be damaged by global warming with yields dropping on average 4.9% per 1ºC 

increase in temperature. To reflect the impact of climate change on crop yields in the model, we 

multiply variable TFPt by (1- ηTt) with η =0.049, where Tt is change in global surface 



temperature relative to beginning of the 21st century. This results in an outcome whereby past 

R&D become less efficient in delivering agricultural output under warmer climate. In effect, 

rising temperatures become a drag on productivity growth (IPCC 2014). 

To represent uncertainty in future global population, income and change in global surface 

temperature we use SSP1-5 scenarios (IIASA 2015) (Table 1). SSP2 is dubbed the ‘middle of the 

road’ scenario, since population and income growth rates are based on business-as-usual (BAU) 

conditions. SSP1 is the ‘sustainability scenario’ in which population growth peaks at mid-

century and the global mean temperature rise from today is just 2.5 degrees Celsius. SSP3 

contrasts sharply with these scenarios, with ‘fragmentation’ of the world economy leading to low 

income growth and population reaching nearly 13 billion at the end of the century. SSP5, 

‘conventional development’ scenario, is characterized by high income growth and the highest 

temperature increase of all -- almost +4 ºC above current levels by 2100. SSP4, the ‘inequality 

scenario’, has lower rates of income growth with slightly higher population in 2100 than SSP2.  

One way to represent uncertainty in the dynamic model of land use is to build a Markov 

chain over the SSPs, and then determine a range of optimal R&D paths and, by maximizing 

expected value of objective function, find optimal path of R&D expenditures. This 

representation, however, requires specification of a transition probability matrix, which is 

unknown with respect to the SSPs scenarios. The alternative pathways represented by the SSPs 

are just alternative storylines intended to encompass a wide range of possible future states of the 

world. There are no associated probabilities, although some, like the middle of the road, appear 

more likely than others. The essential challenge in this decision making problem boils down to 

the following: what if we choose the optimal R&D action today with one SSP in mind, and then 

discover that the world economy is, in fact, following a different SSP? Given the long lag 



between R&D expenditures and productivity, it would be impossible to boost agricultural 

productivity by investing more into agricultural R&D at the time food shortages are realized.  A 

natural approach to decision making under this type of uncertainty is to avoid choosing a path 

which is tailored to just a single SSP. To find optimal path of investments into agricultural R&D, 

we apply a non-Bayesian decision rule, the min-max regret (MMR) method (Cai and Sanstad 

2016). It yields an optimal solution reflecting a form of robustness to the uncertainty:  the 

solution is an acceptable outcome irrespective of which candidate scenario may be correct, and 

ameliorate the conservatism of the min-max criterion’s dependence upon the worst scenario.  

 

Results 

Optimal global R&D spending in the beginning, middle and end of the 21st century and the 

resulting TFP for each of five SSPs are presented in figures 1a and 1b. Global annual spending 

starts at around $36 billion observed at the beginning of the 21st century (Pardey et al. 2006).  

SSP3 (high population) and SSP5 (high income) show the highest rates of R&D spending over 

the first half of the century.  In the second half of the century, SSP3 is surpassed by the SSP2. By 

the end of the century, SSP5 shows the highest optimal level of R&D. The lowest R&D spending 

is observed for the sustainability scenario, SSP1, which has both lower increases in global 

average temperature and population growth, along with medium income per capita growth 

(Table 1). Overall, optimal agricultural R&D spending in 2100 varies by a factor of 2.5 in 2100 – 

ranging from about $260 billion to nearly $660 billion, depending on the SSP scenarios. 

Depending on scenario, optimal growth rate in global annual R&D spending is from 3.4 % to 

4.4% in the first half and from 0.6% to 2.3% in the second half of the century. In the end of the 

century, pattern of optimal TFPs across scenarios (figure 1b) follows the one observed for R&D 



spending, with highest TFP increase observed in SSP5 and lowest in SSP1. We also plot 

historical TFP over 1964-2004 period using information presented in Fuglie (2010). Our results 

indicate that optimal TFP in 21st century should grow faster, from 1% (SSP1) to 1.3% (SSP5) per 

year, than it was observed historically, on average at 0.98% per year in the second half of the last 

century.  

We employ MMR method to find robust decisions regarding how much to invest into 

agricultural R&D, given uncertainty in future global population, income and change in surface 

temperature. First, we consider one source of uncertainty at a time. For example, with SSP2 

chosen as a reference case, when looking at the effect of uncertainty in population, we keep 

global income and change in temperature at levels suggested by SSP2 and vary only population 

path according to the five SSPs. Figure 2 shows the optimal MMR paths of TFP and R&D 

spending for models with only population uncertainty, only income uncertainty, or only climate 

uncertainty, where the other two exogenous paths are chosen to be SSP2. The optimal MMR 

path falls within the extreme solutions based on individual SSPs. Income uncertainty is, 

individually, the greatest source of R&D uncertainty, although population is more important as a 

driver of R&D under the MMR formulation. Uncertainty in climate change play a relatively 

small role in the optimal investment decisions within our framework. When compared to the 

demand-side uncertainty emanating from population and income, the supply side impacts of 

temperature changes envisioned under the SSPs are modest. Population in 2100 varies by a 

factor of nearly 2, while the ratio of high to low per-capita income in 2100 is almost 5. Against 

this backdrop, the 1.5ºC temperature difference in 2100 between the most extreme SSPs is quite 

modest. 



Finally, we include all three sources of uncertainty into the MMR analysis. MMR 

solutions for R&D spending and TFP are shown in figures 1a and 1b, respectively (last set of 

columns). MMR path of R&D spending involves ramping up spending strongly at the beginning 

of the century, but moderating this growth rate after mid-century. Optimal rate of growth in 

R&D spending is 3.8% per year to 2050 and then 1.3% until the end of the century. Note also 

that the MMR path lies between the extremes of the deterministic paths, although at mid-century 

it brushes up against the maximum R&D spending obtained when individual SSPs are treated as 

being certain. 

 

Conclusions 

The outlined study offers a dynamic framework for analyzing optimal agricultural R&D 

spending in the 21st century factoring in uncertainty in future population, incomes and climate 

change.  The feature that makes this problem interesting in the dynamic context is that 

investment into agricultural productivity pays off with a lag. Most of the current projections of 

future R&D spending are undertaken using deterministic framework and can only incorporate 

uncertainty in the form of parametric sensitivity analysis (e.g. elasticity of output with respect to 

R&D) or alternative scenarios. By drawing on techniques from the robust decision analysis 

literature, we extend this earlier work, taking explicit account of the underlying sources of 

uncertainty in determining the optimal path for future agricultural R&D. 

 This paper finds the optimal path of agricultural R&D spending over the 21st century for 

each SSP. The global annual spending starts at about 36 bill USD in the beginning of the century 

and grows to 260-660 bill USD, depending on scenario. Then, the maximum regret is minimized 

to find a robust optimal R&D pathway that factors in key uncertainties and the long lag in 



productivity response to R&D. The growth rate in global R&D was at 2.2% per year over 2000-

2008 period (Beintema et al. 2012). Our analysis indicates that this strong growth in R&D 

spending should continue and even increase to 3.8% per year up to 2050, and then slow down 

averaging at 2.6% over the course of the century. The central finding in this paper is that society 

should move quickly to higher levels of R&D spending up to mid-century, thereafter moderating 

this growth rate. 
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Figure 1a Optimal global agricultural R&D spending in the beginning, middle and end of the 21st 

century. 

 

 

 

Figure 1b Historical and optimal global TFP in agriculture in the beginning, middle and end of 

the 21st century (TFP in 2004 =1) 
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Figure 2 Optimal paths of TFP and R&D spending for only population uncertainty, only income 

uncertainty, and only climate uncertainty 
 

 

 

 

 

 

 

 



Table 1. Population, global income and their associated per capita income, and change in global 

surface temperature in five SSPs  

 

  2000 2050 2100 

 Population, bill  

SSP1 6.0 8.5 6.9 

SSP2 6.0 9.2 9 

SSP3 6.0 10.0 12.7 

SSP4 6.0 9.1 9.4 

SSP5 6.0 8.6 7.4 

 Global World Product (GWP) per year, trill US$2005 

SSP1 48 286 566 

SSP2 48 231 539 

SSP3 48 179 279 

SSP4 48 221 354 

SSP5 48 363 1018 

  Per capita annual GWP, 1000 US$2005 

SSP1 8 34 82 

SSP2 8 25 60 

SSP3 8 18 22 

SSP4 8 24 38 

SSP5 8 42 138 

  

Global surface temperature change relative to beginning 

of the 21st century, oC 

SSP1 0 1.2 2.5 

SSP2 0 1.3 3.2 

SSP3 0 1.3 3.2 

SSP4 0 1.3 2.7 

SSP5 0 1.5 4.0 

 

Source: SSP database, 2012-1015. Population and GWP information presented in the table is 

based on OECD Env-Growth model, change in global surface temperature correspond to 

reference scenarios based on GCAM4. 

 


