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Abstract: We evaluate the regional-level agricultural impacts of climate change in the Northern 

Great Plains. We first estimate a non-linear yield-weather relationship for all major commodities 

in the area: corn, soybeans, spring wheat and alfalfa. We separately identify benevolent and 

harmful temperature thresholds for each commodity, and control for severe-to-extreme dry/wet 

conditions in our yield models. Analyzing all major commodities in a region extends the existing 

literature beyond just one crop, most typically corn yields. Alfalfa is particularly interesting since 

it is a legume-crop that is substitutable with grasses as animal feed and rotated with other row-

crops for nitrogen-fixation of soils. Our model includes trend-weather and soil-weather 

interaction terms that extend the existing yield-weather models in the literature. Results suggest 

that temporal adaptations have not mitigated the negative impacts of weather stressors in the 

past, and that the spatial soil profile only weakly influences weather impacts on crop yields. We 

estimate yield-weather elasticities and find that historical weather patterns in the region have 

benefited corn and soybeans (spring wheat) the most (least). We expand our analysis to formally 

evaluate the role of short-run weather fluctuations in determining land-use decisions. We utilize 

decomposed crop yield estimates due to trend and weather in order to model crop acreage shares. 

Our preliminary results suggest that short-run weather fluctuations are an important factor for 

decisions on soybeans and spring wheat shares, however only yield trends drive corn shares. 
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Introduction and Motivation 

A large body of literature in the areas of agronomy, economics and other social sciences has 

emphasized the agricultural impacts of climate change. Economists exploit exogenous changes in 

weather to identify its impacts on agricultural yields, profits and land-values. There is a growing 

research interest in national and regional agricultural impacts due to climate change because of 

uncertain and potentially large future productivity losses, and because of the availability of 

regional climate data. Corn has attracted most attention among economists who have studied the 

impacts of climate change on U.S. agriculture. Understanding the productivity dynamics of corn 

due to changed weather conditions is critical to U.S. agricultural exports, food and biofuel 

production. A few studies have also considered the weather-related dynamics of soybean and 

cotton yields (Schlenker and Roberts, 2009). Recently, Tack et al. (2015) estimated the effects of 

warming on 264 wheat varieties using field-trials data on yields. 

Agricultural production in the eastern portion of the U.S. northern Great Plains, an expanse 

of about 100,000 square miles, has shifted towards corn and soybeans production in the past 

decade. We analyze county-level agricultural yields for the major commodities in two rain-fed 

states of the U.S. northern Great Plains: North and South Dakota. The agricultural economy of 

the Dakotas comprised of 51% cropland and 38% pasture/grassland in 2007 (United States 

Department of Agriculture (USDA) - Economic Research Service (ERS), 2011). Farm revenues 

from crop and livestock production in the Dakotas doubled between 2007 ($750 mi.) and 2012 

($1.5 bi.) (U.S. Census of Agriculture, 2007 & 2012). The doubling of farm revenue during this 

period can be attributed, at least in part, to increased corn/soy cultivation.1 However, higher 

                                                           
1 The average per bushel price increased by almost 50% for corn, from $4.1 in 2007 to $6.6 in 
2012, as well as soybeans from $9.6 in 2007 to $14 in 2012. 
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corn/soy acreage came at the expense of almost 671,000 acres of grasslands replaced in the 

eastern Dakotas between 2006 and 2011 (Wright and Wimberley, 2013), along with wheat and 

small grains (Johnston, 2014). It is interesting that corn, which is a water-thirsty crop, has been 

significantly cultivated on these semi-arid lands where periodic droughts and intense flooding 

further degrade regional soils (National Climate Assessment, 2014) 2. The advent of new 

technology and improved land management practices might have offset the region’s limited land 

quality by enhancing yields and sustaining farm revenues (Ojima et al. 2015; Parton et al. 2010). 

Droughts and floods are already a significant phenomenon in the northern Great Plains and 

are likely to intensify in future (Kunkel et al. 2013; National Climate Assessment, 2014).3 Row 

cropping could benefit from increased winter precipitation leading to higher soil moisture 

reserves, but higher spring-time temperatures may offset such gains due to increased 

evapotranspiration. The National Climate Assessment has also reported longer average growing 

seasons (+24 days) by 2050 as compared to 1971-2000. Further, better technology may play a 

role in mitigating adverse climate change impacts. Historically, however, technological 

advancements have been asymmetric across Dakotas’ commodities. For example, corn hybrids 

were developed as early as 1930s while only self-pollinated wheat varieties were used even until 

the 1970s. The corn R&D sector also experienced continued private sector investments while 

wheat’s R&D sector was mostly public sector driven even until 1997 (Fernandez-Cornejo, 2004 

p. 30-37). We investigate the different agricultural yield trends of the region’s major crops with a 

                                                           
2 Historically, wheat was a dominant crop in the Dakotas due to its tolerance to the region’s 
semi-arid soils. 
3 Ojima (2015) has reported that South Dakota has already experienced nine flood disasters 
during the 2000-’10 decade. Heavy rainfall events and droughts are expected to increase by 
2071-2100 as a result of higher spring-time precipitation and drier summers. 
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view on the potential impact of asymmetric technological innovations in response to future 

climate change.  

Since several crops are viable options for Dakotas’ farmers we evaluate relative productivity 

of commodities in these states as weather patterns shift. To achieve this, we first model 

individual county-level annual yields as a function of beneficial and harmful weather outcomes 

during 1950-2013. We explicitly model extreme weather events like severe dryness and severe 

wetness. Flexible trends are incorporated as a proxy for technological innovations, and trend-

weather interactions to better understand temporal adaptations to historical weather fluctuations. 

We also introduce soil-weather interactions to differentiate yield-weather outcomes by soil-

quality. The spatial distribution of regional soils can be informative in predicting future land-use 

distributions. 

Further, we differentiate the impacts of an isolated, single-day heat event from consecutive 

two-to-three-day, and four-or-more-day events. This is important since average temperatures are 

expected to rise by 2.5-13oF in 2100, when compared to 1960-’70 levels, potentially leading to 

more frequent and intense consecutive heat events that adversely affect crop yields (Karl et al. 

2009, Ojima et al. 2015). We also assess the impact of humid conditions on crop yields as they 

precede extreme events like tornadoes (Ojima, 2015), usually causing destruction to life and 

capital.  

We estimate yield-weather elasticities from our yield-weather models to evaluate relative 

competitiveness among commodities due to past weather outcomes. This is relevant because the 

weather conditions in a particular year may have asymmetric productivity implications across 

commodities. We extend this idea to a formal model of within-cropland shares as a function of 
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relative profitability of crops that is attributed to the short-term weather realizations. To the best 

of our knowledge, this is the first study to analyze all of a region’s major crops that includes 

alfalfa, which is a proxy for the grasses. The trend-weather and soil-weather interactions, and 

differentiating isolated and consecutive heat events is also new to the existing yield-weather 

models. Our modelling framework of regional land-use transitions based on crop 

competitiveness due to short-run weather impacts is also novel to this literature.  

This paper is subdivided into several sections. A literature review section provides a brief 

summary of the literature on climate change impacts on agricultural yields. This is followed by a 

data section where we discuss data sources and processing. The methodology section presents 

our yields model with various considerations. We then describe crop competitiveness due to 

yield-weather interaction and present a framework that models land-use switching by using the 

yield estimates. We then briefly discuss our results and outline future work for this study.  

Literature Review 

Agricultural Yields and Historical Weather Outcomes 

Schlenker and Roberts (2009) estimated step-functions, piecewise-linear functions, and eighth-

order polynomials to characterize a non-linear relationship between crop yields and temperature 

during 1950-2005. Yields were found to increase modestly within the benevolent temperature 

thresholds and sharply fall beyond a higher temperature threshold. Their functional specification 

matched the agronomic concept of yield dependence on yields and thus provided better forecast 

accuracy than earlier model specifications. Other control variables that the authors included were 

precipitation, precipitation-squared, county-fixed effects and quadratic trends.  



7 
 

Butler and Huybers (2012) investigated the effect of spatial adaptation on yield losses due to 

warming. They modelled corn yields against accumulated benevolent (hereafter growing-degree-

days or GD), and harmful (hereafter stress-degree-days or SD) temperature levels, that is a 

concave functional form of yield dependence on heat.4 By controlling for spatial variation in 

SDs’ impact on corn yields, they found that predicted yield loss due to 2oC warming could 

reduce from 14% to 6%. The authors included a linear trend variable in their models, but did not 

control for moisture availability.  

Xu et al. (2013) also utilized degree-days to characterize yield response to temperature to 

establish the benefits of adopting genetically-engineered corn and soybean varieties. However, 

they used the quadratic form of a Palmer’s Z index, instead of precipitation, to control for 

moisture availability for crop growth. Palmer’s Z better reflects the supply and demand 

imbalances in moisture availability because it controls for evapotranspiration along with 

precipitation (Karl, 1985).  

Recently, Massetti and Mandelson (2016) have focused on the impact of extreme weather 

events like heat waves, cold waves, hail and tornados on corn and soybean yields. They estimate 

step function to estimate yield response to each 3oC temperature bin and find that including 

weather extremes reduced the harmful impacts of higher temperatures. From here, they argue 

that the effect of various temperature levels is not time-separable and that high temperatures 

occurring for several days in continuum are more harmful than that for several hours. We capture 

such impacts in our paper through the aforementioned disaggregation of stress degree-days.  

                                                           
4 We provide a detailed discussion on this concave yield-temperature relationship capture by 
GDs, SDs, and on the step-functions in the ‘Methodology’ section. 
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Tack et al. (2015) studied the impacts of warming on wheat yields in the U.S. The study 

utilized a unique trial-based dataset of the 264 seed varieties to understand the weather dynamics 

of wheat yields. Extreme spring-time heat is found to reduce yields. Newer seed varieties give 

better yields but are less heat resistant than the older ones. Alongside, increased rainfall was 

reported to have offset the impacts of warming on wheat yields. 

Auffhammer et al. (2013) pointed towards various pitfalls of using climate data. The one 

relevant to our study is the importance of spatial correlation in the data. The authors suggested 

utilizing a procedure developed by Conley (1999) to control for cross-sectional or spatial 

dependence of standard errors. Ortiz-Bobea (2013) stressed on the importance of within-season 

input-use adjustments by farmers due to weather variations and suggested including seasonal 

disaggregation of the weather variables when modelling yields. 

So as to capture uncertainty in future climate forecasts Burke et al. (2015) emphasized the 

variations in climate projections from over 20 climate models. This study’s extensive literature 

review revealed that the econometrics of historical weather impacts have advanced, while the 

forecasts based on them still entail only two climate model-outputs (median). The authors found 

that the variance of predicted climate impacts was sufficient that just relying on one or two of 

these would mislead policy. In particular, they found that climate uncertainty changed the 

extremes of the projected outcomes dramatically, with overoptimistic outcomes (extreme-left of 

the distribution). 

Methodology 

Crop Yields and Historical Weather Outcomes 

Data 
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We construct a dataset that combines historical county-level agricultural yields, daily minimum 

and maximum temperature and precipitation. To these county-level data, we join monthly 

Palmer’s Z indices that are available for Dakotas’ climate divisions, and the survey-based time-

invariant county-specific soil quality. The time-span of our analysis is 1950-2013. We now 

provide a detailed description each of dataset used for this study along with relevant variable 

summaries.  

We use annual county-level crop yields data from 1950 to 2013 for 119 counties in the Dakotas, 

downloaded from National Agricultural Statistical Service’s (NASS) QuickStats 2.0 portal. 

These are survey based estimates of expected yields, calculated as weighted ratio of total 

production divided by total planted acreage of a crop. The weights are assigned according to 

respondent density in an agricultural statistical district (S.M.B., USDA-NASS, 2012). Figure 1 

presents standardized historical yields for all major crops in the Dakotas. Notably, among the 

four crops alfalfa had the highest yields in 1950 and lowest in 2013. Corn seems to have 

sustained strongest trends amongst all four commodities, which could be due to the 

aforementioned emphasis on the R&D of this crop. Further, the four most prominent dips for all 

crops in 1977, ’88, 2002 and ’12 are driven by droughts, in line with Massetti and Mandelson 

(2016) who found droughts to be the most harmful to corn and soybean yields in the eastern U.S. 

We now turn to describing our weather variables that can be characterized in two categories: 

heat and moisture. 

1) Heat: We use county-level daily temperature fluctuations to evaluate the causal impact of 

weather on yields. The daily minimum and maximum temperatures for each county are obtained 

as weighted averages of near-by weather station values, where weights are the inverse-distances 

between counties and stations-squared. We aggregate the daily temperature levels into threshold-
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based seasonal heat exposure variables called degree-days. The beneficial temperature levels are 

aggregated into growing degree days or the GDDs, and harmful temperature levels into stress 

degree-days or the SDDs. We borrow the mathematical representation for GDDs and SDDs from 

Xu et al. (2013).  That is, GD for month m in year t can be written as GDm,t  =  

( )( ) ( )( )( )min0.5 ( ), , , ,( ) ( ) ( ) ( )max
m dd dmin max T T l T h min max T T l T h T l

∈
+ −∑ , where ( )T l  and 

( )T h  are lower and upper thresholds of the beneficial temperature range; max
dT  and min

dT  are 

maximum and minimum temperatures on days d in month m. Similarly, SD for month m in year t 

can be written as SDm,t = ( ) ( )( )min0.5 ( ) ( ) ( ), ,
d m

max
d dmax T T max kT T Tk k

∈
+ −∑ , where T(k) is 

the temperature threshold at which higher temperatures are modelled to decrease crop yields. We 

describe the identification of these three temperature thresholds in is discussed later.  

2) Moisture: To incorporate moisture into our yield models, we use monthly variations in 

Palmer’s Z index (denoted Z hereafter). Monthly Z values vary across climate divisions (cross-

sections) and each climate division may consist of multiple counties. The data are available from 

National Oceanic and Atmospheric Administration between 1895 and 2013. Counties that are 

fully contained into a climatic division, are assigned its Z values each period. Whereas the 

counties that are shared among more than one climate divisions, are assigned area-weighted Z 

values each period. By definition, Z is a categorical variable that measures short-term moisture 

availability with monthly observations. We prefer Palmer’s Z to precipitation because it better 

captures actual available moisture towards plant growth. It measures soil moisture deficiency 

accounting for precipitation as well as evapotranspiration and soil water storage. Note that, Z 

accounts for evapotranspiration by using monthly and annual temperature means and may be 
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correlated with our heat measures. Table 1 summarizes various categories of moisture 

availability characterized by Z.  

To capture a non-linear yield response to moisture (in line with heat measures above), we define 

, , , ,min( 1.99,0)i m t i m tDRYZ Z= − +  and , , , ,max( 2.49,0)i m t i m tWETZ Z= − for each county i in month 

m of year t, where , ,i m tZ is the observed value of the index. DRYZ and WETZ will be used in our 

yield models to capture the impact of moisture availability towards crop productivity. The 

response estimates of these variables will be interpreted as impact of a severe-to-extreme drought 

(or wetness) on yields relative to a moderate moisture deficiency scenario. We discussed the 

impact of droughts on yield trends earlier. Wetness is further interacted with the SDs to evaluate 

the impact of humidity on agricultural yields. 

An alternative moisture index to Z is the Palmer Drought Severity Index (PDSI) that is often 

used to capture moisture deficiency (e.g. Massetti and Mandelson, 2016). However, we rely on 

Karl (1986)’s recommendation to use Z over PDSI to capture short-term moisture deficiencies 

because of its stability across calibration periods.   

We utilize the National Resource Inventory (NRI)’s land capability subclasses to evaluate how 

soils interact with weather conditions to impact crop yields. The land capability classification 

assigns progressively unsuitable soils into higher classes.5 Typically, class I soils can be readily 

subject to cropping; class II, III & IV lands require some additional remedies before they can be 

cropped; and categories (V-VIII) are usually inappropriate for cropping. The extent and type of 

remedies required for class II, III & IV lands depends on the type of impediment(s). Land 

                                                           
5 Soils under higher land capability categories require more intense management practices to 
mitigate intrinsic limitations towards agricultural production. 
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capability classes II-VIII are further sub-categorized by the soil’s dominant impediments. These 

sub-categories are vulnerability to erosion, excess wetness (or poor drainage), root-zoning 

limitations (dry, shallow soils) and climatic limitations. The NRI follows a hierarchical 

nomenclature in assigning these sub-categories if multiple impediments are present. Erosion [E] 

takes precedence over every other kind. Next, in this ordering are excess wetness [W] and 

dry/shallow soils [S]. Soils are assigned a climatic limitations category [C] only if temperature 

and/or moisture-deficiencies are the only impediments to cropping. This means that [W] might 

imply shallowness as well as poor drainage limitations but poor drainage is the dominant 

limitation. Similarly, [E] could imply shallowness and/or poor drainage along with erosion as 

impediments, where erosion is the dominant limitation towards cropping. The data does not 

differentiate between soils with single and multiple impediments.   

We utilize the [S] and [W] sub-categories in our yield models, where [S] is not confused 

with any other category. We constrain our analysis to land capability classes II-IV as they 

support about 85-90% of crop acreage in the Dakotas. In our yield models, we include soil-

weather interactions. That is, we use percent land in a county under [S], denoted %LCC234[S], 

and interact it with SD, GD, DRYZ and WETZ. These interactions are expected to reveal whether 

specific soil limitations could mitigate or aggravate heat/moisture impact on yields. We 

hypothesize that the yield impacts of SD will be aggravated due to shallow soils, while that of 

WETZ might be mitigated (relative to [W]). Further, the impacts of extreme wetness could be 

worsened on soils under [W] sub-category. 

Identifying crop-specific GD and SD thresholds 

Roberts and Schlenker (2009) characterized the crop yields dependence on temperature using a 

non-linear, concave relationship. Such a temperature-dependence relationship has been adopted 
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by the studies that followed, for example Butler and Huybers (2012), Xu et al. (2013), and 

Massetti and Mandelson (2016). In particular, the non-linearity implies an intermediate range 

where higher temperatures are benevolent to crop yields. Beyond that the impact of higher 

temperatures plateaus out, before eventually becoming negative above a high threshold. This 

functional form is based on the agronomic concept of GDs and SDs (described in the data section 

earlier). We too characterize yield-temperature relationship using GDs and SDs. Note that the 

underlying temperature thresholds for spring wheat and alfalfa remain unidentified in the 

literature. Although studies have previously identified such thresholds for corn and soybeans, 

there is no reason to believe that they are transferable across crop-types. This is because crop 

phenology varies greatly across crop varieties, and so do their respective growing seasons. This 

is also reflected in Roberts and Schlenker (2009) where beneficial and harmful temperature 

thresholds vary across various crops. The growing conditions are also region-specific. Therefore, 

we identify these thresholds for all of Dakotas’ major crops. 

We implement a two-step strategy to identify GD and SD thresholds that are crop-specific. In 

the first step, we utilize variations in daily average temperatures to estimate a step-function of 

marginal yield response to each crop’s seasonal exposure to 3-degree Celsius bins, controlling 

for quadratic trends and quadratic precipitation. For all crops, we find a positive marginal yield 

response within the 12-15oC range and a negative response for temperatures above 32oC. We 

then introduce 1-degree Celsius bins, except for 12-15oC and above 32oC, to achieve refined cut-

offs for GDs and SDs. The step-functions are presented in figures 2-5. The cut-offs derived here 

are considered to be preliminary as they may be biased due to excluded explanatory variables 

and only a guide to the second step in their identification. In the second step, we refine the 

preliminary cut-offs using regressions loops to maximize the fit of a ‘full’ model. The full model 
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for this purpose is described below in equation 1, and the finalized GD & SD thresholds along 

with crop-specific growing seasons are listed in table 2. Further, variable summaries are 

provided in table 3. We next discuss the yields model upon which these looped regressions are 

performed.  

The yield-weather model is given as 

 , 0 , , ,,( ) i ti t W i t tW i t SW i i tYields f t W tW QWβ β β β ε= + + + ++                                                          (1) 

Equation (1) represents a linear regression-model that establishes a relationship between crop 

yields Yi,t and a vector of historical weather outcomes Wi,t. { }3
11

( ) ( - )k
k kk

f t D t tβ
=

=∑ , with t = 1 

for year 1950 and = 64 for 2013, specifies trend impacts on yields as continuous, linear splines to 

allow different slopes at pre-assigned spline-knots or break-points. Here, the regression splines 

are characterized by an indicator variable kD  = 1 if kt t≥  or 0 otherwise; and a set of spline-

knots kt {1965,1980,1995}∈ . Trend is intended to control for the impact of evolving land 

management practices and technological innovations on crop yields. The knots are chosen to 

capture a shift in trend-impacts due to exogenous policy, e.g., 1996 Freedom-to-Farm Act, or 

changes in federal subsidy and a decline of commodity prices in mid-80s (Schlenker et al. 2006, 

p. 119).6  The weather outcomes’ vector , , , , ,[ , , , ]i t i t i t i t i tW GD SD DRYZ WETZ′ =  captures the 

concave yield response to heat and moisture deficiency. The variables ,i tWETZ  and ,i tSD   are 

interacted to estimate the impact of humidity on agricultural yields. 

                                                           
6 We ruled out decadal knots because an F-test found the goodness-of-fit normalized by the loss 
of degrees of freedom due to decadal knots over 15-year knots did not improve significantly. 
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We include trend-weather interactions to control for the impact of temporal adaptations to 

historical weather fluctuations. For example the coefficients for ,i tt SD×  measure how temporal 

adaptations mitigate or aggravate the harmful impacts of ,i tSD . Since trends potentially capture 

the impact of new technologies on yields, we hope that trend-weather interactions will give 

useful insights on how technological innovations modify weather impacts. The vector of weather 

variables is also interacted with soil quality, iQ  = [% 234[ ] ,% 234[ ] ]i iLCC S LCC W . These 

interactions are intended to capture the role of soil limitations on the yield-weather relationships. 

We conjecture that the droughty (wet) soils would potentially aggravate the harmful impacts of 

SD (WETZ). However, it is important to note that % 234[ ]iLCC S  represents percentage of 

drought soils in county i, not distinguishing what is grown on this soil-type. The consequence of 

this data-driven limitation is that we cannot attribute the coefficient estimate to crop-specific 

yield impacts. Rather we can only provide a generalized view on the role of soil quality when the 

sign of corresponding coefficient estimates is same for all major crops. Also, we will be limited 

to only qualitative inference (positive or negative).  

SD categorization 

To differentiate yield impacts by the intensity of heat stress, we disaggregate the stress degree-

days into isolated or single-day events (SD1), and continuous events of two-three-consecutive-

days (SD23) and four-or-more-consecutive days (SD4+). Our motivation here is two-stranded: 1) 

understand whether an isolated SDs have different effects if they occur early in the growing 

season; 2) understand the impact of more frequent heat events as per future climate projections.  

 We disaggregate total seasonal SD into SD1, SD23 and SD4+ categories, such that SD = SD1 + 

SD23 + SD4+. The SDD1 variable is constructed by multiplying the column of SDs with an 
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indicator variable that equals 1 on an isolated hot day or 0 otherwise. SD23 and SD4+ are 

constructed in similar fashion. Now, heat may not accumulate proportionately within each SD 

category. In addition, SD1 may be a more/less frequent event than SD23, which it turn may be 

more/less frequent as compared to SD4+. To compare coefficients across SD categories, we 

normalize them such that SD23 (or SD4+) represents a bundle of 2-or-3 (or 4-or-more) SD1s, in a 

consecutive sequence rather than in isolation. See the appendix for a formal description of 

normalization.  

Seasonal Disaggregation 

The purpose of seasonal disaggregation is to allow for input-adjustments by farmers due to 

unexpected within-season weather fluctuations. The basic yields’ model assumes perfect 

foresight for seasonal weather outcomes as far as input-decisions are concerned. It fails to 

control for a scenario where a farmer may decide to use extra fertilizer half-way through the 

season to make up for the losses due to unanticipated extraordinary wetness. The impact of early 

season heat may correspond to isolated heat events from above specification, since most SD1s 

occur during the early growing season. 

Annual Weather Realizations, Crop Competitiveness and Land-Use Change 

For a profit-maximizing representative landowner who may allocate his/her land towards more 

than one viable land-use, the optimal allocation is when marginal return of an extra acreage is 

equal across land-use types. Marginal return to a crop’s land allocation would depend on 

exogenous factors like weather, soils, etc., endogenous inputs like fertilizers, pesticides, etc., and 

the input & output prices. If the market prices are assumed to be constant and the endogenous 

inputs independent of the crop’s acreage allocation, then good (bad) weather will increase 
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(decrease) its yield, thereby making the crop more (less) profitable. If such weather impacts are 

asymmetric across Dakotas’ major commodities, they can potentially trigger landowner 

adaptations by increasing the acreage allocation of the most profitable crop(s). We draw from 

this argument to evaluate crop competitiveness that relates regional land-use changes to 

historical weather. Growing season and temperature thresholds differ across crops in our study. 

In order to make inference about crop competitiveness we calculate yield elasticities to weather 

as they are a unit-less measure, and thus comparable across crops.  

A conceptual framework that extends relative crop competitiveness, as measured by yield-

weather elasticities, to formally model annual land-use decisions is visualized in figure 7. 

Specifically, we model land-use share, ,
l
i ts , for crop l in county i in year t such that l A∈  where 

{corn, soy, spring wheat}A∈  is the set of commodities analyzed. The modelling strategy that 

restricts shares between 0 and 1 is to assume a random regression error term that is extreme-

value distributed. Therefore, we have 

,
,

,

exp( )
, {corn, soy, spring wheat}

exp( )

l
i tl

i t k
i tk A

s A
π

π
∈

= ∈
∑

                                                          (2) 

Equation (2) specifies the estimation framework of county-level land-use shares for the Dakotas’ 

major row crops, i.e. corn, soybean and spring wheat.  The explanatory variables are the per-acre 

returns for each crop-type that also include government payments in the form of crop-specific 

insurance subsidies, disaster payments, and other farming subsidies. We will also include county 

fixed-effects to control for county-specific factors like soil quality, demographic characteristics, 

etc.  
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We specify per-acre returns as 
, , | ( ) , | ,

  l l l
i t i t f t i t W S

π π π+= , where where 

, | ( ), | ( )   
ll l l
i t f ti t f t t tP Y Cπ −=  and 

, | ,
 l

i t W S
π = 

, | ,  
ll l
i t W St tP Y C− . To evaluate these decomposed returns, we utilize predicted yields  ,

l
i tY , 

region-level market price l
tP , and the region-level production cost l

tC . In order to identify short-

term weather impacts on land-use, decompose the predicted yields  ,
l
i tY  into  

(a)  

, | ( ) ( )
l
i t f t fY t= , and                                                                                                    (3) 

(b)  

   

, ,, ,| i t
l
i t W i tW SS W iY W Q Wβ β+= .7                                                                                 (4) 

Note that utilizing predicted weather to predict yields towards land-use decisions emphasizes the 

random weather events that are likely to be unobserved to the decision-maker as well. To obtain 



,
l
i tW , we assume an AR(4) process for period t weather outcome and estimate  

   

, , , ,
l l l l l
i t o t W k i tk kt WW γ γ γ

= −
 = + +   ∑4

1
1 1 1                                                                             (5) 

where  ,

l

W kγ =[    

, , , ,, , ,
l l l l

GDD k SDD k DRYPZ k WETPZ kγ γ γ γ ], , , ,, ,[ , , , ]i t i t i t tt ii GDD SDD DRYPZ WETPZW ′ =  and ′1

[1,1,1,1]= .8 Further, l
tP  and l

tC , from USDA-ERS’s ‘Commodity Costs and Returns’ data 

products, are available annually for the Great Plains region, so are invariant across counties. 

Period t prices and costs are assumed to represent landowner expectations of county-specific 

                                                           
7 Coefficients of trend-weather interaction variables are assumed to be zero in order to achieve 
the proposed decomposition of predicted yields. 
8 The estimation results along with the econometric considerations like non-stationarity are 
presented in an appendix.  
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market valuations of production inputs and output. Hence, the reduced form land-use shares 

regression is written as 

 

{ } 

,
, | ( ) , | , , ,

,

 (1ln ) + , 
1

l
l l li t l l l
i t f t i t W S i tGP i tl l l

i t

s
GP l A

s πβ α π α π β ε
 

= ⋅ ⋅ + ∈  + − 
−∑ ∑                   (6) 

Parameters α  and (1 )α−  in equation (6) designate the relative weightage attributable to 

impact of yield trends versus random weather fluctuations on land-use shares among the three 

major crops of this region. It is important to understand the weight landowners have placed on 

short-term weather outcomes in past and whether they are as important as higher returns due to 

trends that capture the advent of better technology and land-use management practices. In 

addition, the substitutability among corn, soybeans and spring wheat is captured by own- and 

cross-profit elasticities of each crop’s land-use share. Government payments are found to be 

critical to land-use decisions. Crop insurance subsidies are found to reduce risks of crop failure 

(Claassen et al. 2011, Miao et al. 2014) that are very much relevant for the Dakotas’ marginal 

soils and climate. The land allocations are likely endogenous to insurance subsidies and other 

form of government payments. To control for this, we implement a two-step IV modelling 

strategy. We first model each form of government payment as a function of the expectation of 

market prices, weather, i.e. 

    





, 0 ,
l l l ll
i t P W i ttGP P Wλ λ λ= + + ,                                                                                      (7) 

where 


l

Wγ =[    , , ,
l l l l

GDD SDD DRYPZ WETPZγ γ γ γ ], , , ,, ,[ , , , ]i t i t t it i ti GD SD DRYZ WETZW ′ = . Note that we 

require our proposed instruments to be uncorrelated to ,
l
i tε , which will likely hold since they are 

controlled for through the period t predicted per-acre crop-specific returns. Finally, we utilize the 
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seemingly-unrelated regressions framework to estimate (6) as common regressors may lead to 

correlated system errors. The set of regressions in equation (6) are the second-step where the 

instrumented government payments in (7) are utilized. 

Estimation Results 

We present the regression estimates from fixed-effects panel regression, where the fixed-effects 

are due to varied soil quality across counties. We first discuss the estimation results from a basic 

(parsimonious) model in equation 1 each individual commodity and then, relative 

competitiveness. This is followed by differentiated SD impacts and seasonally disaggregated 

weather impacts on yields. We also present a robustness analysis.9  

We find positive marginal yield trends for all commodities, except for alfalfa yields that are 

found to have stagnated during 1950-2013 (see figure 6). Further, the marginal impacts of trends 

are positive for all four commodities post-1995, and negative during 1980-’95. The post-1995 

positive trends can be attributed to the Freedom-to-Farm Act of 1996 that gave farmers the 

flexibility of cropping choices according to market valuations rather than their farming history. 

Higher returns, as a result, would potentially encourage adopting newer and better technologies/ 

management-practices eventually resulting in higher productivity across commodities. A similar, 

but reverse, trend during 1980-’95 could be a result of decrease in commodity prices in the mid-

80s. For a comparison of trend-effects across commodities we plot normalized marginal effects 

in figure 5. We find the strongest trend-effects for corn during 1950-2013, followed by spring 

wheat, soybeans and alfalfa. In fact, yields increased more rapidly for spring wheat than corn 

                                                           
9 Note that spatial correlation among regression residuals is yet to be controlled for, but most 
estimated coefficients are highly significant anyway. 
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during 1950-’64, before being eventually overtaken in 1972. This fact correlates with higher 

R&D focus and adoption rates of hybrid and genetically engineered varieties for corn than wheat 

(discussed earlier, Fernandez-Cornejo, 2004 p. 30-37; Xu et al., 2012). 

The coefficient estimates for weather outcomes – GD, SD, DRYZ and WETZ – confirm a 

non-linear, concave relationship between yields and weather (see Table 4). In addition, we find 

that the rate of decline in yields due to temperature levels above the SD threshold is higher than 

the rate of increase due to higher temperatures in the GD range. This finding is consistent with 

Roberts and Schlenker (2009)’s, but we extend it to two more commodities – spring wheat and 

alfalfa. The case of alfalfa is particularly interesting because it is a legume crop, often grown for 

animal feed, for soil’s nitrogen-fixation and is usually rotated with row crops like corn. Further, 

we find severe-to-extreme droughts to be the most harmful weather phenomenon in each case. 

This finding is consistent with Massetti and Mandelson (2016), but again extended to spring 

wheat and alfalfa as well. However, severe-to-extreme wetness caused only wheat yields to 

decline (less harmful than drought but more harmful than the SDDs). Whereas soybean and 

alfalfa yields benefitted from marginal increase in WETZ, with an insignificant, positive impact 

on corn. The non-decreasing impact of WETZ on corn and soybeans can be attribute to these 

crops’ high water demand for growth. Alfalfa also potentially uses soil moisture as Helm (1993) 

suggest that it can lead to reduced moisture in the soils if grown in multiple rotations. We also 

find that humidity (WETZ×SD) is beneficial to all crops’ yields. Surprisingly, the coefficient to 

DRYZ×SD is also positive, significant which we cannot reconcile. 

The trend-weather interactions reveal a positive, significant coefficients on trend-GD, and 

negative, significant coefficients on trend-SD, trend-DRYZ and trend-WETZ. This result holds 

true for all crop-types, except for soybeans where the trend-DRYZ coefficient is positive and 
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significant. The above discussion points out to potential correlations between higher yields and 

technological advancements through the trends variable. In that sense, we find that climate 

stressors reduced yields even in light of advances in technology, where one would expect the 

opposite. However, this interpretation is susceptible to correlations between trends and weather 

variables.10 

Lastly, the soil-weather interactions reveal a weak relationship between soil limitations and 

weather outcomes. Recall that soil variables represent the percentage of a particular soil cover in 

a county, and not which crop was grown on that soil-type. Therefore, we can only provide a 

qualitative inference and we consider the impacts of all four major crop-types at once. We find 

that coefficient on %LCC234[S]×SD is negative across all commodities (Table 4). This means 

that shallow soils aggravate the negative impact of SDs. However, these coefficients are not 

always significant, and hence only a weak impact. We also find that wet soils, with poor 

drainage, cause weak reduction (aggravate) in the positive (negative) impacts of WETZ. 

SD categorization and Seasonal disaggregation 

Table 5 presents the yield impacts of isolated vs. continuous heat events. The idea is to 

differentiate the impact of harmful heat (SD) by its intensity. We disaggregate the quantum of 

SDs into isolated or single-stress-degree-day (SD1); two-to-three consecutive SDs (SD23) and 

four-or-more SDs (SD4+). We find that higher heat intensity causes more harm to crop yields. 

That is, the marginal impact of SD4+ is greater than that of SD23 and SD1. Further, not only are 

                                                           
10 We find the correlation between GD and trends to be statistically insignificant, in the case of 
corn. This can be due to the fact that growing seasons are fixed in this study, while the 
distribution of temperatures might have become more disperse rather than scaling up. SD and 
trend are found to be negatively correlated, however the correlation coefficient was smaller than 
the regression coefficient.  



23 
 

isolated heat events least harmful to crop yields, they are, in fact, beneficial to spring wheat and 

soybean yields. The fact that low-intensity SDs enhance soybean and spring wheat yields while 

high-intensity SDs reduce them is akin to ‘hormesis’, a toxicological phenomenon. Hormesis 

occurs when low-doses of an agent are beneficial while higher-doses may be toxic or lethal. 

The seasonality of yield-weather responses provide some useful insights (Tables 6, 7). The 

positive yields response to early-season SDs, in case of spring wheat and soybeans, mirrors that 

of isolated SDs. This is because isolated SDs mostly occur in the early growing season (mid-

April to Mid-June). In case of spring wheat, late-season GDs are found to be detrimental to 

yields, even when early-season SDs are beneficial. In addition, GD and SD thresholds are the 

lowest for spring wheat. This suggests that to model non-linear temperature effects, seasonal 

differentiation of heat would be more relevant than the usual thresholds-based characterization in 

case of county-level spring wheat yields. Further, we find higher spring-time wetness to 

aggravate the harmful effects of warming on spring wheat yields, which is in dis-agreement with 

the field-trails by Tack et al., 2015. This could be a result of different yield-weather responses 

from the controlled-environment of field-trial yields and the real-world county-level yields, 

especially when the Dakotas experience extreme (dry/wet) growing conditions rather frequently 

along with limited soil quality. Also, interestingly, droughts are found to be more detrimental to 

yields when they occur late in the growing season for all commodities, except spring wheat. 

Further, high late-season WETZ in conjunction with high SD (WETZ×SD) are beneficial to corn 

and soybean yields while being harmful early in the growing season. This could be because 

severe wetness can delay planting of the crop, thereby effectively reducing the length of growing 

period. Further, severe wetness and high humidity are beneficial (harmful) to alfalfa (spring 

wheat) through their May-April growing season.  
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The yield-weather elasticity estimates are presented in table 8. Soybean yields are found to 

be most responsive to higher GDs (elasticity = 1.85), followed by corn (0.96), alfalfa (0.49) and 

spring wheat (0.37). On the other hand, spring wheat is found to suffer most yield losses from 

marginally higher SDs (-0.37), followed by corn (-0.17), alfalfa (-0.13) and soy (-0.11). We have 

argued that imbalances in yield impacts due to weather may lead to farmer adaptations through 

the crop choices that are most profitable. Historically, the growing season length has increased, 

thus more GDs, and summer-time warming intensified, thus more SDs. The observed shift of 

production systems away from wheat, and towards corn and soybeans, is in line with how 

sensitive these crops are to such weather outcomes. 

Table 9 presents the results of the IV-regressions used to estimate government payments. The 

government payments’ estimates are then used in eq. (3). A higher expectation of the market 

prices for commodities results in higher crop insurance subsidies. Broadly, we find government 

payments to be most sensitive to DRYZ and WETZ predictions based on past realizations. We 

control for county-fixed effects as county demographics like ager, experience, soil quality may 

affect the choice to buy crop insurance.  

The estimation results for land-use shares among corn, soybeans and wheat are listed in 

Table 10. The explanatory variables of interest here are net per-acre crop returns due to trends 

and due to weather realizations during 1996-2013. In the case of corn, net returns from yield 

trends affect corn acreage positively while the impact of weather has been insignificant. For 

spring wheat, higher returns due to weather realizations are found to have increased its acreage. 

However, spring wheat’s higher yield trends are found to disincentivize its acreage where corn’s 

higher yield trends are found to produce a positive impact on its acreage. This result may be 

driven by the fact that post 1995 yield trends for spring wheat and corn are almost perfectly 
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correlated, see figure 6. For soybeans, higher yield trends are found to incentivize acreage but the 

case of weather-driven-net-returns is opposite. Rather, we find that higher weather-driven-net-

returns for spring wheat incentivize soy acreage. The ambiguity may be due to overlapping 

growing seasons and temperature thresholds for these crops. Further, soybeans are rotated with 

corn as well as spring wheat and we do not capture such effects in our models yet. To that extent 

these results are preliminary.     

Discussion 

Many studies have analyzed the vulnerability of the agricultural sector to climate change. 

Temperature and moisture are critical components of a plant’s growth cycle. Hence, short-term 

fluctuations as well as long-term changes in weather outcomes are bound to impact agricultural 

productivity. In the U.S., researchers have extensively studied the climate impact of corn yield as 

it is critical to the country’s food, feed and biofuels industry, as well as its exports. Other 

commodities have received lesser attention in the literature. This paper develops an integrated 

yield modelling framework that analyzes all major crops in a region, and further evaluates their 

comparative compatibility to the region’s weather and soils. The motivation to extend yield 

models to lesser-studied crops is the peculiarity of the region under study: the states of North and 

South Dakota of the U.S. Northern Great Plains. This region has experienced rapid land-use 

changes characterized by a shift of agricultural production system to corn and soybean 

cultivation, and away from wheat and grasses. This is the first study, to our best knowledge, to 

have utilized a comparative yield modelling framework to understand the role of climate on 

regional land-use change.  

Among the land-use types analyzed in this study, alfalfa is a particularly interesting case. 

Alfalfa is primarily used as animal feed, and so we consider it as proxy for region’s native 
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grasses. We combine the existing yield modelling strategies to establish thresholds-based non-

linear, concave yield-weather relationship for each crops. We also extend the pre-existing yields 

models by introducing flexible trends, trend-weather interactions and soil-weather interactions as 

explanatory variables. Our findings provide insights into the role of weather/climate in recent 

land use change across the Great Plains. 

Corn is known to be a disproportionate beneficiary of the historical R&D efforts to develop 

better, sturdier seed varieties. This fact supports our analysis of relative trends where corn yields 

have grown faster than other crop. An implication is that policy-makers can improve long-term 

yields by encouraging appropriate R&D incentives and ensuring high adoption rates. However, if 

trends were a surrogate for R&D activity then our finding that trend-weather interaction terms 

were non-positive means that higher R&D investments have not resulted in negating the adverse 

impacts of climate stressors. This has implications for future food production since the intensity 

and frequency of climate stressors through high heat, droughts and/or floods are predicted to 

intensify. The soil-weather interactions reveal that soil-limitations potentially worsen the impact 

of extreme weather events. This may lead to an overall reduction in availability of land that 

supports high yields as climate stressors intensify in future, ultimately stressing food supply. 

Also, the demand for good land would increase thereby leading to higher land prices and costlier 

commodities. Our finding that consecutive hot days are more harmful than isolated events also 

bears negative implications for all crops, as temperature rises and extreme heat events become 

more frequent due to climate change. 

We assess how competitive the region’s main crops will be under climate change. We find 

that corn and soybean have become more competitive due to historical climate change. From 

here we can conclude that if growing seasons expand and summer temperatures intensify in 
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future, then corn and soybeans will continue to enjoy an agronomic advantage in this region. 

However, our land-use regressions do not suggest a definitive role of short-term weather 

realizations in explaining shares, although ours is a work in progress. 

Our work points to the need for yield models that better articulate interactions between soil 

quality and weather. Our findings have implications for crop-based and livestock-based 

agricultural systems. Further, by addressing land-use switches away from the regional grasses 

this study may garner interests among conservations enthusiasts and those interested in related 

ecosystem services from the Great Plains, as well as to scientists interested in how climate 

change affects food production. 
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TABLES 
Table 1: Palmer Z’s characterization of wetness and droughts 

Category Palmer Z 
Extreme Wetness ≥ 3.50 
Severe Wetness [2.50, 3.49] 
Mild to Moderate Wetness [1.00, 2.49] 
Near Normal [-1.24, 0.99] 
Mild to Moderate Drought [-1.99, -1.25] 
Severe Drought [-2.74, -2.00] 
Extreme Drought ≤ -2.75 

Table 2: Growing seasons and temperature thresholds for corn, soybean, spring wheat and alfalfa 

 

Table 3: Decadal summaries of monthly weather variables. 
Variable 1950-’60  1961-’70  1971-’80  1981-’90  1990-’00  2001-’10  
CORN       
GD 2485.43 2522.64 2578.14 2524.00 2457.44 2501.56 
SD 44.29 44.11 51.84 43.401 20.14 35.96 
DRYZ 0.60 0.36 1.022 1.09 0.18 0.66 
WETZ 0.84 1.52 0.79 0.78 2.48 1.61 
SOYBEANS       
GD 3345.14 3338.83 3396.36 3317.19 3255.34 3247.07 
SD 43.19 38.90 46.25 42.718 19.13 30.99 
DRYZ 0.42 0.28 1.00 1.23 0.13 0.56 
WETZ 0.68 1.50 0.76 0.70 2.39 1.73 
SPRING WHEAT       
GD 1527.24 1544.72 1588.16 1586.22 1516.72 1554.51 
SD 225.03 221.06 248.03 229.09 147.64 199.79 
DRYZ 0.64 0.25 1.06 1.30 0.16 0.68 
WETZ 0.63 1.56 0.86 1.07 2.45 1.40 
ALFALFA       
GD 1445.93 1457.28 1458.50 1376.34 1362.88 1458.49 
SD 59.87 56.39 56.41 43.31 27.29 52.55 
DRYZ 0.64 0.25 0.96 1.61 0.13 0.67 
WETZ 0.63 1.56 1.01 0.78 2.04 1.51 

Commodity Growing Season Temperature Thresholds 
CORN May-August [7 , 28 ]; 32o o oGD C C SD C∈ ≥   

SOYBEANS May-August [3 , 26 ]; 32o o oGD C C SD C∈ ≥  

SPRING WHEAT April-July [6 ,20 ]; 25o o oGD C C SD C∈ ≥  

ALFALFA April-July [10 ,27 ]; 30o o oGD C C SD C∈ ≥  
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Table 4: The (parsimonious) yields regression model. Dependent Variables: Yields (bu./ac.) 
 CORN SOYBEAN SPRING WHEAT ALFALFA 
Variable Estimate Estimate Estimate Estimate 
Intercept 28.792*** 21.712*** 29.119*** 0.779*** 
t 0.858*** 0.229*** 0.757*** -0.002 
t65 0.873*** 0.328*** -0.405*** 0.037*** 
t80 -0.823*** -0.232*** -0.298*** -0.034*** 
t95 1.334*** 0.130*** 0.779*** 0.014*** 
GD 0.023*** 0.012*** 0.007*** 0.001*** 
t×GD 0.001*** 0.002*** 0.001*** 0.001*** 
SD -0.250*** -0.070*** -0.048*** -0.004*** 
t×SD -0.010*** -0.002*** -0.001*** -0.0002*** 
DRYZ -3.286*** -1.150*** -1.008*** -0.162*** 
t×DRYZ -0.044*** 0.011** -0.011*** -0.002*** 
DRYZ×SD 0.035*** 0.006*** -0.0003 0.001*** 
WETZ 0.048 0.275*** -0.520*** 0.065*** 
t×WETZ -0.025*** -0.006*** -0.011*** -0.0003** 
WETZ×SD 0.026*** 0.020*** 0.0003 0.001*** 
%lcc234[S]×SD -0.004*** -0.0001 -0.0001 -0.0001** 
%lcc234[S]×DRYZ -0.017 0.010 -0.007 -0.001 
%lcc234[W]×WETZ -0.001 -0.006 -0.034*** -0.001*** 

     
R2 0.8254 0.8192 0.7616 0.7817 
N 6,989 2,911 7,112 6,165 

***p<0.01, **p<0.05, *p>0.1 

Table 5: Isolated vs. Consecutive SDDs 
 CORN SOYBEAN SPRING WHEAT ALFALFA 
Variable Estimate Estimate Estimate Estimate 
Intercept 29.565*** 22.544*** 29.346*** 0.774*** 
t 0.887*** 0.257*** 0.765*** -0.002 
t65 0.837*** 0.311*** -0.434*** 0.037*** 
t80 -0.831*** -0.239*** -0.290*** -0.034*** 
t95 1.352*** 0.139*** 0.818*** 0.016*** 
GD 0.023*** 0.012*** 0.006*** 0.001*** 
t×GD 0.001*** 0.002*** 0.001*** 0.001*** 
SDD1 -0.125** 0.052* 0.094*** -0.008*** 
t×SDD1 -0.016*** 0.002 0.0005 -0.001*** 
SDD23 -0.864*** -0.181*** -0.007 -0.018*** 
t×SDD23 -0.038*** -0.005*** -0.0003 -0.001*** 
SDD4+ -1.207*** -0.217*** -1.346*** -0.019*** 
t×SDD4+ -0.046*** -0.006*** -0.026*** -0.001*** 
DRYZ -3.307*** -1.200*** -1.110*** -0.155*** 
t×DRYZ -0.043*** 0.011* -0.014*** -0.002*** 
DRYZ×SD 0.035*** 0.008*** 0.0004 0.001*** 
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WETZ 0.072 0.264*** -0.511*** 0.069*** 
t×WETZ -0.026*** -0.006** -0.011*** -0.0003** 
WETZ×SD 0.026*** 0.020*** 0.0004 0.001*** 
%lcc234[S]×SD -0.004*** -0.0001 -0.0001 -0.0001** 
%lcc234[S]×DRYZ -0.016 0.007 -0.006 -0.001 
%lcc234[W]×WETZ -0.0002 -0.006 -0.036*** -0.001*** 

     
R2 0.8264 0.8220 0.7688 0.7834 
N 6,989 2,911 7,112 6,165 

***p<0.01, **p<0.05, *p>0.1 
Table 6: Seasonal Weather Impacts: Corn and Soybeans 

Growing Season: May-August CORN SOYBEAN 
Variable Estimate Estimate 
Intercept 30.416*** 21.146*** 
t 0.942*** 0.220*** 
t65 0.785*** 0.368*** 
t80 -0.874*** -0.342*** 
t95 1.670*** 0.359*** 
GD_MAY_JUN 0.022*** 0.012*** 
t×GD_MAY_JUN 0.002*** 0.001*** 
GD_JUL_AUG 0.023*** 0.017*** 
t×GD_JUL_AUG 0.0004*** -0.006*** 
SD_MAY_JUN 0.075 0.094*** 
t×SD_MAY_JUN 0.002 0.001* 
SD_JUL_AUG -0.285*** -0.091*** 
t×SD_JUL_AUG -0.011*** -0.002*** 
DRYZ_MAY_JUN -1.933*** -1.033*** 
t×DRYZ_MAY_JUN -0.092*** -0.001 
DRYZ×SD_MAY_JUN 0.004 -0.023*** 
DRYZ_JUL_AUG -5.120*** -1.329*** 
t×DRYZ_JUL_AUG -0.041** -0.020** 
DRYZ×SD_JUL_AUG 0.045*** 0.009*** 
WETZ_MAY_JUN -0.803*** -0.075 
t×WETZ_MAY_JUN -0.011 -0.003 
WETZ×SD_MAY_JUN -0.080 0.066*** 
WETZ_JUL_AUG 0.697*** 0.898*** 
t×WETZ_JUL_AUG -0.035*** -0.013*** 
WETZ×SD_JUL_AUG 0.054*** 0.039*** 
%lcc234[S]×SD -0.004*** -0.000002 
%lcc234[S]×DRYZ 0.003 0.004 
%lcc234[W]×WETZ -0.005 -0.005 
R2 0.8326 0.8398 
N 6,989 2,911 

***p<0.01, **p<0.05, *p>0.1 
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Table 7: Seasonal Weather Impacts: Spring Wheat and Alfalfa 
Growing Season: April-July SPRING WHEAT ALFALFA 
Variable Estimate Estimate 
Intercept 29.692*** 0.839*** 
t 0.823*** 0.002 
t65 -0.497*** 0.031*** 
t80 -0.233*** -0.030*** 
t95 0.784*** 0.008*** 
GD_APR_MAY 0.010*** 0.0002*** 
t×GD_APR_MAY 0.0002** 0.00003*** 
GD_JUN_JUL -0.015*** 0.001*** 
t×GD_JUN_JUL 0.001*** 0.001*** 
SD_APR_MAY 0.018*** -0.006*** 
t×SD_APR_MAY 0.003*** 0.0003*** 
SD_JUN_JUL -0.040*** -0.005*** 
t×SD_JUN_JUL -0.002*** -0.0002*** 
DRYZ_APR_MAY -1.508*** -0.121*** 
t×DRYZ_APR_MAY -0.054*** -0.004*** 
DRYZ×SD_APR_MAY -0.011*** 0.002** 
DRYZ_JUN_JUL -1.342*** -0.185*** 
t×DRYZ_JUN_JUL 0.020*** -0.0003 
DRYZ×SD_JUN_JUL 0.0002 0.001*** 
WETZ_APR_MAY -0.056 0.059*** 
t×WETZ_APR_MAY -0.008** -0.001*** 
WETZ×SD_APR_MAY -0.009** 0.003 
WETZ_JUN_JUL -0.507*** 0.055*** 
t×WETZ_JUN_JUL -0.020*** -0.0003* 
WETZ×SD_JUN_JUL 0.001 0.001*** 
%lcc234[S]×SD -0.0001 -0.0001*** 
%lcc234[S]×DRYZ -0.004 -0.001 
%lcc234[W]×WETZ -0.034*** -0.001*** 
R2 0.7898 0.7892 
N 7,112 6,165 

***p<0.01, **p<0.05, *p>0.1 

Table 8: Yields-weather elasticities (Crop Competitiveness) 

Variable CORN  
(59 bu./ac.) 

SOYBEANS  
(22 bu./ac.) 

SPRING WHEAT 
(27 bu./ac.) 

ALFALFA  
(55 bu/ac) 

GD 0.9595 1.8465 0.3740 0.49138 

KDD -0.1692 -0.1106 -0.3732 -0.1283 

DRYZ -0.0368 -0.0319 -0.0250 -0.0617 

WETZ 0.0011 0.0180 -0.0256 0.0514 
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Table 9: IV Regressions for Government Payments Variables 
Regressors Crop Insurance Subsidy Disaster 

Payments 
Farm 

Subsidies  Corn Soybeans Wheat 
Intercept 4.10* -11.61 18.34*** 198.82*** 8.64*** 
Trends    0.48***  
Corn Price 0.77***     
Soy Price  0.41***    
Wheat Price   0.34***   
Average Price     -0.21*** 
GD 0.001 -0.003 -0.004*** -0.09*** 0.003*** 
SD 0.004 0.04** 0.002 0.46*** -0.01*** 
DRYZ 0.25** 0.14 0.54*** -1.8 0.02 
WETZ 0.41*** 0.24 0.16*** -0.08 0.22*** 
Fixed Effects Yes Yes Yes Yes Yes 
R2 0.84 0.82 0.91 0.20 0.82 

***p<0.01, **p<0.05, *p>0.1 

 
 
Table 10: Land-Use Transition Models Due to Per Acre Crop Profits: The SUR Model. 

 CORN SOYBEAN SPRING WHEAT 
Regressors Estimate Estimate Estimate 
Per Acre Profits- due to trends    

| ( )CORN f tπ   0.005*** 0.010*** 0.003** 

| ( )SOY f tπ  0.019*** 0.021*** 0.000 
 | ( )SPRING WHEAT f tπ  -0.005*** -0.003* -0.002* 

Per Acre Profits- due to weather (& soils)    
| ,CORN W Sπ   0.0001 -0.002 -0.004** 

| ,SOY W Sπ  -0.019*** -0.024*** 0.002 
 | ,SPRING WHEAT W Sπ  0.009*** 0.008*** 0.010*** 

Crop Insurance Subsidy    
Corn -0.487*** -0.888*** -0.182* 
Soybeans -0.012 -0.282** 0.013 
Wheat 0.024 0.196 0.207** 
Other Govt. Payments    
Disaster Payments 0.072*** 0.200*** 0.031 
Farm Subsidies 3.970*** 3.939*** 1.315** 
    
Fixed Effects Yes Yes Yes 
System Weighted R2 0.98 

***p<0.01, **p<0.05, *p>0.1 
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FIGURES 
Figure 1: Historical Yield Trends for corn, alfalfa, soy and sp. wheat, standardized at 1950 =1. 

 

Figure 2: Corn Yields vs. Number of Days in Each Degree-Celsius Bin 
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Figure 3: Spring Wheat Yields vs. Number of Days in Each Degree-Celsius Bin 

 

Figure 4: Alfalfa Yields vs. Number of Days in Each Degree-Celsius Bin 
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Figure 5: Soybean Yields vs. Number of Days in Each Degree-Celsius Bin 

 
Figure 6: Marginal Trend Impacts of Crop Yields. The starting values in 1950 are standardized to 
equal 1. 
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Figure 7: Land-Use Switching: Conceptual Framework. 
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APPENDIX 

Crop Yields and Historical Weather Outcomes 

SD Categorization  

Consider a snapshot of a representative county i’s yields at year t. We know from our 

econometric estimations that this county’s yields would increase given an additional GD and 

decrease given an additional SD.  

We now want to evaluate the impact of an additional SD if it occurred as an isolated single-day 

event or for 2 or more consecutive days. In other words, we divide the total bag of heat 

accumulated in SDs into various categories and want to test whether an additional unit of SD in 

one category is more harmful than in the other category. 

For a mathematical representation of this hypothesis, consider a simplified (hypothetical) 

situation where SDs are accumulated only as isolated single-day events or as consecutive 2-day 

events in year t. Let (1)I  be the total frequency of single-day heat events and (2)I be the total 

frequency of 2-day heat events during the year t growing season. Therefore, the total number of 

days when SD > 0 equals (1)I  + 2 (2)I . Also, let 1 2and m m  represent average heat accumulated 

per day in the single-day and the consecutive 2-day categories respectively. So,  

 (1)
1 

( 32)

(1)
dd I

T
m

I
∈

−
=
∑ , and  

(2)
2 

( 32)

2 (2)
dd I

T
m

I
∈

−
=
∑ .    (  2 (2) is the total number of days in this category)I

  

So, we can express total heat accumulated under the isolated single-day category (SDD1) and the 

consecutive 2-day category (SDD2) as: 
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1

2

1 (1)
2 2 (2)

SDD m I
SDD m I

=
=

  

In the yield regression model for county i for year t we have 

0 1 2

0 1 1 2 2

1 2  other controls..
   = (1) 2 (2)  ..
Y SDD SDD

m I m I
β β β
β β β
= + + +

+ + +
  

In this regression framework, the quantum of heat among SDD1 and SDD2 categories can 

potentially differ across three dimensions: 1) average per day heat ( 1 2 . m vs m ); 2) frequency of 

the event ( (1) . (2)I vs I ); and 3) because two single-day events are essentially bundled up into one 

consecutive 2-day event. Now, if 2 1  and (2) (1)m Im k m I k I= =  then we can re-write the 

regression equation above as follows: 

 0 1 1 2 1

0 1 2

(1) 2 (1)  ..
   = 1 2 1  ..

m I

m I

Y m I k k m I
SDD k k SDD

β β β
β β β
= + + +

+ + +
 

The above regression is essentially a structural breakdown of SDDs because it compares the 

impact of an additional unit of SDD1 on yields in isolation and in two consecutive repetitions. 

Since SDD1 is the common denominator of marginal response of yields, the coefficients 1β  and 

22 m Ik k β  are directly comparable. An alternative way to achieve this is to divide SDD2 by 2 m Ik k . 

It is important to realize that the factor 2 m Ik k  captures disproportionate heat intensity across SD 

categories. SDDs with higher continuity are observed to be much less frequent, but at the same 

time they could accumulate higher or lower mean heat per day (m). This is a purely empirical 

issue and a fixed standardizing factor of 2 for SDD2 or 3 for SDD3 may not be perfect.  
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Where do the (spatio-temporal) means of different SD categories fit into the above framework? 

The means of SD1s, SD23s and SD4+s are basically a proxy for 2 m Ik k . The reason they are only an 

approximation is that the above framework applies only to a snapshot of a particular county in a 

particular year. Each county will have a different value 2 m Ik k  that may differ across different 

years. Ideally, one should use a standardization factor that varies with county and year, but then 

the interpretation of the resulting variable will not be as straightforward. Therefore, an overall 

mean is a plausible candidate for normalization. 

Robustness (Estimation Results, Yield-Weather Models): We conduct robustness tests on our 

corn yield model estimates. For this purpose, we either break that spatially into: north vs. south 

and east vs. west, or we utilize weighted regressions with average crop-acreage share for each 

county as weights. 

A. East of the 100th Meridian vs. West of the 100th Meridian (see Table A1-A2): 100th meridian 

cuts the U.S. mainland into two type of agricultural land, i.e. the eastern half is generally rain-fed 

and the west needs irrigation for growing crops. Now the 100th meridian cuts the Dakotas into 

halves and thus the western portion of the states is really at the non-irrigated/irrigated margin 

considering the total east-west expanse of the United States. However, if the western Dakotas are 

significantly irrigated then the impact of dry seasons and/or SDs may be undermined in our 

regressions. This is why these robustness test are important. We find our estimates to be robust. 

 

B. North Dakota vs. South Dakota (see Table A3-A4): South Dakota is warmer than its northern 

counterpart and may be better for agriculture through richer spatio-temporal yields data driving 

the results. However, we find our model estimates to be robust. 
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C. Weighted Regressions (Table A5): Since the respondent density is affected by crop failures, 

county-level yield estimates reposted by NASS are also prone to measurement errors. This issue 

is dealt with using weighted least squares regressions where the weights are various functional 

variations of county-level crop acreage shares. Weights may be time-invariant in this study. Only 

trends and trend-weather interactions are problematic, rest are robust. The issue with trends 

arises due to the loss of monotonicity when multiplied by non-monotonic weights. 

 

Annual Weather Realizations, Crop Competitiveness and Land-Use Change 

Weather Outcome Predictions: Econometric Considerations and Results  

Consider an AR(4) (panel) time-series process for the GDDs with ,( )i t i tE GDD tγ γ= + : 

, ,
4 4*

1 ,1
(1 ) ,i t k i t k k i tt ik k

t GDDGDD γ γ γ γ ν
= − =

= + + − +∑ ∑                                                           (A.1) 

where ,i tν  is assumed to be a white noise process, iγ  represents county-level means (fixed-

effects), 4*
1

(1 )t k tk
γ γ γ

=
= −∑ , and thus ,( )i t i tE GDD tγ γ= + . ,i tGDD  must be stationary in order 

for the above process to be estimable. The counterpart of stationarity of an autoregressive 

process is its invertibility. So to test stationarity of our panel data series for weather we conduct 

unit-root tests for the AR process by following a procedure proposed by Breitung and Meyer 

(1994). The corresponding t-test relies upon transforming equation A.1 such that the test statistic 

for the null hypothesis of a unit root, i.e. 4

1 kk
γ

=∑ =1, is asymptotically normally distributed, also 
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termed as the “unbiased test-statistic”.11 Specifically, Breitung and Meyer (1994) suggest the 

following transformation of (A.1) using the first value of the process ,0iGDD , 

4 4
, ,0 , ,

4

1 0 , 1 01 ,( ( ) (11 ) )( )i t i k k i t k i i t k i it k k k
t GDD GG DDDD GG DDD Dγ γ γ ν γ γ−= = =

− −= − + + − − −∑ ∑ ∑  

              (A.2) 

See that the impact of individual means vanishes under this transformation under the null, 

4

1 kk
γ

=∑ = 1, making regular t-test viable. We implement Breitung and Meyer’s (1994) test 

procedure for individual weather series ( ,i tGDD , ,i tSDD , ,i tDRYPZ and ,i tWETPZ ) in SAS’s 

panel model procedure – “Unbiased (UB) Test”. Results are presented in tables A6-A8. 

We find , , ,,  and i t i t i tGD SD WETZ  to be trend-stationary around count-level means for all three 

commodities, whereas ,i tDRYZ  is found to be non-stationary. An implication of this result is 

that severe to extreme droughts is too random an event to be predicted well. However, upon 

further investigation a subset of the ,i tDRYZ  data series, that matches up with the availability of 

yields data (temporally and county-wise), is found to be trend-stationary around county-level 

means for corn and spring wheat.12 We utilize the stationary subset of DRYZs, although we assert 

a minor caveat with the predictions given our analysis relies on a particular stationarity test. 

Predicting Yields: Decomposing the effects of Trends and Weather-Soil 

                                                           
11 Data transformation is necessary since under the alternative hypothesis of stationarity the t-test 
is subject to loss of power due to individual means. Breitung and Meyer’s (1994) approach is 
similar to the Dickey-Fuller test of Fuller (1976), although the latter proposed a bias-corrected 
test-statistic with critical values differing from a normally distributed t-statistic. 
12 Corn’s DRYZ predictions are also applicable to soybeans because these crops have similar 
growing seasons, and the counties that grow soybeans are only a subset of those that grow corn. 
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We utilize a fixed-effects panel regression to estimate the yield-weather relationship in equation 

(1). To be able to decompose the total predicted yields into component that are driven purely by 

trends and by weather (and soil) effects, we need to separate county fixed-effects as well. This is 

achieved by utilizing sample means from the data and estimating the following model: 

    , , , , , ,( )i t W i t SW D iit i ti iiY f t W QW Dβ β β η+= + ++ ∑                                (A.3) 

where iD  represents county dummy variables. Other variable notations and their definitions in 

(A.3) hold as per this document’s main text.13 We utilize coefficient estimates from (A.3) and 

weather predictions from the AR(4) regressions above to evaluate decomposed yield estimates, 

 

, | ( ) ( )
l
i t f t fY t=  and  , | ,

l
i t W SY =     

, ,i t i tW SW iW Q Wβ β+ , that are then used to calculate per-acre returns, 



, | ( ), | ( )   
ll l l
i t f ti t f t t tP Y Cπ −=  and 

, | ,
 l

i t W Q
π = 

, | ,  
ll l
i t W Qt tP Y C− , that enter the land-use shares model in 

equation (3). Note that   , | ( )
l
i t f tY  and  , | ,

l
i t W QY  (as estimated) account for “change” due to trends 

and weather, and not “levels”. Yield level estimates are accounted for by the county-level means 

,D iβ . 

 
Table A1: Variable Summaries for counties that are located east and west of the 100th Meridian. 
Variable East West 
GD 2573.20 2399.83 
SD 33.78 46.56 
DRYZ 0.59 0.75 
WETZ 1.32 1.38 
%lcc234[S] 10.15 6.68 
%lcc234[W] 9.48 1.42 

                                                           
13 Note that we have assumed 0tWβ =  in (A.3). Other coefficient estimates are robust to this 
assumption with minor aberrations. We do not report these regression results to save space, but 
are available upon request. 
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Table A2: Corn yield models for counties that are located east and west of the 100th Meridian. 
CORN EAST WEST 
Variable Estimate Estimate 
Intercept 61.014*** 26.595*** 
t 0.929*** 0.905*** 
t65 0.581*** 1.040*** 
t80 -0.100 -1.738*** 
t95 1.246*** 1.348*** 
GD 0.025*** 0.015*** 
t×GD 0.001*** 0.001*** 
SD -0.334*** -0.111*** 
t×SD -0.010*** -0.005*** 
DRYZ -3.068*** -2.779*** 
t×DRYZ -0.053*** -0.035** 
DRYZ×SD 0.034*** 0.027*** 
WETZ -0.199 0.783*** 
t×WETZ -0.037*** 0.020** 
WETZ×SD 0.039*** 0.024*** 
%lcc234[S]×SD -0.002* -0.002 
%lcc234[S]×DRYZ -0.019 -0.003 
%lcc234[W]×WETZ -0.007 0.049 
R2 0.8848 0.7071 
N 3,899 2,305 

***p<0.01, **p<0.05, *p>0.1 

 

 

Table A3: Variable Summaries for North and South Dakota counties. 
Variable North Dakota South Dakota 
GD 2337.44 2637.14 
SD 22.37 52.33 
DRYZ 0.78 0.58 
WETZ 1.48 1.28 
%lcc234[S] 7.23 9.99 
%lcc234[W] 7.06 5.40 
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Table A4: Corn yield models for North and South Dakota counties. 
CORN NORTH DAKOTA SOUTH DAKOTA 
Variable Estimate Estimate 
Intercept 44.270*** 27.327*** 
t 0.829*** 0.843*** 
t65 1.001*** 0.879*** 
t80 -1.139*** -0.713*** 
t95 1.448*** 1.295*** 
GD 0.030*** 0.016*** 
t×GD 0.002*** 0.001*** 
SD -0.265*** -0.221*** 
t×SD -0.009*** -0.010*** 
DRYZ -3.679*** -4.425*** 
t×DRYZ -0.096*** 0.007 
DRYZ×SD 0.047*** 0.044*** 
WETZ 0.031 0.354 
t×WETZ -0.003 -0.043*** 
WETZ×SD 0.043*** 0.031*** 
%lcc234[S] ×SD -0.0005 -0.005*** 
%lcc234[S] ×DRYZ 0.009 0.039 
%lcc234[W] ×WETZ -0.028** 0.044** 
R2 0.8315 0.8282 
N 2,907 4,082 

***p<0.01, **p<0.05, *p>0.1 
Table A5: Weighted Regressions 

CORN WT SQWT SQMWT WTBAR 
Variable Estimate Estimate Estimate Estimate 
Intercept 0.062 1.154 -0.092 2.191*** 
t -0.690*** -0.363*** -0.467*** 

-0.092 
-0.467 
2.892 
-1.064 
0.950 
0.013 

0.0005 
-0.264 
-0.009 
-2.874 
-0.003 
0.027 
-0.058 
-0.013 
0.010 
-0.003 
-0.031 
0.016 

 

-0.092 
-0.467 
2 892 

0.806*** 
t65 2.410*** 2.275*** 2.892*** 

-0.092 
-0.467 
2.892 
-1.064 
0.950 
0.013 

0.0005 
-0.264 
-0.009 
-2.874 
-0.003 
0.027 
-0.058 
-0.013 
0.010 
-0.003 
-0.031 
0.016 

 

-0.092 
0 467 

0.662*** 
t80 -1.016*** -0.773*** -1.064*** -0.021 
t95 1.968*** 1.535*** 0.950*** 1.259*** 
GD 0.008*** 0.010*** 0.013*** 0.015*** 
t×GD -0.0005*** -0.00002 0.0005*** -0.00002 
SD -0.245*** -0.246*** -0.264*** -0.290*** 
t×SD -0.008*** -0.009*** -0.009*** -0.010*** 
DRYZ -5.336*** -4.373*** -2.874*** -3.888*** 
t ×DRYZ 0.039*** 0.025** -0.003 0.019* 
DRYZ×SD 0.029*** 0.031*** 0.027*** 0.043*** 
WETZ -0.146 -0.038 -0.058 -0.252* 
t×WETZ -0.038*** -0.037*** -0.013*** -0.035*** 
WETZ×SD 0.018*** 0.025*** 0.010*** 0.039*** 
%lcc234[S] ×SD -0.004*** -0.003*** -0.003*** -0.001 
%lcc234[S] ×DRYZ 0.070*** 0.029 -0.031 0.039** 
%lcc234[W] ×WETZ 0.008 0.007 0.016 0.021** 
R2 0.9437 0.9339 0.9178 0.9574 
N 6,989 6,989 6,989 6,989 
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***p<0.01, **p<0.05, *p>0.1 
Table A6: Unit Root Regressions for Corn’s seasonal Weather Outcomes. 4

1
: 1ko k

H γ
=

=∑  
Regressors GD SD DRYZ WETZ 
Trend -1.09*** -0.37*** -0.061*** 0.02*** 

, 1i tW −   0.25*** 0.23*** -1.93*** -0.01 

, 2i tW −  -0.22*** -0.11*** 5.34*** 0.12*** 

, 3i tW −  0.05*** 0.02* -2.22** -0.05*** 

, 4i tW −  -0.05*** 0.03** -1.52*** -0.07*** 
Fixed-Effects Yes Yes Yes Yes 
R2 0.67 0.46 0.08 0.06 
U.B. t-stat -22.73*** -19.62*** 57.09 -15.71*** 

***p<0.01, **p<0.05, *p>0.1 
Table A7: Unit Root Regressions for Soybean’s seasonal Weather Outcomes. 4

1
: 1ko k

H γ
=

=∑  
Regressors GD SD DRYZ WETZ 
Trend -0.58 -0.40*** -0.061*** 0.02*** 

, 1i tW −   0.26*** 0.22*** -1.93*** -0.01 

, 2i tW −  -0.19*** -0.11*** 5.34*** 0.12*** 

, 3i tW −  0.04*** 0.02 -2.22** -0.05*** 

, 4i tW −  -0.05*** 0.03** -1.52*** -0.07*** 
Fixed-Effects Yes Yes Yes Yes 
R2 0.69 0.46 0.08 0.06 
U.B. t-stat -22.91*** -19.57*** 57.09 -15.71*** 

***p<0.01, **p<0.05, *p>0.1 
Table A8: Unit root regressions for Spring Wheat’s weather outcomes. 4

1
: 1ko k

H γ
=

=∑  
Regressors GD SD DRYZ WETZ 
Trend 0.09 -1.55*** -0.061*** 0.02*** 

, 1i tW −   0.24*** 0.22*** -1.93*** -0.01 

, 2i tW −  -0.15*** -0.10*** 5.34*** 0.12*** 

, 3i tW −  0.007 0.02* -2.22** -0.05*** 

, 4i tW −  -0.02** 0.04*** -1.52*** -0.07*** 
Fixed-Effects Yes Yes Yes Yes 
R2 0.64 0.53 0.08 0.06 
U.B. t-stat -20.39*** -18.46*** 57.09 -15.71*** 
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***p<0.01, **p<0.05, *p>0.1 
Notes: Regressors , ,  {1,2,3,4}i t kW k− ∈  denote lagged variables corresponding to only the 
dependent variable in each case. 
 
Table A9: Yield-Weather Subset unit root regressions for DRYZ 
Regressors Corn/Soybeans (May – August) Spring Wheat (April – July) 
Trend -0.001 -0.0004 

, 1i tDRYZ −   0.06 0.13*** 

, 2i tDRYZ −  -0.06 -0.10*** 

, 3i tDRYZ −  0.03 0.03** 

, 4i tDRYZ −  0.04 0.06*** 
Fixed-Effects Yes Yes 
R2 0.02 0.04 
U.B. statistic - -15.39*** 
t-statistic 1418.40*** 1383.20*** 

***p<0.01, **p<0.05, *p>0.1 
 
Table A10: Models for Corn’s Seasonal Weather Outcomes  
Regressors ,i tGD  ,i tSD  ,i tDRYZ  ,i tWETZ  
Trend -0.96*** -0.31*** 0.002 0.02*** 

, 1i tGD −   0.25*** 0.02*** 0.001*** -0.004*** 

, 2i tGD −  -0.20*** -0.02*** -0.001*** 0.002*** 

, 3i tGD −  0.01 -0.01*** -0.001*** -0.001*** 

, 4i tGD −  -0.04*** 0.01*** 0.001*** -0.0002 

, 1i tSD −   0.24*** 0.26*** 0.004*** -0.01*** 

, 2i tSD −  -0.06 -0.02 0.001 0.002 

, 3i tSD −  0.12 -0.01 -0.002** -0.003** 

, 4i tSD −  0.10 0.03 -0.002** 0.01*** 

, 1i tDRYZ −   -1.01 -3.20*** -0.04*** 0.12*** 

, 2i tDRYZ −  -2.27 -1.90*** -0.03** -0.12*** 

, 3i tDRYZ −  2.23 0.47 0.06*** -0.06*** 

, 4i tDRYZ −  -6.33*** -1.11*** 0.05*** 0.04 

, 1i tWETZ −   4.12*** -0.23 -0.07 -0.07*** 
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, 2i tWETZ −  -0.70 -0.43** -0.04*** 0.14*** 

, 3i tWETZ −  -3.67*** -1.51*** -0.08*** -0.07*** 

, 4i tWETZ −
 0.18 0.94*** 0.04*** -0.07*** 

Fixed-Effects Yes Yes Yes Yes 
R2 0.68 0.57 0.08 0.14 
N 7,259 7,259 6,513 7,259 

***p<0.01, **p<0.05, *p>0.1 
 
Table A11: Models for Soybean’s Seasonal Weather Outcomes 
Regressors ,i tGD  ,i tSD  ,i tDRYZ  ,i tWETZ  
Trend -0.48*** -0.33*** 0.002 0.02*** 

, 1i tGD −   0.25*** 0.02*** 0.001*** -0.004*** 

, 2i tGD −  -0.16*** -0.02*** -0.001*** 0.002*** 

, 3i tGD −  0.02 -0.01* -0.001*** -0.001*** 

, 4i tGD −  -0.06*** 0.01*** 0.001*** -0.0001 

, 1i tSD −   0.05 0.27*** 0.004*** -0.01*** 

, 2i tSD −  -0.11 -0.02 0.001 0.002 

, 3i tSD −  0.09 -0.03 -0.002** -0.002* 

, 4i tSD −  0.18** 0.04*** -0.002** 0.004*** 

, 1i tDRYZ −   3.77*** -3.38*** -0.04*** 0.10*** 

, 2i tDRYZ −  -3.62** -2.20*** -0.03** -0.10*** 

, 3i tDRYZ −  1.90 0.60* 0.06*** -0.07*** 

, 4i tDRYZ −  -6.03*** -1.14*** 0.05*** 0.04* 

, 1i tWETZ −   3.43*** -0.28 -0.07 -0.06*** 

, 2i tWETZ −  0.13 -0.33* -0.04*** 0.13*** 

, 3i tWETZ −  -3.52*** -1.63*** -0.08*** -0.07*** 

, 4i tWETZ −
 -1.11 0.88*** 0.04*** -0.07*** 

Fixed-Effects Yes Yes Yes Yes 
R2 0.69 0.49 0.08 0.14 
N 7,259 7,259 6,513 7,259 

***p<0.01, **p<0.05, *p>0.1 
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Table A12 : Models for Spring Wheat’s Seasonal Weather Outcomes 
Regressors ,i tGD  ,i tSD  ,i tDRYZ  ,i tWETZ  
Trend 0.01 -1.12*** 0.003** 0.02*** 

, 1i tGD −   0.30*** 0.14*** 0.002*** -0.01*** 

, 2i tGD −  -0.15*** -0.28*** -0.001*** 0.01*** 

, 3i tGD −  0.04** -0.02 0.002*** -0.003*** 

, 4i tGD −  -0.07*** -0.02 -0.00002 -0.00005 

, 1i tSD −   -0.13*** 0.21*** 0.003*** -0.001** 

, 2i tSD −  0.03* 0.16*** 0.001*** -0.003*** 

, 3i tSD −  -0.06*** -0.04** -0.0002 0.002*** 

, 4i tSD −  0.08*** 0.11*** -0.00001 0.0003 

, 1i tDRYZ −   6.22*** -7.15*** 0.002 0.03 

, 2i tDRYZ −  -6.33*** -8.52*** -0.11*** 0.01 

, 3i tDRYZ −  4.31*** 1.84** -0.002 -0.15*** 

, 4i tDRYZ −  -7.36*** -7.07*** 0.05*** 0.09*** 

, 1i tWETZ −   -0.08 -0.14 0.04*** -0.04*** 

, 2i tWETZ −  1.02* 1.42*** 0.03*** 0.09*** 

, 3i tWETZ −  -2.84*** -5.08*** -0.06*** -0.05*** 

, 4i tWETZ −
 -0.11 2.72*** -0.02** -0.07*** 

Fixed-Effects Yes Yes Yes Yes 
R2 0.73 0.57 0.10 0.14 
N 7,259 7,259 6,636 7,259 

***p<0.01, **p<0.05, *p>0.1 
 
 
 


