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Forecasting Agricultural Commodity Transportation Costs:   

Mississippi River Barge Rates  

A commodities trader’s success is directly tied to his/her ability to foresee future changes in the 

marketplace and to adapt a position accordingly. This is especially true in trading of agricultural 

commodity markets that are characterized by low margins and high volumes. Intuition and 

experience may provide a sense for the current feel of the market or even into the future; 

however it is often difficult to convert feelings into numerical forecasts. Traders may then base 

decisions on gut feelings or non-quantitative predictions based on intuition. A case in point is 

commodity trading where transaction and transportation costs are generally a major variable-cost 

component of the commodity being traded. These costs can represent a significant portion of 

commodity-procurement costs, and in the case of Mississippi River barge shipping can be highly 

volatile. Persistent changes in price volatility can heighten the risk exposure of both agricultural 

producers and procurers, which negatively impacts efficiency by presenting a barrier to more 

efficient trading and reduce the efficiency and competitiveness of U.S. exports. Organizations 

augmenting their intuition with quantifiable predictions of commodity-procurement costs (barge 

rates for example) may enhance their returns. Further, the Army Corps of Engineers as well as 

state and federal governments are interested in barge rate forecasts as they are essentially 

predictions of river traffic and commerce levels. These forecasts relate directly to the health of 

the U.S. agricultural export market and domestic farmers.   

When looking at how barge rates may behave in the future, many current traders rely simply 

on a historical average or the barge rate in the previous period, which are naïve forecasting 

scenarios that are unable to account for a changing market or external factors. An alternative is 
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developing an economic forecasting model to which improve the accuracy and reliability of 

forecasts. Developing a simple model that yields more accurate forecasts than the current naïve 

scenarios can increase trading profitability and transportation efficiency. However, the worth of 

developing such a model extends farther than just improving trading efficiency and profitability. 

It provides a case study on how applied economists are market engineers in designing tools for 

improving efficiency. The real test of economic theory is not only how well it provides an 

understanding of how an economy operates, but how well economists can apply the tools 

developed from it to solve practical questions in a real world environment.       

Thus, the aim of this analysis is to investigate the supply and demand dynamics of 

agricultural commodity barge transportation and to produce simple spatial forecasts of barge 

rates. These forecasts, along with increased understanding of variables affecting barge rates, can 

lead to potential efficiency and monetary gains. The main goal is to predict barge rates and their 

associated volatilities by river segment. The testable hypothesis is a simple spatial forecasting 

model will out preform a naïve model in terms of yielding higher commodity trading returns 

from taking advantage of more accurate barge rate forecasts.  

For forecasting barge rates by sector, a spatial vector autoregressive model is developed with 

the dependent variables measuring the prices of barge transportation. Prices are in terms of five 

distinct river segments: St. Louis, Illinois, Upper Ohio, Lower Ohio, and Lower Mississippi 

(MTCT). The lagged spatial vector characteristics of the model capture segment price interaction 

through time and space. In addition, exogenous variables of barge draft depth, Mississippi River 

imports and exports, Midwest diesel prices, and first differenced corn prices are also included. 

One-, two-, and five-week forecasts are constructed for an out-of-sample period. The 

effectiveness and accuracy of the forecasts are then compared on the basis of RMSE, RMSPE, 
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stochastic dominance analysis, and the Henriksson-Merton test. Trader’s returns are then 

conducted based on the resulting forecasts and the associated returns of conducting trades during 

a period of low barge rates. Results support the hypothesis by indicating the forecasts have the 

ability to improve on returns relative to a naïve forecasting scenario.  

 

Literature 

A wealth of literature exists on agricultural commodity pricing with the classic Tomek and 

Robinson book as a foundation (Tomek and Robinson, 1972). Brandt and Bessler (1983) were 

one of the first applications to apply time series analysis for forecasting agricultural commodity 

prices.  This was followed by efforts including Yang and Brorsen (1992) and Ramirez and 

Fadiga (2003) who employ a GARCH model in forecasting. This research has resulted in regular 

agricultural commodity price forecasts by various agencies including the World Bank (World 

Bank, 2015).    

In contrast, a review of the literature on forecasting within country U.S. agricultural 

commodity transportation costs associated with barge transportation revealed no pertinent 

articles. This is surprising given that transportation costs can represent a major proportion of 

commodity costs (Schnepf, 2006; Volpe et al., 2013). A commodities trader considering future 

purchases in the grain market for shipment to the Gulf of Mexico must forecast the cost of 

transporting the grain from point-of-sale to the export port destination. Forecasting accuracy of 

barge transportation rates directly impacts potential returns. There are some research efforts in 

forecasting global rates of the large ocean going Panamax vessels. These include Batchelor et al. 

(2007), Chang et al. (2012), and Chen et al. (2012) who employ VECM, ARIMA, and VARX 

approaches, respectively, to forecast seaborne freight rates.          
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 In terms of spatial econometrics, Kuethe and Pede (2011) indicate that estimating a 

spatial VARX or SpVARX model for housing prices produced significantly more reliable short-

term forecasts than a conventional VARX model based on the mean-square forecast error. While 

the variables affecting barge freight rate and housing prices are different, the underlying 

methodology leading to a SpVARX model is still applicable. In a similar manner that nearby 

housing prices can affect each other, barge rates in neighboring river segments do as well. The 

inclusion of a spatial weight matrix to capture spillover effects in barge freight can aid in 

improved model specification and the resulting forecasts.   

Instead of developing improved methods or model specifications for predicting Mississippi 

River barge rates, the literature improving the efficiency of river trade generally focuses on 

infrastructure improvements to the lock and dam system. Current estimates from the Corps of 

Engineers (2010) indicate it would cost approximately $3 billion dollars to renovate the aging 

lock system to full working order. Yu et al. (2006) link lock delays to barge transportation 

efficiency by employing a VAR model. Results suggest the strongest relation affecting barge 

rates in different segments, apart from their own lagged values, are the lagged values of barge 

rates in neighboring segments. If a segment’s barge rate can be reduced by increasing barge 

supply, barge rates in neighboring segments will also decline. This suggests spatial 

characteristics and interactions, which may be captured with a SpVARX model.  

 

Barge Rates and Draft Depth 

For analysis, the river is dissected into five distinct segments consisting of the Illinois, Upper 

Ohio, Lower Ohio, Lower Mississippi (MTCT), and St. Louis rivers (Figure 1). This collection 

of river segments comprises over 2000 miles of barge navigable waterways whose locks, dams, 
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and channels are maintained by the Army Corps of Engineers. The cost to ship commodities 

between a specified river segment and a demand node to a Gulf port is given by lock tariff rates. 

The Waterways Freight Bureau (WFB) was originally set up to regulate barge pricing. Each lock 

had its own tariff rate measured as a dollar per ton cost to ship commodities between that lock 

and a destination Gulf port. Since 1976, WFB no longer exists and market forces are allowed to 

determine barge rates with 1976 tariffs as benchmarks.  

Barge operators on the Mississippi River employ a barge percent-of-tariff (BPOT) as the 

price of traversing the river. Market forces then result in stochastic barge rates over time. 

Multiplying the stochastic BPOT rate at a given time by the fixed historic tariff rate for a specific 

lock within a given segment provides a dollar/ton price for shipping commodities. This price is 

the cost per ton to ship a commodity from its starting location to a Gulf port. Overall, the rates 

vary from approximately $2.00 to $7.00 per ton and are higher the farther north the lock location. 

Figure 2 displays the barge rates in a dollar per ton value over the five river segments.   

 

Market Structure 

Miljkovic et al. (1999) concluded barge rates are determined by market forces with no 

information asymmetries. Thus, the main elements to include in a forecasting model of barge 

rates are variables influencing barge supply and demand.  The list of the included variables along 

with their expected signs are listed in Table 1. 

One variable which influences the supply of barge transportation in the market is how 

heavily barges can be loaded depending on current river conditions. The Army Corps of 

Engineers attempt to maintain a minimum river channel depth of nine feet through dredging 

policies, but are not always able to do so during drought or irregular river flow. However, most 
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of the volatility in loaded draft depth arises when natural river conditions permit barges to be 

loaded deeper than nine feet. When river conditions are calm and sufficiently deep, barges can be 

loaded to a maximum draft of around 12½’ to 13’. In these cases, theory would predict potential 

lower barge rates as each barge can accommodate larger loads requiring fewer barges to be 

contracted, and in essence increasing total barge transportation supply.  

Another supply determinant is the availability of barges on a specific river segment. Grain 

movements can serve as a proxy for segment supply availability. The U.S. Agricultural 

Marketing Service tracks grain barge movements, which is similar to the barge count variable 

employed by Yu et al. (2006).  The main input price supply shifter is diesel prices where an 

increase in fuel prices can negatively affect the availability of barges.   

Covered dry cargo barge demand is primarily driven by the international transfer of grain 

(Miljkovic et al., 1999), which is transported by ocean vessels. Over 90% of all U.S. corn and 

soybean exports from the River Gulf area are transported there by barge. The number of 

oceangoing grain vessels in the Gulf region can capture the quantity of covered cargo barge 

transportation demand. The USDA Grain Inspection, Packers, and Stockyards Administration, 

provides weekly measures of the number of oceangoing grain vessels scheduled for filling at the 

Gulf Coast ports. Thus, larger numbers of vessels scheduled for filling at the gulf relate to 

increased overall barge demand.  

Available from the National Agricultural Statistics Service is the current level of U.S. corn 

storage. With corn as main agricultural commodity transported by the barge type under study, 

corn storage accounts for many of the seasonal characteristics of bar rates. When corn stocks are 

trending down (up) this would suggest an increase (decrease) in barge demand.   
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The grain movements, national stock, and export variables focus on the downstream 

movement of agricultural commodities. Variables specifically relating to the upstream 

transportation of covered hopper barges are not included as there barge operate on a separate 

price structure. Other than diesel prices, previous efforts addressing agricultural commodity 

barge rates do not include specific variables to account for upstream transportation (Haigh and 

Bryant, 2001; Fuller and Grant, 1993; Miljkovic et al., 1999). In addition with the majority of 

upstream covered hopper barges empty, diesel prices capture a major portion of the upstream 

transit cost. Further, once barges are loaded, it is rare the cargo does not travel the length of the 

river as over 90% of agricultural commodity River Gulf exports are fed by barge. This 

downstream dynamic is inherently included in the barge rate pricing system. The barge percent 

of tariff barge rate of a specific lock is the cost of transportation between that specific lock 

location and a downstream Gulf coast export location.  

 These downstream interactions yield a one directional relation where lower segments are 

not affected by upper segments. This results in barge rate equation where a barge rate in a given 

segment is a function of its own lagged price and the lagged price of segments below it. An 

increase in barges rates in a segment downriver will stimulate up-bound barges to stop and 

conduct business. This reduces the barge supply upriver. In contrast, if the barge rate were to 

increase upriver, the supply of empty barges must still pass by the lower segments and will not 

impact their barge supply.
1
  The interactions among segment draft depths are also a one 

directional relation. Barge operators are only concerned with river levels downstream of their 

loading site as this analysis deals with down bound barge rates.   
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Methodology 

In econometrics, a spatial weight matrix is a tool used to identify possible spatial influences 

within different portions of a system. It is often defined as a nonnegative matrix Wij, which 

accounts for the spatial influence of unit j on unit i for n different spatial units (Bhattacharjee and 

Jensen-Butler, 2013).  In a distance based spatial weight matrix, neighboring segments are 

assigned weights based on their relative distance. The weight is the inverse of their distance. For 

barge freight, this distance is measured in river miles between the midpoints of respective 

segments. A spatial weight matrix is then employed to examine how the percent of tariff barge 

rate in one segment is related to current and past values of percent of tariff and draft depths in 

neighboring segments. This is consistent with (Ollier et al., 2003), who employ a spatial weight 

matrix to study the relation of segments sharing a common endpoint, as is the case with barge 

rates in neighboring segments.    

In order to include a weight matrix in the analysis and examine the effects of segment 

interaction, s spatial cross-regressive lags are added to a VARX model (SpVARX). The 

SpVARX(p,s) contains 𝑁 segments, which are specified as linear functions of 𝑝 own lags and 𝑝 

lags of the other 𝑁 − 1 segments which are thought to influence it. Thus, which segments are 

considered neighbors and how the neighbors are defined to effect each other are determined by 

the structure of the weight matrix and the number of cross regressive lags. If a SpVARX(3,1) is 

specified with s = 1, segments are considered neighbors only if they meet at a common point in 

addition to the previously described one way interaction of only segments downstream affecting 

ones upstream. This yields:    

 

 𝑌𝑛,𝑡 = 𝑐𝑛 + ∑ (𝛼𝑛,𝑝
3
𝑝=1 𝑌𝑛,𝑡−𝑝) + 𝛾𝑛𝑊𝑌𝑛,𝑡−1 + 𝛽𝑛𝑊𝐷𝑛,𝑡−1 
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      +𝜎𝑛𝑋𝑛,𝑡−1 + 𝜀𝑛,𝑡, n = 1, …, 5, 

 

where 𝑌𝑛,𝑡 is segment n barge rates observed in time 𝑡 = 1, … , 𝑇, 𝑊 is a spatial weight 

matrix, 𝐷𝑛,𝑡−1 is a 5 × 1vector of draft depths by segment lagged one time period, 𝑋𝑛,𝑡−1 denotes 

a 5 × 1vector of exogenous conditioning variables (draft depth, diesel price, ocean vessel count, 

grain movements, and national corn stock) lagged one time period, 𝑐𝑛 is a constant term, 𝛼, 𝛽, 𝛾, 

and 𝜎 are parameters to be estimated, and 𝜀𝑛,𝑡 is a white noise error term.  

The spatial weight matrix, 𝑊, defines which segments are considered neighbors. The spatial 

cross regressive lags are obtained by multiplying each temporal lag term by the spatial weight 

matrix. These cross regressive lags represent the average barge rates of neighboring segments in 

a previous time period. One commonly employed weighting system for spatial analysis is a 

binary contiguity matrix where neighboring regions take a value of one with zero otherwise. A 

second weighting scheme employed is an inverse distance based weight matrix. Each non-zero 

element between two neighboring segments is assigned the value of 1/distance. Here, distance is 

defined as the distance in river miles between the midpoints of each segment. The weight 

matrixes are then row standardized to create proportional weights. Both weighting schemes yield 

similar empirical results and forecasts, so only the weighting scheme analyses are presented 

using row standardized weight matrices.  

 

Data 

For all the variables (barge rates, draft depths, diesel prices, corn storage, grain movements, and 

ocean vessels) weekly data are collected from January 2003 to June 2014, yielding 594 



11 

 

 

observations. The units of measurement and definitions are listed in Table 2 with summary 

statistics provided in Table 3. 

Barge rates have a relatively high variance with both a positive skewness and kurtosis. This 

indicates river segment price distributions with right tails and frequent peaked high values. In 

contrast, draft depths have left tail distributions with no consistency in the peaks. In terms of the 

conditioning variables, ocean vessels have a relatively large standard deviation with close to a 

normal distribution which is caused by the highly seasonal nature of agricultural commodity 

exports. This is in contrast to diesel prices with relatively small standard deviations, but high 

kurtosis.   

 

Results 

Table 4 lists the results of the SpVARX employing row standardized inverse distance weight 

matrices.
2
 All of the self-lagged barge rates are significant at the 1% level with dynamics 

indicating an adjustment process. The once lagged barge rates have a positive correlation with 

current barge rates, followed by a negatively correlated second lag and positively correlated third 

lag. The once lagged barge rates in neighboring segments representing price interaction terms are 

also all significant at the 1% level. In terms of draft depth interaction terms, only the Lower Ohio 

and St. Louis once lagged values of the draft depth interactions are significant. A segment’s own 

lagged draft depth is significant with the hypothesized negative relation for the Lower Ohio, St. 

Louis, and MTCT segments. A significant positive relationship at the 5% level between barge 

rates and draft depth is associated with the Illinois segment and appears counter to the expected 

coefficient sign. A hypothesis for this phenomenon is barges originating in the far northern 

region of the Illinois are not constrained by draft depth. The average draft depth for this segment 
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is lower than the draft depth for the other segments (Table 3). Barge operators may load barges 

originating in the Illinois segment only partially full with the idea that elevators farther south will 

add cargo. Thus, a lower initial draft in Illinois could indicate decreased barge demand in the 

Illinois segment compared to downriver segments and would reduce the barge rate in the Illinois 

segment.  

Each of the significant exogenous variables has the hypothesized sign with the exception of 

diesel prices on the St. Louis segment. The lack of a significant diesel price relation for four of 

the segments and a negative relation for the St. Louis segment indicates a weak adjustment 

process of barge supply to input price changes. Barge rates appear slow to adjust to input price 

changes. Input prices in general and diesel prices in particular appear to be less understood and 

could be a point for further research and analysis.  

 

Forecasting 

In order to assess the predictive value of the model, One-, two-, and five-week forecasts are 

constructed for an out-of-sample period. For out-of-sample forecasts, the last 20% of the 594 

weekly observations are withheld in estimating the model.  This yields an out-of-sample 

forecasting range beginning in the seventh week of 2012 and continuing until the end of the full 

data set in week 23 of 2014. The Appendix Table A.1 lists estimation results, which are then 

employed to estimate one-, two-, and five-week forecasts for the remaining 20% of the data. 

Comparing the coefficients in Table 4 (the full sample) with Table A.1 (data-constrained sample) 

reveals the stability of the results.   

As a visual comparison, the predicted one-, two-, and five-week values are plotted against 

their actual values for each river segment (Figures 3-5). The forecasts appear to track relatively 
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well for the one-week forecasts; deviations in their tracking exist as the forecasts are extended to 

two and five weeks.   

For numerical comparisons the root mean squared error (RMSE) and percent error (RMSPE) 

are calculated along with the mean and variance for each forecast (Table 5). These values are 

compared to a naïve forecasting model where the price in the next week is assumed to be the 

price in the current week. Considering the one-week forecast, the naïve forecast is close to the 

SpVARX forecast performance, although the SpVARX still dominates in terms of mean-

variance analysis. This close comparison does not continue to hold as the forecast length 

increases. At the five-week forecast, the naïve forecasts deviate considerably from the actual 

barge rates and the associated SpVARX forecasts. If there were only an interest in one-week 

forecast, then the naïve forecasts would generally suffice. However, for any longer forecasting 

period, a SpVARX type forecast is warranted.       

Considering stochastic dominance, a commodity trader’s gamble is choosing when to 

purchase barge transportation based on assumption of how rates will change in the future. For 

example, if barge rates are predicted to decline, a trader can gamble and delay commodity 

transportation. Figure 6 illustrates the distribution of squared error terms for the one- and five-

week forecasts for a SpVARX model and the naïve forecasting case. All of the squared error 

values for each forecast are sorted from low to high. With 120 out-of-sample forecasts and five 

segments, there are 600 squared error terms for each forecast. The x-axis represents the squared 

error terms y-axis is the accumulative probability from 1/600 to one. Thus, if a forecast’s 

accumulative probability is farther to the left relative to another forecast’s, then it has a lower 

squared error value for a higher percentage of its 600 observations.  From Figure 6, the SpVARX 
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forecasts exhibit second-order stochastic dominance over the naïve forecasts. This supports their 

numerical dominance presented in Table 5.  

 As a final comparison of the forecasts, the generalized Henriksson-Merton test is 

employed as a market timing test to determine whether a forecast moves in the same 

contemporaneous direction as the actual out-of-sample barge rates.  Specifically, assuming no 

preference symmetry on the part of traders, then   

𝑟𝑓,𝑡+1 = 𝑐 + 𝛽𝑟𝑎,𝑡+1 + 𝜀𝑡+1, 

where 𝑟𝑓,𝑡+1 and 𝑟𝑎,𝑡+1 denote the change in the forecast and actual barge rates from time t to t + 

1, respectively, c and β are parameters to be estimated, and 𝜀𝑡+1 is the error term.  The test 

results reveal the β’s are positive and significant at the 1% level for the one-, two-, and five-

week forecasts. While the constants, c’s, are not significant.  If there is no difference in the actual 

and forecast barge rates values, the constant is zero. However, a trader with preference symmetry 

would value these forecasts in terms of a positive significant relation between the first 

differenced actual and forecasted values. When the actual barge rates increase (decrease) the 

forecasted barge rates also increase (decrease) and there is not a significant constant, which 

would imply a gap between their values.  

 

Returns from Out-of-sample Forecasts 

The results of the Henriksson-Merton test indicate the SpVARX forecasts have the ability to 

improve commodity traders’ returns as the forecasted barge rates and actual barge rates tend to 

move in the same direction. Traders could optimize their shipping schedule by correctly 

predicting the directional change of future barge rates. As an initial indication of the magnitude 

of these potential enhanced returns, consider decision-making scenarios listed in Table 6 for a 
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two-week forecast.  Let �̂�𝑡+𝑖, i = 1, 2, be the forecasted barge rate in time 𝑡 + 𝑖 and 𝑃𝑡 and 

𝑃𝑡+𝑖 be the actual barge rates in time 𝑡 and 𝑡 + 𝑖, respectively.  For simplicity, assume transaction 

and storage costs are zero or constant.  This allows focusing solely on transportation cost savings 

when the trader is able to accurately take advantage of lower future barge rates. As indicated in 

Table 6, this provides an examination of the potential savings or losses, which occur when a 

trader uses the forecasted barge rates to take adjust their shipping schedule to take advantage of 

lower rates.  

The decision-making process is extrapolated to the case of a five-week forecast. When 

confronted with predicted barge rates for future periods, the lowest forecasted barge rate is 

compared to the current barge rate. Thus, if a forecasted barge rate is lower than the current, in 

this scenario the trader will chose to postpone shipment. The amount that the hypothetical trader 

will ear/loss by adjusting their shipping schedule is the difference between the current barge rate 

where they chose not to ship, and the actual observed barge rate when the forecasts implied 

barge rates will be lower and when the trader in fact chose to ship. Table 7 lists the savings for a 

five-week inverse distance based SpVARX forecast.  

The predicted profit tally for each future time t + i, i = 1, …, 5 is the number of occurrences 

that a forecasted barge rate in a set of 5 week forecasts is the lower than the current barge rate.  

For t + 1, the predicted profit tally is the number of occurrences where �̂�𝑡+1 = min (�̂�𝑡+𝑖│𝑖 =

1, … ,5), and likewise for the other four future time periods. Commodity traders have a potential 

to earn increased returns by transporting their goods during this forecasted lower barge rate 

period. This predicted profit tally is mated to the actual profit tally where the actual barge rate 

was indeed the lowest.  For t+1, it is the number of occurrences where 𝑃𝑡+1 = min (𝑃𝑡+𝑖│𝑖 =

1, … ,5).  When the forecast of the lowest future barge rate matches (does not match) the actual 
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week with the lowest rate, the trader experiences a savings (loss) in barge rates. The average 

savings (loss) is then calculated based on the savings (loss) for each occurrence where �̂�𝑡+𝑖 − 

𝑃𝑡+1 < 0 (�̂�𝑡+𝑖 − 𝑃𝑡+1 > 0).  The overall average represents the average cost of barge 

transportation that is saved or lost if these forecasts are followed. It represents the increase in 

dollars per ton returns, which commodity traders would realize if they were to consistently adjust 

their shipping schedule based on the SpVARX forecasts.  Dividing this average overall savings 

value by the average barge rate in the respective segment (Table 3) results in the average 

percentage saved.  

As indicated in Table 7, there is limited savings associated with the first future period, t + 1.  

In fact, there is only a positive saving for the Illinois and Lower Ohio segments.  Following the 

naïve forecast would then be the recommended strategy.  However, proceeding into the future 

the average percentage saved with the SpVARX forecast generally increases.  Consistent with 

the forecast accuracy results (Table 5 and Figure 6), the SpVARX forecasts can potentially save 

17% to 29% on barge rates when forecasts indicate optimal shipping is in the fifth week.  If 

commodity traders are interested in enhancing their returns associated with determining the 

optimal shipping time, then they may want to consider some simple forecasting model, such as 

the SpVARX.         

 

Conclusions 

The ability to accurately forecast Mississippi River barge rates provides trading advantages as 

well as increasing market efficiency. This research outlines a forecasting model that can serve as 

a foundation for agents, including traders, to develop quantifiable predictions of transportation 

costs (barge rates). Such forecasts provide information to commodity traders when barge rates 
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are likely to be volatile. They can then minimize transportation costs by choosing to ship 

commodities when rates are predicted to be lower. With these forecasts, traders are able to 

optimize their shipping schedule by either transporting commodities now or storing them to ship 

later.  

As addressed in the introduction, a major avenue for economists is developing tools, which 

solve practical questions of microeconomic engineering. One such tool is developing simple 

forecasting models designed to augment existing future expectations. Specifically, the intricate 

dynamics of agricultural commodity barge transportation on the Mississippi River is further 

revealed through the engineering of simple barge-rate forecasts. With a five-week forecast 

horizon, approximately 20% savings in barrage rates is possible when forecasts indicate lower 

barge rates in five weeks. This supports the hypothesis that a simple spatial forecasting model 

can out preform a naïve model. Economic engineering does have market value and suggests 

agents may want to consider investing in such engineering. In particular, commodity traders can 

benefit from these simple types of economic engineering.    
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Footnotes 

1 
Similar results are were obtained for a fully constrained and unconstrained model.  The 

downward bound model is presented as a representation.   

2
 Forecasting models were also developed based on VARX, directionally constrained VARX, 

and binary SpVARX approaches.  The inverse distance SpVARX model yields superior 

forecasting performance, and thus, serves as the model for the reported results. 
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Table A.1. Barge Rate Inverse Distance Based SpVARX Constrained Sample 
 

  River Segment    

 

Illinois Upper Ohio 

Lower 

Ohio St. Louis MTCT 

Barge Rate, Yn,t−1 0.779* 0.667* 1.014* 0.785* 1.086* 

 (0.037) (0.052) (0.029) (0.034) (0.028) 

Barge Rate, Yn,t−2 −0.196* −0.341* −0.341* −0.228* −0.311* 

 (0.039) (0.038) (0.039) (0.033) (0.035) 

Barge Rate, Yn,t−3 0.109* 0.111* 0.107* 0.094* 0.116* 

 

(0.028) (0.025) (0.026) (0.024) (0.025) 

Barge Rate Interactions, 

𝑊𝑌𝑛,𝑡−1 0.297* 0.568* 0.164* 0.265* − 

 

(0.038) (0.059) (0.018) (0.035) 

 Draft Depth 

Interactions, 𝑊𝐷𝑛,𝑡−1 −0.022 −0.196*** −0.092* −0.267* − 

 

(0.086) (0.115) (0.036) (0.078) 

 Draft Depth 0.521* −0.010 −0.115 −0.099** −0.306* 

 

(0.200) (0.048) (0.073) (0.040) (0.076) 

National Corn Stock −0.138* −0.191* −0.174* −0.193* −0.205* 

 (0.050) (0.041) (0.036) (0.045) (0.041) 

Ten Day Ocean Vessels 0.005 0.011 0.008 0.009 0.008 

 (0.009) (0.008) (0.007) (0.009) (0.008) 

Diesel Price −0.535* −0.395 −0.342 −0.599** −0.502** 

 

(0.305) (0.247) (0.221) (0.280) (0.252) 

Grain Movement −0.047 −0.060 −0.057 −0.022 0.000 

 (0.060) (0.049) (0.044) (0.055) (0.050) 

Constant 0.004 5.648* 5.433* 8.185* 6.858* 

 

(2.319) (1.472) (1.334) (1.412) (1.279) 

 

Standard errors are in parentheses with *, **, and *** denoting statistical significance at the 1%, 5% and 

10% level, respectively. 
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Table 1. Expected Signs  

Variable      Expected Sign 

Lagged Price in Other Segments + 

Own Draft Depth − 

Draft Depth In Other Segments − 

Diesel Price + 

Ocean Vessel Count + 

Grain Movements − 

National Corn Stock − 
 

 

 

 

Table 2. Definition of Variables 

Segment Specific Variables 

 
Barge Rate ($/ton)  

 

Draft Depth (feet)  

Conditioning Variables (Non Segment Specific) 

 
Diesel Price ($) National Diesel Price 

National Corn Stock (bill bu) Total U.S. National Corn Storage 

Volume 

Grain Movement (mill tons) 

 

Number of Tons of Grain that 

Traversed Key Locks 

Ten Day Ocean Vessel Count 

 

Grain Ocean Vessels to be Loaded in 

Next Ten Days 
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Table 3. Summary Statistics 

 

Mean 

 

Minimum 

 

Maximum 

 

Standard 

Deviation 

Skewness 

 

Kurtosis 

 

Barge Rates ($/ton)       

Illinois 19.70 8.38 47.81 6.58 0.72 0.65 

Upper Ohio 15.86 6.29 43.95 6.77 1.00 1.13 

Lower Ohio 13.99 5.51 39.00 6.02 1.06 1.37 

St. Louis 13.13 4.80 41.67 5.70 1.28 2.32 

MTCT 10.88 4.37 35.27 5.29 1.70 3.86 

Draft Depth (feet) 

      Illinois 9.47 8.00 10.36 0.29 −0.19 1.43 

Upper Ohio 10.43 9.00 11.65 0.66 −0.36 −0.73 

Lower Ohio 11.33 9.00 12.60 0.80 −0.94 0.53 

St. Louis 10.90 8.60 12.60 1.11 −0.14 −1.23 

MTCT 10.39 9.00 11.60 0.61 −0.42 −0.66 

Conditioning Variables 

      Diesel Price ($) 2.99 1.73 4.10 0.344 0.39 1.20 

National. Corn Stock 

(bill bu) 5.08 0.80 10.90 2.51 0.17 −0.87 

Grain Movement (mill 

tons) 6.39 1.18 13.33 1.96 0.13 0.23 

Ten Day Ocean Vessel 

Count 56.83 18 97 13.32 0.37 −0.24 
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Table 4 Barge Rate Inverse Distance Weight Based SpVARX 

 

  River Segment    

 

Illinois Upper Ohio 

Lower 

Ohio St. Louis MTCT 

Barge Rate, Yn,t−1 0.813* 0.606* 0.946* 0.845* 1.043* 

 
(0.033) (0.043) (0.025) (0.029) (0.026) 

Barge Rate, Yn,t−2 −0.199* −0.261* −0.254* −0.224* −0.278* 

 
(0.035) (0.033) (0.034) (0.030) (0.033) 

Barge Rate, Yn,t−3 0.112* 0.096* 0.087* 0.106* 0.121* 

 

(0.025) (0.023) (0.023) (0.022) (0.024) 

Barge Rate Interactions, 

𝑊𝑌𝑛,𝑡−1  0.256* 0.566* 0.169* 0.188* − 

 

(0.032) (0.050) (0.016) (0.026) 

 Draft Depth 

Interactions, 𝑊𝐷𝑛,𝑡−1 −0.076 −0.183 −0.061** −0.144** − 

 

(0.072) (0.098) (0.029) (0.064) 

 
Draft Depth  0.365** −0.028 −0.120** −0.175* −0.311* 

 

(0.159) (0.043) (0.062) (0.041) (0.067) 

National Corn Stock −0.152* −0.198* −0.172* −0.187* −0.185* 

 (0.039) (0.034) (0.031) (0.035) (0.033) 

Ten Day Ocean Vessels 0.011 0.016** 0.013** 0.011 0.010*** 

 (0.007) (0.006) (0.006) (0.007) (0.006) 

Diesel Price −0.514 −0.368 −0.289 −0.512** −0.345 

 

(0.273) (0.236) (0.211) (0.250) (0.236) 

Grain Movement −0.023 −0.047 −0.043 −0.011 −0.006 

 (0.049) (0.042) (0.038) (0.045) (0.042) 

Constant 1.378 5.193* 4.486* 7.017* 6.180* 

 

(1.802) (1.245) (1.122) (1.139) (1.095) 
 

Standard errors are in parentheses with *, **, and *** denoting statistical significance at the 1%, 5% and 

10% level, respectively. 
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Table 5. SpVARX Forecast Comparison to the Naïve Forecast  

     SpVARX  Naïve 

One-Week Forecast 

RMSE     1.67      1.79 

RMSPE    9.60    10.49 

Mean Error   2.79      3.20 

Variance  68.61    79.11 

Two-Week Forecast 

RMSE       2.44        2.77 

RMSPE    15.46      17.75 

Mean Error     5.96        7.65 

Variance  162.64    266.04 

Five-Week Forecast 

RMSE       2.56        3.41 

RMSPE    17.89      25.06 

Mean Error     6.55      11.60 

Variance  169.40    711.23 
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Table 6. Decision Making Response to Two-Week Forecasts 

  

Time 

 
 

t t+1 t+2 

Ship If �̂�𝑡+1 , �̂�𝑡+2 > 𝑃𝑡 �̂�𝑡+2 , 𝑃𝑡 > �̂�𝑡+1 �̂�𝑡+1 , 𝑃𝑡 > �̂�𝑡+2 

Store If �̂�𝑡+1 𝑜𝑟 �̂�𝑡+2 < 𝑃𝑡 �̂�𝑡+2 < �̂�𝑡+1 , 𝑃𝑡 --
a
 

Save/Loss 0 𝑃𝑡+1 − 𝑃𝑡 𝑃𝑡+2 − 𝑃𝑡 
a
 Assumes a trader must ship in one of the three periods. 

�̂�𝑡+𝑖, i = 1, 2, is the forecasted barge rate in time 𝑡 + 𝑖 and 𝑃𝑡 and 𝑃𝑡+𝑖 are the actual barge rates 

in time 𝑡 and 𝑡 + 𝑖, respectively. 
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Table 7. Five-Week Inverse Distance SpVARX Forecast Savings 

Future Time Period  River Segment    

 

Illinois Upper Ohio 

Lower 

Ohio St. Louis Lower Miss 

t + 1      

Predicted Profit Tally 13 17 10 21 16 

Actual Profit Tally 6 7 8 8 4 

Average Loss ($/ton) −2.05 −2.84 −3.66 −1.36 −1.55 

Average Gain ($/ton) 3.31 1.46 1.17 1.33 3.32 

Average Overall ($/ton) 0.58 −0.90 0.21 −0.14 0.04 

Average Percent Saved (%) 3 −6 1 −1 0 

t+2      

Predicted Profit Tally 8 12 7 12 12 

Actual Profit Tally 6 11 6 10 7 

Average Loss ($/ton) −1.19 −3.06 −0.72 −0.61 −0.17 

Average Gain ($/ton) 1.12 1.05 0.62 0.63 2.13 

Average Overall ($/ton) 0.69 0.71 0.43 0.48 1.22 

Average Percent Saved (%) 4 4 3 4 11 

t+3      

Predicted Profit Tally 12 13 9 11 12 

Actual Profit Tally 10 11 7 9 6 

Average Loss ($/ton) −0.94 −1.25 −4.67 −0.50 −0.94 

Average Gain ($/ton) 2.14 2.02 1.67 0.92 1.78 

Average Overall ($/ton) 1.63 1.52 0.26 0.66 0.42 

Average Percent Saved (%) 8 10 2 5 4 

t+4      

Predicted Profit Tally 13 10 9 11 11 

Actual Profit Tally 11 8 8 9 5 

Average Loss ($/ton) −2.12 −2.96 −3.69 −2.39 −1.24 

Average Gain ($/ton) 1.60 4.15 2.72 2.00 1.42 

Average Overall ($/ton) 1.03 2.73 2.01 1.20 0.08 

Average Percent Saved (%) 5 17 14 9 1 

t+5      

Predicted Profit Tally 31 26 27 34 35 

Actual Profit Tally 25 23 23 27 28 

Average Loss ($/ton) −1.26 −2.15 −2.62 −2.04 −2.70 

Average Gain ($/ton) 4.35 5.41 5.26 4.05 3.42 

Average Overall ($/ton) 3.27 4.54 4.09 2.80 2.27 

Average Percent Saved (%) 17 29 29 21 21 
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Figure 1. Mississippi River Segments 
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Figure 2. $/Ton Barge Rates by River Segment 
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Figure 3. One-Week Forecasts and Actual Barge Rates  
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Figure 4. Two-Week Forecasts and Actual Barge Rates  
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Figure 5. Five-Week Forecasts and Actual Barge Rates 
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One-Week Forecast 

 

Five-Week Forecast

 

Figure 6 Stochastic Dominant RMSE Comparisons  
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