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Introduction  
 
Fluctuations in prices of agricultural products have a large impact on the welfare of 

consumers and farmers. Especially in less developed countries, characterized by heavy 
dependence on domestic production of food based commodities and imperfect or even 
nonexistent risk sharing markets (futures contracts and crop insurance etc). Despite, the 
emergence of a vast empirical and theoretical literature on the dynamics of agricultural product 
prices in the aftermath of the 2008 food price crisis, many important research problems are yet to 
be resolved. In particular, one finds significant disagreements within economists regarding an 
adequate theory of the underlying mechanisms behind the often large fluctuations in the prices of 
agricultural products over time, in spite of relatively stable fundamentals. Given the relatively 
inelastic demand for agricultural products (particularly food based commodities) even small 
changes in supply can lead to large fluctuations in prices (Tomek 2000). While, compared to the 
supply-side dynamics of non-agricultural commodities, the analysis of the supply of agricultural 
products is greatly complicated by interlinked value chains, uncertainty caused by the biological 
nature of the production process and time lags between the decision to produce and the 
realization of production plans.  

 
Nevertheless, at the expense of generalization, theories of mechanisms behind price 

fluctuations can be broadly classified into two categories. The theory of exogenous price 
fluctuations, developed by Muth (1961), Deaton & Laroque (1996, 1992) and Miranda & 
Glauber (1993) etc. amongst others, argues that the observed fluctuations are a result of the 
impact of exogenous factors on farm supply e.g. random weather and disease shocks or 
seasonality of production. The competitive storage model along with its different variants, 
extensively reviewed by Gouel (2012), is the workhorse behind the development of this theory. 
In these models, consistent with the rational expectation hypothesis, the distribution of shocks 
conditional on information available in the current period is assumed to be common knowledge. 
Therefore, prices fluctuate around the long-run equilibrium level due to random shocks and not 
any systematic changes in farmers’ behavior. Though, very much within the tradition of modern 
neoclassical economics, however in contrast to real world prices, which are usually characterized 
by irregular fluctuations, high first order autocorrelation, positive skewness and small kurtosis, 
price data generated from these types of models exhibits low first order autocorrelation, high 
skewness and kurtosis (Mitra and Boussard 2012). 

On the other hand, the theory of endogenous fluctuations can be traced back to the early 
work of Ezekiel (1938) on cobweb cycles. In cobweb models, expectations of future prices based 
on past prices (i.e. backward looking expectations) leads to periods of oversupply and 
undersupply, which results in periodic cycles of low and high prices, respectively. Yet, with 
linear farm supply and demand functions, dynamics in a simple cobweb model are limited to 
three unrealistic scenarios i.e. rapid convergence to steady state, two-period cycles of high-low 
prices (negatively auto-correlated prices), and explosive oscillations (divergence that results in 
negative or infinite prices). Clearly, neither pattern fits the stylized facts associated with real 
world price data. However over the past decades, several refinements of the original cobweb 
model (Finkenstadt and Kuhbier 1992, Boussard 1996 and Hommes 1998), commonly known as 



chaotic1 cobweb models of agricultural markets, have resuscitated interest in the theory of 
endogenous price fluctuations. This stream of literature, address key shortcomings of the cobweb 
model (i.e. negatively auto-correlated prices and convergence to equilibrium) by introducing 
nonlinearities into the demand/supply functions (Lichtenberg & Ujihara 1989, Day and Hanson 
1991, Hommes 1994 and Finkenstädt 1995) without changing the essential features of the 
original model i.e. backward looking expectations and production lags. As a result, compared to 
simple cobweb models, the price trajectories derived from chaotic cobweb models display 
irregular and random behavior, consistent with the observed price fluctuations in real world data. 
Unfortunately, in contrast to real world data, these price trajectories are often typified by 
negative skewness and low first order autocorrelation. 

 
Given the adverse sociopolitical ramifications of price fluctuations and the high priority 

given to agricultural product prices in government agendas across the world, disagreement about 
an underlying theory of price fluctuations is not merely an academic debate but it has direct 
policy implications. Because the nature of policy interventions designed to mitigate price 
fluctuations hinges upon adherence to a particular theory of agricultural price fluctuations. 
Policies based on the first theory of price fluctuations (exogenous fluctuations) discourage direct 
interventions in markets and instead push for the diversification of production at the farm level 
together with maintaining appropriate levels of inventory in storage (when possible) at the 
aggregate level. Whereas policies designed in light of the second theory (endogenous 
fluctuations) endorse market interventions through planned production or production quotas at an 
aggregate level in order to stabilize prices.    
 

In light of the abovementioned debates about the theory of price fluctuations and its 
policy relevance in less developed countries, we examine the underlying mechanisms behind the 
price dynamics in the Pakistan poultry sector. Currently, the $5 billion industry, which provides 
employment to approximately 1.5 million people and contributes 1.3% towards the GDP of 
Pakistan, is at the brink of a crisis (Government of Pakistan 2014). Many poultry farmers have 
been forced to shut down their business due to persistent fluctuations in the prices of 
intermediate poultry products i.e. chicks and broilers, especially, small liquidity constrained 
farmers. For instance between 2011 to 2013, over 2500 poultry farms were shut down in Punjab 
(10% of total farms in Punjab), the hub of poultry production (The Nation 2013). Whereas the 
existing poultry farmers face a lot of risk due to high uncertainty involved in predicting future 
cash-flows and hence formulating optimal production plans. Given these settings, our paper 
makes several timely contributions to the literature within the realm of applied economics.  

 
First, based on extensive fieldwork, we document the organization of production and the 

price discovery process in the poultry sector in Pakistan2. In doing so we shed light on the often 
                                                             
1 Werndl (2009) defines chaos as “chaotic systems are deterministic systems showing irregular, or even random, 
behavior and sensitive dependence to initial conditions,” which “means that small errors in initial conditions lead to 
totally different solutions.” 
2 These findings are based on a research project (PI: Muhammad Imran Chaudhry) funded by the Pakistan Poultry 
Association. This project involved detailed, structured interviews with key stakeholders in the poultry value chain 
during field work in Pakistan from April-2015 to October-2015. Under the supervision of the PI, a marketing 
research company was hired to interview approximately 50 major players in the poultry sector including grandparent 
stock companies, breeders, hatcheries, broiler farmers and retailers. The interview questionnaire is given in Exhibit-
1. The primary purpose of this exercise was to understand the organization of production and the price discovery 



poorly understood mechanics of agricultural value chains in less developed countries from a 
purely descriptive standpoint. Second, after taking into account the decision making practices at 
the level of the farm, we develop a stylized dynamic model to simultaneously capture the 
optimizing behavior of chick and poultry farmers within the prevalent institutional environment. 
We explicitly model the interlinked structure of the agricultural value chain and the resulting 
interdependencies between upstream (chick) famers and downstream (broiler) farmers, an 
important aspect of agricultural production that has been overlooked in the theoretical literature 
on chaotic cobweb models. Third, under very general assumptions about the behavior of cost and 
demand functions, we derive empirically testable hypothesis about farmers’ expectation regime 
from the underlying model as a system of coupled difference equations. Thereafter, we employ a 
unique, hand collected dataset comprising of weekly farm-gate prices of chicks and broilers in 
Pakistan from Janaury-2008 to June-2015 to fit different time series models. Our empirical 
analysis reveals that the behavior of poultry prices in Pakistan is broadly consistent with the 
theory of endogenous price fluctuations.  

 
Lastly, we employ analytical methods and numerical tools to examine the dynamical 

behavior of the underlying system of time-delay difference equations derived from our 
theoretical model under the naïve expectations hypothesis. First, we prove the existence of a 
unique equilibrium state. Second, we compute the system’s eigan values to show asymptotic 
stability, in the special case of quadratic costs and a linear retail demand curve for broilers, 
whereby the underlying model reduces to a system of linear time-delay difference equations. 
Interestingly, Hale et al. (1985) stability criterion for time delay systems reveals that this linear 
system is unstable independent of time-delays i.e. delays, usually associated with instability, 
actually stabilize the underlying model. Thereafter, for the purpose of simulations, the model is 
calibrated with (convex) power functions to represent the production costs of both types of 
farmers, an appropriate linear retail demand curve for broilers and reasonable values for model 
parameters derived from industry reports. We examine the price dynamics in several interesting 
cases, including the special case of a linear system of time-delay difference equations and the 
more general case of system of nonlinear time-delay difference equations. 

 
The simulations reveal that the model reproduces the patterns observed in the actual 

poultry price data i.e. cyclical behavior, positive first order correlation, low skewness and 
negative kurtosis. Likewise, consistent with the prior literature, we document chaotic behavior in 
the presence of nonlinearities in the underlying system. We also implement the BDS test (Brock 
et. al 1987 and Brock et. al 1996) in order to characterize any chaotic dynamics in the actual 
price data. Interestingly, although non-chaotic in the strictest sense due to the presence of stable 
limit cycles, simulation results from the linear model show a markedly high sensitivity to initial 
conditions and small changes in model parameters. This type of behavior, at times referred to as 
“thin chaos”, may arise in linear time-delay models due to the intricate dynamics and 
complexities generated by time-delays in the feedback mechanisms.  

 
These findings have important ramifications vis-à-vis the literature on endogenous price 

fluctuations. First, we try to address an important gap in the theoretical literature on chaotic 
cobweb markets, which has largely ignored the modeling of vertically interlinked agricultural 
                                                                                                                                                                                                    
process, in particular the structure of the poultry supply chain, information flows and the economics of decision 
making at the level of the farm.  



markets and asymmetric production lags. In doing so, we find that naïve expectations can lead to 
complicated and even chaotic fluctuations in a vertically linked agricultural supply chain with 
asymmetric production lags. Second, we seek to bridge the gap between theory and empirics in 
the endogenous price fluctuations literature by employing farmer survey responses, empirical 
analysis and numerical simulations along with a broader understanding of the domestic 
institutional environment to make a compelling case for the existence of cobweb cycles in less 
developed countries.  

 
The remaining paper is organized as follows. Based on extensive fieldwork comprising of 

structured interviews with poultry farmers, opinion surveys and market visits in Pakistan, we 
describe the mechanics of the poultry supply chain, the price formation mechanisms and the 
stylized facts associated with behavior of farm-gate prices of chicks and broilers in section-1. 
Section-2 explains the importance of future price expectations in the analysis of agricultural 
commodities. We provide a brief summary of the literature on cobweb cycles and highlight key 
assumptions and criticisms of cobweb models. Thereafter, in light of the literature on 
expectations and the responses of poultry farmers in Pakistan, we use the framework of bounded 
rationality to present arguments in favor of the optimality of backward looking (naïve) 
expectations in our institutional environment. In section-3, findings from the previous sections 
are used to motivate and develop a stylized dynamic model based on profit maximization by 
upstream (chick) and downstream (broilers) farmers in an interlinked poultry supply chain. 
Solving the model under the naïve expectation hypothesis allows us to derive a coupled-system 
of difference equations for chick and broiler prices along with the related empirically testable 
comparative static results.  

 
Section-4 describes our empirical strategy and discusses the estimates from different time 

series models vis-à-vis cobweb cycles. In section-5 we use analytical and numerical methods to 
highlight some important characteristics of the underlying dynamical system. The system of 
difference equations is calibrated and simulated under different scenarios in order to compare the 
statistical properties of the simulated data with that of the actual data. And standard numerical 
techniques, commonly used in the analysis of chaotic systems, are employed to study the 
behavior of orbits generated by our theoretical model. Finally, a discussion of the limitations of 
the underlying economic model is followed by policy recommendations in a brief conclusion. 

 
1-Pakistan Poultry Sector: Organization of Production, Price Discovery & Price Dynamics 
 
1.1.Background-Poultry Industry in Pakistan 

Pakistan is the 6th most populous country in the world and is categorized as a low income 
agrarian economy (World Bank 2012). Agriculture is the 2nd largest sector of the economy, 
accounting for over 21% of GDP and providing employment to 45% of the total labor force 
(Pakistan economic Survey 2010). Livestock is the largest subcomponent of agriculture, 
contributing 11.6% towards the national GDP during 2010-12. Fueled by private sector 
investments and rapid mechanization, the poultry industry is the most vibrant segment of the 
livestock sector, with an investment of $2 billion and an annual turnover of approximately $7 
billion, it generates employment for 1.5 million people (Government of Pakistan 2014). The 
poultry industry is also by far the most organized agricultural sector in Pakistan, the interests of 



poultry industry are represented by the Pakistan Poultry Association (a non-profit business 
association comprising of key stakeholders in the poultry value chain) at the national level. 

Commercialization of poultry production began in 1964 in major cities like Karachi, 
Lahore, Faisalabad, Rawalpindi, and Hyderabad at the behest of the federal government. From 
there on the industry has witnessed rapid growth primarily driven by the private sector enterprise 
and facilitated by favorable government policies e.g. cheap credit, tax exemptions and generous 
subsidies on the import of breeding stock, farm equipment and poultry feed (Hussain et al. 2015). 
As a result, the share of traditional poultry farming (predominantly in rural areas) has steadily 
declined to less than 10% over time. The production practices at modern commercial poultry 
farms are increasingly consistent with global poultry industry standards. In fact Pakistan’s 
breeder population is considered to be amongst the top 10 in poultry industries worldwide 
(USDA 2010). To sum up, private sector involvement has fueled the rapid transition from low 
productivity, subsistence poultry farming to high productivity, technology intensive commercial 
poultry farming methods.  

At the same time, due to the shortages in the supply of beef and lamb caused by the 
continued adherence to traditional production methods in rural areas; the share of poultry in total 
meat production in Pakistan has consistently increased over the past decades. According to 
conservative estimates, poultry products now contribute approximately 30-40% towards total 
meat production in Pakistan and it is also relatively cheaper (substitution effect) compared to 
beef/lamb etc. However as highlighted in table-1 below, despite the growth of the poultry sector, 
per capita consumption of poultry chicken is low compared to international standards. 
Furthermore, with rising incomes and growth in an already large population (income effect), the 
demand for poultry products is expected to increase substantially over the next decades. 
Therefore, from a food security perspective, equivalent expansion in poultry production is 
critical to meet the increasing demand for poultry products in future and fulfill the nutritional 
deficiencies, especially amongst the lower strata of the society.  

 
Table-1: Production & Consumption of Poultry Meat in Pakistan 

 2006 2007 2008 2009 2010 2011 2012 
Total Production (KT) 521 564.3 575.1 517.7 539.7 563.7 589.6 
Total Consumption(KT) 521.5 569.5 574.7 517.9 540.1 564.4 590.7 
Per Capita Consumption(Kg) 3.1 3.3 3.2 2.9 2.9 3.0 3.1 

            Source: OECD-FAO Agricultural Outlook 2010-2019. KT denotes kilotons and Kg stands for kilograms.  
 

It is interesting to note that unlike developed countries, due to the lack of cold storage 
facilities on one hand and preference of consumers for fresh chicken on the other3, the poultry 
sector in Pakistan is primarily a live bird market as opposed to chilled/frozen bird market. 
Consequently, international trade in poultry products (chicks and broilers) plays a negligible role 
in Pakistan as shown by the relatively equal measures of production and consumption in Table-1. 
At the same time, export of chicken along the adjoining borders of India, Iran and Afghanistan is 
officially banned. These observations have important ramifications vis-à-vis price volatility, 
because in the absence of inventory and international trade, even small changes in supply can 

                                                             
3 A primary driver of preferences for freshly slaughtered chicken is a high concern about the halal status of chicken 
amongst consumers in Pakistan, a predominantly Muslim country. 



result in large price fluctuations. We take into account these features of the poultry sector in the 
formulation of our theoretical model in section-3. 

1.2.Key Features of the Value Chain 

Despite gains in production efficiency, the organizational structure of the poultry sector 
poses several challenges to sustained growth in poultry production. First, unlike poultry farming 
in the US, the poultry sector in Pakistan is neither vertically integrated nor characterized by 
contract farming agreements. Second, in contrast to the pervasiveness of integrators4 in 
developed countries, the supply chain in Pakistan comprises of several firms operating 
independently of each other, often based on shortsighted goals. Third, institutional voids and an 
opaque information environment, further convolute production decisions at the farm level. We 
discuss each of the aforementioned factors in the following paragraphs. 

The key players involved in the poultry supply chain can be categorized into: grandparent 
stock companies, parent stock companies/breeders, hatcheries and broiler farmers. The 
grandparent stock companies import broiler grandparent stock and rear it to produce parent stock 
or broiler breeders5. However, as is often the case in developing countries, artificial scarcity 
created by trade quotas makes import licenses valuable and a source of monopoly rents, 
consequently licenses are contested through political connections and kickbacks (Krueger 1974). 
Likewise in Pakistan, in 2008 only 2 companies imported grandparent stock and the price of was 
fixed at Rs. 250/bird. In 2014, this number increased to 4 and as a result the price of parent stock 
declined to a fixed price of Rs. 150 per bird. Parent stock chicks purchased from grandparent 
stock companies are reared to produce fertilized eggs by the breeders. Thereafter, the fertilized 
eggs are sold to hatcheries and incubated in order to produce day old chicks. The hatcheries sell 
the day old chicks to broiler farmers, who grow them into broilers that are eventually sold to 
retailers via commission agents6.  

Geographically, production is concentrated in the northern part of Pakistan, in particular 
Punjab, the most populous and economically productive province of Pakistan. The southern part 
of Pakistan, in particular Karachi and adjoining areas represent the other production belt. The 
poultry sector in northern Punjab accounts for approximately 70% of the total production and it 
is relatively more capital intensive, due to the relatively higher percentage of control sheds 
compared to the poultry farms in the southern part of Pakistan. Apart from certain degree of 
integration at the level of breeders and hatcheries, the value chain is fragmented and spanned by 
thousands of independent poultry farms. According to PPA (2015), there are more than 25,000 
poultry farms spread over the two production belts, while estimates of production data show 

                                                             
4Integrators are firms that have expanded their operations to span the entire poultry value chain i.e. beginning with 
acquisition of parent stock, to raising parent stock and chicks, to rearing broilers and even selling to consumers.  
5Famous brands of Grand Parent stock being imported in Pakistan include Hubbard and Ross. 
6The focus of this paper is gaining an understanding of the underlying causes behind the price fluctuations in the 
farm-gate prices of day old chicks and broilers i.e. the production value chain as opposed to price transmission from 
the farm sector to the retail sector. Therefore, we digress from a detailed description of the marketing channel. 
Nevertheless, very briefly, based on fieldwork in Pakistan we found that unlike the marketing channel in the 
developed countries which is dominated by large retailers and processors, the retailers don’t enjoy any market power 
in Pakistan. In fact, retailers comprise of small setups scattered around towns, which primarily slaughter live chicken 
for consumers on demand and possess little bargaining power vis-à-vis poultry farmers, empirical estimates from 
standard price transmission models support these observations.    



parent stock placement of 11 million along with chick and broiler production of 1.1 billion and 
1.05 billion, respectively, in 2015.  

Despite the relatively large size of the poultry sector, there is a complete lack of coordination 
regarding production decisions at different stages of the poultry value chain. Moreover, there is 
no timely source of official data on key variables like parent stock placement by breeders or 
production at hatcheries at the association level or regionally. Decision making at the farm level 
across the value chain is further complicated by the lack of futures markets on poultry products, 
in particular broilers. While, the weak institutional environment i.e. poor contract enforcement 
etc. means that production cannot be pre-contracted. Since contracts carry little value in 
situations of adverse price movements e.g. if market price of chicks falls below the contracted 
chick price, many broiler farmers will renege on their contracts with hatcheries. To make matters 
worse, an underdeveloped marketing channel means that farmers cannot preempt changes in 
demand and adjust production accordingly based on pre-order information received from 
retailers. We reiterate these issues in the subsection on poultry farm economics. 

To summarize, the price of parent stock is fixed due to the monopoly rents generated by 
import licenses held by grandparent stock companies. Nevertheless, the relatively large number 
of chick and broiler farmers diminishes any market power concerns further downstream.7 Even 
though production is concentrated in northern Punjab, the poultry sector is not vertically 
integrated despite the fact that the production of chicken involves various intermediate and 
closely interlinked production processes. We now turn our attention towards the mechanical 
aspects of the broiler chicken production cycle. 

1.3.Mechanics of the Production Cycle 

Compared to other agricultural commodities i.e. crops and livestock, a unique feature of 
poultry value chain is the relatively short duration of the production cycle, which is most 
appropriately measured in weeks compared to months and sometimes even years in case of the 
former categories. Moreover, in the absence of vertical integration or contract farming, another 
interesting feature of the production cycle arises from the interdependencies between upstream 
and downstream farmers created by the interlinked and sequential nature of the production 
process. Therefore, unlike the previous theoretical literature on cobweb models, one cannot 
merely focus on price fluctuations in the final downstream product whilst ignoring the price 
dynamics in the upstream product. We specifically model these interdependencies in our paper, 
for further details please refer to section-3. 

In the first stage, breeders purchase the parent stock from the grandparent stock companies at 
a predetermined, fixed price.8 After an unproductive rearing period of 25 weeks, the parent stock 
enters production for approximately 66 weeks and produces on average 120 fertilized eggs in its 
life cycle. However, productivity declines after an initial surge, and if chick prices are low, the 
parent stock is sometimes strategically culled i.e. sold in the broiler market, to take advantage of 
high broiler prices even before the end of its productive life. Based on feedback received from 

                                                             
7 Based on data provided by PPA, the eight firm-concentration ratio is approximately 50% and 10%, respectively in 
the hatchery and broiler subsector of poultry value chain. 
8 There is no domestic production of the grandparent stock and it is simply imported from abroad, therefore we 
begin the description of the production cycle from the parent stock. 



poultry farmers in Pakistan, the average productive period of parent stock is around 60 weeks. 
Breeders in Pakistan maintain parent stock at different stages of the lifecycle at any given time to 
smooth cash flows and on average buy new parent stock chicks thrice a year. Note that the 
fertilized eggs produced by the parent stock can be technically sold in the table egg market, 
although this rarely happens in practice due to price considerations.  

The hatcheries purchase fertilized eggs from breeders and incubate the fertilized eggs in 
controlled environment sheds for exactly 3 weeks. Note that unlike breeders, at any given time, 
hatcheries possess a single batch of fertilized eggs, all of the same age. Although some farmers 
have multiple sheds and purchase fertilized eggs continuously, nevertheless fertilized eggs for a 
given hatchery will be purchased only once in a 3-week cycle. The eggs hatch on the 22nd day 
and the resultant chicks must be sold as soon as possible, in order to realize cash flows and 
prepare the shed for the incubation of a new batch of fertilized eggs. According to chick farmers, 
after the 22nd day, probability of chick mortality increases drastically with time; therefore they 
are in a rush to sell the chicks to broiler farmers.  

The broiler farmers’ directly purchase the chicks from the hatcheries9. The chicks are grown 
into broilers and reach market weight in approximately 6-7 weeks depending on the type of shed, 
quality of feed and the season. Like hatcheries, at any time, broilers at a given broiler farm are all 
of the same age and are sold to retailers via commission agents as soon as they reach market 
weight, because the ratio of feed-cost to weight-gain and the mortality rate increases significantly 
after this weight. Recall, that the market for poultry chicken in Pakistan is primarily a live bird 
market therefore, broiler farmers have no other choice but to sell broilers at the prevalent market 
rate. Thereafter, broiler farmers buy the next batch of chicks and the cycle continues. Figure-1 
summarizes the production mechanics of the poultry value chain i.e. production processes of the 
intermediate poultry products along with relevant life cycles. We describe the price discovery 
process in the next subsection, followed by  a visual depiction of the actual price data. 

 
 
 
 

 

 

 

 
 

1.4.Price Discovery Process 

In contrast to a formal theory of price determination, based on the principles of optimization 
by agents (e.g. for producers marginal revenue equals marginal costs) and equilibrium (prices 

                                                             
9 There is no intermediary between the chick farmers and broiler farmers in the Northern production belt, while in 
southern production belt commission agents act as an intermediary between hatcheries and broiler farmers. As 
mentioned later, our price dataset concerns the northern production belt, therefore we make the above statement. 

Figure-1: Production Cycle 
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adjust so that markets clear), the price discovery process deals with the “mechanics” of pricing. 
In particular, it describes the institutional arrangements, information flows and methods 
employed by buyers and sellers to arrive at transaction prices (Tomek & Robinson 2003). 
Unsurprisingly, price discovery process depends on the economic settings, institutional 
environment, technological advancements and transactions costs. We describe these factors 
along with their impact on price discovery in the following paragraphs. 

The chicken market in Pakistan is primarily a live bird market with approximately 98% of 
the demand for chicken met by freshly slaughtered broilers and an estimated 5 million broilers 
were slaughtered everyday in Pakistan during the past year (Haq 2014). Therefore, markets for 
intermediate poultry products, especially the chick and broiler markets are very active. In the 
absence of cold storage facilities, vertically integration or pre-contracted production, the current 
supply and demand situation primarily determines the market clearing price for both chicks and 
broilers. The impact of current supply on market prices is further amplified by the fact that both 
chicks and broilers fall within the category of highly perishable products and must be sold off as 
soon as “ready”, often on the same day, for reasons explained above. Consequently, poultry 
farmers cannot “hold” supply in lieu of adverse price movements and have to sell the production 
at the prevailing market price. Therefore, as opposed to short-run, very short-run supply 
determines equilibrium prices. At the same time because of the interlinked nature of the 
production process, the supply of chicks and broilers is mutually interdependent; therefore, chick 
prices are affected by broiler prices and vice versa. 

The government plays a minimal role in the price determination processes in poultry 
markets in Pakistan. And prices adjust to ensure that markets clear i.e. demand equals supply in 
the broiler and chick markets. The market clearing farm-gate prices, for both chicks and broilers, 
are circulated on a daily basis by the Pakistan Poultry Association (PPA). These prices are 
finalized after reviewing the going rate at poultry auction markets known as Mandis in northern 
Punjab and consulting large hatcheries and broiler farmers active in the chick/broiler markets on 
a given day. The Mandis serve as congregation point for potential buyers and sellers of chicks 
and broilers from different locations across Pakistan. The availability of good road networks in 
the production hub of northern Punjab facilitates the participation of large number of buyers and 
sellers from different adjoining areas. The continuous interaction between buyers and sellers 
transpires into the rapid aggregation of information on demand and supply into prices, leading to 
the determination of equilibrium, market clearing prices.  

The PPA rate serves as the reference rate for the transactions between both chick and 
broiler farmers and broiler farmers and retailers across Pakistan. Given the relatively short 
poultry production cycle, information flows pertaining to the prevailing prices spread quickly 
due to significant improvements and expansion in the information and communications 
technologies (ICT) in Pakistan over the last decade. Additionally, due to the improvements in the 
road and transportation network, many arbitrageurs seek to exploit regional price differentials. 
Consequently, large regional price differentials net of transportation cost are quickly arbitraged 
away. Although negotiations and bargaining on transaction price takes place between counter 
parties, based on payment terms and sometimes even product quality, however the competitive 
nature of poultry sector in lieu of the large number of hatcheries, broiler farmers and retailers 
along with the standardized nature of the underlying product means that major deviations from 
the official PPA prices are uncommon. 



In summary, broiler and chick prices are, by and large, determined by the current (or very 
short-run) supply situation. Mandis, arbitrageurs, good road networks and widespread use of 
ICTs, facilitate the aggregation of demand/supply information into prices and leads to rapid price 
adjustments across different regions engaged in poultry production. Therefore, the market 
clearing price documented and disseminated by the Pakistan Poultry Association, is 
representative of price levels at which broilers and chicks are bought and sold in Pakistan, and 
thus reflective of the overall the demand and supply situation.  

1.5.Price Data-Stylized Facts  

We now highlight the stylized facts associated with the prices of broilers and chicks. The 
price data was provided by Pakistan Poultry Association and comprises of daily, market clearing 
farm-gate prices for chicks and broilers in Punjab (PPA-North Region), the production hub of 
poultry and the most populous province of Pakistan, from Jun-2008 to Jun-2015. According to 
Pakistan Poultry Association, these prices are representative of prices in other parts of Pakistan 
and are used by the Federal government in computations of price levels (CPI, inflation etc). 
Given that the production cycle of poultry is most aptly measured in weeks, we converted daily 
prices into average weekly prices for the sake of consistent estimation and intuitive 
interpretation10. Summary statistics are shown in Table-2. 

Table 2: Summary Statistics of Broiler & Chick Prices 

 
Max Min Mean Std-Deviation Coefficient of Variation Skewness Kurtosis 

Broiler 173.29 58.00 110.37 23.14 0.21 0.21 -0.48 
Chicks 74.00 4.29 36.29 16.36 0.45 0.26 -0.65 
The summary statistics are based on average weekly prices from June 2008 to June 2015. The data was sourced from Pakistan Poultry 
Association (North). All prices are in nominal units of the local currency.  

Table-2 highlights the variation in both price series. The difference between minimum and 
maximum price for broilers and chicks is particularly noteworthy. Using the coefficient of 
variation to normalize average price variability (measured by the standard deviation), we find 
that on average the variability in chicks prices is approximately twice that of broiler prices. Both 
price series depict low skewness and negative kurtosis, compared to the positive kurtosis 
displayed by most agricultural commodities. Taken together, these observations imply that both 
price series are characterized by a relatively flat probability distribution i.e. fatter tails (frequent 
peaks and troughs).  

The relatively long coverage of the dataset (8 years) allows us to observe the dynamics of 
price fluctuations. Figure-2 shows the evolution of broiler prices and chick prices over time with 
(nominal) price in Pakistan Rupees on the vertical axis. The solid lines show a simple time trend 
of each price series, whereas the dotted black line denotes a six-week moving average11.  

Figure-2 Time Series Line Plots of Broiler & Chick Prices 

                                                             
10 Section-4 provides several reasons for converting daily prices into weekly prices.  
11 As the forthcoming analysis will show, the broiler prices play a fundamental role in the production decisions of 
both chick and broiler farmers. Therefore we used 6-week moving averages, the approximate length of the broiler 
production cycle, to analyze the variability in broiler and chick prices.  



 

First, and foremost we note that there has been incredible variation in the prices of 
poultry products that shows no sign of dampening, in fact fluctuations have actually increased 
over time. A simple linear trend line, drawn for each price series reveals that broiler prices have 
shown a positive time trend on average but chick prices have remained largely stagnant over this 
period. Second both series show very strong cyclical behavior i.e. prices repeatedly rise and fall 
in cycles, often multiple times in a given year. However, the “amplitude” and “frequency” of 
these cycles is not constant and changes randomly over time. Note that, these cycles cannot be 
explained by seasonal dummies based on the Gregorian calendar12. This is intuitive, since chick 
and broilers are continuously produced throughout the year, whilst, demand for chicken is fairly 
stable within a certain price range. The dotted lines, representing the 6-week moving average, 
lend support to the abovementioned observations and demonstrate that a systematic component 
as opposed to mere noise is driving the cyclical behavior. In a nutshell, both prices series are 
characterized by excessive variability and cyclical behavior that, as we will argue later, cannot be 
explained by fundamentals and may perhaps be a manifestation of chaotic cobweb cycles.  

2- Literature Review-Cobweb Models: Key Assumptions, Criticisms & Refinements 

2.1 Cyclical Behavior of Agricultural Product Prices  

In theory, a price cycle is defined as a price pattern that repeats itself over time with a 
fixed period and amplitude. But this idealistic definition of cyclical behavior seldom holds in 
reality due to the interaction of several systematic components in agricultural product prices e.g. 
seasonality, random shocks and deterministic time trends. As a result, the period and amplitude 
of price cycles in agricultural commodities usually varies from one cycle to another due to the 
presence of the abovementioned systematic components. Therefore, exact empirical 

                                                             
12In the empirical literature price cycles driven by seasonality are usually assumed to be deterministic and thus 
relatively easy to identify based on the Gregorian calendar within a simple regression framework. In our case, 
monthly dummies based on the Gregorian calendar could not explain the cyclical behavior. Other types of 
seasonality are discussed in section-4.  
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identification of cycles i.e. isolating the stage that a cycle is in at any given time, is almost 
impossible in practice. Nevertheless, price cycles in agricultural commodities usually depict 
(qualitatively) repetitive behavior which is characterized by periods of rising prices followed by 
periods of declining prices and vice versa.  

The literature has provided two major explanations to explain the underlying causes 
behind cyclical behavior of prices and the associated price volatility. The theory of exogenous 
price fluctuations originally developed by Muth (1961) and vastly improved upon by later 
researchers (Deaton & Laroque 1992, Deaton & Laroque 1996, Chambers & Bailey 1996 and 
Osborne 2004) is based upon different models of competitive storage under the rational 
expectation hypothesis. According to this theory, random shocks like droughts and epidemics 
lead to a temporary reduction in supply and hence high prices. Whilst, good weather shocks and 
low incidence of diseases may lead to a supply glut and hence low prices. However, given that 
the occurrence of such shocks is rare, price cycles caused by external shocks dampen over time 
as production returns to normal levels and prices converge to levels consistent with long run 
equilibrium in the absence of new shocks. Similarly, price cycles may be driven by seasonality 
of production (Miranda & Glauber 1993b and Lowry et. al 1987). For example, the production of 
certain crops is tied to particular seasons i.e. periodic production and prices gradually increase 
after the end of the production season due to lack of new supplies entering the market. 

Gouel (2012) provides a detailed review of the price dynamics and key features of 
different versions of the competitive storage model employed in agricultural economics 
literature. Consistent with the rational expectation hypothesis, farmers are assumed to possess 
complete albeit imperfect knowledge of the underlying structure of the aggregate supply and 
demand equations along with the relevant information on variables related to prices in these 
models. Although uncertain about the actual realization of prices, farmers know the probability 
distribution of future prices and hence the mean price. Therefore, price cycles are a short term 
phenomena and represent deviations from the long run equilibrium level due to the incidence of 
external shocks or seasonality of production and not any systematic changes in the production 
decisions of farmers. However, the stylized facts associated with real world price data, in 
particular large first-order autocorrelations, positive skewness and kurtosis cannot be replicated 
by price fluctuations generated from models of competitive storage. In fact, in the absence of 
storage, price data generated from these models is characterized by unrealistically low first order 
correlation and large negative skewness. This brings us to another theory of price cyclicality i.e. 
endogenous fluctuations.  

 
2.2 The Cobweb Model-Underlying Phenomena & Key Assumptions  

The cobweb model is a popular conceptual framework to explain persistent cyclical 
movements in the prices of agricultural products. The original model, due to the seminal work of 
Ezekiel (1938), challenged the notion in neoclassical economics that production/prices converge 
to equilibrium following random shocks and instead showed that systematic forecast errors can 
lead to periods of over and undersupply, resulting in cyclical price fluctuations. However due to 
its simplistic nature, the original cobweb model was merely a pedagogic tool with limited 
applicability to real agricultural markets, although later work by Nerlove (1958) addressed some 
of the early criticisms directed at the original cobweb model. Nonetheless, despite not being the 
mainstream approach, simple cobweb models symbolized an alternative view of price 



fluctuations i.e. theory of endogenous price fluctuations till the early 1990s. However, recent 
advancements in the analysis of chaotic systems and the emergence of chaos theory has 
resuscitated interest of economists in cobweb type models of commodity prices (Mitra & 
Boussard 2012, Westerhoff & Wieland 2010, Schenk-Hoppé 2004 and Lundberg et. al 2015). 
We put off a discussion of this stream of literature for now, in order to first lay out the essential 
features of a simple cobweb model.  

In a simple cobweb model, quantities and prices are determined sequentially in a linked 
causal chain due to the time lags between the decision to produce and realization of actual 
production plans. The underlying phenomenon is intuitive, farmers increase (decrease) planned 
future production in view of high (low) current prices under the presumption that high (low) 
prices today will translate into high (low) prices in the next period. This results in a supply glut 
(shortage) when planned production is realized in the next period, leading to low (high) prices. 
Therefore, simple cobweb models generate periodic oscillations of high and low prices, resulting 
in negatively auto-correlated prices.  

Like all models, the cobweb model of price fluctuations relies on some key assumptions. 
First, a time lag must exist between the decision to produce and the realization of actual 
production. Evidently, in the case of agricultural commodities, this assumption almost always 
holds in reality due to the biological nature of the production process. Second, producers are 
price takers in the output market and current prices are primarily determined by the realization of 
current production i.e. absence of inventories and trade in the given agricultural commodity. 
Though true in our specific institutional environment, this assumption may not hold in other 
agricultural commodities like grains etc which can be easily stored and imported/exported. 
Lastly and most controversially, producers in cobweb models are assumed to base their 
production decisions on current prices (naïve expectations) or a weighted average of current and 
past prices (adaptive or quasi-naïve expectations). In other words, producers use information 
embedded in today’s prices to forecast future prices in a cobweb model or put more simply  
producers simply expect current (or recent past) prices to continue in the next period 
(extrapolative or backward looking expectations).  

Many have criticized the assumption of naïve expectations or backward looking expectations 
in cobweb models. The standard argument is that farmers can adopt counter cyclical strategies 
i.e. plan to produce less (more) when current prices are high (low). In doing so they not only earn 
superior profits but their counter cyclical production strategies will also dampen the price cycles. 
But the issue is not as simple as it seems, because the development and evolution of price cycles 
is difficult to predict ex-ante due to the interactions between different systematic components in 
agricultural prices i.e. seasonality, time trends and random shocks (Tomek & Robinson 2003). 
Moreover, as argued above, the period and amplitude of price cycles changes over time in 
response to interaction of many factors. Therefore, though straightforward in theory, successful 
adoption of countercyclical strategies is not easy to implement in practice due to an inadequate 
knowledge about future trajectories of price cycles. Moreover, if the price series depict chaotic 
behavior than adopting a simple countercyclical strategy does not guarantee superior profits due 
to the inherent randomness in prices, especially in our settings, where production cannot be 
stored and has to be sold at the prevailing market rate.  

2.3 Importance of Expectation Regimes in Agricultural Economics  



The specification of an expectation regime is a key ingredient of dynamic models in 
neoclassical economics13, even more so in agricultural economics due to the time lag between 
production decisions and actual realization of agricultural output. Consequently, expectations 
(i.e. forecasts of future output prices) play a key role in the current production decisions of 
farmers and as a result much of the analysis pertaining to the supply of agricultural commodities 
revolves around future (output) price expectations of farmers (Sulewski et.al 1994). Of course, 
there is a direct link between producers’ formulation of expectations and the dynamics of 
agricultural product prices (volatility, cyclicality etc). Because if production decisions in the 
current period depend on the expectations of output prices in the next period, then expectations 
of future output prices today will have a large impact on the future realization of actual prices 
(assuming minimal effect of inventories and trade). 

Given the significance of expectations in economic models, unsurprisingly, one finds 
disagreements between economists regarding the “correct” formulation of expectation regimes. 
However, since expectations about future prices cannot be directly observed, there is no easy 
resolution to this debate. Nonetheless, the unobservability of expectations has not hindered 
economists from employing several different methodologies including econometric techniques, 
direct surveys and laboratory experiments to empirically test hypothesis related to the different 
expectation regimes e.g. rational expectations, quasi-rational expectations, adaptive expectations 
or naïve expectations. Before reviewing the empirical literature on expectations, we briefly 
highlight the key features and implicit assumptions of the rational expectation hypothesis. 

2.3.1 Rational Expectation Hypothesis-Key Features, Implicit Assumptions & Empirical Tests  

Few would doubt that the rational expectation hypothesis, originally formulated by Muth 
(1961), is the dominant approach in the economics literature to formulate expectations. However, 
the popularity of the rational expectation hypothesis does not stem from an accumulated body of 
empirical evidence but instead it is based on the logical structure of rational expectation 
hypothesis that allows economists to formulate and solve economic models (Lovell 1986). 
Nevertheless, the emergence of the bounded rationality framework has increasingly challenged 
the dominance of the rational expectation hypothesis, especially in the aftermath of the recent 
financial crisis.  

According to Muth (1961), expectations that are consistent with the underlying economic 
model are rational i.e. the subjective expectation of economic agents equals the mathematical 
expectation in the underlying economic model conditional on the available information. 
However, as many economists have pointed out, the requirements of the abovementioned 
consistency requires stringent and often unrealistic assumptions. First, agents have perfect 
knowledge of the structure of the model and equilibrium relationships derived from the 
underlying model are used to forecast endogenous variables. Second, acquisition and processing 
of information is costless. Whilst, the information set of agents contains information on all 
available variables that are thought to influence future prices, including endogenous variables, 
exogenous processes (the probability distribution of random shock) and expectation of other 
agents etc (Irwin & Thraen 1994). A corollary of this representational scheme is that agents 
know the probability distribution of future prices (hence the mean price) even though the actual 
                                                             
13 The theoretical foundations of modern macroeconomics, developed by renowned economists like Lucas, Sargent 
& Barro in the 1980s, draws heavily on the rational expectations hypothesis proposed by Muth (1961). 



realization of future prices is unknown. Consequently, forecasts of agents in a rational 
expectations equilibrium converge towards actual realizations.  

From the implementation standpoint, apart from the computational difficulties, the 
validity or “rationality” of prices derived from the rational expectation equilibrium requires that 
the underlying economic model is correctly specified vis-à-vis the information set of agents i.e. 
variables included in the demand and supply equations (Irwin & Thraen 1994). Therefore, 
predictions from rational expectation models are sensitive to the underlying structure of 
economic models and any empirical test of the rational expectation hypothesis is also a joint test 
of the underlying model (the joint hypothesis problem). Consequently, many researchers simply 
employ a futures market quote (assuming futures markets are efficient and aggregate all relevant 
information) to operationalize the rational expectations hypothesis in empirical research or use 
forecasts from an econometric model (quasi-rational expectations). 

Although firmly embedded within the tradition of neoclassical economics, the rational 
expectation hypothesis has little empirical support. Empirical work on expectations can be 
divided into two broad categories i.e. indirect tests based on structural econometric models and 
direct tests based on (model free) survey results14. Irwin & Thraen (1994) present a detailed 
review of empirical tests of rational expectation hypothesis in agricultural economics and find 
that tests based on econometric models fail to offer any consensus regarding the verification or 
falsification of the rational expectation hypothesis, despite spanning an array of agricultural 
commodities and different time periods.  

For example, Shonkwiler & Emerson (1982) find that expectations of farmers in the US 
tomato sector are consistent with rational expectations but Shonkwiler & Spreen (1982) find that 
expectations of farmers in the US lettuce market are consistent with naïve expectations. 
Likewise, while Goodwin & Sheffrin (1982) make a strong case for rational expectations in the 
US broiler industry, while Antonovitz & Green (1990) reject the rational expectation hypothesis 
in the US beef cattle market. According to Irwin & Thraen (1994) the variability in the results of 
empirical tests of the rational expectation hypothesis is driven by the low power of statistical 
tests and specification searching by researchers.  

More recent work presents a similar picture. For instance, Chavas (1999a) estimates a 
dynamic structural model of profit maximization by farmers in the US poultry sector and finds 
that expectations of approximately 90% of poultry farmers are consistent with backward looking 
expectations. Based on a similar approach, Chavas (1999b & 2000) find that a large proportion 
of US beef and pork producers’, respectively behave naively i.e. base future production decisions 
only on the most recently observed market prices, while a significant minority conforms to quasi 
rational expectations. Our paper also contributes towards this stream of empirical literature i.e. 
empirical test of farmers’ expectation regimes based on a structural economic model.  

However, direct tests of expectations i.e. empirical analysis of survey data (checking for 
unbiasedness and orthogonality of forecasts) reveals a less ambiguous picture of expectation 
formation. Based on analysis of micro survey data on exchange rate expectations of financial 

                                                             
14 ”Model-free" means that a survey measure of expectations is independent of an econometrician's specification of 
the market's structure. This characteristic of survey expectations is attractive, and leads some economists  to argue 
that direct tests of rationality are superior to tests based on structural econometric models” Irwin & Thraen 1994 pg. 



institutions, Ito (1990) rejects the rational expectation hypothesis but finds significant 
heterogeneity within the expectations regimes of different agents. Kawasaki and Zimmermann 
(1986) arrive at similar conclusions, using survey data from manufacturing firms about future 
demand forecasts. After reviewing several empirical studies based on surveys pertaining to 
expectation formation, Lovell (1986) concludes “….it seems to me that the weight of empirical 
evidence is sufficiently strong to compel us to suspend belief in the hypothesis of rational 
expectations, pending the accumulation of additional empirical evidence.”  

This view is mirrored in the agricultural economics literature as well, Irwin & Thraen 
(1994) arrive at the conclusion that the overall results of survey studies favor rejection of the 
rational expectation hypothesis. For example Beach et. al (1995) find that expectations of 
vegetable farmers are inconsistent with the rational expectation hypothesis. Likewise, Runkle 
(1991) finds that hog farmers breeding decisions are not rational, similarly Irwin et. al (1992) 
reject the rational expectations hypothesis after analyzing the expectations of hog and cattle 
farmers in the US. The burgeoning behavioral and experimental economics literature echoes a 
similar view.  For example, Heemeijer et al., (2009) finds that that subjects prefer to use simple 
rule of thumb which are inconsistent with the rational expectation hypothesis to forecast future 
prices. Hey (1994) finds that though subjects “try to” behave rationally but their expectations 
bear a clear resemblance to backward looking expectation regimes. The abovementioned 
findings are consistent with anecdotal evidence, which suggests that farmers normally use the 
most recently received price to predict prices in the next period as opposed to forecasts from 
complicated models.  

2.4 Naïve Expectations or Rational Expectations-Towards a resolution  

Given the fairly strong assumptions of the rational expectation hypothesis, it is not 
surprising to find a lack of empirical support for the rational expectation hypothesis. 
Undoubtedly the rational expectation hypothesis has a certain appeal that draws from it logical 
structure and internal consistency, which allows economists to build elegant models and derive 
strong analytical results. However, the assumptions of the rational expectation hypothesis i.e. 
perfect knowledge of the underlying structure of the data generating process and costless 
acquisition/processing of available information simply do not hold in reality. Perfect knowledge 
of an underlying model, that is essentially unobservable, overestimates the processing ability of 
economic agents. For example, the experimental economics literature has clearly shown that 
agents prefer simple rules of thumbs to forecast prices as opposed to complicated models. This is 
even more likely in the case of the largely uneducated farmers in less developed countries, 
completely unfamiliar with basic concepts of mathematical modeling and statistical forecasting. 
More importantly, often accurate information on stocks, inventories and competitors production 
plans is simply not available, especially in less developed countries.  

Second, as argued by Grossman and Stiglitz (1976), if the costs of acquiring and 
processing information exceed the perceived benefits of better forecasts, then even rational 
actors will choose not to employ all the available information to forecast future variables. An 
alternative and more realistic view, the bounded rationality framework, argues that economic 
agents possess limited information processing ability and thus, weight the costs and benefits of 
acquiring additional information whilst formulating expectations about future outcomes. This is 
in contrast to models based on rational expectations (Miranda & Helmberger 1988), where only 



the benefits of additional information vis-à-vis expectations are considered whilst ignoring the 
cost of collecting and processing information. Interestingly, in their seminal work, Brock and 
Hommes (1997) show that forecasts based on naïve expectations can be both rational and 
optimal if acquisition and processing of information is costly. Moreover, they show that several 
expectation regimes are potentially rational in an environment where agents have heterogeneous 
information processing costs.15 We further elaborate these points in section-3.1.  

In summary, in light of the empirical literature on expectations and anecdotal evidence 
derived from fieldwork and surveys in Pakistan, the assumption of naïve expectations does not 
seem unrealistic or “irrational”. In fact, the suitability of a given expectation regime hinges upon 
the specific institutional environment and background of the underlying research problem. 
Therefore, a solid understanding of the context of the research problem is essential to correctly 
specify an appropriate expectation regime. This understanding should help researchers’ answer 
the fundamental question: What types of information are commonly available to farmers at the 
time of making production decisions? Few would argue with the fact that current prices are the 
only source of reliable information easily available to poultry farmers in less developed countries 
plagued by numerous institutional voids and information asymmetries. Additionally, low levels 
of human capital (poor literacy rates compounded by limited opportunities of quality education) 
mean that prices also represent a category of information that is relatively “cheaper” to process, 
compared to information on stock levels, aggregate production and demand. In short, while, 
rational expectations hypothesis may be valid in certain economic environments it does not seem 
to be a likely expectation formulation method in our settings. We reiterate features of the 
economic environment that lend support to the assumption of naïve expectations in the poultry 
sector in Pakistan in section-3 

2.5 Price Dynamics in Chaotic Cobweb Models 

As mentioned before, price dynamics in original cobweb model are limited to three simple 
but unrealistic cases i.e. explosive divergence, periodic cycles and convergence to a steady state. 
Explosive divergence, leading to negative prices is obviously not feasible. While, deterministic 
cycles with fixed periods can be exploited by farmers pursuing counter cyclical production plans 
which will lead to dampening of the price cycles. Convergence to a steady state, though 
consistent with the neoclassical economics theory, contradicts the real world price data which is 
best characterized by quasi-cyclical behavior.  

However, researchers have developed several refinements of the original cobweb models 
over the past decades that depict price dynamics consistent with the real world data. This stream 
of literature, popularly known as chaotic cobweb cycles, introduces non-linearities into the 
supply/demand equations whilst keeping the essential features of the original cobweb model i.e. 
backward looking expectations and production lags. Analogous to real world prices, the price 
dynamics generated from chaotic cobweb models depict seemingly random behavior, even 
though the models are entirely deterministic. Another interesting feature of chaotic cobweb 
models is their sensitivity to initial conditions, whereby small perturbations to parameters or 

                                                             
15As mentioned above, industry studies also indicate that commodity producers have heterogeneous price 
expectations. This is not surprising given that different producers possess different information and have different 
costs associated with information collection and processing (Burton & Love 1996). However, we do not explicitly 
account for this aspect in our paper. 



initial values results in qualitatively different price trajectories. However, data generated by 
chaotic cobweb models shows low first order autocorrelations and negative skewness, in contrast 
to high first order autocorrelation and positive skewness (occasional spikes) in the real price 
data. Researchers have proposed several explanations to explain the differences between data 
simulated from chaotic cobweb models and actual prices including slow adjustment towards 
optimal production in response to changes in prices (Onozaki et. al 2000), heterogeneous 
expectations (Chavas 1999 and Chavas 2000), risk aversion (Boussard 1996) and storage (Mitra 
& Boussard 2012).  

Several other factors like, prices of substitutes and complements, consumer preferences, 
institutional factors like tariffs and production technology also have a nontrivial impact on the 
cyclical behavior of actual prices of agricultural products. For example, Westerhoff and Wieland 
(2010) develop a cobweb commodity model that accounts for the interaction between consumers, 
producers and heterogeneous speculators to reproduce price dynamics which mimic the cyclical 
price movements in actual commodity markets. Similar to our approach, Dieci and Westerhoff 
(2012), set up a model with two interacting linear cobweb markets, whereby farmers choose to 
produce either good based on profit differentials between the markets in any given period. Non-
linearities in their model are endogenously generated by allowing suppliers to “switch” between 
markets. They find that interacting cobweb markets contributes to the price cyclicality observed 
in real world data.  Lundberg et al. (2015) arrive at similar conclusions in a model of interacting 
cobweb markets with land-use competition between food and bioenergy crops.  

Though, horizontal linkages between agricultural markets have been studied in the 
burgeoning theoretical literature on cobweb models but mutual interdependencies between 
upstream farmers and downstream farmers, an important aspect of agricultural production, has 
been largely overlooked. In addition to the empirical contribution, we try to address this gap in 
the theoretical literature by developing a simple model to capture the vertical linkages between 
upstream and downstream farmers in agricultural value chains under the naïve expectation 
hypothesis. Although specific to the poultry industry, our model can be modified to analyze other 
vertically linked cobweb markets especially livestock markets. An interesting feature of the 
vertically linked agricultural value chains is the interlinked structure of production and the 
associated interdependency between upstream and downstream farmers. This means that actual 
prices of upstream products are a function of expected prices of both downstream and upstream 
products. Also, in contrast to the theoretical literature on horizontally linked agricultural markets, 
our model has asymmetric production lags (also known as time delay system) due to the 
differences in the length of production cycles of upstream (chicks) and downstream farmers 
(broilers).  The details of the model are provided in the next section. 

To summarize, in this section we briefly reviewed the theoretical literature on price 
fluctuations in agricultural market. Thereafter, in light of the relevant empirical literature on the 
formation of expectations we argued that the observed fluctuations in prices of poultry products 
in Pakistan are a manifestation of cobweb cycles. Lastly, we highlighted important features of 
chaotic cobweb markets and important contributions in this area. In the next section we 
formulate a stylized dynamic model to simultaneously capture the optimizing behavior of chick 
and poultry farmers within the prevalent institutional environment under the naïve expectation 
hypothesis.  



3-Theoretical Framework: Endogenous Price Fluctuations in an Interlinked Agricultural 
Market 

Armed with an understanding of the institutional enviroment, the mechanics of the 
production cylce and the price discovery process in the poultry sector in Pakistan along with an 
overview of the broader literature on cobweb cycles, we turn our attention towards understanding 
the production descions of poultry farmers at the farm level. 

3.1 Poultry Farm Economics-Some Key Observations from Farmer Surveys 

First of all, based on fieldwork in Pakistan we found that the price of parent stock does not 
play a significant role in the short-term production decisions of farmers in the poultry value 
chain for several reasons. First, for reasons described above, breeders are generally cash rich 
companies with market power and hence produce at optimal capacity regardless of market prices 
in the short run. Accordingly, the price of parent stock remained fixed at 250/unit between 2008-
2014, and decreased to 150/unit afterwards due to entry of additional grandparent stock 
companies. Second, as described in section-1, the lifecycle of parent stock is approximately 100 
weeks, compared to 3 weeks and 6-7 weeks for chicks and broilers, respectively. Therefore 
unlike hatcheries and broiler famers, breeders or parent stock farmers, cannot adjust production 
levels over short intervals in lieu of price signals. Therefore, one can conclude that the observed 
price fluctuations in the short-run are not stemming from the decisions of parent stock farmers 
since the price of parent stock is fixed during this interval and parent stock production is fairly 
stable over the short run. Although, we acknowledge that parent stock placement has an impact 
on poultry prices in the long run but it is not important in explaining short run price dynamics. 
Moreover, on average, the cost of parent stock procurement represents approximately 5% of the 
total production cost of breeders. Therefore, we believe that overlooking parent stock dynamics 
in our theoretical model does not impact the validity of our conclusions. 

Feed costs, compromising approximately 60% of the total production costs, are a major 
component of production expenditures incurred by breeders and broiler farmers16. For broiler 
farmers, production costs are primarily driven by the rearing expenses incurred on chicks and 
hence tied to the number of chicks procured at the beginning of the production cycle. Whereas, 
for chick farmers, production costs are driven by the number of fertilized eggs incubated in 
hatcheries. The cost of fertilized eggs is correlated with the production costs of breeders, which 
largely comprises of the rearing cost of parent stock. Based on the responses of poultry farmers 
in our survey, we observed that although a fundamental determinant of profitability, feed costs 
are not the source of price fluctuations in the industry. First, although feed costs witnessed an 
upward trend over the past decade but compared to the large price fluctuations over short periods 
in the actual chick and broiler prices, changes in feed prices were not marred by volatility.  
Second, poultry farmers maintain a reasonable inventory of feed stock at any given time (usually 
for one production cycle and at times for several months), limiting the impact of 
contemporaneous changes in feed costs on production decisions in the short run. Lastly, due to 

                                                             
16 More specifically, for breeders variable costs comprise of feed (60%), parent stock price (5%), vaccinations and 
medicine (10%), while fixed costs (25%) include rent of controlled sheds, overheads and wages (5%). In the case of 
broiler farms, variable cost comprises of chick price (30%) and feed (60%), while fixed costs (10%) include rent of 
controlled sheds, overheads and wages.  



the competitive nature of poultry markets, increases (decreases) in production costs translate into 
lower (higher) production and hence high (low) prices. 

Due to the biological nature of the production process, production decisions (quantity 
supplied in future) are determined to a large extent by expectations about future prices today. 
Given the relatively large market for chicken products in Pakistan, the lack of cold storage 
facilities and limited demand for frozen chicken, means that production of poultry products takes 
place all year round. For instance, approximately 5 million broilers are slaughtered everyday in 
Lahore, the provincial capital of Punjab (poultry production hub), to meet demand.  However, 
future prices are highly uncertain due to the absence of vertical integration, production planning 
via regional cooperatives or associations, pre-contracted production and agricultural futures 
markets17. Weak contract enforcement and incomplete risk markets further complicate the 
production decisions at the farm level. While, an opaque information environment characterized 
by lack of timely and accurate data on key variables like parent stock levels, incubated fertilized 
eggs, broiler placement and consumer demand, limits the usefulness of formal forecasting 
models. In an uncertain economic environment plagued with numerous institutional voids, 
farmers in the poultry value chain are very secretive about individual production plans. 
Consequently, coordination or communication between key players in the supply chain regarding 
production decisions is almost nonexistent.  

Based on the responses of farmers during structured interviews, we observed that chick 
farmers look at current prices of chicks and broilers whilst formulating future production plans 
i.e. current prices of chicks and broilers served as a proxy for expected price of chicks and 
broilers in future. Their underlying logic was that if chick prices are high (low) today, then chick 
prices are expected to remain high (low) at the time of realization of planned production due to 
relatively short chick production cycle. On the other hand, higher (lower) broiler prices today 
were viewed as an indicator of higher (lower) broiler prices once the chicks hatched 3 weeks 
from now, implying a higher (lower) demand for chicks and thus higher (lower) chick prices. 
Likewise, in addition to chick prices, broiler farmers employed current broiler prices as a proxy 
for expected future price of broilers, whilst formulating their production plans.18 As a result, 
broiler farmers increased (decreased) planned production, in view of high (low) current broiler 
prices under the expectation that the current high (low) price levels will continue into the 
following weeks. Unsurprisingly, actual chick prices also influence the production decisions of 
broiler farmers.19 For example, if chick prices are exorbitantly high, liquidity constrained broiler 
farmers are compelled to buy a lower number of chicks, eventually leading to lower production 

                                                             
17 In agricultural cooperatives, pervasive in US and other developed countries, retailers generally submit future 
procurement orders to cooperatives based on forecasted demand. This information is quickly relayed to farmers in 
the value chain, so that they may adjust production plans accordingly. 
18 Note that broiler farmers face no uncertainty regarding chick prices, since they can observe chick prices at the 
time of production, whilst, chick farmers face uncertainty regarding both chick and broiler prices at the time of 
production.  
19 Credit constraints are a likely explanation for the impact of chick prices on broiler farmers’ production decisions. 
For example, one broiler farmer remarked that chick prices were a fundamental driver of his production decisions. If 
chick prices were low he simply bought more chicks and hence produced more broilers and vice versa. Credit plays 
a key role in business model of poultry farmers and latest data shows that banks made net loans of Rs.4 billion in 
2011 to the poultry sector and distributed loans of around Rs.3 billion in 2012, a fairly large amount given the size 
of the poultry sector. But over the last two years financing to poultry farms has fallen short of actual needs. (Dawn 
2012) 



of broilers and hence high broiler prices at the end of production cycle. Though not immediately 
obvious, the consistency of these observations with the naïve expectations hypothesis is clearly 
crystallized upon examination of the equilibrium relationships derived from the forthcoming 
theoretical model. 

However a key question remains: under what conditions would rational agents choose 
backward looking expectations over forward looking expectations? Or in other words under what 
conditions are naïve expectations consistent with economic rationality? In order to answer this 
question we need to examine the relative costs and benefits of different expectation regimes. 
Looking at costs first, one can easily arrive at the conclusion that the cost of acquiring relevant 
information is very high in the prevalent institutional environment due to the absence of future 
markets on poultry products, limited communication and coordination between poultry farmers 
and lack of access to reliable data on key variables driving demand/supply.  In addition to the 
opaque information environment, low levels of human capital, due to the lack of access to 
quality education and limited exposure to basic forecasting models, mean that the cost of 
processing information is also relatively high. Clearly, under such a situation the relatively high 
costs of formulating “better” forward-looking expectations outweigh its perceived benefits. 
Moreover, as we argue in section-6, if price trajectories are characterized by chaotic behavior, 
“better” forward-looking expectations offer minimal incremental benefits over “cheap” 
backward looking expectations. The aforementioned arguments highlight that in the presence of 
high information costs and chaotic price trajectories, naïve expectations are consistent with both 
rationality and optimality within a framework of bounded rationality. Consequently, the net 
benefits of simple forecasting rules of thumb based on backward looking expectation may 
exceed the net benefits of “expensive” alternatives based on forward looking expectations. Even 
though, the former method clearly neglects important information related to the dynamics of 
agricultural prices. 

 
Furthermore, note that unlike other agricultural commodities, the production cycle of 

poultry products is very short i.e. a few weeks. Given such a short window, the assumption that 
current prices persist into the future seems quite reasonable. Moreover, continuously updating 
forecasts over such a short window based on forward looking expectations is both impractical 
and exorbitantly expensive. Therefore, the materialization of naïve expectations and the 
associated cobweb cycles is very likely in agricultural products like poultry that possess short 
production cycles compared to crops etc. that are characterized by relatively long gestation 
periods. Lastly, many economists acknowledge that assumptions of the rational expectation 
hypothesis are violated even in highly developed countries (Chavas 1999a, 1999b & 2000). 
Clearly these stringent assumptions do not hold in the weak institutional environment of less 
developed countries. Likewise, there is nothing in the empirical literature that supports the 
pervasiveness of rational expectations/forward looking expectations over naïve expectations. In 
fact, the balance of empirical evidence seems to favor the latter category.  

 
In the following sections, we use economic modeling, statistical testing and numerical 

simulations to provide quantitative evidence to support the preceding analysis that has largely 
relied on qualitative evidence (prior literature, stylized facts, and anecdotal evidence based on 
surveys) to argue that price fluctuations in Pakistan poultry sector are a manifestation of cobweb 
cycles. 
3.2 Poultry Value Chain-A Simple Model of Vertically Linked Cobweb Markets 



In this subsection, we develop a stylized model to capture the optimizing behavior of 
chick and broiler farmers given the abovementioned institutional features of the Pakistan poultry 
sector. An interesting feature of the poultry value chain is the interlinked profit functions along 
with the mutual interdependency between upstream and downstream farmers. These vertical 
relationships between upstream and downstream agents have been examined extensively in the 
agricultural economics literature albeit under very different settings. Whereby, at any given 
point, the demand for intermediate products is derived from the solution to the profit 
maximization problem of agents further downstream in the value chain (Hicks, 1956; Gardner 
1975).  Given the constraint that price data as opposed to quantity data is generally available at 
reasonable frequencies in less developed countries, we use the abovementioned setup in a 
dynamic environment to derive empirically testable hypothesis on chick (upstream) and broiler 
(downstream) price series under the naïve expectations hypothesis.  

Let, 𝜔𝜔𝑡𝑡
𝐶𝐶  denote actual chick price at time 𝑡𝑡 and 𝜔𝜔�𝑡𝑡+𝑙𝑙

𝐶𝐶  represent the expectation of future 
chick prices 𝑙𝑙-periods (in other words a 𝑙𝑙-period forecast at time 𝑡𝑡) from now, formulated at time 
𝑡𝑡. Evidently, under naïve expectations: 𝜔𝜔�𝑡𝑡+𝑙𝑙

𝐶𝐶 = 𝜔𝜔𝑡𝑡
𝐶𝐶 . Similarly, 𝑝𝑝𝑡𝑡𝐵𝐵  denotes the actual broiler price 

at time 𝑡𝑡 and 𝑝𝑝�𝑡𝑡+𝑙𝑙
𝐵𝐵  represents expected price of broilers 𝑙𝑙 periods from now formulated at time 𝑡𝑡. 

Time lags in our model capture the fact that poultry farmers cannot respond immediately to price 
signals, instead the response time/delay is a function of the length of the production cycle. Of 
course the market situation may change over the duration of the production cycle, introducing 
ex-ante uncertainty into the model. For expositionary clarity, we assume ∆𝑡𝑡 = 3 weeks (the 
chick production cycle) and revert to the original time configurations later in the empirical 
section. 𝑞𝑞𝑡𝑡𝐶𝐶  and 𝑞𝑞𝑡𝑡𝐵𝐵 represent the corresponding levels of production at time 𝑡𝑡 for chick and 
broiler farmers, respectively. The cost functions for chick and broiler farmers are given by 𝐶𝐶1and 
𝐶𝐶2 respectively, where 𝐶𝐶𝑖𝑖  is a continuously differentiable, convex function i.e. 𝐶𝐶𝑖𝑖′ > 0  and 
𝐶𝐶𝑖𝑖 ′′ > 0. Both chick and broiler markets are competitive thus farmer are merely price takers. 
Lastly, 𝑁𝑁1,𝑁𝑁2 and 𝑁𝑁3 denote the total number of chick farmers, broiler farmers and retailers in 
the sector, respectively20.  

As is often the case with dynamic models involving multiple agents and interlinked 
payoffs, we proceed to solve for the equilibrium backwards rather than forwards. Notice that due 
to the biological nature of the broiler production i.e. rearing of chicks into broilers, production 
plans need to be formulated in 𝑡𝑡 + 1 but will only be realized in 𝑡𝑡 + 3 (recall that the production 
cycle of broiler is six weeks i.e. 𝑡𝑡 = 2 periods since we assumed ∆𝑡𝑡 = 3). Therefore, at time 𝑡𝑡 +
1, a representative broiler farmer solves the following profit maximization problem: 

Arg Max
�𝑞𝑞𝑡𝑡+3

𝐵𝐵 �
𝜋𝜋𝑡𝑡+3 : 𝑞𝑞𝑡𝑡+3

𝐵𝐵 𝑝𝑝�𝑡𝑡+3
𝐵𝐵 − 𝑞𝑞𝑡𝑡+1

𝐶𝐶 𝜔𝜔𝑡𝑡+1
𝐶𝐶 − 𝐶𝐶2(𝑞𝑞𝑡𝑡+1

𝐶𝐶 ) 

subject to 

𝑞𝑞𝑡𝑡+3
𝐵𝐵 = 𝑘𝑘𝑞𝑞𝑡𝑡+1

𝐶𝐶 , 0 < 𝑘𝑘 < 1 

In words, the broiler farmer has to decide how many broilers to produce given the price 
of chicks at time 𝑡𝑡 + 1 and subject to a simple fixed proportions production technology that 

                                                             
20 In the section on numerical simulations, we will use the relative size of counter parties in a given market to 
incorporate the effects of any bargaining power on price fluctuations. 



converts chicks purchased at time 𝑡𝑡 + 1 into broilers at time 𝑡𝑡 + 3 at a conversion rate of 𝑘𝑘. The 
technology parameter is assumed to be fixed and reliable estimates of the conversion ratio are 
easily available from industry reports. Production costs are a convex function of the number of 
chicks purchased at time 𝑡𝑡 + 1. Where production costs comprises largely of feed costs. As 
mentioned before the broiler market in Pakistan is a live bird market, and in the absence of 
vertical integration or production contracts broiler farmers have to sell their produce at the going 
market rate. Therefore, given the time lag between formulation of production plans and 
realization of production, the expectation of future broiler prices plays a key role in determining 
the optimal level of broiler production. 

Assuming 𝐶𝐶2 ′ is invertible, we can simply substitute in the broiler production function 
into the profit equation and use the Hotelling Lemma to get the optimal supply curve for broiler 
farmers21:  

𝜕𝜕𝜋𝜋𝑡𝑡+3

𝜕𝜕𝑞𝑞𝑡𝑡+3
𝐵𝐵 = 𝑝𝑝�𝑡𝑡+3

𝐵𝐵 −
𝜔𝜔𝑡𝑡+1
𝐶𝐶

𝑘𝑘
− 𝐶𝐶2

′

�𝑞𝑞𝑡𝑡+3
𝐵𝐵

𝑘𝑘� �

𝑘𝑘
= 0 ⇒ 𝑞𝑞𝑡𝑡+3

𝐵𝐵 = 𝑘𝑘(𝐶𝐶2
′ )−1�𝑘𝑘𝑝𝑝�𝑡𝑡+3

𝐵𝐵 − 𝜔𝜔𝑡𝑡+1
𝐶𝐶 � 

Note that since 𝐶𝐶2 is convex, so 𝐶𝐶2
′  is an increasing function by definition and the inverse of an 

increasing function is also increasing. As a result, it is straightforward to observe that the 
quantity of broilers produced is increasing in price expectations in period 𝑡𝑡 + 3 and decreasing in 
the price of chicks i.e. the input price.  

As mentioned before, in our institutional environment, there are no future contracts on 
either broilers or chicks, the poultry sector is not vertically integrated and even binding contracts 
are seldom enforceable in LDCs. Given these settings and in light of the literature reviewed in 
section-2 along with the anecdotal evidence collected from field work (interviews and surveys of 
poultry farmers) in Pakistan, naïve expectations seems a reasonably justified expectation regime 
in the poultry sector. Interestingly, the academic literature lends support to this expectation 
regime in the poultry sector e.g. even in a highly developed country like U.S, Chavas (1999a) 
empirically estimates a structural model based on joint profit maximization and finds that 
approximately 91% of poultry farmers expectations are consistent with naïve expectations. By 
definition, the naïve expectation hypothesis implies that 𝑝𝑝�𝑡𝑡+3

𝐵𝐵 = 𝑝𝑝𝑡𝑡+1
𝐵𝐵  here i.e. current prices are 

expected to continue into the future. We substitute this into the optimal supply curve of a 
representative farmer, assume homogeneity and aggregate over the 𝑁𝑁2 broiler farmers in the 
poultry sector to arrive at the aggregate broiler supply function at time 𝑡𝑡 + 3: 

𝑄𝑄𝑡𝑡+3
𝐵𝐵,𝑆𝑆 = �𝑞𝑞𝑡𝑡+3

𝐵𝐵 = 𝑘𝑘𝑁𝑁2(𝐶𝐶2
′ )−1[𝑘𝑘𝑝𝑝𝑡𝑡+1

𝐵𝐵 − 𝜔𝜔𝑡𝑡+1
𝐶𝐶 ] 

Assuming a negatively sloped broiler retail demand curve for 𝑁𝑁3 homogenous retailers is 
given by 𝐹𝐹(𝑝𝑝𝑡𝑡+3

𝐵𝐵 ) where 𝐹𝐹 ′ < 0, we can define aggregate demand for broilers at time 𝑡𝑡 + 3 as 
𝑄𝑄𝑡𝑡+3
𝐵𝐵,𝐷𝐷 = 𝑁𝑁3𝐹𝐹�𝑝𝑝𝑡𝑡+3

𝐵𝐵 �. Now recall that the chicken market in Pakistan is predominantly a live bird 

                                                             
21 Note that the convexity of cost function insures that the first order condition is a sufficient condition for optimality 

since 𝜕𝜕𝜋𝜋𝑡𝑡+3
𝜕𝜕𝑞𝑞𝑡𝑡+3

𝐵𝐵 ≥ 0 if (𝑘𝑘𝑝𝑝�𝑡𝑡+3
𝐵𝐵 ≥ 𝐶𝐶2

′ (�𝑞𝑞𝑡𝑡+3
𝐵𝐵

𝑘𝑘� �+𝜔𝜔𝑡𝑡+1
𝐶𝐶 ) and 𝜕𝜕

2𝜋𝜋𝑡𝑡+3

𝜕𝜕𝑞𝑞𝑡𝑡+3
𝐵𝐵 2 < 0.  



market with limited cold storage facilities. In the absence of inventory or trade, the current 
demand and supply situation determines the market clearing price, therefore we simply equate 
aggregate quantity demanded and supplied for broilers in time 𝑡𝑡 + 3 i.e. 𝑄𝑄𝑡𝑡+3

𝐵𝐵,𝐷𝐷 = 𝑄𝑄𝑡𝑡+3
𝐵𝐵,𝑆𝑆 , to get: 

𝑁𝑁3𝐹𝐹(𝑝𝑝𝑡𝑡+3
𝐵𝐵 ) = 𝑘𝑘𝑁𝑁2 �𝐶𝐶2

′ �
−1
�𝑘𝑘𝑝𝑝𝑡𝑡+1

𝐵𝐵 − 𝜔𝜔𝑡𝑡+1
𝐶𝐶 � 

Assuming 𝐹𝐹 is invertible and after some simplifications, we get the following recursive broiler 
price equation:   

𝑝𝑝𝑡𝑡+3
𝐵𝐵 = 𝐹𝐹−1 �

𝑘𝑘𝑁𝑁2
𝑁𝑁3

�𝐶𝐶2
′ �

−1
�𝑘𝑘𝑝𝑝𝑡𝑡+1

𝐵𝐵 −𝜔𝜔𝑡𝑡+1
𝐶𝐶 ��                 

Since this equilibrium relationship holds for all time 𝑡𝑡, we can express it as time delay difference 
equation given by: 

𝑝𝑝𝑡𝑡𝐵𝐵 = 𝐹𝐹−1 �
𝑘𝑘𝑁𝑁2
𝑁𝑁3

�𝐶𝐶2
′ �

−1
�𝑘𝑘𝑝𝑝𝑡𝑡−2

𝐵𝐵 −𝜔𝜔𝑡𝑡−2
𝐶𝐶 ��                (1)  

Note that since 𝐹𝐹 is a decreasing function,  𝐹𝐹−1 is also a decreasing function. Using this result 
along with the fact that (𝐶𝐶2

′ )−1 is an increasing function, it is straightforward to arrive at the 
following comparative static results via the chain rule22: 

I. 𝜕𝜕𝑝𝑝𝑡𝑡𝐵𝐵

𝜕𝜕𝑝𝑝𝑡𝑡−2
𝐵𝐵 < 0 

II. 𝜕𝜕𝑝𝑝𝑡𝑡𝐵𝐵

𝜕𝜕𝜔𝜔 𝑡𝑡−2
𝐶𝐶 > 0 

Both results are intuitive. Result-I represents the standard cobweb phenomena i.e. assuming 
naïve expectations, if prices were high when production decisions were made (time 𝑡𝑡 − 2), then 
prices will be low in time 𝑡𝑡 due to the resulting supply glut and vice versa. The vertically linked 
nature of the poultry production process is driving Result-II, e.g. if price of chicks was high 
when production decisions were made (time 𝑡𝑡 − 2) then broiler farmers will reduce procurement 
of chicks, leading to lower production of broilers in time 𝑡𝑡 and hence higher broiler prices.  

In order to close the model and fully specify the dynamics of broiler prices, we need to 
understand the dynamics of chick prices. Since the dynamics of upstream prices play a key role 
in determining the supply of the final downstream product i.e. broiler farmers cannot produce 
broilers without chicks! Consequently, prices at different levels of the value chain are 
interlinked, representing a coupled system of difference equations. A failure to account for this 
facet of agricultural markets can lead to erroneous conclusions.  

We follow essentially the same steps to derive the difference equation for chick prices. 
Proceeding backwards, the chick farmers profit maximization problem at time 𝑡𝑡 can be written 
as: 

                                                             
22 The composition of a decreasing function and an increasing function is always a decreasing function. 



Arg Max
�𝑞𝑞𝑡𝑡+1

𝐶𝐶 �
𝜋𝜋𝑡𝑡+1 : 𝑞𝑞𝑡𝑡+1

𝐶𝐶 𝜔𝜔�𝑡𝑡+1
𝐶𝐶 − 𝐶𝐶1�𝑞𝑞𝑡𝑡+1

𝐶𝐶 � 

Chick farmers simply need to decide how much chicks to produce next period. In light of the 
arguments mentioned in the previous subsection, we do not account for parent stock dynamics in 
our model and simply assume unconstrained production of chicks with a production lag of 1 
period (i.e. 3 weeks). Assuming 𝐶𝐶1

′  is invertible, first order condition yields the optimal supply 
curve for the chick farmers: 

𝜕𝜕𝜋𝜋𝑡𝑡+1
𝜕𝜕𝑞𝑞𝑡𝑡+1

𝐶𝐶 =  𝜔𝜔�𝑡𝑡+1
𝐶𝐶 − 𝐶𝐶1

′ (𝑞𝑞𝑡𝑡+1
𝐶𝐶 ) = 0 ⇒ 𝑞𝑞𝑡𝑡+1

𝐶𝐶,𝑆𝑆 = �𝐶𝐶1
′ �−1(𝜔𝜔�𝑡𝑡+1

𝐶𝐶 )    

As expected the quantity of chicks supplied in period 𝑡𝑡 + 1 is increasing in the expected price of 
chicks in the next period because �𝐶𝐶1

′ �−1 
is increasing function. Now assuming chick farmers are 

homogenous and summing over the 𝑁𝑁1 chick farmers we get the aggregate supply curve of 
chicks under naïve expectations (𝜔𝜔�𝑡𝑡+1

𝐶𝐶 = 𝜔𝜔𝑡𝑡
𝐶𝐶):  

𝑄𝑄𝑡𝑡+1
𝐶𝐶 ,𝑆𝑆 = �𝑞𝑞𝑡𝑡+1

𝐶𝐶 ,𝑆𝑆 = 𝑁𝑁1(𝐶𝐶1
′)−1(𝜔𝜔𝑡𝑡

𝐶𝐶) 

As pointed out previously, chick prices and broiler prices are closely interrelated. Anecdotal 
evidence based on field work also suggests that broiler prices play a key role in the current 
production decisions of chick farmers. This is not surprising since higher broiler prices will 
evidently have a positive effect on the willingness to pay of broiler farmers for chicks. The 
resultant higher demand for chicks will translate into higher chick prices. Consequently, 
expectations about the (derived) demand for chicks at time 𝑡𝑡 + 1, formulated in period 𝑡𝑡 impact 
the optimal production decision of chick farmers. Therefore, following the standard method for 
analyzing vertically linked markets, we solve the broiler farmers profit maximization problem to 
derive the input (chick) demand at time t+1. Substituting the production function into the profit 
equation and applying the shepherd’s lemma, the optimal demand for chicks is given by:  

𝜕𝜕𝜋𝜋𝑡𝑡+3

𝜕𝜕𝑞𝑞𝑡𝑡+1
𝐶𝐶 = 𝑘𝑘𝑝𝑝�𝑡𝑡+3

𝐵𝐵 − 𝜔𝜔𝑡𝑡+1
𝐶𝐶 − 𝐶𝐶2

′ �𝑞𝑞𝑡𝑡+1
𝐶𝐶 � = 0 ⇒ 𝑞𝑞𝑡𝑡+1

𝐶𝐶 ,𝐷𝐷 = (𝐶𝐶2
′ )−1�𝑘𝑘𝑝𝑝�𝑡𝑡+3

𝐵𝐵 − 𝜔𝜔𝑡𝑡+1
𝐶𝐶 � 

Clearly, the demand for chicks increases with the expected broiler prices in time t+3. Since, 
chick farmers anticipate expected demand for chicks by broilers farmers at the time of 
formulating production decisions i.e. time t, therefore, under naïve expectations we have  𝑝𝑝�𝑡𝑡+3

𝐵𝐵 =
𝑝𝑝𝑡𝑡𝐵𝐵 . Thus, the aggregate demand for chicks in time t+1 under the naïve expectation hypothesis is 
given by: 

𝑄𝑄𝑡𝑡+1
𝐶𝐶 ,𝐷𝐷 = �𝑞𝑞𝑡𝑡+1

𝐶𝐶,𝐷𝐷 = 𝑁𝑁2(𝐶𝐶2
′ )−1�𝑘𝑘𝑝𝑝𝑡𝑡𝐵𝐵 − 𝜔𝜔𝑡𝑡+1

𝐶𝐶 � 

Because, chick farmers sell all their chicks to broiler farmers, we simply use the market clearing 
condition and equate aggregate quantity demanded of chicks with aggregate quantity supplied at 
time t+1 i.e. 𝑄𝑄𝑡𝑡+1

𝐶𝐶 ,𝑆𝑆 = 𝑄𝑄𝑡𝑡+1
𝐶𝐶 ,𝐷𝐷 : 

𝑁𝑁1(𝐶𝐶1
′)−1(𝜔𝜔𝑡𝑡

𝐶𝐶) = 𝑁𝑁2(𝐶𝐶2
′ )−1�𝑘𝑘𝑝𝑝𝑡𝑡𝐵𝐵 − 𝜔𝜔𝑡𝑡+1

𝐶𝐶 � 



After some algebra and re-indexing of the time subscripts as before, (since the equilibrium 
relationship holds for all time 𝑡𝑡) we get the following difference equation for chick prices: 

𝜔𝜔𝑡𝑡
𝐶𝐶 =  𝑘𝑘𝑝𝑝𝑡𝑡−1

𝐵𝐵 − 𝐶𝐶2
′ �
𝑁𝑁1

𝑁𝑁2
(𝐶𝐶1

′)−1(𝜔𝜔𝑡𝑡−1
𝐶𝐶 )�                  (2) 

Since the composition of two increasing functions is always an increasing we arrive at the 
following intuitive comparative static results for the chick prices difference equation:  

III. 𝜕𝜕𝜔𝜔𝑡𝑡
𝐶𝐶

𝜕𝜕𝜔𝜔𝑡𝑡−1
𝐶𝐶 < 0 

IV. 𝜕𝜕𝜔𝜔𝑡𝑡
𝐶𝐶

𝜕𝜕𝑝𝑝𝑡𝑡−1
𝐵𝐵 > 0 

Result-III is the standard outcome in cobweb models, i.e. under the naïve expectation hypothesis, 
if prices were high at the time production plans were formulated than prices will be low at the 
end of the production period due to an oversupply and vice versa. In a vertically linked value 
chain, result-IV represents the positive effect of high broiler prices on the demand for chicks and 
vice versa. More specifically, broiler farmers are willing to pay higher prices to chick farmers in 
view of high broiler prices in the previous period, under the (naïve) expectation of benefiting 
from these higher broiler prices in future. Likewise, chick farmers can successfully bargain over 
higher chick prices if broiler prices were high in the previous period.  

Together equation (1) & (2) represent a coupled system of time-delay difference equations 
that determine the trajectory of prices under the naïve expectation hypothesis. Since we do not 
account for the long run profit considerations, whereby the number of chick farmers, broiler 
farmers and retailers are endogenously determined by the zero profit or free entry condition, 
thus, Model-A is a representation of short run price dynamics only:   

Model A−

⎩
⎪
⎨

⎪
⎧𝑝𝑝𝑡𝑡𝐵𝐵 = 𝐹𝐹−1 �
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𝑁𝑁3
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�𝑘𝑘𝑝𝑝𝑡𝑡−2

𝐵𝐵 −𝜔𝜔𝑡𝑡−2
𝐶𝐶 ��                   (1)

𝜔𝜔𝑡𝑡
𝐶𝐶 =  𝑘𝑘𝑝𝑝𝑡𝑡−1

𝐵𝐵 − 𝐶𝐶2
′ �
𝑁𝑁1
𝑁𝑁2

�𝐶𝐶1
′ �

−1
�𝜔𝜔𝑡𝑡−1

𝐶𝐶 ��                   (2)
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Like all economic models, this model is a simplified depiction of reality that aims to only 
capture the essential features of the underlying phenomenon in order to highlight important 
mechanisms driving price fluctuations. Whilst, ignoring auxiliary yet potentially important 
factors like capacity constraints, adjustment costs, market power, farmer risk averseness or price 
stickiness. Nevertheless, given the data limitations, we feel that our modeling approach captures 
key aspects of agricultural value chains i.e. vertical linkages, production lags and price 
uncertainty. At the same time, it provides us with a parsimonious framework to specify and 
interpret results from an empirical model. More specifically, we seek to empirically test whether 
relationships I-IV are present in the actual data, where their presence lends support to the theory 
of endogenous price fluctuations in the Pakistan poultry sector. Therefore, in the next section, we 
use actual data to estimate the aforementioned coupled system of time delay difference equations 
in order to empirically evaluate the validity of results I-IV and thus determine whether or not the 
observed price fluctuations are consistent with the cobweb phenomena.  



4-Empirical Evidence-Naïve Expectations & Cobweb Cycles in the Pakistan Poultry Sector 

Up till now, we have presented some qualitative evidence (unique institutional 
environment of the poultry sector, responses of poultry farmers during structured interviews and 
stylized facts associated with poultry price data in Pakistan) that lends support to the theory of 
endogenous price fluctuations (i.e. existence of cobweb cycles) in the Pakistan poultry sector. 
The primary objective of this section is to formulate an appropriate econometric model to 
evaluate the validity of this theory empirically. To this end, we first analyze the time series 
properties of the data. Thereafter, we develop an econometric methodology to statistically test 
whether or not the actual price data conforms to the predictions (results I-IV) made by our 
stylized model of price dynamics in a vertically linked agricultural value chain under the naïve 
expectation hypothesis.   

The unique, nature of our dataset lends itself perfectly for this type of analysis. Because, 
estimates from econometric models of price dynamics based on high-frequency data are 
generally considered to be more reliable compared to estimates based on low-frequency data  
(Von-Crammon Taubadel & Loy 1996). The original data comprised of daily prices, however, 
given the length of the poultry production cycle, using daily data would lead to an exponential 
rise in the number of estimated parameters23. Since the production cycle can be easily divided 
into weekly increments i.e. 3 weeks for chicks and approximately 6-7 weeks for broilers, we 
converted the daily prices into average weekly prices. In addition to generating smoother data, 
aggregation over weekly periods is also more intuitive. Because, farmers are more likely to use 
prices over the past few days to formulate (naïve) expectations about future prices as opposed to 
merely the prices on a given day.  

The nature of the production cycle rules out monthly aggregation. Because in that case 
the frequency of aggregation i.e. months will not match the duration of the production cycle, 
masking the production dynamics along with the associated production decisions at the farm 
level. Additionally, with monthly aggregation it will be difficult to pinpoint the “current” price 
farmers use to form future expectations. Perhaps, the frequency mismatch between the length of 
production cycle and data aggregation is a key factor behind the (incorrect) rejection of the naïve 
expectations hypothesis in previous work on price fluctuations in some agricultural markets. 
Cleary, data at annual or quarterly frequency is not suitable for the evaluation of the naïve 
expectation/cobweb cycle hypothesis. Since, low frequency data masks the uncertainty faced by 
farmers and the dynamics of production decisions at the farm level, while, knowledge of both is 
essential to devise an appropriate empirical test to indentify cobweb cycles.     

4.1 Time Series Properties of the Data-Tests for Stationarity & Cointegration 

It is well known that prices, especially prices of agricultural products are characterized by 
non-stationary behavior i.e. time varying mean, variance or covariance. Therefore, we need to 
carefully evaluate the time series properties of the data before specifying an econometric model 
to empirically test results I-IV. Since, OLS estimates based on non-stationary data are usually 

                                                             
23 For example in an unrestricted model with daily data, we would have to estimate more than 100 parameters, 
severely compromising the consistency of the estimates. At the same time there was minimal day to day variation in 
daily prices, e.g. there is no price change on consecutive days for more than 50% of the data in both chick and 
broiler price series, therefore we do not lose significant information by averaging over weekly intervals.  



spurious at the same time standard regression diagnostics are no longer valid. Therefore, we first 
need to establish whether chick and broiler prices are stationary or non-stationary. In the case of 
the latter, we also need to check the order of integration of both series to determine whether or 
not both series are cointegrated. Once we have this information, an appropriate econometric 
model can be specified to empirically test results I-IV.  

In view of the low power of the augmented Dicky Fuller (ADF) unit root test, Elliott et. 
al (1996) proposed the Dicky Fuller-Generalized Least Square (DF-GLS) unit root test. Their test 
is identical to the ADF unit root test except that the underlying data is transformed using a 
generalized least squares (GLS) regression before performing the ADF test. The theoretical 
literature has shown that DF-GLS unit root test possesses significantly higher power and 
efficiency compared to the simple ADF unit root test (Ng and Perron 2001 & Perron and Ng 
1996). Therefore, we report the test statistic from DF-GLS unit root test instead of the standard 
ADF unit root test in Table-324. The DF-GLS unit root test shows that both chick and broiler 
prices are non-stationary i.e. possess unit roots in levels but are stationary in first differences. 
This conclusion is supported by a visual analysis of chick and broiler prices line plots presented 
in figure-1.   

Given that both series are I(1), we employ the Johansen & Juselius (1990) co-integration 
test to determine if chick and broiler prices are cointegrated. It is a maximum likelihood ratio test 
based on the maximal eigan value or the trace of the coefficient matrix of the underlying vector 
autoregressive (VAR) model. The max and trace statistic, reported in panel-B, show that both 
price series are cointegrated i.e. move together in the long run25. This result is intuitive, since one 
would expect a relationship between input (chick) and output (broiler) prices in the long run. 

 
  Table 3-Time Series Properties of Data 

A-Test for Stationarity: Dicky Fuller-Generalized Least Square (DF-GLS) Unit Root Test 

 
Broiler Prices (𝑝𝑝𝑡𝑡𝐵𝐵) 

Levels First Difference 
-2.16 -10.23*** 

Chick Prices (𝜔𝜔𝑡𝑡
𝐶𝐶) -1.75  -6.57***  

B-Test for Cointegration: Johansen (1995) Cointegration Test 

 Trace Statistic (𝑟𝑟 = 1) Max Statistic(𝑟𝑟 = 1) 

Broiler prices (𝑝𝑝𝑡𝑡𝐵𝐵) & Chick prices (𝜔𝜔𝑡𝑡
𝐶𝐶) 12.14** 12.14** 

All statistical tests are based on average weekly prices from June 2008 to June 2015. The data was sourced from Pakistan Poultry Association (North). 
All prices are in nominal units of the local currency. Note that the null hypothesis in the DF-GLS test is presence of a unit root. Therefore, accepting the 
null corresponds to non-stationarity while rejecting the null corresponds to stationarity. The Ng–Perron modified Akaike information criterion (MAIC) 
was used to determine the optimal number of lags in autoregressive models for the DF-GLS unit root test. A restricted trend specification was used for 
the Johansen (1995) cointegration test based on the Pantula principle (1989), while, the optimal number of lags in the underlying model were based on 
commonly used information criterion (SBIC & HQIC). Note that 𝑟𝑟 denotes the number of cointegrating vectors under the null, in bivariate system 𝑟𝑟 is 

                                                             
24 Based on the ADF test, broiler price series was marginally stationary in levels. This conclusion seemed erroneous 
because the autocorrelation function showed that the autocorrelations don’t die out as the lags are increased. A clear 
violation of: lim𝑘𝑘→∞ 𝐶𝐶𝐶𝐶𝐶𝐶 (𝑥𝑥𝑡𝑡 ,𝑥𝑥𝑡𝑡−𝑘𝑘) = 0, an important property of stationary data. Visual inspection of the line plots 
in figure-2, also lead one to doubt the conclusion of stationarity.   
25 Neither statistic follows a chi-square distribution but critical values are provided by Johansen & Juselius (1990) 
paper. 



either 1 or 0. ***, **, * represent significance at 1%, 5% and 10% respectively.  

 
In light of these findings, an empirical model in price levels in not a viable strategy. A 

simple vector autoregressive (VAR) model in first differences seems an appropriate choice given 
the equilibrium relationships derived in the previous section represent a coupled system of 
difference equations of chick and broiler prices. But, as we argue later, a bivariate vector error 
correction model (VECM) is our preferred specification.  

4.2 Identification & Empirical Strategy 

In the previous section we used a simple dynamic model of profit maximization with vertical 
linkages between upstream and downstream farmers to derive difference equations for chick and 
broiler prices (equations I & II) under the naïve expectation hypothesis. In order to empirically 
test the comparative static results (I-IV) in an OLS framework we calibrate the underlying model 
with a quadratic cost function for both type of farmers and a negatively sloped linear retail 
demand curve for broilers. These functional forms are commonly used in research on cobweb 
markets in the agricultural economics literature (Onozaki et al 2000; Dieci and Westerhoff 2009 
Dieci and Westerhoff 2012). The comparative static results (I-IV) can also be identified with 
other more general class of functions satisfying the relevant assumptions by taking a first order 
Taylor series expansion of the resulting nonlinear system of equations. However, we avoid this 
approach for the sake of simplicity. Details of the derivation are relegated to appendix-1, but it is 
easy to see that the comparative static results I-IV are well identified in the resulting system of 
difference equations26:  

Model B

⎩
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⎪
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Where 𝑎𝑎 denotes the extent of the market and 𝑏𝑏 represents sensitivity to price in the linear retail 
demand function of broilers, all other variables are as defined above. 

Since we are primarily interested in the verification or falsification of results I-IV as 
opposed to point estimates, we can estimate the following well identified system to empirically 
evaluate the existence of cobweb cycles in the poultry sector after reverting to the actual time 
configurations based on weekly data27: 

�
𝑝𝑝𝑡𝑡𝐵𝐵 = 𝛼𝛼 + 𝛽𝛽𝑝𝑝 ,7

𝐵𝐵 𝑝𝑝𝑡𝑡−7
𝐵𝐵 + 𝛽𝛽𝜔𝜔,7

𝐵𝐵 𝜔𝜔𝑡𝑡−7
𝐶𝐶 + 𝜖𝜖𝑡𝑡𝐵𝐵  

𝜔𝜔𝑡𝑡
𝐶𝐶 = 𝛽𝛽𝑝𝑝 ,3

𝐶𝐶 𝑝𝑝𝑡𝑡−3
𝐵𝐵 + 𝛽𝛽𝜔𝜔,3

𝐶𝐶 𝜔𝜔𝑡𝑡−3
𝐶𝐶 + 𝜖𝜖𝑡𝑡𝐶𝐶        

� 

                                                             
26 All variables in the above equations are strictly positive, therefore the original comparative static results (I-IV) 

hold true i.e. 𝜕𝜕𝜔𝜔𝑡𝑡
𝐶𝐶

𝜕𝜕𝜔𝜔𝑡𝑡−3
𝐶𝐶 < 0, 𝜕𝜕𝜔𝜔𝑡𝑡

𝐶𝐶

𝜕𝜕𝑝𝑝𝑡𝑡−3
𝐵𝐵 > 0, 𝜕𝜕𝑝𝑝𝑡𝑡

𝐵𝐵

𝜕𝜕𝑝𝑝𝑡𝑡−7
𝐵𝐵 < 0 & 𝜕𝜕𝑝𝑝𝑡𝑡

𝐵𝐵

𝜕𝜕𝜔𝜔 𝑡𝑡−7
𝐶𝐶 > 0 

27 Recall that the length of the chick production cycle is 22 days (approximately 3 weeks), whereas the length of the 
broiler production cycle is 6-7 weeks or twice the length of the chick production cycle. We assume a 7 week 
production cycle for broilers since it results in a better fit of the model compared to a 6 week cycle. 



Where, the subscript of the parameters represents the underlying lag, while the superscript 
indentifies the relevant price equation (𝐵𝐵 for broiler price equation and 𝐶𝐶 for chick price 
equation). Since, the price data is non-stationary in levels; we cannot estimate this system in 
levels due to the possibility of spurious estimates. Additionally, standard regression diagnostics 
are no longer valid if the underlying variables are I(1). Therefore, we simply take first 
differences of the above-mentioned system and instead estimate a model in first differences. 
Even though, we lose significant information due to first differencing, but this loss is offset by 
the gains derived from the reliability of parameter estimates based on stationary data. At the 
same time the basic intuition behind results I-IV remains intact in a model specified in first 
differences28. 

�
∆𝑝𝑝𝑡𝑡𝐵𝐵 = 𝛽𝛽𝑝𝑝 ,7

𝐵𝐵 ∆𝑝𝑝𝑡𝑡−7
𝐵𝐵 + 𝛽𝛽𝜔𝜔,7

𝐵𝐵 ∆𝜔𝜔𝑡𝑡−7
𝐶𝐶 + ∆𝜖𝜖𝑡𝑡𝐵𝐵

∆𝜔𝜔𝑡𝑡
𝐶𝐶 = 𝛽𝛽𝑝𝑝 ,3

𝐶𝐶 ∆𝑝𝑝𝑡𝑡−3
𝐵𝐵 + 𝛽𝛽𝜔𝜔,3

𝐶𝐶 ∆𝜔𝜔𝑡𝑡−3
𝐶𝐶 + ∆𝜖𝜖𝑡𝑡𝐶𝐶

� 

More specifically, parameter estimates of 𝛽𝛽𝑝𝑝 ,7
𝐵𝐵 < 0, 𝛽𝛽𝜔𝜔 ,7

𝐵𝐵 > 0, 𝛽𝛽𝑝𝑝 ,3
𝐶𝐶 > 0 and 𝛽𝛽𝜔𝜔 ,3

𝐶𝐶 < 0 will lend 
support to the existence of cobweb cycles. Obviously, other factors beyond expectations of chick 
and broiler prices impact the production decisions of poultry farmers and hence actual prices. To 
improve the fit of the model and reduce the likelihood of omitted variable bias, we describe the 
key factors influencing poultry prices along with their relevant proxies in our empirical model in 
the next subsection.  

4.3 Model Specification-Incorporating Additional Explanatory Variables   

In the section on poultry farm economics, we documented that feed costs comprise a large 
portion of production costs in the poultry sector. The price of poultry feed is linked to prices of 
primary agricultural commodities, whilst overheads at poultry farms are primarily driven by 
energy and labor costs. Poultry farmers decide how many chicks/broiler to produce based on 
estimates of rearing costs at the beginning of the production cycle and usually procure an 
adequate amount of inventory to cover feeding requirements for the duration of the production 
cycle. In the absence of data on poultry feed costs, which unarguably varies from farm to farm 
depending on management practices and quality of feed. We use the sensitive price indicator 
(SPI) at the beginning of a given production cycle as a (noisy) proxy for production costs (or 
more aptly rearing costs) during the production cycle in our empirical model29. The sensitive 
price indicator published by Pakistan Bureau of Statistics on a weekly basis, represents a 
weighted index comprising of prices of different agricultural commodities (corn, wheat, maize, 
rice etc), energy (petrol, diesel & electricity costs) and labor (wages of workers in the 
primary/secondary sector). All other things equal, an increase in production costs at the 
beginning of the production cycle (proxied by an increase in SPI) would result in a decrease in 
planned production and hence higher prices at the end of the production cycle assuming 
competitive markets. Therefore, we expect the coefficient on SPI to be positive and statistically 
significant in the difference equations of both chick and broiler prices.    

                                                             
28 Parameter estimates from a model specified in levels and in first differences have identical interpretation in a 
linear model. 
29 The SPI series was non-stationary in levels but stationary in first differences, thus we used the first difference of 
SPI in our econometric specification.  



The summer season is particularly harsh in Punjab, the production hub of poultry in Pakistan, 
with temperatures ranging from of 100-120 F (38-50 C). Moreover, chronic energy shortages, 
amplified by the high demand for the air-conditioning in the summer season, lead to long hours 
of energy outage. Poultry farmers are adversely affected by the planned load shedding, since 
broilers and chicks raised in control environments are sensitive to changes in temperature. Due to 
electricity outages, the temperature in controlled sheds cannot be controlled properly (or 
controlled at a higher cost via privately generated energy) and excessive heat leads to high rates 
of mortality. Likewise, due to the rudimentary and often crude transportation methods, mortality 
rates during delivery of chicks and broilers increase substantially in the summer season. Both 
factors have an adverse impact on marketed production, leading to higher prices in the summer 
season. In order to capture this effect, we use a dummy variable, spanning from the beginning of 
May to the end of July (the hottest months in Punjab), to control for the effect of summer season 
on the prices of poultry products30.   

In a country like Pakistan where the diet is deficient in proteins and other sources of animal 
protein (beef/lamb/fish) are relatively expensive, demand for poultry products is high. Moreover, 
given that poultry products are a food based commodity, all other things equal, the demand for 
poultry products remains fairly constant over the year. Nevertheless, Pakistan is also a low 
income country (GDP per capita of less than $1,000), therefore, large increase in prices of 
poultry products result in a significant reduction in demand for chicken. Religious festivities also 
have an impact on the demand for chicken, especially in predominantly Muslim countries like 
Pakistan31. During Eid-ul-Azha the price of chicken declines due to a reduction in demand, as 
meat from cattle/lamb etc slaughtered on these days is stored and consumed for several weeks 
thereafter.32 Although our model is primarily geared towards capturing the supply side dynamics, 
but in order to capture this key demand side effect in our model, we use a contemporaneous 
dummy variable to capture the effect of the festive season of Eid-ul-Azha on broiler and chick 
prices. However, unlike festivities in the USA & Europe (Thanksgiving, Christmas, Easter etc), 
festive seasons in Muslim countries like Pakistan are based on the lunar calendar as opposed to 
the Gregorian calendar. Therefore, we converted the Gregorian calendar into the lunar calendar 
to capture the effect of Eid-ul-Azha.33 The Eid-ul-Azha dummy variable in our model 
corresponds to a 7-week period in a given lunar year, starting 2 weeks prior to Eid-ul-Azha and 
continuing thereafter for another 5 weeks. Based on survey responses, the reduction in demand 
                                                             
30 Extremely cold weather also has an adverse impact on the supply of poultry products. However, the winter season 
in Pakistan is both short and mild. More importantly, over the last 8 years the winter season has overlapped with 
Eid-ul-Azha, a period of low demand (hence lower prices) potentially confounding the effect of winter season (low 
supply and high prices). Therefore, we do not include the winter dummy in the model.   
31 Ramzan is another important month in Islamic societies, which includes fasting for 30 days, followed by feasting 
for 3 days. The effect of Ramzan on consumer behavior vis-à-vis poultry prices is less clear, on one hand fasting 
results in lower consumption. But on the other hand an increase in charitable giving/ feeding of the poor during the 
month, followed by feasting in the final days leads to higher consumption. At the same time over the past decade, 
Ramzan has overlapped with the summer season; therefore it is difficult to identify the effect of Ramzan on poultry 
prices due to the supply effect described earlier.  
32 Eid-ul-Azha is celebrated from 10th-12th of Zul-Hijjah, the 12th month of the Islamic Calendar. Muslims slaughter 
large animals (cattle, camel, lamb and sheep etc.) to commemorate the sacrifices of Prophet Abraham on this 
occasion. 
33 Since, the lunar calendar is based on the moon; the length of a given month is not fixed but depends on moon 
sighting. Consequently, the months of the lunar calendar shift by approximately 11 days vis-à-vis the Gregorian 
calendar in a given year, thus lunar months do not correspond to seasons. All lunar month dates were indentified 
based on the Ummul Qura, Saudia Arabia lunar calendar. 



of chicken due to an increased consumption of lamb/beef is adequately captured in this 7-week 
period.  

 Taking the abovementioned exogenous factors into account and adding controls for any 
time trends in the difference equations for broiler and chick prices, gives us model-I34: 

∆𝑝𝑝𝑡𝑡𝐵𝐵 = 𝛼𝛼𝐵𝐵 + 𝛾𝛾𝐵𝐵𝑡𝑡 + 𝛽𝛽𝑝𝑝 ,7
𝐵𝐵 ∆𝑝𝑝𝑡𝑡−7

𝐵𝐵 + 𝛽𝛽𝜔𝜔 ,7
𝐵𝐵 ∆𝜔𝜔𝑡𝑡−7

𝐶𝐶 + 𝛾𝛾𝑡𝑡−7
𝐵𝐵 ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−7 + DS

B Sumt+DEid
B EidAzhat+𝜖𝜖𝑡𝑡𝐵𝐵  

∆𝜔𝜔𝑡𝑡
𝐶𝐶 = 𝛼𝛼𝐶𝐶 + 𝛾𝛾𝐶𝐶 t + 𝛽𝛽𝑝𝑝 ,3

𝐶𝐶 ∆𝑝𝑝𝑡𝑡−3
𝐵𝐵 + 𝛽𝛽𝜔𝜔 ,3

𝐶𝐶 ∆𝜔𝜔𝑡𝑡−3
𝐶𝐶  + 𝛾𝛾𝑡𝑡−7

𝐶𝐶 ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−3 + DS
CSumt+DEid

C EidAzhat + 𝜖𝜖𝑡𝑡𝐶𝐶  

Given that both chick and broiler prices are endogenously linked, we call model-1 a restricted 
VAR model in first differences since intermediate lags are not included. Inclusion of 
intermediate lags results in a near VAR model in first differences35. For the sake of robustness 
we estimate both versions, to rule out the possibility that estimates from the restricted model are 
merely statistical artifacts.     

However recall that unit root tests revealed that broiler and chick prices are I(1) variables, 
while the Johansen cointegration showed that both variables are cointegrated. Although model-1 
fully captures the short run dynamics derived from our theoretical model, a failure to control for 
cointegration in model-I; throws away useful information about the long run behavior of prices. 
In order to remove this bias, we employ the Engle & Granger (1987) two-step procedure. Engle 
& Granger (1987) showed that if two variables are non-stationary in levels but their linear 
combination is stationary, then this implies that a common stochastic trend is driving these 
variables. Thus, although the variables may drift apart in the short run, they will tend to converge 
towards the equilibrium relationship in the long run.  

In the first stage of the Engle & Granger (1987) two-step procedure, the long-run 
(equilibrium) relationship is estimated as a simple OLS regression of the I(1) variables. If the 
residuals from this regression are stationary, then this implies that the underlying variables are 
cointegrated. In the second stage, Engle & Granger (1987) showed that if two variables are 
cointegrated (residuals from stage-1 regression are stationary) then the underlying data 
generating process can be represented by an error correction model and vice versa. Following 
this approach, we first estimate the cointegrating (long-run) relationship between broiler and 
chick prices. Note that given that chicks are a key input for broiler production, it is 
straightforward to derive a long run relationship between broiler and chick prices i.e. 𝑝𝑝𝐵𝐵 =
𝑓𝑓(𝜔𝜔𝐵𝐵)36. Taking a linear approximation of this relationship, we can estimate a simple OLS 

                                                             
34 Note that SPI was non-stationary in levels but stationary in first differences. 
35 A VAR model with different lag length in the underlying equations is called a near VAR model. The same 
definition applies for a near VECM model. 
36 This involves removing time subscripts (and hence expectations) from the profit maximization problem of broiler 
farmers in section-3, including long run costs into the model and taking first order conditions. In addition to the first 
order optimality conditions, the (long-run) zero profit condition will determine the number of farmers and hence 
total production in a long run equilibrium. 



model, given by 𝑝𝑝𝑡𝑡𝐵𝐵 = 𝛼𝛼 + 𝛽𝛽𝜔𝜔𝑡𝑡
𝐶𝐶 + 𝜇𝜇𝑡𝑡37. The resulting residuals: 𝜇𝜇𝑡𝑡� =𝑝𝑝𝑡𝑡𝐵𝐵 −  𝛼𝛼� − �̂�𝛽𝜔𝜔𝑡𝑡

𝐶𝐶 , are tested 
for stationarity. The results are summarized below:  

  Table 4-Engle & Granger Cointegration Test 

A-Estimate the Cointegrating Relationship: 𝑝𝑝𝑡𝑡𝐵𝐵 = 𝛼𝛼 + 𝛽𝛽𝜔𝜔𝑡𝑡
𝐶𝐶 + 𝜇𝜇𝑡𝑡  

 
OLS Estimates 

𝛼𝛼 𝛽𝛽 
91.51*** 0.52*** 

B-Test for Cointegration: 𝜇𝜇𝑡𝑡� = 𝑝𝑝𝑡𝑡𝐵𝐵 −  𝛼𝛼� − �̂�𝛽𝜔𝜔𝑡𝑡
𝐶𝐶  Stationarity Tests 

 ADF DF-GLS 

𝜇𝜇𝑡𝑡�  -4.23*** -5.08*** 

All statistical tests are based on average weekly prices from June 2008 to June 2015. The data was sourced from Pakistan Poultry Association (North). 
All prices are in nominal units of the local currency. Note that the null hypothesis in unit root tests is the presence of a unit root. Therefore, accepting the 
null corresponds to non-stationarity while rejecting the null corresponds to stationarity. ***, **, * represent significance at 1%, 5% and 10% 
respectively.  

 
Unit root tests clearly indicate that the predicted residuals are stationary, confirming the 

earlier conclusion from the Johansen cointegration test.  In the second step, Engle & Granger 
(1987) showed that if the underlying series is cointegrated, OLS estimates from an error 
correction model are super consistent. An error correction model captures how the underlying 
endogenous variables behave in the short run consistent with the long-run (cointegrating) 
equilibrium relationship. To this end, lagged residuals from the cointegrating equation are 
included in the model to capture the contemporaneous effect of deviations from long run 
equilibrium on the current dynamics of the endogenous variables. However, note that for the 
error correction model to be valid, the adjustment parameters (𝜌𝜌) should be negative, signifying 
that short run deviations from the long-run relationship are corrected. The error correction model 
applied to our settings can be represented by model-II: 

 
∆𝑝𝑝𝑡𝑡𝐵𝐵 = 𝛼𝛼𝐵𝐵 + 𝛾𝛾𝐵𝐵𝑡𝑡 + 𝛽𝛽𝑝𝑝 ,7

𝐵𝐵 ∆𝑝𝑝𝑡𝑡−7
𝐵𝐵 + 𝛽𝛽𝜔𝜔 ,7

𝐵𝐵 ∆𝜔𝜔𝑡𝑡−7
𝐶𝐶 + 𝛾𝛾𝑡𝑡−7

𝐵𝐵 ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−7 + 𝐷𝐷𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡+𝐷𝐷𝐸𝐸𝑖𝑖𝐸𝐸𝐵𝐵 𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑡𝑡 + 𝜌𝜌𝐵𝐵𝜇𝜇𝑡𝑡−1 + 𝜖𝜖𝑡𝑡𝐵𝐵  

∆𝜔𝜔𝑡𝑡
𝐶𝐶 = 𝛼𝛼𝐶𝐶 + 𝛾𝛾𝐶𝐶t + 𝛽𝛽𝑝𝑝 ,3

𝐶𝐶 ∆𝑝𝑝𝑡𝑡−3
𝐵𝐵 + 𝛽𝛽𝜔𝜔 ,3

𝐶𝐶 ∆𝜔𝜔𝑡𝑡−3
𝐶𝐶  + 𝛾𝛾𝑡𝑡−3

𝐵𝐵 ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−3 + 𝐷𝐷𝑆𝑆𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡+𝐷𝐷𝐸𝐸𝑖𝑖𝐸𝐸𝐶𝐶 𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑡𝑡 + 𝜌𝜌𝐶𝐶𝜇𝜇𝑡𝑡−1 + 𝜖𝜖𝑡𝑡𝐶𝐶  

Model-II does not include intermediate lags, doing so results in a near vector error correction 
model (VECM) or an unrestricted VECM. As before, for sake of robustness we will estimate 
both the restricted and unrestricted versions of model-II.  

4.4 Discussion of Estimation Results from Restricted Model 

Note that all the variables in model-I and model-II are I(0), therefore we can use OLS 
estimation and employ standard hypothesis testing methods  (t-statistics, F-statistics etc) and 
diagnostics to evaluate the estimation results. Since chick and broiler prices are endogenous, we 
estimate the difference equations in each model simultaneously to capture any contemporaneous 

                                                             
37 Traditional diagnostics, like t-statistics from the cointegrating (long-run) equation are not easily interpretable, 
because the distribution of the t-ratio in not known due to the presence of I(1) variables. The only purpose of 
estimating the cointegrating equation is to test whether the residuals are stationary or non- stationary. 



correlation between error terms in the chick and broiler price equations. Parameter estimates 
from the restricted VAR and VECM model are reported in Table-5. 

 
Table-5 Results from Restricted Model  

 Model-I: Restricted VAR Model-II: Restricted VECM 

 Chick Price Equation  
(∆ωt

C) 
Broiler Price Equation 

(∆pt
B ) 

Chick Price Equation 
(∆ωt

C) 
Broiler Price Equation 

(∆pt
B ) 

𝛼𝛼 0.205 
(0.635) 

-0.252 
(0.918) 

-0.439 
(0.799) 

-3.669*** 
(1.103) 

𝛾𝛾 0.00007 
(0.003) 

0.0010 
(0.004) 

0.003 
(0.004) 

0.019*** 
(0.005) 

∆𝜔𝜔𝑡𝑡−3
𝐶𝐶  

 
-0.092* 
(0.052) 

 -0.092* 
(0.052) 

 

∆𝑝𝑝𝑡𝑡−3
𝐵𝐵  

 
0.096*** 

(0.037) 
 0.093** 

(0.038) 
 

∆𝜔𝜔𝑡𝑡−7
𝐶𝐶  

 
 
 

0.145** 
(0.074) 

 
 

0.176** 
(0.072) 

∆𝑝𝑝𝑡𝑡−7
𝐵𝐵  

 
 
 

-0.076 
(0.054) 

 
 

-0.040 
(0.053) 

∆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−3
𝐶𝐶  

 
0.500* 
(0.271) 

 
 

0.484* 
(0.272) 

 
 

∆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−7
𝐵𝐵  

 
 
 

0.717* 
(0.388) 

 
 

0.700* 
(0.375) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑡𝑡 
 

0.642 
(0.691) 

1.553 
(0.989) 

0.798 
(0.696) 

2.419** 
(0.969) 

𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑡𝑡 
 

-3.019*** 
(0.923) 

-2.107 
(1.322) 

-3.282*** 
(0.941) 

-3.26*** 
(1.29) 

𝜇𝜇𝑡𝑡−1  
 

 
 

-0.026 
(0.019) 

-0.136*** 
(0.026) 

R − Square 5.73% 3.36% 6.28% 9.93% 

Portmanteau Test 8.227 33.377*** 7.946 38.351*** 
Estimates based on weekly prices from June 2008 to June 2015 for a total of 367 observations. The data was sourced from Pakistan Poultry 
Association (North). All prices are in nominal units of the local currency. Parameter estimates reported adjacent to the corresponding row 
variables while standard errors provided in the parenthesis below the parameter estimates. Summer denotes a dummy variable representing the 
period May-July in a given year. EidAzha denotes a dummy variable corresponding to the period 2 weeks before and 5 weeks after the 10th of 
Zul-Hijjah (12th month in the Islamic calendar). The underlying equations were estimated simultaneously using SUR. The portmanteau (or Q) test 
for white noise is based on 7 lags of the residuals, where the maximum lag length in the underlying model is used as the criterion for the selection 
of the number of residual lags to test for zero autocorrelation. Serially uncorrelated errors is the null hypothesis of the portmanteau test. Asterisks 
indicate statistical significance, where ***, **, * represent significance at 1%, 5% and 10% respectively.   

For sake of brevity we focus on the dissecting the empirical estimates rather than delving 
into the economic intuition behind Results-I-IV, which has been discussed in section-3. The first 
column in table-5 reports the results from the Model-1 i.e. restricted VAR model. Estimates from 
the chick price equation lend strong support to our theory of endogenous price fluctuations in the 
poultry sector i.e. 𝛽𝛽𝑝𝑝 ,3

𝐶𝐶 >0 (Result-IV: 𝜕𝜕𝜔𝜔𝑡𝑡
𝐶𝐶

𝜕𝜕𝑝𝑝𝑡𝑡−3
𝐵𝐵 > 0) with a p-value of 0.01 and 𝛽𝛽𝜔𝜔 ,3

𝐶𝐶 <0 (Result-

III: 𝜕𝜕𝜔𝜔𝑡𝑡
𝐶𝐶

𝜕𝜕𝜔𝜔𝑡𝑡−3
𝐶𝐶 < 0) with a p-value of 0.07. The estimates from the broiler price equation are also 

broadly consistent with the theory of endogenous price fluctuations. For instance, 𝛽𝛽𝜔𝜔 ,7
𝐵𝐵 >0 



(Result-II: 𝜕𝜕𝑝𝑝𝑡𝑡
𝐵𝐵

𝜕𝜕𝜔𝜔 𝑡𝑡−7
𝐶𝐶 > 0) with a p-value of 0.05 and 𝛽𝛽𝑝𝑝 ,7

𝐵𝐵 < 0 (Result-I: 𝜕𝜕𝑝𝑝𝑡𝑡
𝐵𝐵

𝜕𝜕𝑝𝑝𝑡𝑡−2
𝐵𝐵 < 0), although, the 

latter coefficient is marginally insignificant at conventional levels of significance (p-value of 
0.16). Column-2 reports the results from model-II, the restricted VECM model which accounts 
for the long run equilibrium relationship between chick prices and broiler prices whilst modeling 
the short-run price dynamics. The empirical estimates are similar to the results from model-I and 
broadly consistent with results I-1V. 

Perhaps, one explanation for the insignificance of  𝛽𝛽𝑝𝑝 ,7
𝐵𝐵  is the dominance of the effect of 

actual chick prices on broiler farmers’ production decisions (hence actual broiler prices in future) 
compared to the effect of (naïve) expected future prices of broilers on broiler farmers’ production 
decisions. For example, if a broiler farmer is credit constrained, he may not be able to purchase 
additional chicks in lieu of high chick prices, even though higher expected prices of broilers in 
future call for additional procurement of chicks. Other possible explanations for the 
insignificance of 𝛽𝛽𝑝𝑝 ,7

𝐵𝐵  include noisy data, factors not captured in our simplified model (market 
power, bargaining, farmer heterogeneity etc) or the restrictive functional form assumptions used 
to identify the comparative static results for the broiler price equation. Nevertheless, it is very 
unlikely that cobweb cycles in the upstream product do not translate into cobweb cycles in the 
upstream products, given the fact that market for intermediate goods (chicks) clear and all chicks 
are eventually converted into broilers.  Therefore, we conclude that taken together, the overall 
results presented in table-5 lend support to the theory of endogenous price fluctuations i.e. naïve 
expectations in the given institutional environment leads to cobweb cycles in the prices of 
poultry products in Pakistan. 

Table-5 also shows that all else equal, an increase in price levels (proxy for feed prices) 
at the beginning of the production cycle leads to a reduction in planned production and hence 
higher prices (for both broilers and chicks) at the end of the production cycle. As explained 
before, this result in intuitive, since famers facing increasing feeds costs at the beginning of the 
production cycle curtail planned production resulting in higher prices at the end of the production 
cycle. Similarly, Eid-ul-Azha, a period characterized by increased consumption of beef/lamb, has 
a negative effect on the prices of both chicks and broilers, due to a reduction in the demand of 
chicken during this period. The summer season does not have a statistically significant (adverse) 
impact on the production of chicks. Although, broiler prices increase significantly during the 
summer season in lieu of supply-side reasons, described in section 3.1. Lastly, broiler prices on 
average experienced a positive trend over the past decade while chick prices remained stagnant, 
a finding substantiated by line plots in figure-2. Also, note that the signs of the error correction 
terms (𝜇𝜇𝑡𝑡−1) in column-II are negative for both prices equation, indicating that the VECM is 
valid representation of the underlying data generating process.   

As far as model specification is concerned, controlling for the long run-relationship 
between chicks and broilers leads to a significant improvement in model fit, especially in the 
broiler price equation. Bearing in mind that a relatively low R-square is not uncommon in 
econometric models specified in first differences, due to the information lost as a result of first 
differencing the data. For model diagnostics, we use the portmanteau (or Q) test to check for 



serially correlated residuals38. In order to check whether residuals from the underlying empirical 
model are white noise, the portmanteau test determines whether autocorrelations between 
residuals at multiple lags are statistically different from zero. Whereby, serially uncorrelated 
residuals (null hypothesis of the portmanteau test) suggest that the model is well specified while 
serially correlated residuals (alternative hypothesis of the portmanteau test) are an indication of 
model specification errors. Based on portmanteau test for white noise we cannot reject the null 
hypothesis of serially uncorrelated errors in the chick price equation (in both models), suggesting 
that the chick price equation is properly specified and hence parameter estimates are valid39. 
However, we reject the null hypothesis of no residual correlation for broiler equation (in both 
models), signaling towards possible model specification errors in the broiler price equation.   

 For the sake of robustness, estimates from the more conventional econometric models i.e. 
near VAR model (unrestricted model-I) and the near VECM model (unrestricted model-II) are 
presented in table-6. The purpose of these results is to determine whether or not parameter 
estimates obtained from the restricted models are statistical artifacts driven by the exclusion of 
intermediate lags of explanatory variables. Moreover, we also want to see if (possible) 
specification errors in the broiler equation are mitigated in the unrestricted models. 

Table-6 Results from Unrestricted Model  
 Model-I: Near VAR Model-II: Near VECM 

 
Chick Price 

Equation  
(∆ωt

C) 

Broiler Price 
Equation 

(∆pt
B ) 

Chick Price 
Equation 

(∆ωt
C) 

Broiler Price Equation 
(∆pt

B ) 

𝛼𝛼 0.278 -0.056 -0.905 -5.41*** 

𝛾𝛾 -0.0002 0.0003 0.006 0.027*** 
∆𝜔𝜔𝑡𝑡−1

𝐶𝐶  -0.037 0.120 -0.054 0.040 
∆𝜔𝜔𝑡𝑡−2

𝐶𝐶  -0.057 0.015 -0.066 -0.043 
∆𝜔𝜔𝑡𝑡−3

𝐶𝐶  -0.096* 0.100 -0.105* 0.042 
∆𝜔𝜔𝑡𝑡−4

𝐶𝐶   0.127*  0.082 
∆𝜔𝜔𝑡𝑡−5

𝐶𝐶   0.062  0.046 
∆𝜔𝜔𝑡𝑡−6

𝐶𝐶   0.050  0.050 
∆𝜔𝜔𝑡𝑡−7

𝐶𝐶   0.181***  0.187*** 
∆𝑝𝑝𝑡𝑡−1

𝐵𝐵  0.070* 0.256*** 0.088** 0.347*** 
∆𝑝𝑝𝑡𝑡−2

𝐵𝐵  0.028 -0.155*** 0.050 -0.047 
∆𝑝𝑝𝑡𝑡−3

𝐵𝐵  0.092** -0.012 0.115*** 0.082 
∆𝑝𝑝𝑡𝑡−4

𝐵𝐵   -0.087  -0.007 
∆𝑝𝑝𝑡𝑡−5

𝐵𝐵   -0.018  0.055 

                                                             
38 It is well known that the Durbin Watson Test is not applicable if lagged values of the dependent variables appear 
on the right hand side of the regression equation. Moreover, the portmanteau test is able to check for serially 
correlated errors at multiple lags compared to just one lag in the Durbin Watson test.   
39 Note that both comparative static results related to chick prices vis-à-vis cobweb cycles are validated by empirical 
estimates from the chick price equation.  



∆𝑝𝑝𝑡𝑡−6
𝐵𝐵   -0.098*  -0.039 

∆𝑝𝑝𝑡𝑡−7
𝐵𝐵   -0.067  0.004 

∆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−1  0.209 -0.025 0.258 0.261 
∆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−2  -0.334 -0.179 -0.299 0.040 
∆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−3  0.497* -0.400 0.558** 0.252 
∆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−4   -0.383  -0.194 
∆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−5   -0.590  -0.468 
∆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−6   0.207  0.239 
∆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−7   0.669*  0.770** 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑡𝑡  0.567 1.86** 0.732 2.54*** 
𝐸𝐸𝑖𝑖𝐸𝐸𝑆𝑆𝑙𝑙𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑡𝑡  -3.039*** -1.229 -3.527*** -2.56** 

𝜇𝜇𝑡𝑡−1   -0.046** -0.191*** 
R − Square 7.51% 16.18% 8.77% 23.58% 

Portmanteau Test 9.399 0.496 8.992 1.29 
Estimates based on weekly prices from June 2008 to June 2015 for a total of 367 observations. The data was sourced from Pakistan Poultry 
Association (North). All prices are in nominal units of the local currency. Parameter estimates reported adjacent to the corresponding row 
variables while standard errors provided in the parenthesis below the parameter estimates. Summer denotes a dummy variable representing the 
period May-July in a given year. EidAzha denotes a dummy variable corresponding to the period 2 weeks before and 5 weeks after the 10th of 
Zul-Hijjah (12th month in the Islamic calendar). The underlying equations were estimated simultaneously using SUR. The portmanteau (or Q) test 
for white noise is based on 7 lags of the residuals, where the maximum lag length in the underlying model is used as the criterion for the selection 
of the number of residual lags to test for zero autocorrelation. Serially uncorrelated errors is the null hypothesis of the portmanteau test. Asterisks 
indicate statistical significance, where ***, **, * represent significance at 1%, 5% and 10% respectively. 
 

I. Estimates of the Chick Price Difference Equation-Near VAR and Near VECM models 
 
The results from the near VAR and the near VECM model provide further support to the 

theory of endogenous price fluctuations. All lags of chick prices are negative in the chick price 
equation in the near VAR model. This implies that periods of increasing prices witnessed during 
the chick production cycle are followed by periods of decreasing prices (high production) and 
vice versa, this is a clear manifestation of the classic cobweb effect. Furthermore, as predicted by 
our model (Result-III: 𝜕𝜕𝜔𝜔𝑡𝑡

𝐶𝐶

𝜕𝜕𝜔𝜔𝑡𝑡−3
𝐶𝐶 < 0), only the third lag i.e. 𝛽𝛽𝜔𝜔 ,3

𝐶𝐶  is statistically significant, 
suggesting that farmers use the current chick prices at the beginning of the production cycle to 
formulate expectation of future prices and hence production plans.  

 
Moving onto the effect of broiler prices on chick farmer production decisions, consistent 

with Result-IV i.e. 𝜕𝜕𝜔𝜔𝑡𝑡
𝐶𝐶

𝜕𝜕𝑝𝑝𝑡𝑡−3
𝐵𝐵 > 0, we find that 𝛽𝛽𝑝𝑝 ,3

𝐶𝐶  is positive and statistically significant. This 
represents the cobweb effect in a vertically linked market, whereby (naïve ) expectation of higher 
demand in lieu of high current broiler prices induces chick farmers to increase production and 
vice versa. Note that although, the first broiler price lag (𝛽𝛽𝑝𝑝 ,1

𝐶𝐶 ) is also positive, its effect is both 
smaller in terms of magnitude and statistical significance (p-value of 0.09) compared to the 
magnitude and significance of 𝛽𝛽𝑝𝑝 ,3

𝐶𝐶  (p-value of 0.03). The significance of 𝛽𝛽𝑝𝑝 ,1
𝐶𝐶  is perhaps driven 

by the following phenomenon. First, from the organization of production in poultry sector we 
know that broiler farmers buying chicks in a given week are the ones who sold broilers in the last 



week. Therefore, if broiler prices were high in last week, broiler farmers experienced a positive 
cash inflow and are now willing to pay a higher price for chicks and vice versa. Another intuitive 
explanation is that 𝛽𝛽𝑝𝑝 ,1

𝐶𝐶  denotes the positive effect of last week’s broiler price on the bargaining 
over chick prices between chick and broiler farmers. For example, if broiler prices witnessed an 
increase in the last week, broiler farmers are willing to pay chick farmers a higher price in 
(naïve) expectation of the continuation of current increasing trend. These interpretations are 
consistent with survey responses, where participants noted that broiler prices served as reference 
price for transactions between chick/broiler farmers and broiler farmers /retailers. The effect of 
feed costs reaffirms findings from the restricted VAR model i.e. positive and statistically 
significant 𝛾𝛾𝑡𝑡−3

𝐶𝐶 . Whereby, high feed prices at the beginning of the production cycle lead to lower 
production and hence higher prices at the end of production cycle. Interestingly, all intermediate 
lags of feed price changes are insignificant; suggesting that production plans are made in view of 
current feed prices only, consistent with the responses of farmers documented in section 3.1. 

 
Estimates from the chick price equation in the near VECM model present an identical 

picture albeit at markedly higher significance levels compared to the results from the near VAR 
model. More specifically, 𝛽𝛽𝜔𝜔 ,3

𝐶𝐶  (Result-III: 𝜕𝜕𝜔𝜔𝑡𝑡
𝐶𝐶

𝜕𝜕𝜔𝜔𝑡𝑡−3
𝐶𝐶 < 0), is negative and statistically significant (p-

value 0.06), 𝛽𝛽𝑝𝑝 ,3
𝐶𝐶  (Result-IV: 𝜕𝜕𝜔𝜔𝑡𝑡

𝐶𝐶

𝜕𝜕𝑝𝑝𝑡𝑡−3
𝐵𝐵 > 0) is positive and statistically significant (p-value 0.01) and  

𝛾𝛾𝑡𝑡−3
𝐶𝐶  is positive and statistically significant (p-value 0.05). Likewise, coefficients on intermediate 

lags of all explanatory variables are statistically insignificant expect 𝛽𝛽𝑝𝑝 ,1
𝐶𝐶 , which reflects the role 

of last week’s broiler prices as the reference price during bargaining between chick and broiler 
farmers over chick prices. The estimates presented in table-6 clearly show that empirical 
evidence in favor of cobweb cycles is not merely a statistical artifact, driven by the exclusion of 
intermediate lags in the restricted model.  

 
 Lastly, the negative effect of EidAzha on chick prices remains regardless of model 

specification, while summer season does not have statistically significant impact on chick prices 
(via reduced chick production channel) in either model. Note that compared to the restricted 
VECM model, the error correction term is negative and statistically significant (p-value 0.02) in 
the near VECM or unrestricted model, an indication that the near VECM is a valid 
approximation of the underlying data generating process. Also, the higher R-square in the near 
VECM model, along with smaller standard errors makes it our preferred specification. Although, 
based on portmanteau test statistic, we cannot the reject the null of uncorrelated residuals in both 
the near VAR and near VECM models, suggesting that both models are well specified. Overall, 
empirical estimates presented in table-6 not only corroborate estimates reported in table-5 but in 
fact further strengthen the argument in favor of endogenous price fluctuations (cobweb cycles) in 
chick prices.  

 
II. Estimates of the Broiler Price Difference Equation-Near VAR and Near VECM models 

 
We now focus our attention towards the broiler price equations. In the near VECM model, 

coefficients on all lags of chick prices are insignificant except 𝛽𝛽𝜔𝜔 ,7
𝐵𝐵 , which is not only significant 

at the 1% level but has a relatively large positive magnitude. Again, this is consistent with result-



II ( 𝜕𝜕𝑝𝑝𝑡𝑡𝐵𝐵

𝜕𝜕𝜔𝜔 𝑡𝑡−7
𝐶𝐶 > 0) derived from the stylized model of profit maximization by upstream and 

downstream farmers in a vertically linked agricultural value chain under the naïve expectations 
hypothesis. Similar, results are obtained from estimates of the broiler price equation in the near 
VAR model, although  𝛽𝛽𝜔𝜔 ,4

𝐵𝐵  is also marginally significant in this model. In both the near VAR 
and near VECM model, 𝛽𝛽𝑝𝑝 ,1

𝐵𝐵  is positive and highly significant. Similar to chick prices, this effect 
may represent the fact that last week’s broiler prices serve as reference price during negotiations 
between broiler farmers and retailers over broiler prices. Therefore, high prices last week 
translate into higher prices today and vice versa. Another explanation, drawn from the price 
transmission literature, is that  𝛽𝛽𝑝𝑝 ,1

𝐵𝐵   merely represents the statistical effect of stickiness or inertia 
in final good (in this case broiler) prices. Since, final good (broiler) prices don’t change abruptly 
due to the presence menu or transaction costs of relabeling etc. The effect of feed costs on broiler 
prices mirrors the results from the restricted models i.e. only 𝛾𝛾𝑡𝑡−7

𝐵𝐵  is (positive) statistically 
significant amongst all the lags of 𝛾𝛾𝐵𝐵 . 

In the case of result-I ( 𝜕𝜕𝑝𝑝𝑡𝑡𝐵𝐵

𝜕𝜕𝑝𝑝𝑡𝑡−7
𝐵𝐵 < 0), empirical evidence is ambiguous at best. The estimates 

from the near VAR model offer some support to the cobweb effect. For instance other than 𝛽𝛽𝑝𝑝 ,1
𝐵𝐵 , 

all lags of broiler prices are negative, in the near VAR model, consistent with the standard 
cobweb effect, although only 𝛽𝛽𝑝𝑝 ,2

𝐵𝐵  and  𝛽𝛽𝑝𝑝 ,6
𝐵𝐵  are statistically significant. However, all lags of 

broiler prices are statistically insignificant apart from 𝛽𝛽𝑝𝑝 ,1
𝐵𝐵  in the near VECM model. In light of 

the strong empirical evidence in favor of cobweb cycles in chick production (hence prices), it is 
unlikely that cobweb cycles in chick prices do not translate into cobweb cycles in the broiler 
production (hence prices), given the fact that chicks are eventually converted into broilers. 
Nevertheless, we present three explanations to resolve this conundrum. 

 
Perhaps, as argued earlier, the effect of chick prices on broiler farmers’ production decision 

dominates the effect of future expectation of broiler prices. Second, recall that the production 
cycle of broilers varies from 6-7 weeks. At the same time, in contrast to chick farmers, broiler 
farmers have a certain degree of flexibility vis-à-vis timing of the sale of broilers. Therefore, it 
may be that at times broiler farmers sell their output in the 5th week in lieu of favorable prices 
while at other times they wait until the seventh week. As a result, the relevant price that is used 
to form (naïve) expectation about future prices changes from one cycle to another, diluting the 
predictive power of our empirical model that relies on the identifying assumption of a fixed 
production cycle of approximately 7 weeks. Consequently, ignoring intermediate lags, as is done 
in the restricted models, mitigates this bias to an extent. Since, the cobweb effect of excluded 
lags is partially captured by the 7th lag. Recall, that in the restricted model  𝛽𝛽𝑝𝑝 ,7

𝐵𝐵  was negative 
regardless of model specification and although p-values were high, but nonetheless within a 
neighborhood of acceptability. Third, recall that the identification of the comparative static 
results of the broiler price difference equation was not straightforward but relied on additional 
assumptions on the functional forms40. Perhaps, these restrictive assumptions weaken the effect 
of broiler price expectations on broiler production (and hence realized prices).  
                                                             
40 It is straightforward to note that identification of the comparative static results of the chick price difference 
equation is independent of any assumptions on functional forms, due to the separability of chick and broiler prices. 
However the comparative static results for the broiler price equations cannot be identified without additional 
assumptions on the nature of the broiler cost function and the broiler retail demand function due to the fact that 
broiler and chick price lags are not separable, and their difference is the argument in the RHS. 



 
As observed in the restricted models, summer has a positive effect on broiler prices, an 

effect that seems to be based on the reduction of supply due to higher broiler mortality in hot 
weather. EidAzha, a period of increased lamb/beef consumption, has a negative effect on broiler 
prices due to a reduction in the demand of chicken. Likewise, consistent with previous empirical 
evidence, results in table-6 show that broiler prices have witnessed an upward trend over the past 
decade while chick prices have remained largely stagnant. Consistent with the prior literature of 
agricultural production, we also find a higher effect of feed costs on the prices of downstream 
product compared to the prices of the upstream sector i.e. (𝛾𝛾𝑡𝑡−7

𝐵𝐵  > 𝛾𝛾𝑡𝑡−3
𝐵𝐵  with p-value of 0.03). 

 
Lastly, regression diagnostics reveal that R-square increases significantly in the unrestricted 

model, especially for the broiler price equations. Most importantly in contrast to the restricted 
models, we cannot reject the null hypothesis of serially uncorrelated errors in the chick and 
broiler price equations in both unrestricted model (near VAR or VECM model) based on 
portmanteau test, suggesting that the unrestricted models are well specified. We arrive at similar 
conclusions vis-à-vis model specification based on the autocorrelation (ACF) and partial 
autocorrelation (PACF) functions. 
 
Summary 

 
A simple dynamic model of profit maximization by downstream and upstream farmers in 

a vertically linked agricultural value chain provides us with a parsimonious theoretical 
framework to empirically test the theory of endogenous price fluctuations in the Pakistan poultry 
sector. In general, the empirical estimates based on a unique dataset comprising of weekly farm-
gate prices of chicks and broilers from June 2008 to June 2015 lend support to the naïve 
expectation hypothesis and hence cobweb web cycles. Our findings are robust to different 
econometric specifications and estimation methodologies. More specifically, estimates from the 
restricted VAR and the restricted VECM models, derived directly from the theoretical model 
under the assumption of a quadratic cost function and a linear retail demand curve, are 
corroborated by estimates from the more conventional near VAR and near VECM models.  

In addition to the major results, we also find that higher feed costs (proxied by SPI) at the 
beginning of the production cycle lead to lower production and hence higher prices at the end of 
the production cycle for both chick and broiler prices. Second, as predicted by theory, there is a 
strong long run relationship between prices of intermediate (chicks) and final (broiler) 
agricultural products, evidenced by the negative and statistically significant error correction 
terms in the estimated VECM models. Whereby, deviations from the long-run equilibrium are 
periodically corrected in the short run. Lastly, following the burgeoning literature on the affect of 
Islamic festivals on economic behavior (Gavriilidis et al. 2015 and Seyyed et al. 2005), we 
convert the Gregorian calendar into the lunar calendar to isolate the demand side effect of 
EidulAzha, a festive period characterized by increased consumption of beef/lamb, on chicken 
prices. Unsurprisingly, we document a negative effect of EidulAzha on broiler and chick prices 
due to the lower demand for chicken during this season.  

Nevertheless, the abovementioned findings are not without important caveats. First, 
empirical tests of expectation regimes based on aggregate data are indirect by nature and hence 
inherently weak. Second, in the absence of aggregate output data, empirical tests of cobweb 



cycles based on price dynamics, derived from an underlying model of vertically linked upstream 
and downstream farmers, assume that demand behavior for broiler chicken is given. Although, 
this does not seem like an unreasonable assumption because broiler chicken is a food based 
commodity with fairly stable demand. At the same time, given the constraint that aggregate price 
data is usually available at reasonable frequencies as opposed to quantity data, there seems to no 
other viable alternatives. Third, the empirical tests are based on theoretical results derived from a 
stylized model with several simplifying assumptions. However, the validity of a model is not 
judged by its assumptions but by its ability to explain reality. Therefore in the next section, we 
use simulations to examine whether the stylized facts of the actual data can be reproduced by the 
price dynamics implied generated our theoretical model. 

The low explanatory power of empirical models, in particular the restricted models, vis-à-
vis poultry prices is another potential source of concern. Although, a relatively low R-square is 
not uncommon in models specified in first differences compared to models specified in levels. 
However, in our context, explanatory power is less of an issue given the fact that we are 
primarily interested in the verification or falsification of comparative static results as opposed to 
point estimates. Besides, regression diagnostics based on portmanteau test for white noise reveal 
that the empirical models are sufficiently well specified. Nevertheless, given the fact that a large 
body of theoretical literature has shown that, in the presence of non-linearities, chaotic dynamics 
can arise in simple non-stochastic cobweb markets. Where, chaotic systems are defined as 
deterministic dynamical systems that essentially generate random data, characterized by 
excessive variability and unpredictability. Therefore, we cannot rule out chaotic dynamics in the 
underlying system of difference equations as the underlying factor behind the low explanatory 
power of our empirical models. We examine some of the key issues related to non-linearities and 
the associated chaotic dynamics in the next section.  

In summary, an econometrician cannot observe the underlying data generating process 
driving the prices of chicks and broilers in Pakistan. But, instead, only aim to find the best 
approximation of systematic components in the trajectory of poultry prices by capturing 
empirical regularities in a given dataset. In this regard, few would argue that the overall 
empirical estimates presented in this section are not broadly consistent with the naïve expectation 
hypothesis and hence the existence of cobweb cycles in the Pakistan poultry sector. At the same 
time, by imposing restrictions on the estimated parameters, our theoretical framework allows us 
to circumvent a common critique of empirical research on price dynamics based on standard 
autoregressive time-series models i.e. difficulty in “interpreting” parameter estimates due to the 
inherently atheoretical and often arbitrary structure of autoregressive time-series models. While, 
robustness checks ensure that our findings are not driven by mere statistical artifacts.  

 

5. A simple model of endogenous price fluctuations: Numerical Analysis  

The evidence presented in the previous sections clearly illustrates the relevance of the 
theory of endogenous price fluctuations in explaining price dynamics in the Pakistan poultry 
sector. However, models and theories are judged upon their predictive ability in the framework 
of neoclassical economics (Lucas 1980). Therefore, in this section we employ numerical analysis 
to examine whether the stylized model of price fluctuations proposed in section-3 can reproduce 
the patterns observed in the actual data. But before delving into the simulations, we draw 



attention towards some interesting features of the system of difference equations derived from 
the underlying theoretical model. This understanding is essential to grasp the intuition behind the 
forthcoming simulation results. 

Ina section-3 we showed that the system of coupled, time-delay difference equations for 
chick and broiler prices, derived from a simple model of profit maximization by upstream and 
downstream farmers in a vertically interlinked competitive cobweb agricultural market, is given 
by: 
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Recall that 𝛼𝛼 and 𝛽𝛽 represent the curvature of the cost functions for chick farmers 
(𝐶𝐶1(𝑞𝑞𝑡𝑡𝐶𝐶) = (𝑞𝑞𝑡𝑡𝐶𝐶)𝛼𝛼 ) and broiler farmers (𝐶𝐶2(𝑞𝑞𝑡𝑡𝐶𝐶) = (𝑞𝑞𝑡𝑡𝐶𝐶)𝛽𝛽) respectively, where 𝛼𝛼 > 1 and 𝛽𝛽 > 1 
guarantees convexity. The curvature of the cost curves determine whether the underlying model 
behaves linearly or non-linearly, whereby the model is linear as long as 𝛼𝛼 = 𝛽𝛽= 2 and in all other 
cases it is non-linear. The demand for broiler by retailers is given by 𝑄𝑄𝑡𝑡

𝐵𝐵,𝐷𝐷 = 𝑎𝑎 − 𝑏𝑏𝑝𝑝𝑡𝑡𝐵𝐵  where 
𝑎𝑎 > 0 denotes the extent (or maximum capacity) of a given retailer and 𝑏𝑏 > 0 represents the 
sensitivity of demand to broiler prices. A fixed proportions production technology, i.e. the 
conversion rate of chicks into broilers, is represented by 𝑘𝑘 with 𝑘𝑘 ∈ [0− 1]. While, one week 
represents the discrete interval (or step) in the abovementioned differences equations.  

 𝑁𝑁1, 𝑁𝑁2 and 𝑁𝑁3 represent the number of chick farmers, broiler farmers and retailers in the 
market respectively. Although, we documented that markets for poultry products were 
competitive, farmer surveys revealed significant bargaining over prices between counter parties 
in spot markets. Therefore, we use the ratio of the relative size (within reasonable bounds) of 
counter parties (chick farmers, broiler farmers and retailers) in a given transaction (chicks or 
broilers) to capture the effect of bargaining power on poultry price dynamics, under the 
assumption that relative size, which is inversely related to the number of farmers in a given 
category, is a valid proxy for bargaining power41. Our stylized model is simple yet powerful as it 
captures several key aspects of agricultural markets. For example, the effects of cost structures, 
technological advancements, broiler chicken demand and relative bargaining powers of 
counterparties on poultry price dynamics are embedded into the system of equations.  

5.1 A Brief Overview-Effect of Time delays on the Behavior of Dynamic Models 

Unlike static models, in dynamic models, we are not only interested in the existence of an 
equilibrium state but also in its local stability and the global behavior of orbits generated by the 
underlying model. By and large, the literature on chaotic agricultural cobweb markets is limited 
to 1-dimensional maps. This simplifies analysis, since standard analytical results on the stability 

                                                             
41 For example, broiler farmers and chick farmers bargain over chick prices while broiler farmers and retailers 
bargain over broiler prices at any given time. In the simulations, we keep relative bargaining power low in order to 
ensure that considerations for imperfect competition don’t arise.  



of one-dimensional systems are well known and thus characterization of system dynamics into 
the relevant categories is fairly straightforward. However, many standard results derived for one-
dimensional chaotic maps cannot be easily extended for two-dimensional systems (Sedaghat 
2003). Research by Dieci and Westerhoff (2009 and 2012) is one of the few attempts in the 
agricultural economics literature to study chaotic dynamics in two dimensional systems. But 
their work deals with a “standard” system of difference equations i.e. the future state of the 
system is completely determined by the current state of the system. This is no longer true in 
difference equations with time delays because the evolution of the system is dependent upon 
both the current and the past state of the system. Consequently, conventional tools used to 
analyze the behavior of “standard” dynamical systems are not directly applicable to the analysis 
of systems with time-delays42.  

But in reality time delays in feedback mechanisms are frequently encountered in both the 
natural and social phenomenon. For example, the effect of time delays on the behavior of 
physical models is extensively studied in engineering sciences, particularly in the discipline of 
control systems (Zavaeri & Jamshidi 1987). Likewise, time delays are ubiquitous in biological 
models of cellular automaton, epidemics and population dynamics (Campbell 2007). Although 
compared to other disciplines, the study of time delays in the economics literature has been 
somewhat neglected over past decades. Nevertheless, analysis of the effects of lagged investment 
on business cycles and economic growth in the macroeconomics literature, popularly known as 
the Kaldor-Kalecki model due to Kaldor (1940) and Kalecki (1935), was one of the earliest 
attempts to study the impact of time delays on the behavior of dynamic models. While, the 
effects of time delays vis-à-vis transmission of information related to the competitor’s output on 
the stability of Nash equilibrium in the Cournat model continues to be an active research area in 
the industrial organization literature (Howroyd & Russell 1984; Chiarella & Khomin 1996; 
Yassen & Agiza 2003; Hassan 2004 and Elsadany 2010). Surprisingly, however to the best of 
our knowledge, the effect of time delays on the dynamics of agricultural prices has not been 
carefully examined in the agricultural economics literature.  

So, how does the presence of time-delays affect the global behavior of dynamic models? 
It turns out that the answer is not straightforward43. Initially, time delays were generally 
considered to be a cause of instability, however later research has shown than this is not always 
true (Campbell 2007). For example Yassen and Agiza (2003) and Elsadany (2010) prove that 
presence of delays increase the probability of convergence towards the Nash equilibrium in a 
Cournat duopoly game. Likewise, Hassan (2004) shows that delays increase the region of 
stability in a Cournat duopoly game. However, Howroyd & Russell (1984) find that decreasing 
delays increases the likelihood of stability in a Cournat oligopoly game. In fact, Huang (2008) 
argues that the relationship between the system stability and delays is not monotonic but varies 
from one case to case.  

                                                             
42 Asymptotic stability of linear systems can be analyzed by computing the eigan-values of the system transition 
matrix. While eigan values of the Jacobian, used to linearize nonlinear systems around the steady state, are 
employed to study issues related to local stability of nonlinear systems. As will become obvious later, both strategies 
need to be significantly modified to examine the behavior of dynamical system with time delays.  
43 Although, the continuous time analogue of time-delay difference equations i.e. time-delay differential equations 
are used in the vast majority of these applications. Nonetheless, qualitative results related to the effects of time 
delays on the dynamics of continuous time problems are generalizable to discrete time problems as well.  



Nevertheless, Campbell (2007) has identified several qualitative attributes commonly 
associated with the underlying dynamics of time-delay models. She finds that time delays often 
lead to delay induced oscillatory behavior created by Hopf bifurcations44. Whereas, other 
complicated dynamics associated with time-delay models include the existence of solutions with 
multiple frequencies (quasi-periodicity), attractor switching and multi-stability i.e. coexistence of 
more than one stable solution (Guckenheimer & Holmes 1983) and switching from one type of 
behavior to another as some parameter is varied (Kuznetsov 1995). In a nutshell, time delays 
significantly impact the behavior of dynamic models and thus, failing to account for time-delays 
in a model may lead to incorrect conclusions.  

Many of the abovementioned features commonly observed in time-delay models are also 
typically found in chaotic systems. This is not surprising, since the continuous time analogue of 
time-delay differences equations i.e. time delay differential equations belong to the class of 
functional differential equations which are well known to be inherently infinite dimensional 
problems. Whilst, although finite dimensional in the strictest sense, the presence of time delays 
in difference equations also leads to an increase in the dimension of the state-space of the 
underlying model.45 The increase in the dimension of the state space of an underlying model 
comes at the additional cost of both analytical difficulty and complicated dynamics. In fact, 
current research on linear chaotic operators has confronted the popular view that chaotic 
behavior can only arise in the presence of non-linearities. For example, Godefroy & Shapiro 
(1991) in their seminal work proved that a class of linear functions defined on an infinite 
dimensional state-space is chaotic. Likewise, Grosse-Erdmann et al (2011) document several 
linear operators on an infinite dimensional state-space that behave chaotically.   

Even linear time-delay differential equations do not have closed form analytical solutions 
expect under some special cases because continuous time-delay systems possess a spatial 
component in addition to a temporal component due to the effect of past states on the evolution 
of the dynamical system. Thus, unlike a system of ordinary differential equations, time delay 
systems belong to the class of systems with a functional state variable and hence an infinite 
dimensional state space. As a result, the characteristic equation of time-delay differential 
equations is a qausi-polynomial with infinite number of roots in the complex plane (Zavaeri & 
Jamshidi 1987). Consequently, characterization of eigan values on the real-imaginary axis, the 
workhorse of stability analysis, is no longer applicable. Just like the transition matrix, the 
Jacobian of the system also contains exponential terms, greatly complicating linearization of 
non-linear systems around the steady state46. Therefore, numerical methods and simulations are 
usually employed to study the local and global behavior of the continuous time delay systems. Of 

                                                             
44 In simple words, Hopf bifurcation is used to describe the change in the behavior of an underlying system from a 
stable equilibrium state to periodic trajectory as a given bifurcating parameter crosses some critical threshold. It is 
normally associated with purely imaginary eigan values. Of course, as mentioned before, adding delays to the model 
can also lead to the opposite effect i.e. transition from a periodic solution to a stable equilibrium point.   
45 A system of discrete time-delay equations can be recast into a system of higher order difference equations and 
order reductions methods used convert a system of higher order difference equations into a system of first order 
difference equations in order to perform stability analysis leads to an increase in the dimension of the state-space.  

46 The Lypanov-Krasovski functionals, Razumikhin techniques and Padé approximations are some of the commonly 
used analytical tools to study the stability of systems with a functional state variable, each method with its own pros 
and cons. 

https://en.wikipedia.org/wiki/Pad%C3%A9_approximant


course, numerical solutions rely on discretization of the infinite dimensional state space of the 
underlying model into a finite dimensional state-space.  

Although, the state-space of time-delay difference equations is finite dimensional47, 
nonetheless many difficulties encountered in the analysis of time-delay differential equations 
remain whilst studying the dynamics of time-delay system in discrete time. For example, while, 
the eigan values of the characteristic equation of a system of time delay difference equations are 
finite. However, due to the presence of power terms in addition to polynomials in the 
characteristic equation, often eigan values cannot be analytically factorized as a function of 
model parameters (Zavaeri & Jamshidi 1987). Likewise, standard linearization methods, based on 
the Jacobian, used to study non-linear systems are no longer applicable. Moreover, the number of 
eigan values is directly proportional to the size or dimension of the state vector corresponding to 
an arbitrary initial condition i.e. length of the delay. Therefore, as the length of the delay 
increases the analytical study of a system’s eigan values becomes cumbersome. Therefore, 
numerical analysis is often employed to study time-delay difference equations as well. However, 
due to the discrete-time nature of these problems, a simple forward looking loop can be used to 
simulate the underlying model in contrast to the complicated algorithms needed to numerically 
solve a system of time delay differential equations.  

In summary, time delays in the feedback mechanisms limit the efficacy of standard 
analytical tools used in the study of dynamical systems. At the same time even in linear systems, 
time delays can result in complicated trajectories including delay induced oscillations, quasi-
periodicity, attractor switching and multi-stability. In fact, in the case of time-delay differential 
equations even linear models can behave chaotically due to the existence of an infinite 
dimensional state-space. These behavioral features of time-delay systems are particularly 
relevant for agricultural economists interested in the theory of endogenous price fluctuations, an 
area where delays in feedback mechanisms are (in reality) a rule rather than an exception. 
Therefore, it will be interesting to see the insights that can be gained from incorporating time 
delays into cobweb-type models of agricultural markets, an endeavor that we purse in the 
following pages. 

5.2 Equilibrium & Stability Analysis 

 In light of the properties of time-delay systems documented in the previous subsection, 
we now direct our attention towards examining the equilibrium states and stability of the 
underlying system of time-delay difference equations. We begin our analysis with the special 
case of a linear system i.e. 𝛼𝛼 = 𝛽𝛽= 2. Note that in an equilibrium or steady state of the system 
𝑝𝑝𝑡𝑡𝐵𝐵 = 𝑝𝑝𝑡𝑡−3

𝐵𝐵 = 𝑝𝑝𝑡𝑡−6
𝐵𝐵 = 𝑝𝑝𝐵𝐵and similarly 𝜔𝜔𝑡𝑡

𝐶𝐶 = 𝜔𝜔𝑡𝑡−3
𝐶𝐶 = 𝜔𝜔𝑡𝑡−6

𝐶𝐶 = 𝜔𝜔𝑐𝑐 . Substituting into the system of 
linear equations and after some algebraic manipulation we get the following equilibrium state: 

𝑝𝑝𝐵𝐵 =
2𝑎𝑎𝑁𝑁3(𝑁𝑁2 + 𝑁𝑁1)

2𝑏𝑏𝑁𝑁3(𝑁𝑁2 + 𝑁𝑁1) + 𝑁𝑁2𝑁𝑁1𝑘𝑘2 

                                                             
47 The state spaces of discrete-time time delay systems is finite-dimensional because the state vector of past values at 
each instant has a finite number of elements, compared to delay differential equations where the past values have to 
be defined over a continuous interval with infinite number of sampling points.  



𝜔𝜔𝑐𝑐 =
2𝑎𝑎𝑁𝑁3𝑁𝑁2𝑘𝑘

2𝑏𝑏𝑁𝑁3(𝑁𝑁2 + 𝑁𝑁1) + 𝑁𝑁2𝑁𝑁1𝑘𝑘2  

In appendix-2, we use the single crossing property to prove the uniqueness of the 
equilibrium state of the underlying model in the more general case i.e. without imposing the 
restriction that 𝛼𝛼 = 𝛽𝛽 =  2.  

Proposition-1: The equilibrium of the coupled time-delay system on the real axis is 
unique, non-zero and positive.48  

The steady state of possesses several interesting features. First of all note that both 
equilibrium prices are non-zero and strictly positive given the definition of the parameters in our 
model. Secondly, as expected, we have 𝑝𝑝𝐵𝐵 > 𝜔𝜔𝑐𝑐 in equilibrium49. Thirdly, the comparative static 
results are intuitive e.g. 𝜕𝜕𝑝𝑝

𝐵𝐵

𝜕𝜕𝑎𝑎
> 0 and 𝜕𝜕𝜔𝜔

𝑐𝑐

𝜕𝜕𝑎𝑎
> 0 i.e. equilibrium price of broiler and chicks 

increases if the retail chicken demand curve shifts upwards. 𝜕𝜕𝑝𝑝
𝐵𝐵

𝜕𝜕𝑏𝑏
< 0 and 𝜕𝜕𝜔𝜔

𝑐𝑐

𝜕𝜕𝑏𝑏
< 0 i.e. equilibrium 

price of broiler and chicks decreases if the retail chicken demand curve becomes steeper 
(consumers become more price sensitive). And lastly, an increase in number of farmers at a 
given level in the value chain leads to a decrease in equilibrium prices of products at that level, 
due to the decline in relative size vis-à-vis the counter party in the given transaction (the 
bargaining power effect) i.e. 𝜕𝜕𝑝𝑝

𝐵𝐵

𝜕𝜕𝑁𝑁2
< 0 and 𝜕𝜕𝜔𝜔

𝑐𝑐

𝜕𝜕𝑁𝑁1
< 0. These findings lend support to the validity of 

the underlying model and also highlight that the equilibrium state is economically “relevant”. 
The abovementioned comparative static results also hold for the more general, non-linear 
system50.  

In a dynamic economic model, in addition to the existence of an equilibrium state, 
researchers are also interested in the stability of the equilibrium. For example, is the equilibrium 
asymptotically stable? And how does the system respond to small perturbations from the 
equilibrium state etc.? However, as mentioned before, the tools used to study the stability of 
“standard” dynamical systems are not directly applicable to time-delay systems due to delayed 
feedback mechanisms. Nevertheless, economists have developed methods and techniques to 
analytically study the properties of time-delay difference equations.  

A well-known method to examine the stability of time-delay models in the literature is 
based on the conversion of a system of time-delay difference equations into a sequence of first-
order difference equations (Yassen & Agiza 2003; Hassan 2004 and Elsadany 2010). This 
approach is based upon the fact that a time-delay difference equation is equivalent to a higher 
order difference equation51. And given an arbitrary nth order difference equation, it is fairly 

                                                             
48 From a stability perspective if 𝛼𝛼 < 𝛽𝛽, the system blows up and the equilibrium is no longer unique. Nevertheless 
even if 𝛼𝛼 < 𝛽𝛽, the economically relevant equilibrium state i.e. on the positive real line is still unique. 
49 Since the denominators of the fixed points are equal, comparing the numerators for 𝑝𝑝𝐵𝐵 = 2𝑎𝑎𝑁𝑁3(𝑁𝑁2 + 𝑁𝑁1) and 
𝜔𝜔𝑐𝑐 = 2𝑎𝑎𝑁𝑁3𝑁𝑁2𝑘𝑘, it is easy to see that 𝑝𝑝𝐵𝐵 > 𝜔𝜔𝑐𝑐  since 𝑁𝑁2 +𝑁𝑁1 > 𝑁𝑁2𝑘𝑘 because 𝑘𝑘 < 1 and 𝑁𝑁𝑖𝑖 is a positive integer. 
50 The comparative statics of the nonlinear model are similar to the results derived from the linear model but require 
additional and at times considerably more involved algebra. Therefore, given the scope of this paper and for sake of 
brevity, we choose not to show these calculations here, but are available upon request.   
51 The order of a system of difference equation refers to the maximal difference between the highest and lowest time 
indexes for a given variable in any system of difference equations.   



straightforward to produce a system of n first order difference equations by defining n-1 new 
variables for each higher order difference term (Neusser 2015). Thereafter, standard tools can be 
employed to study the stability of the resulting first order system of difference equations. In 
particular, it has been shown that the original time-delay system is asymptotically stable if and 
only if, all the eigan values of the augmented systems lie within the unit circle in the real-
imaginary axis space and vice-versa. More importantly, well known rules pertaining to the eigan 
values of the augmented first order system can be used to understand the qualitative behavior of 
the original time-delay model i.e. convergence to equilibrium, diversion from equilibrium or 
oscillations around the equilibrium. 

In appendix-3, we apply this method to study the stability in particular and the qualitative 
behavior in general of the system of linear coupled- time delay difference equations derived from 
our theoretical model under the naïve expectations hypothesis. For sake of brevity, the details of 
the computations are relegated to appendix-3, and eigan values under suitable calibrations of the 
model parameters are plotted below in figure-352. 

Figure-3-Eigen Values Plotted on the Real-Imaginary Axis 

 
The horizontal axis represents the real component of the eigan values and the vertical axis represents the imaginary components of the eigan 
values, computed at the baseline parameter values given in appendix-3.  

 Figure-3 shows that the original system of linear time-delay difference equations is 
asymptotically stable because the eigan values are within the unit circle in the real-imaginary 
axis space. This is an important finding since an unstable system i.e. trajectories that explode, is 
not meaningful and in most cases a clear indication that the underlying economic model is an 
invalid depiction of reality because in reality prices don’t explode. Moreover, it is well known 
that complex eigan values are associated with oscillatory behavior and it is interesting to note 
that 10 out of the 12 eigan values are complex conjugates, with large imaginary components. 
Qualitatively similar eigan values were obtained using different sets of parameter values. 
Whereby, a larger imaginary component relative to the real component is an indication of long-
                                                             
52 Due to the nature of the underlying time-delay system, the roots of the characteristic equation corresponding to the 
system transition matrix cannot be expressed in terms of the model parameters due to the presence of higher order 
terms; for details see appendix-3.Therefore we compute the eigan values numerically under reasonable calibrations. 
The details of the calibration under the baseline scenario are provided in the subsection on numerical simulations.  
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lasting oscillations around the equilibrium53. The persistent cycles in the underlying time-delay 
system are clearly highlighted during numerical simulations.  

Mathematically, it is important to note that the channel of price cyclicality in the 
underlying coupled time-delay system is different from the source of cyclicality in a standard one 
dimensional cobweb market. Whereby, in the case of the latter, the border line case of an eigan 
value of negative one is driving the cyclical behavior, severely limiting the range of parameter 
values at which long-term price cycles arise. However, in higher dimensional systems, complex 
eigan values and hence persistent price cycles are associated with a large range of parameter 
values. The bifurcation diagrams presented in the next subsection clearly illustrate the changes in 
the behavior of the underlying system from a unique steady state (|real eigan values|<1) to 
persistent oscillations (complex eigan values) in our settings.  

Lastly, the abovementioned analysis reveals that the dynamics of a two-dimensional 
linear time-delay system is equivalent to the dynamics in a 12 dimensional linear first-order 
system. Naturally, the complexity of system dynamics increases manifold with an increase in the 
state space of the model. And although, finite dimensional linear systems are never chaotic in 
theory, however, in practice high-dimensional linear systems can generate complicated behavior, 
in particular a markedly high sensitivity to initial conditions. Because, high dimensional systems 
are known to possess several complex eigan values, increasing the likelihood that different initial 
conditions correspond to the manifolds of different eigan vectors and hence produce different 
trajectories. Moreover, given that initial cannot be known with certainty, different sets of initial 
conditions result in different types of behavior which may lead an external observer to 
incorrectly conclude that the underlying data generating process is nonlinearly chaotic, unstable 
or changing over time.  

Even for linear systems, direct delay-dependent stability criterion cannot be analyzed 
analytically (barring some special cases) due to the presence of matrix power terms in the 
characteristic equation (Zavaeri & Jamshidi 1987). Nevertheless, as shown above, indirect 
methods to study the stability of linear time-delay systems reveal that our underlying model is 
asymptotically stable and characterized by cyclical behavior. But, stability criterion independent 
of delay can be derived analytically in order to determine whether delays have a stabilizing or 
destabilizing effect on the underlying model.  

Hale et. al (1985) have provided necessary and sufficient conditions of asymptotic 
stability independent of time delays for a given time-delay system. In appendix-4, we follow the 
approach of Hale et. al (1985) to prove that independent of time delays, the underlying model is 
asymptotically unstable since the absolute value of the dominant eigan value is greater than one.  

Proposition-2: The underlying linear time-delay system is asymptotically unstable 
independent of time-delays because the absolute value of the dominant eigan value is 
greater than 1.  

Proposition-2 and results from the stability analysis of the original linear time-delay 
systems using an indirect state-space augmentation approach lead us to the conclusion that 

                                                             
53 In the extreme case of non-zero imaginary-component but a real component of zero, the equilibrium is called a 
centre point i.e. perpetual oscillations around the steady state. 



delays in feedback mechanisms are a source of stability in this case. These findings have 
important ramifications vis-à-vis the literature on agricultural cobweb markets which have by 
and large failed to incorporate time-delays into the price dynamics.  

The objective of this subsection was to employ relevant analytical tools to study the fixed 
points and stability of the underlying system of time-delay difference equations. This analysis 
has revealed several important features of the model. First, the fixed point or equilibrium of the 
original unrestricted model is unique. Second, in the special case of a linear time delay system, 
the original model can be rewritten as set of twelve first order difference equations. The eigan 
values of the resulting system reveal that the original time-delay system is asymptotically stable 
and characterized by cyclical behavior due to the presence of complex eigan values with large 
imaginary components. Lastly, delays have a stabilizing effect on the dynamics of the model or 
in other words make an inherently unstable model stable by generating oscillatory behavior 
around the equilibrium state. We now turn to numerical analysis to further crystallize the 
conclusions derived from the analytical analysis in this subsection.  

5.3 Numerical Analysis & Simulations  

Numerical simulations are commonly employed to study the global dynamics of time-
delay models. However, in contrast to the complicated algorithms needed to solve time-delay 
differential equations, a simple forward looking loop with appropriate model calibrations can be 
used to trace the trajectories or orbits of time-delay difference equations.  

5.3.1 Model Calibrations  

We utilize the findings from fieldwork in Pakistan (refer to section-1 and section-3 for 
details), to calibrate the parameters of the model. The production technology of broiler farmers 
i.e. the conversion rate of chicks into broiler (𝑘𝑘) equals one minus the mortality rate of chicks in 
a given production cycle. Industry reports (Poultry Research Institute 2012, 2013 and 2014) and 
interviews with broiler farmers revealed that approximately 5% of the chicks die during the 
broiler production cycle on average. Therefore, in the baseline model we use 𝑘𝑘 = 0.95. Contrary 
to conventional wisdom, it is well known that the upstream farm sector (chick famers) is 
relatively more concentrated compared to the downstream farm sector (broiler farmers) in the 
Pakistan poultry industry. Likewise the downstream farm sector is relatively more concentrated 
compared to the retail sector. Given that industry concentration is inversely related to the number 
of firms in a sector we use 𝑁𝑁1 = 10, 𝑁𝑁2 = 11 and 𝑁𝑁3 = 12 in the baseline model. Whereby, as 
argued before, the relative size vis-à-vis the relevant counter party is employed as a proxy for the 
effect of bargaining power on poultry prices.  

Lastly, after taking into account the overall economic environment in less developed 
countries like Pakistan, we assume a relatively elastic demand for broiler chicken. Because 
budget constrained consumers are sensitive to changes in the prices of chicken and curtail 
consumption if prices increase beyond certain thresholds (and vice versa). But at the same time, 
broiler chicken is a food based commodity and demand for food based commodities is relatively 
inelastic. In light of these observations we assume 𝑎𝑎 = 90 and 𝑏𝑏 = 0.45 in the retail demand 
curve for broilers in the baseline model. The simulation results showed that these calibrations 
yield point-price elasticity of demand between −1% and −4% and the elasticity of demand 



equals −1.85% at the mean broiler price. Anecdotal evidence and responses of consumers 
during fieldwork support these hypothesized estimates of the price-elasticity of demand. 

5.3.2 Chaotic Dynamics 

The top-left panel in Figure-4 illustrates the simulated trajectories of chick and broiler 
prices over time under the linear time-delay system i.e. 𝛼𝛼 = 𝛽𝛽 = 2 without an exogenous 
production shocks. Simulated prices with a production shock of 𝜇𝜇~(0,0.75) each period related 
to the mortality of chicks i.e. 𝑘𝑘� = 𝑘𝑘 + 𝜇𝜇 are shown in the top-right panel. The lower panel shows 
the corresponding phase-space plots. 

Figure-4: Simulated Prices-Linear Time Delay Models 

 

 
From left to right, the top panel shows the line plots of chick and broiler prices from the linear deterministic time-delay model and the linear 
stochastic time-delay model, respectively. The baseline model calibrations are 𝛼𝛼 = 2, 𝛽𝛽 = 2,𝑘𝑘 = 0.95, 𝑎𝑎 = 90, 𝑏𝑏 = 0.45,𝑁𝑁1 = 10,𝑁𝑁2 =
11 & 𝑁𝑁3 = 12. Where, the red and blue lines represent weekly chick and broiler prices respectively, simulated over a period of 100 weeks after 
dropping the transient phase associated with initial conditions. The initial conditions for both simulations are identical. The bottom panel shows 
the corresponding phase-space plots i.e. plot of 𝜔𝜔𝑡𝑡𝐶𝐶 (y-axis) on 𝑝𝑝𝑡𝑡𝐵𝐵 (x-axis.) 

 
Simulated prices from the deterministic linear time-delay model are characterized by 

oscillations around an equilibrium state with a fixed amplitude and period. This type of 
dynamical behavior is consistent with complex eigan values with large imaginary components 
relative to the real components. Moreover, in contrast to the price trajectories derived from 
standard cobweb models, the simulated prices from the linear time-delay model are smooth and 
positively autocorrelated. Introducing production shocks with a zero mean into the linear time-
delay model results in more realistic random, non-periodic (the amplitude and period is non-
constant) yet cyclical dynamic around an equilibrium state. The simulations demonstrate that a 
simple model of endogenous price fluctuations with exogenous production shocks can generate 
the stylized features commonly associated with commodity prices i.e. positive autocorrelation, 
cyclicality and random variation.  

 



As expected, the corresponding phase-space plots show that the deterministic linear time-
delay model possesses a smooth, stable limit cycle and is thus non-chaotic in strictest sense, 
while the stochastic linear time-delay model does not have a stable limit cycle due to production 
shocks in each period. However, it is well known that non-linearities in difference equations can 
lead to complicated and often chaotic dynamics even in purely deterministic systems. In order to 
examine the effect of non-linearities on the dynamics of the underlying system of time-delay 
difference equations we introduce different types of non-linearities into the system by varying 
the cost function parameters i.e. 𝛼𝛼 and 𝛽𝛽. The resulting price trajectories are shown in figure-5.  

 
Figure-5: Simulated Prices-Non-Linear Time Delay Model 

 

 
From left to right, the top panel shows the line plots of chick and broiler prices from different nonlinear deterministic time-delay models, 
parameter values for each simulation are given by: (1) 𝛼𝛼 = 2.5, 𝛽𝛽 = 2.1, 𝑘𝑘 = 0.95,𝑎𝑎 = 70,𝑏𝑏 = 0.45,𝑁𝑁1 = 10,𝑁𝑁2 = 11 & 𝑁𝑁3 = 12. (2) 𝛼𝛼 =
1.75, 𝛽𝛽 = 1.65, 𝑘𝑘 = 0.95,𝑎𝑎 = 1000,𝑏𝑏 = 6.5,𝑁𝑁1 = 10,𝑁𝑁2 = 10 & 𝑁𝑁3 = 10 and (3) 𝛼𝛼 = 3,𝛽𝛽 = 2,𝑘𝑘 = 0.95, 𝑎𝑎 = 70, 𝑏𝑏 = 0.6,𝑁𝑁1 = 10,𝑁𝑁2 =
11 & 𝑁𝑁3 = 12. The initial conditions for all simulations are identical. The red and blue lines represent weekly chick and broiler prices 
respectively, simulated over a period of 100 weeks after dropping the transient phase associated with initial conditions. The bottom panel shows 
the corresponding phase-space plots i.e. plot of 𝜔𝜔𝑡𝑡𝐶𝐶 (y-axis) on 𝑝𝑝𝑡𝑡𝐵𝐵 (x-axis.) 
 
 The time series plots in the top panel depict bounded, non-periodic orbits which 
randomly oscillate around an equilibrium state. Although, approximately quasi-cyclical (periods 
of increasing prices followed by periods of decreasing prices), however, the orbits do not possess 
a constant period or amplitude. Moreover, the orbits do not show any repeating patterns. This is 
highlighted in the phase-space plots whereby, the price trajectories comprise of dense orbits 
encircling the equilibrium state without converging to a stable limit cycle or the equilibrium 
itself. It is well known that the aforementioned features typify chaotic systems i.e. deterministic 
non-linear maps exhibiting highly complicated, random and unpredictable behavior (Brock 
1986). It is also interesting to note that even the slightest non-linearities e.g. scenario at the top-
left of figure-5, leads to chaos. Likewise, different types of nonlinearities generate completely 
different price trajectories.  
 

If our model accurately captures the price dynamics in the Pakistan poultry sector, it is 
more likely that the true data generating process is non-linear and hence chaotic because the 



linear system of time-delay equations is only a special case of the underlying model. Note that if 
prices are chaotic and information acquisition costly, then naïve expectations about future prices 
are perfectly rational, as explained in detail in section-2. But is the actual price data chaotic? 

 
 Unfortunately, methods to detect chaos in actual data are rudimentary at best. 
Consequently, most applications of chaos in economics lack an empirical content (Brock 1999). 
In practice, identification of chaos in real world data employs a battery of statistical tests but the 
conclusions are seldom definitive. In fact, Sprott (2003) forcefully argues that due to the 
presence of environmental shocks, it is extremely difficult to disentangle deterministic 
randomness or chaos from noise in real world data. For example, Chatrath et al. (2002) use 
numerous empirical tests to determine whether daily futures prices of wheat, corn, soybean and 
cotton are chaotic. Although, they find evidence of non-linear dependence in the price data but 
nevertheless fail to conclusively detect chaotic dynamics. Finkenstadt and Kuhibier (1992) arrive 
at similar conclusions using weekly price data of pigs and potatoes in Germany from 1955 to 
1989.  
  

Nonetheless, data generated from chaotic systems often has a certain degree of structure 
or determinism relative to pure white noise. The BDS test statistic, due to Brock et al. (1987) is 
commonly employed to detect determinism in a dataset and thus serves as an ad-hoc test for 
deterministic chaos in the literature. The BDS test uses the concept of spatial correlation from 
chaos theory to compute the correlation integral for a given embedding dimension in the actual 
data and serves as a powerful statistical test for nonlinearities and deterministic chaos (Chatrath 
et al 2002 & Finkenstadt and Kuhibier 1992). Whereby, the rejection of the null hypothesis is 
construed as evidence in favor of deterministic chaos. Details of the related computations and the 
properties of the test statistic can be found in Brock et al. (1996).  

 
We use, MATLAB code written by Kanzler (1998) to compute the BDS test statistic for 

the actual chick and broiler price series along with the companion program (Kanzler 1999), to 
adjust the corresponding p-values for small sample bias. The BDS test statistic for chick and 
broiler prices is 58.63 and 56.18, respectively and statistically significant at 1% in both cases. 
The rejection of the null-hypothesis suggests that the actual price data is generated by a chaotic 
system. However, as mentioned before, the BDS test is not a conclusive test of chaos but merely 
suggestive of determinism in the underlying price series. Moreover, as pointed out be Sprott 
(2003), the confounding effect of environmental noise in real world data makes clean 
identification of deterministic chaos virtually impossible. Nonetheless, from an econometrician’s 
perspective, chaotic dynamics severely limit the efficacy of statistical models vis-à-vis long 
range price forecasts (Chatrath et al 2002). In fact, if the underlying data is chaotic then the 
current price is the “best” prediction of future price, very much in tune with the naïve 
expectation hypothesis.  This may be one reason for the low explanatory power of the 
econometric models estimated in section-4 of this paper.  

It is well known that nonlinearities can generate chaotic dynamics i.e. bounded, non-
periodic and dense orbits characterized by sensitive dependence to initial conditions and small 
changes in parameters. Interestingly, as highlighted in the beginning of this section, many of 
these properties are also commonly observed in time-delay models. For example, delay induced 
oscillatory behavior created by Hopf bifurcations, existence of solutions with multiple 
frequencies (quasi-periodicity), multi-stability i.e. coexistence of more than one stable solution 



(Guckenheimer & Holmes 1983) and attractor switching i.e. switching from one type of behavior 
to another as some parameter is varied (Kuznetsov 1995). 

Research has also shown that many linear operators on an infinite dimensional state space 
can generate chaotic data e.g. Godefroy & Shapiro (1991) and Grosse-Erdmann et al (2011). It is 
important to note that time delay differential equations belong to a class of functional differential 
equations known to be inherently infinite dimensional problems. Whilst, although finite 
dimensional in the strictest sense, in practice the presence of time delays in linear difference 
equations leads to an increase in the dimension of the state-space of the underlying model. And it 
is well known that increases in the dimension of the state space lead to complicated dynamics (as 
shown in appendix-3). 

Although, we do not find dense, non-periodic orbits without a stable limit cycle in 
simulations of the linear model. However, we document a markedly high sensitivity to initial 
conditions and small changes in parameter values in the linear time delay model. Figure-6 shows 
the simulated price trajectories of the baseline linear time-delay model with different initial 
conditions. The initial condition vectors for each scenario are sampled from a reasonable range 
within the domain of chick and broiler prices. 

 
Figure-6: Linear Time Delay Model-Sensitive Dependence on Initial Conditions 

 

 
The figure shows line plots of chick and broiler prices from the linear deterministic time-delay model with calibrations of parameter identical to 
the baseline model shown in the top left corner of figure-4 but different initial conditions. The red and blue lines represent weekly chick and 
broiler prices respectively, simulated over a period of 100 weeks after dropping the transient phase associated with initial conditions. The initial 
conditions for the baseline model shown in figure 4 are{[𝑝𝑝𝐵𝐵], [𝜔𝜔𝑐𝑐]} ={[100 85 79 70 72 80][20 25 30 30 27 20]}. Clockwise from left the initial 
condition vector for is given by :{[149 141 134 117 105 101][51 41 39 35 25 21]}, {[121 132 135 135 133 127][33 53 57 51 43 45]}, 
{[110 110 110 110 110 110][36 36 36 36 36 36 ]} and {[40 46 44 52 58 56][33 32 33 30 28 19]}.  
 

Note that although the price trajectories for different initial conditions are qualitatively 
similar i.e. oscillations around an equilibrium state, nevertheless, they look remarkably different 
despite the fact that model calibrations are identical to the baseline model. This type of behavior 
is uncharacteristic of asymptotically stable linear systems. However, as mentioned before time-
delays in the feedback mechanisms add significant complexity to the behavior of otherwise 



simple linear dynamical systems. Although, the underlying linear time-delay system is not 
chaotic in the strictest sense, due to the presence of a clearly observable stable limit cycle54. Yet, 
a remarkably high sensitivity to initial conditions points towards “thin” chaos or complicated 
behavior in the absence of dense, non-periodic orbits. Thin chaos poses major problems to the 
discipline of statistical modeling for long-range price forecasts since it is often not possible to 
precisely identify the “true” initial conditions. And as highlighted in figure-5, small measurement 
errors in initial conditions can lead to very different price trajectories even in “thinly” chaotic 
systems.    

Intuitively, the abovementioned sensitive dependency to initial conditions is perhaps 
driven by two factors. First, recall that the dynamics of the underlying 2-dimensional system of 
linear time-delay difference equations is equivalent to a 12-dimensional system of first order 
difference equations (see Appendix-3 for details). Therefore, different initial conditions may be 
associated with different eigan values as they lie on the stable manifold of different eigan 
vectors, resulting in different, albeit qualitatively similar behavior. Secondly, retarded 
differential equations, the continuous time analogue of time-delay difference equations are 
infinite dimensional problems, and, as mentioned before, chaotic behavior of linear functions on 
an infinite dimensional state-space is well documented in the literature (Grosse-Erdmann et al 
2011). Although, time-delay difference equations are not infinite dimensional because of a fixed 
step-size, nevertheless, as the length of the delay increases the behavior of a system of time-
delay difference equations approaches that of a retarded differential equation. Since, a large 
number of past values have to be determined at each state of the system in order to determine the 
future state of the system.  

Moreover, given that in practice, numerical methods to solve time-delay differential 
equations rely on discretization algorithms, which effectively means that a time-delay differential 
equation is equivalent to a system of first order difference equations with a very large but finite 
state-space dimension. And it is well known that the complexity of system dynamics and in some 
cases even emergence of chaotic behavior is directly related to the dimension of the state-space. 
Therefore, if retarded linear differential equations can behave chaotically in principle due to a 
high dimensional state-space, the same can be expected of linear time delay difference equations 
with long time-delays in general. In summary, although technically finite dimensional, the 
presence of time-delays in difference equations results in an increase in the dimension of the 
underlying state-space, which may potentially lead to “thin” chaos, as documented in the 
simulations in figure-6. 

The sensitive dependence of chaotic systems to small changes in parameters is studied 
with the help of bifurcation diagrams. Bifurcation diagrams illustrate the transitions in the nature 
of the limiting behavior of a dynamical system as a parameter of interest is systematically varied. 
And a bifurcation is said to have occurred if the limiting behavior of the underlying system is 
qualitatively different for parameter values on both sides of a given critical threshold. For 
example, transition from steady state to periodic state or transition from a periodic state to an 
unstable state etc and vice versa. This type of “switching” behavior is well documented in time-
delay systems (Kuznetsov 1995). Given the plethora of research on bifurcations in non-linear 
                                                             
54 However, note that lack of a stable limit cycle or in other words existence of solutions with multiple frequencies 
(quasi-periodicity) is not in time-delay systems (Campbell 2007). 



systems, we again choose to study the bifurcating behavior of the linear time-delay system. We 
use 𝑘𝑘 as the bifurcating parameter, since it is conveniently bounded between 0− 1 by definition 
and at the same time it possess a meaningful interpretation i.e. the efficiency of chick to broiler 
conversion technology. The bifurcation diagram is presented in figure-7. 

Figure-7: Bifurcation Diagram of Linear Time-Delay System

 
The bifurcation diagram is based on following parameter values 𝛼𝛼 = 2,𝛽𝛽 = 2, 𝑎𝑎 = 90, 𝑏𝑏 = 0.5,𝑁𝑁1 = 10,𝑁𝑁2 = 11 & 𝑁𝑁3 = 12. To ensure non-
negative chick prices values of  𝑘𝑘 were restricted between 0.075 and 1, with an incremental step size of 0.001. The transient phase comprising of 
50 periods was omitted and the states variables were simulated over an additional 200 periods to sketch out the limiting behavior of the system. 
The associated MATLAB code is given in Exhibit-2 

 
The bifurcation diagram reaffirms earlier conjectures about the supposedly chaotic 

behavior of the underlying system of linear time-delay equations. For instance, the limiting 
behavior of chick and broiler price trajectories transitions or “switches” from a unique stable 
equilibrium state into a periodic oscillatory cycle as 𝑘𝑘 crosses the (approximate) threshold of 0.8. 
This type of behavior is characteristic of Hopf bifurcations, usually associated with a change 
from real to imaginary eigan values in low dimensional non-linear systems. At the same time it is 
well known that delay induced oscillations, a commonly encountered feature of time-delay 
systems; often arise out of Hopf bifurcations (Campbell 2007). The thick lower tail of the 
bifurcation diagram, corresponding to values of 𝑘𝑘 (approximately) below 0.3, represents the 
opposite phenomenon i.e. transition from a oscillatory periodic state to a stable equilibrium state 
as 𝑘𝑘 increases beyond the (approximate) threshold of 0.3, albeit at a lesser scale.  
 

The above mentioned numerical analysis highlighted several interesting features of the 
price trajectories generated by the underlying system of time-delay difference equations derived 
from a simple model of profit maximization by farmers in a vertically linked cobweb market. In 
a nutshell, the simulated prices exhibit complicated cyclical behavior with and without any 
nonlinearity in the system. For example, the behavior of the system is clearly chaotic in the 
presence of any type of nonlinearity as shown by an absence of stable limit cycles. While, 
although, the special case of linear system possesses a stable limit cycle, however its dynamical 
behavior is characterized by sensitive dependence to initial conditions and small changes to 
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parameters. These findings limit the efficacy of long range statistical price forecasting methods 
and lend credence to the argument that naïve expectations about future prices are rational in 
chaotic markets given information acquisition is costly.   

5.4 Comparison of statistical properties of simulated and actual price data 

As mentioned at the beginning of this section, the primary objective of numerical 
simulations is to determine whether the stylized patterns observed in the actual price data can be 
reproduced by a proposed model. An aspect of economic modeling that has been largely ignored 
in the theoretical research on chaotic cobweb models. To this end, we compare and contrast the 
statistical properties of the simulated price data (table-7) with the actual data (table-2) to better 
understand the strengths and limitations of the underling model of endogenous price fluctuations. 
The parsimonious structure of the model allows us to look at several scenarios including 
exogenous shocks to mortality rate i.e. chick to broiler conversion technology, effect of different 
types of nonlinearities on price trajectories etc. 

Table-7: Relevant Statistical Measures of Simulated Price Data 
Scenario Coefficient of 

Variation 
Skewness Kurtosis Autocorrelation 

1 Broiler-linear deterministic 
Chick-linear deterministic 

0.15 
0.29 

-0.23 
0.14 

-1.47 
-1.50 

0.75 
0.75 

2 Broiler-linear stochastic 
Chick-linear stochastic 

0.15 
0.28 

-0.24 
0.18 

-1.20 
-1.17 

0.60 
0.59 

3 Broiler-nonlinear1 
Chick- nonlinear1 

0.09 
0.12 

-0.03 
0.06 

-0.86 
-0.96 

0.60 
0.61 

4 Broiler-nonlinear2 
Chick- nonlinear2 

0.12 
0.19 

-0.12 
-0.46 

-1.32 
-1.18 

0.60 
0.59 

5 Broiler-nonlinear3 
Chick- nonlinear3 

0.08 
0.09 

0.00 
-0.03 

-1.09 
-1.09 

-0.15 
-0.12 

 
 Firstly, simple visual inspection of line plots of simulated prices reported in figure 4 and 
5 reveal a non-explosive cyclical/quasi-cyclical behavior broadly similar to the strongly cyclical 
behavior of actual prices depicted in figure-2. Secondly, the average (normalized) variation in 
chick prices is twice that of broiler prices in both the simulated data and the actual data. The 
simulated price series also possess sufficiently high, positive first order autocorrelations, 
comparable to the autocorrelations (approximately 0.9) in the actual price data. This, in 
particular, is an important finding because negative autocorrelation in standard cobweb type 
models is a common criticism of the theory of endogenous price fluctuations. Likewise, the 
kurtosis is negative in both the price series, although rather high in the simulated data. But 
simulated broiler prices show negative skewness in contrast to the positive skewness observed in 
the actual broiler prices, although, simulated chick prices show positive skewness similar to the 
actual chick price data. It is evident that scenarios 1-3 are the best depiction of the underlying 
data generating process55. 

                                                             
55Note that it is has already been shown that even a linear-time delay system can be characterized by “thin” chaos 
i.e. sensitive dependence to initial conditions and small changes in parameters despite possessing a stable limit 
cycle. In this case, a linear model is not inconsistent with rationality of naïve expectations.   



 
5.4.1 Model Appraisal-Limitations and Extensions  

 
Taken together, the results from table-7 suggest that, apart from scenario-5, the 

underlying model generates, to a reasonable extent, the stylized features observed in the actual 
price data. At the same time, it is clear that the underlying model cannot reproduce the actual 
price series to a level of satisfactory precision. However, economic models are not expected to 
reproduce the exact data generating process behind actual commodity prices in the first place. 
Models of commodity prices are created to shed light on fundamental mechanisms behind price 
fluctuations whilst capturing the decisions making processes of agents in a specific economic 
environment. Obviously, this process entails (intentionally) overlooking potentially important 
factors like capacity constraints, market power, adjustment costs and risk aversion etc.  

 
These weaknesses withstanding, nevertheless, from a theoretical perspective the major 

objective of this paper was to examine the effects of vertical linkages and asymmetric production 
lags (time-delays) in agricultural values chains on commodity price dynamics. Given the data 
limitations, a deliberate attempt was made to keep the structure of the model as simple as 
possible in order to ensure that the analytical results derived from the underlying model can be 
evaluated statistically using real world data. Of course, this simplicity could not be achieved 
without ignoring some importation factors pertinent to agricultural markets. Therefore, we take 
some time out here to point out important weaknesses of the underlying model with the intention 
of pursuing them in future work and hopefully succeeding in addressing the shortcomings of the 
existing model vis-à-vis recreating the original price series.   

 
Firstly, in reality, farmers cannot simply increase/decrease planned production as a best 

response to favorable/unfavorable changes in prices due to short-run adjustment costs and long-
run capacity constraints. Especially in the case of livestock business, planned production is 
constrained in the short-run by the size of the breeding herd (parent stock in the case of poultry 
industry). The resulting inertia leads to higher first order autocorrelation in the actual data 
compared to the simulated data. In a model with nonlinear supply, Onozaki et al. (2000) 
incorporate the short run effect of adjustment costs by allowing only partial adjustment towards 
optimal production in response to a given price change. They show that faster adjustment 
towards optimal production in face of a given price change increases the likelihood of chaotic 
behavior and vice versa. Incorporating heterogeneous expectations seems like another valuable 
modification to the baseline model. For instance, Chavas (1999a) and Chavas (2000) find strong 
empirical evidence in support of heterogeneous expectation regimes in US broiler and beef 
sectors, respectively. In presence of heterogeneous expectations about future prices, different 
farmers respond differently to price changes, resulting in comparatively stable production (hence 
stable prices) and higher first order autocorrelation in actual prices.  

 
Another limitation of the model is the failure to incorporate long run dynamics into the 

price trajectories56. For instance, a cursory look at figure-2 clearly reveals several vertical shifts 
                                                             
56Consequently, in order to ensure minimal influence of long-run dynamics on prices, we limit the time-span of 
simulations to approximately 100-120 periods in the numerical section. This period is approximately equal to two 
years and in all likelihood long-run dynamics can be assumed to be fixed over such a short duration in practice. 
Furthermore, we do not compare the statistical properties related to the levels of accrual data due to the 
aforementioned shifts in the actual prices. 



(regime switching) in the actual price data over time, consistent with entry and exit of farmers to 
preserve the long-run zero profit condition. Such type of vertical shifts are by and large absent 
from the simulated price trajectories. One way to incorporate long run dynamics into the model 
is to endogenize the number of chick farmers, broiler farmers and retailers via the free-entry 
equilibrium condition. Of course, this stratagem entails the inclusion of additional state variables 
making the analysis much more complicated but at the same time more realistic. Dieci & 
Weshterhoff (2010) make an attempt to purse this line of inquiry by using the profit differentials 
between two horizontally linked cobweb markets to determine the equilibrium number of 
participating farmers in each market, although the total number of farmers is held to be fixed in 
their paper. Market power, especially in vertically linked agricultural markets, is another 
pertinent issue that was not considered in our paper. Interestingly, to the best of our knowledge, 
the effect of market power on the price dynamics in cobweb type agricultural markets has not 
been fully examined in the literature. Although, the effect of market power on the chaotic 
dynamics of prices in Cournat-type markets is an active area of research in the industrial 
organization literature (Yassen & Agiza 2003; Hassan 2004 and Elsadany 2010). 

 
It may also be worthwhile to explore a scenario in which planned production responses to 

a price increase differs from changes in planned production in response to a price decrease. 
Because additions to breeding herd in lieu of favorable price changes will bear fruition vis-à-vis 
increased production several periods later. On the contrary, breeding herd may be immediately 
culled in lieu of unfavorable expected prices, resulting in relatively faster decline in future 
production. This effect can be clearly seen in the actual price data depicted in figure-2, whereby 
prices do not rise and fall at the same “speed”. Anecdotal evidence also suggests that risk averse 
farmers rapidly decrease production in response to adverse price movements by culling breeding 
stock or leaving crop land fallow. Interestingly, Boussard (1996) shows that in the presence of 
risk averse producers, prices depict chaotic behavior and hedging facilities like future markets 
fail to reduce the magnitude of price fluctuations. Undoubtedly, pursuing this line of enquiry will 
lead to the introduction of further complexity into the model due to the discontinuities in the 
production function.  

 
Some important and seemingly important extensions can be easily incorporated into the 

original model e.g. adaptive expectations instead of naïve expectations and predetermined 
percentage of planned production produced at a pre-contracted fixed rate. We choose not to 
pursue these extensions for sake of brevity with the reasoned belief that incorporating these 
factors will not have a qualitatively meaningful impact on the existing price dynamics.  

 
6-Conclusion 
 

The behavior of prices of agricultural products is potentially interesting and at the same 
time complicated due to the interaction of myriad factors e.g. production delays, expectation 
regimes, random supply shocks and seasonality of demand etc. Although, commodity prices 
depict quasi-cyclical behavior, however, identification of the period and amplitude of cycles is 
often impossible due to the presence of several unobserved systematic components in 
agricultural prices e.g. seasonality of demand and endogenously changing production patterns. 
Moreover, interactions of continuous random supply shocks and “cobweb” responses of farmers 
to price changes may lead to periods of relative stability (quasi-periodic cylces) and instability 



(explosive cycles). Thus, researchers have to be very careful given the numerous pitfalls 
associated with examining issues related to agricultural commodity prices. 

In this paper we integrated research on theoretical models of chaotic cobweb markets 
with standard econometric tools for analysis of time-series data and insights from extensive 
fieldwork to examine the underlying reasons behind the price fluctuations in the Pakistan poultry 
sector. In doing so we have tried to address the well known shortcomings associated with purely 
theoretical research, empirical work and descriptive studies. For example, though illuminating, 
theoretical work often fails to adequately consider whether key assumptions of cobweb models 
hold in practice. While, statistical relationships derived from empirical work devoid of an 
economic framework are difficult to interpret and are often meaningless. Lastly, farmer surveys 
and interviews lend support to the conclusions of the paper and provide an interesting context for 
the research questions. Although, we do not claim that the aforementioned pieces of evidences 
i.e. qualitative study, empirical estimation, theoretical modeling and numerical simulation is 
individually conclusive but their accumulation does present a coherent picture. In summary, we 
conclude that numerical simulations and empirical analysis lend support to anecdotal evidence in 
favor of the relevance of the theory of endogenous price fluctuations in the Pakistan poultry 
industry.  

Methodologically, in the first stage of this project, structured interviews were carried out 
with different stakeholders in the poultry value chain during field work in Pakistan. The primary 
purpose of this endeavor was to understand the production and price discovery process, in 
particular the structure of the poultry supply chain, information flows and the economics of 
poultry farms in Pakistan. Unsurprisingly, we documented significant organizational differences 
between the supply chain and institutional environment of the poultry sector in Pakistan and 
USA. Given an understanding of the domestic price formation mechanisms and a selective 
review of the literature on price fluctuations, we developed an economic model to derive 
relationships between chick and broiler prices under a naïve expectations regime, given the 
constraint that price data is generally available at reasonable frequencies as opposed to quantity 
data. In contrast to the previous literature on cobweb markets, we specifically incorporated 
vertical linkages in poultry supply chain and asymmetric production time-delays into our model 
of price fluctuations. Thereafter, standard time-series econometric tools are employed to 
determine whether the actual broiler and chick prices conform to the predictions made from the 
underlying model. Lastly, numerical analyses were used to highlight the “strange” behavior of 
the underlying system of time-delay difference equations. Under reasonable calibrations, 
simulations reproduced the stylized patterns observed in the real world data i.e.  quasi-cyclical 
behavior, positive first-order autocorrelation, high variability and negative kurtosis. 

The paper makes several key contributions to the literature. Firstly, fieldwork in Pakistan 
sheds light on the often poorly understood mechanics of agricultural markets in less developed 
countries. From an economic theory perspective, we extend the literature on chaotic cobweb 
markets by incorporating two important aspects, which have been largely overlooked by 
pervious research i.e. vertical linkages in agricultural value chains and the associated asymmetric 
production delays. We also add an empirical dimension to the otherwise largely theoretical 
literature on cobweb markets by employing standard time-series econometrics methods to 
statistically evaluate the comparative static results derived from the underlying model using real-
world data. Lastly, our numerical analysis highlights that incorporating linkages between 



vertically linked farmers and asymmetric production-delays helps overcome commonly cited 
critiques of cobweb models i.e. negatively autocorrelated prices and simple, predictable 
dynamics57. These are non-trivial findings because backward looking expectations are boundedly 
rational if prices are unpredictable i.e. chaotic and information acquisition is costly.  

6.1-Policy Implications 
 

In light of the abovementioned findings, we conclude the paper by offering some policy 
recommendations to mitigate price volatility in the Pakistan poultry sector. The development of 
future markets on poultry products in Pakistan is highly improbable given the prevalent 
institutional environment. Therefore, in the short-run some sort of market intervention is needed 
to mitigate endogenous price fluctuations. For example, government may fix broiler and chick 
price over regular periods to ensure that farmers are aware of the expected price and hence future 
profitability of production plans. This will lead to stabilization of production and hence prices, if 
done over a significantly long period time, such that both upstream and downstream farmers are 
able to benefit from predetermined prices. Stabilization the upstream sector, seldom ignored in 
policy debates of price fluctuations, is key to mitigating price fluctuations, since a production 
glut or shortage originates from the upstream sector and feeds into the downstream sector. 
Increases in the market power of the upstream sector is one way to achieve stabilization of 
production because a monopolist sets production (and hence prices) such that marginal revenue 
equals marginal cost. In fact simulations (not reported) revealed that increasing the bargaining 
power of the chick farmers mitigated the price cyclicality to a large extent. Of course, both of 
these policies are merely stop-gap solutions and it is well known that market interventions and 
imperfections leads to significant deadweight loss. 

In the long run, policies that promote vertical integration of the entire poultry value chain 
are perhaps the best solution to the underlying problem of endogenous price fluctuations. Even 
basic level integration between hatcheries and broiler farmers can also lead to significant 
reduction in the observed price volatility. By stabilizing short run supply, storage leads to a 
significant reduction in price volatility (Mitra & Boussard 2012), especially given the strong 
seasonal patterns in the demand for broiler chicken in Pakistan. Whereby, seasonal swings in 
demand can have a large impact on current prices, and hence future prices given current prices 
are used as a proxy of future price. However, this is not possible without engendering a smooth 
transition from a live-bird market to frozen bird market. Of course, this requires significant 
investment in cold storage facilities across the poultry value chain along with relevant extension 
work to educate farmers and consumers about the benefits of frozen chicken over live-chicken. 
The Pakistan government was fairly successful in converting customers from consumption of 
untreated open-milk to packaged milk through extensive advertising campaigns in the 1990s.  

 
At the poultry association level, investments in information systems to collect, process 

and disseminate relevant poultry data e.g. placement of parent stock, chicks in hatcheries and 
broilers sold in a given week etc. will go a long way in helping farmers formulate production 
plans efficiently. However, the success of such systems relies on voluntary information sharing 
by participating farmers but in the context of developing countries, the incentives to accurately 
share production information are usually absent.   

                                                             
57 For example, we find evidence of chaotic behavior, even in the absence of any explicit nonlinearity 



  

Appendix-1 

In order to calibrate the theoretical model presented in section-3, we use a power function to 
represent the convex cost functions of poultry farmers and a linear function to capture the retail 
demand for broilers58. More specifically we employ:  

• A convex cost function of chick farmers at time t: 𝐶𝐶1(𝑞𝑞𝑡𝑡𝐶𝐶) = (𝑞𝑞𝑡𝑡𝐶𝐶)𝛼𝛼  where 𝛼𝛼 > 1 
• A convex cost function of broiler farmers at time t: 𝐶𝐶2(𝑞𝑞𝑡𝑡𝐶𝐶) = (𝑞𝑞𝑡𝑡𝐶𝐶)𝛽𝛽  where 𝛽𝛽 > 1 
• A linear retail demand function for broilers at time t: 𝑄𝑄𝑡𝑡

𝐵𝐵 ,𝐷𝐷 = 𝑎𝑎 − 𝑏𝑏𝑝𝑝𝑡𝑡𝐵𝐵  where 𝑎𝑎 > 0 
represents the extent (or maximum capacity) of a given retails demand and 𝑏𝑏 > 0 
represents the sensitivity of demand to broiler prices.  

Given these primers, recall that the derivation of broiler price dynamics under the naïve 
expectations hypothesis yielded the following difference equation: 

𝑝𝑝𝑡𝑡𝐵𝐵 = 𝐹𝐹−1 �
𝑘𝑘𝑁𝑁3
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′ �−1(𝑘𝑘𝑝𝑝𝑡𝑡−2
𝐵𝐵 − 𝜔𝜔𝑡𝑡−2

𝐶𝐶 )� 

Substituting in the above-mentioned functional forms and performing some algebric 
manipulations yields:  

𝑝𝑝𝑡𝑡𝐵𝐵 =
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Similarly the difference equation for broiler prices was given by: 

𝜔𝜔𝑡𝑡
𝐶𝐶 =  𝑘𝑘𝑝𝑝𝑡𝑡−1

𝐵𝐵 − 𝐶𝐶2
′ �
𝑁𝑁1

𝑁𝑁2
�𝐶𝐶1

′ �−1(𝜔𝜔𝑡𝑡−1
𝐶𝐶 )� 

Substituting in the relevant functional forms, and performing some algebraic manipulations gives 
us the following price dynamic for chick prices:  

𝜔𝜔𝑡𝑡
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In the special case of quadratic cost functions (𝛼𝛼 = 𝛽𝛽 = 2), the difference equations of broiler 
and chick prices can be reduces to the following system of linear equations:  

                                                             
58 Since the domain of cost functions is strictly positive by definition, therefore all power functions are convex 
functions. Likewise, both power functions and linear functions have a well defined inverse, note that since prices are 
always positive, the range of the inverse function is also the real line. 
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Appendix-2 

Again in an equilibrium or steady state we have 𝑝𝑝𝑡𝑡𝐵𝐵 = 𝑝𝑝𝑡𝑡−3
𝐵𝐵 = 𝑝𝑝𝑡𝑡−6

𝐵𝐵  = 𝑝𝑝𝐵𝐵  and 𝜔𝜔𝑡𝑡
𝐶𝐶 = 𝜔𝜔𝑡𝑡−3

𝐶𝐶 =
𝜔𝜔𝑡𝑡−6
𝐶𝐶 = 𝜔𝜔𝑐𝑐 . Substituting into the system of equations we get:  
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From the chick price equation we get: 
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Substituting the above expression into the broiler price equation and simplifying yields:  
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This equation is non-linear as long as (𝛼𝛼 = 𝛽𝛽 ≠ 2). In order to study the characteristics of 
the fixed point of this equation we can decompose it into a function 𝑓𝑓(𝜔𝜔𝑐𝑐) = 𝜔𝜔𝑐𝑐 +

�𝑁𝑁1𝛽𝛽
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�𝜔𝜔
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𝛽𝛽
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1
𝛽𝛽−1, where the domain of 𝜔𝜔𝑐𝑐  is the positive real line and a 

constant 𝐶𝐶 = 𝑘𝑘𝑎𝑎
𝑏𝑏

, where 0 < 𝐶𝐶 < ∞ by definition of the parameters in the model. Obviously at 
the fixed point 𝑓𝑓(𝜔𝜔𝑐𝑐) = 𝐶𝐶.  

Clearly, 𝑓𝑓(0) = 0 and 𝑓𝑓(∞) = +∞. Note that 𝑓𝑓′(𝜔𝜔𝑐𝑐) = 1 + 𝛽𝛽−1
𝛼𝛼−1

�𝑁𝑁1𝛽𝛽
𝑁𝑁2
�
𝛽𝛽−1

�𝜔𝜔
𝑐𝑐

𝛼𝛼
�
𝛽𝛽−1
𝛼𝛼−1−1

+

𝑁𝑁1𝑘𝑘2𝛽𝛽
(𝛼𝛼−1)𝑁𝑁3𝑏𝑏
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𝑐𝑐

𝛼𝛼
�

1
𝛼𝛼−1−1

�1
𝛽𝛽
�

1
𝛽𝛽−1 > 0, since 𝛽𝛽 > 1 and 𝛼𝛼 > 1 by definition and all other model 

parameters are strictly positive. Therefore, given 𝑓𝑓(𝜔𝜔𝑐𝑐) is a strictly increasing function on its 
domain, we can use the single crossing property to conclude that 𝑓𝑓(𝜔𝜔𝑐𝑐) intersects 𝐶𝐶 at a single 



point. Given the unique steady state 𝜔𝜔𝑐𝑐 , we can compute the corresponding equilibrium broiler 
price 𝑝𝑝𝐵𝐵 . Note, that we do not consider economically irrelevant steady states i.e. when  𝜔𝜔𝑐𝑐  and/or 
𝑝𝑝𝐵𝐵are less than zero, since prices are positive by definition. The actual steady states are only 
implicitly defined and cannot be expressed as a function of the model parameters. Nevertheless, 
actual values can be computed via numerical methods given suitable model calibrations.  

Appendix-3 

The special case of a system of linear time-delay difference equations is given by: 

𝑝𝑝𝑡𝑡𝐵𝐵 =
𝑎𝑎
𝑏𝑏 −

𝑁𝑁2𝑘𝑘2

2𝑏𝑏𝑁𝑁3
𝑝𝑝𝑡𝑡−6
𝐵𝐵 +

𝑁𝑁2𝑘𝑘
2𝑏𝑏𝑁𝑁3

𝜔𝜔𝑡𝑡−6
𝐶𝐶

𝜔𝜔𝑡𝑡
𝐶𝐶 = 𝑘𝑘𝑝𝑝𝑡𝑡−3

𝐵𝐵 −
𝑁𝑁1

𝑁𝑁2
𝜔𝜔𝑡𝑡−3
𝐶𝐶

 

 It is straightforward to notice that this is a system with sixth-order difference equations 
and two state variables. In order to study the stability and qualitative behavior of the system we 
can rewrite it as a system of first order difference equations with a dimension of 2x6. Whereby, 
n-1 new variables are defined to represent each higher order difference term along with a new 
system constant 𝐶𝐶. Therefore, let 𝑥𝑥𝑡𝑡𝑖𝑖 = 𝑝𝑝𝑡𝑡−𝑖𝑖𝐵𝐵  and 𝑦𝑦𝑡𝑡 = 𝜔𝜔𝑡𝑡−1

𝐶𝐶  for 𝑖𝑖 = 1 to 6. 
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⎢
⎢
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⎢
⎢
⎢
⎢
⎢
⎡𝑝𝑝𝑡𝑡
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𝜔𝜔𝑡𝑡
𝐶𝐶

𝑥𝑥𝑡𝑡1

𝑦𝑦𝑡𝑡1

𝑥𝑥𝑡𝑡2

𝑦𝑦𝑡𝑡2

𝑥𝑥𝑡𝑡3

𝑦𝑦𝑡𝑡3

𝑥𝑥𝑡𝑡4

𝑦𝑦𝑡𝑡4

𝑥𝑥𝑡𝑡5

𝑦𝑦𝑡𝑡5 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
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⎢
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⎢
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⎢
⎢
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𝑁𝑁2𝑘𝑘2

2𝑏𝑏𝑁𝑁3

𝑁𝑁2𝑘𝑘
2𝑏𝑏𝑁𝑁3

0 0 0 0 𝑘𝑘
𝑁𝑁1

𝑁𝑁2
0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 ⎦
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⎥
⎥
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⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎤

+ 𝐶𝐶 

It is easy to notice that the augmented system comprises of first order difference equations i.e. 
after making the appropriate substitutions we get the relevant price equations and 10 identities: 
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𝑁𝑁2𝑘𝑘2

2𝑏𝑏𝑁𝑁3

𝑁𝑁2𝑘𝑘
2𝑏𝑏𝑁𝑁3

0 0 0 0 𝑘𝑘
𝑁𝑁1

𝑁𝑁2
0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 ⎦
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⎥
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⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎤
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𝜔𝜔𝑡𝑡−1
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𝑝𝑝𝑡𝑡−2
𝐵𝐵

𝜔𝜔𝑡𝑡−2
𝐶𝐶

𝑝𝑝𝑡𝑡−3
𝐵𝐵

𝜔𝜔𝑡𝑡−3
𝐶𝐶

𝑝𝑝𝑡𝑡−4
𝐵𝐵

𝜔𝜔𝑡𝑡−4
𝐶𝐶

𝑝𝑝𝑡𝑡−5
𝐵𝐵

𝜔𝜔𝑡𝑡−5
𝐶𝐶

𝑝𝑝𝑡𝑡−6
𝐵𝐵

𝜔𝜔𝑡𝑡−6
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⎥
⎥
⎥
⎥
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⎥
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⎥
⎥
⎥
⎥
⎤

+ 𝐶𝐶 

For notational simplicity, let 𝑋𝑋𝑡𝑡  denote the LHS vector of variables and 𝐸𝐸 represent the 
transition matrix, then the model can be succinctly written as a first order system: 𝑋𝑋𝑡𝑡 = 𝐸𝐸𝑋𝑋𝑡𝑡−1 +
𝐶𝐶. It is well known, that eigan values of the matrix 𝐸𝐸 will determine the behavior of the original 
time-delay system. Note that in equilibrium 𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡−1 = 𝑋𝑋, substituting into the augmented first 
order system and simplifying we get: 𝑋𝑋 = (𝑆𝑆 − 𝐸𝐸)−1𝐶𝐶. It is easy to show that (𝑆𝑆 − 𝐸𝐸)−1 is 
always invertible and thus the augmented system has a unique fixed point just like the original 
time-delay system. 

  
Due to the large dimension of the system matrix 𝐸𝐸, formulating and factorizing the 

associated characteristic equation is not feasible. Therefore, we use MATLAB to calculate eigan 
values under suitable model calibrations, these calibrations are identical to ones used for 
numerical simulations of the baseline model in section 5.3 i.e.  𝑘𝑘 = 0.95, 𝑏𝑏 = 0.45 , 𝑎𝑎 =
90,𝑁𝑁1 = 10, 𝑁𝑁2 = 11 and 𝑁𝑁3 = 12. The eigan values are: 𝜆𝜆1,2 = −0.9392 ±  0.3434i, 𝜆𝜆3,4 =
0.1722 ±  0.9851i, 𝜆𝜆5,6 = 0.7670 ±  0.6417i, 𝜆𝜆7,8 = −0.2184 ± 0.3784i, 𝜆𝜆9,10 =
−1.4733e − 06 ± 2.5519e− 06i, 𝜆𝜆11 = 0.4367 and 𝜆𝜆12 = 2.9467e − 06 respectively. 
Qualitatively, similar eigan values are obtained for within the domain of 𝑘𝑘. 
 

Although, the above-mentioned analysis has been performed for the special case of our 
time-delay model i.e. a linear system when 𝛼𝛼 = 𝛽𝛽 = 2. This method can be followed to study the 
local stability of the non-linear systems as well i.e. when 𝛼𝛼 = 𝛽𝛽 ≠ 2, by replacing the coefficient 
or system transition matrix by the Jacobian of the resulting first order system so as to linearize 
the non-linear system around the fixed point.59 Again, for sake of brevity, we choose not to 
pursue this line of inquiry further since it entails numerical computation of the fixed point of the 
non-linear system (please refer to appendix-2) along with other detailed computations.  
 

 

                                                             
59 Note that for linear systems, local stability and asymptotic stability are equivalent notions. While for non-linear 
system we can only study the local behavior of the system analytically and need to use numerical simulations to 
investigate the global behavior. 



Appendix-4 

Derivation of delay-dependent stability criterion for time-delay systems is possible in 
very few cases, usually for very simple systems. However, stability criterion independent of 
delay can be easily derived for most time-delay systems. Hale et al. (1989) have provided 
necessary and sufficient conditions for the asymptotic stability of time-delay systems 
independent of delay:  

Let 𝑥𝑥 represent a vector of endogenous state variables with a fixed time-delay 𝐸𝐸 and 
related coefficient matrix 𝐸𝐸 and 𝐸𝐸𝐸𝐸 , such that the resulting system of retarded differential 
equations is given by: 

�̇�𝒙 = 𝑨𝑨𝒙𝒙 + 𝑨𝑨𝒅𝒅𝒙𝒙(𝒕𝒕 − 𝒅𝒅). This is system is asymptotically stable, independent of delay if 
𝑹𝑹𝑹𝑹 �|𝝀𝝀(𝑨𝑨 + 𝑨𝑨𝒅𝒅) �| < 0 under standard normality conditions. 

It is well known that time-delay difference equations with a fixed delay are just the discrete time 
analogue of retarded differential equations, and can be readily converted into the latter, the 
resulting theorem for difference equations is given by: 

∆𝒙𝒙𝒕𝒕 = 𝑨𝑨𝒙𝒙𝒕𝒕−𝟏𝟏 + 𝑨𝑨𝒅𝒅𝒙𝒙(𝒕𝒕 − 𝒅𝒅). This is system is asymptotically stable, independent of delay if 
𝑹𝑹𝑹𝑹 �|𝝀𝝀(𝑨𝑨 + 𝑨𝑨𝒅𝒅) �| < 1 under standard normality conditions.60 

Applying this theorem to time-delay system under study in this paper, we get:  

�∆𝑝𝑝𝑡𝑡
𝐵𝐵
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0 −1� �
𝑝𝑝𝑡𝑡−1
𝐵𝐵

𝜔𝜔𝑡𝑡−1
𝐶𝐶 � + �

0 0

𝑘𝑘 −
𝑁𝑁1

𝑁𝑁2

� �𝑝𝑝𝑡𝑡−3
𝐵𝐵

𝜔𝜔𝑡𝑡−3
𝐶𝐶 � + �−

𝑁𝑁2𝑘𝑘2

2𝑏𝑏𝑁𝑁3

𝑁𝑁2𝑘𝑘
2𝑏𝑏𝑁𝑁3

0 0
� �
𝑝𝑝𝑡𝑡−6
𝐵𝐵

𝜔𝜔𝑡𝑡−6
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� 

Following Hale et al. (1989), we need to look at the eigan values of the following matrix in order 
to determine the asymptotic stability of the abovementioned system independent of time delay: 

𝝀𝝀(𝑨𝑨 + 𝑨𝑨𝒅𝒅) =

⎣
⎢
⎢
⎢
⎡−1−

𝑁𝑁2𝑘𝑘2

2𝑏𝑏𝑁𝑁3

𝑁𝑁2𝑘𝑘
2𝑏𝑏𝑁𝑁3

𝑘𝑘 −1 −
𝑁𝑁1

𝑁𝑁2⎦
⎥
⎥
⎥
⎤
 

The corresponding characteristic equation is given by: 

�1 +
𝑁𝑁2𝑘𝑘2

2𝑏𝑏𝑁𝑁3
+ 𝜆𝜆� �1 +

𝑁𝑁1

𝑁𝑁2
+ 𝜆𝜆� −

𝑁𝑁2𝑘𝑘2

2𝑏𝑏𝑁𝑁3
 

Multiplying out and collecting terms we get: 

                                                             
60 Simply subtract 𝑥𝑥𝑡𝑡−1 from both sides, such that we have the change in 𝑥𝑥 on the left hand side, see Vas (2016) for 
details. Note that in contrast to continuous time whereby the eigan values are the exponent in the symbolic dynamic 
of the system, in discrete time the eigan values are the base of the exponent in the symbolic dynamics. Therefore, 
asymptotic stability is discrete time systems is achieved if the absolute value of the eigan value is less than 1 i.e. all 
eigan values are within the unit circle.   



𝜆𝜆2 + 𝜆𝜆 �2 +
𝑁𝑁1

𝑁𝑁2
+
𝑁𝑁2𝑘𝑘2

2𝑏𝑏𝑁𝑁3
�+ 1 +

𝑁𝑁1

𝑁𝑁2
+
𝑁𝑁1𝑘𝑘2

2𝑏𝑏𝑁𝑁3
 

Now, using the quadratic root formula: −𝑏𝑏
2𝑎𝑎

±√�𝑏𝑏2−4𝑎𝑎𝑐𝑐 �
2𝑎𝑎

, where 𝑏𝑏 = 2 + 𝑁𝑁1
𝑁𝑁2

+ 𝑁𝑁2𝑘𝑘2

2𝑏𝑏𝑁𝑁3
, 𝑐𝑐 = 1 + 𝑁𝑁1

𝑁𝑁2
+

𝑁𝑁1𝑘𝑘2

2𝑏𝑏𝑁𝑁3
 and 𝑎𝑎 = 1. It is straightforward to notice that ��−𝑏𝑏

2𝑎𝑎
��>1, since 𝑁𝑁1

𝑁𝑁2
 and 𝑁𝑁2𝑘𝑘2

2𝑏𝑏𝑁𝑁3
 are non-zero positive 

numbers by definition of the parameters. Similarly, simplifying the expression (𝑏𝑏2 − 4𝑎𝑎𝑐𝑐) we 
get: 𝑁𝑁1

2

𝑁𝑁2
2 + 𝑁𝑁2

2𝑘𝑘4

4𝑏𝑏2𝑁𝑁3
2 + 𝑘𝑘2(2𝑁𝑁2−𝑁𝑁1)

𝑏𝑏𝑁𝑁3
, this expression is also strictly positive by definition of the 

parameters61.  

We know with certainty that that absolute value of 𝜆𝜆1 = − 𝑏𝑏
2𝑎𝑎
− √�𝑏𝑏2−4𝑎𝑎𝑐𝑐 �

2𝑎𝑎
 is greater than 

1, since both 𝑏𝑏
2𝑎𝑎

 and √�𝑏𝑏
2−4𝑎𝑎𝑐𝑐 �
2𝑎𝑎

 are positive, while �� 𝑏𝑏
2𝑎𝑎
��>1 by definition. For our purposes it 

suffices to note that �|𝜆𝜆1
�|>�|𝜆𝜆2

�| where 𝜆𝜆2 = − 𝑏𝑏
2𝑎𝑎

+ √�𝑏𝑏2−4𝑎𝑎𝑐𝑐 �
2𝑎𝑎

. Because the asymptotic behavior of 
the system is determined by the dominant or largest eigan value and it is well known that the 
underlying system is asymptotically unstable if the absolute value of the dominant eigan value is 
greater than 1. Therefore, we conclude that the underlying system is asymptotically unstable 
independent of time-delays.   

Note that in addition to �|𝜆𝜆1
�|>1, 𝜆𝜆1 is also negative, consistent with oscillatory diverging 

behavior, while the sign of 𝜆𝜆2 depends on the parameter values. Likewise, depending on the 
parameter values either �|𝜆𝜆1

�|>1>�|𝜆𝜆2
�| which corresponds to a saddle point or an unstable explosive 

system �|𝜆𝜆1
�|>�|𝜆𝜆2

�| > 1. In order to get a better idea of the behavior of the underlying model 
without the effects of time-delays on system dynamics, we compute the eigan values using 
model calibrations for the baseline case i.e. 𝑘𝑘 = 0.95, 𝑏𝑏 = 0.45 , 𝑎𝑎 = 90,𝑁𝑁1 = 10, 𝑁𝑁2 = 11 and 
𝑁𝑁3 = 12. The resulting eigan values are 𝜆𝜆1 = −2.70 and 𝜆𝜆2 = −0.96, consistent with a saddle-
point, whereby the system is best characterized by oscillatory divergence away from the 
equilibrium or explosion in the direction of 𝜆𝜆1 and oscillatory convergence towards equilibrium 
in the direction of 𝜆𝜆2. Also, note that 𝜆𝜆2 is approximately equal to -1 in the baseline case, 
indicative of the borderline case of perpetual oscillations around the equilibrium. Of course, the 
baseline model independent of time-delay is also asymptotically unstable due to the effect of the 
dominant eigan value.  

 

 

 

 

 

                                                             
61 Recall that the 𝑁𝑁𝑖𝑖 was used to measure relative bargaining power of the ith counterparty and assumed to be such 
that the ratio of any two 𝑁𝑁𝑖𝑖 is within reasonable bounds such that considerations of imperfect competition do not 
arise. Therefore 2𝑁𝑁2 < 𝑁𝑁1 is not feasible given our model. Also note that based on surveys data assumed 𝑁𝑁1 < 𝑁𝑁2. 



Exhibit-1 

A stacked survey methodology was adopted to gain maximum information about the poultry 
industry at minimum cost. Approximately 50 subjects, belonging to different types of agents in 
the poultry value chain, were interviewed by a professional marketing research company called 
The Learning Organization (TLO) under my supervision between August-October 2015. The 
questions for structured interviews, usually lasting for approximately 1-2 hours, are provided 
below along with the relevant subject headings.  
 
1-Business Model and the Poultry Value Chain  

• Briefly describe your role in the poultry value chain?  
• Who are the most powerful players in the chick and broiler value chain?  
• What is the reason for engaging intermediary in the value chain instead of direct dealing 

with hatchery/retailer?  
• What is the commission structure of middlemen in the value chain?  

 
2-Demand/Supply Trends and Determinants  

• What are the major trends of demand for chicken in Pakistan?  
• What are the major determinants of supply (production) of chicks and broiler in Pakistan?  
• How do individual farmers make their decisions about when/how much to supply in a 

given time period?  
• What are the reasons for overproduction?  
• Are the market dynamics for chick and broiler different in other regions of Pakistan? 

Yes/No? Why?  
 
3-Poultry Data related to Demand and Supply  

• What are the main cost components in the production of chick and broiler?  
• Do you think that cost components have shown considerable volatility over the past five 

years? If yes than why and which components?  
• What are the main cost components vis-à-vis the selling and marketing expenses of chick 

and broiler? Do you think that selling/marketing costs have changed considerably over 
the past 5 years? If yes than why?  

 
4-Price determination and Communication  

• How are farm gate prices set in the chick and broiler industry?  
• How are the prices communicated to various stakeholders?  
• Is there any mechanism to ensure that everyone is selling chick and broiler at the 

circulated prices?  
 
5-Price Volatility  

• What do you think are the possible reasons behind the volatility in prices of chick and 
broiler?  

• What is the impact of price volatility on your business?  
• What is the possible impact of price volatility on other participants in the value chain 

(e.g. feed mills, breeding farms, broiler farms, retailers, final consumer)?  



• Who do you think gains the most in the value chain due to these price fluctuations?  
• Who do you think loses the most in the value chain due to these price fluctuations?  
• What measures can be to taken to stabilize the prices of poultry products?  

 

Exhibit-2 

clear all 
close all 
clc 
A=2;%alpha in appendix-1%; 
B=2;%beta in appendix-1% 
n1=10; 
n2=11; 
n3=12; 
a=90;  
b=0.5; 
Npre = 50; Nplot = 200;  
chickprice = zeros(Nplot,1);  
broilerprice=zeros(Nplot,1); 
for k = 0.075:0.0001:1,  
  chickprice(1) = 20;  
  chickprice(2) = 25; 
  chickprice(3) = 30; 
  chickprice(4) = 30; 
  chickprice(5) = 27; 
  chickprice(6) = 20; 
  broilerprice(1) = 100; 
  broilerprice(2) = 85; 
  broilerprice(3) = 79; 
  broilerprice(4) = 70; 
  broilerprice(5) = 72; 
  broilerprice(6) = 80; 
  for t = 7:Nplot,  
   chickprice(t)= k*broilerprice(t-3) - ((n1*B/n2)^(B-1))*(chickprice(t-
3)/A)^((B-1)/(A-1)); 
   broilerprice(t)= a/b-((n2*k)/(n3*b))*(k*broilerprice(t-6)/B-chickprice(t-
6)/B)^(1/(B-1)); 
  end,  
subplot(211) 
  plot(k*ones(Nplot-Npre,1),real(chickprice(Npre:Nplot-1)), '.', 
'markersize', 3);  
  hold on 
subplot(212) 
  plot(k*ones(Nplot-Npre,1),real(broilerprice(Npre:Nplot-1)), '.', 
'markersize', 3);  
  hold on;  
end,  
 xlabel('k');  ylabel('Price');  
 set(gca, 'xlim', [0 1]);  
 hold off; 
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