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Greenhouse Gas Emissions Effect on Cost 
Efficiencies of U.S. Electric Power Plants 

 

Power plants are large producers of greenhouse gas emissions.  The source of this 

pollution comes from raw material used to produce electricity.  Since the 1950s, policies have 

been implemented and updated to regulate the emissions of certain pollutants from electricity 

production.  In 1990, the Clean Air Act addressed pollutants associated with acid rain, ozone 

depletion, and toxic gases.  Across the United States, this act reduced the intended pollutants.  

The main focus of the Obama Administration has shifted from pollutants that cause acid rain to 

those that are argued to affect climate change – greenhouse gases (GHGs).  In 2015, a policy was 

introduced – the Clean Power Plan that focused on reducing greenhouse gas emissions.  This 

included an emphasis on non-emitting sources - renewable and nuclear energy, efficiency 

improvements within homes and businesses, and reducing greenhouse gas emissions from coal, 

natural gas, and petroleum.  

The purpose of the paper is to determine the potential impact of reducing greenhouse gas 

emissions on cost efficiencies of power plants.  Using data envelopment analysis (DEA) we 

estimate the economic, allocative, and technical efficiencies of approximately 500 power plants 

in the United States with and without a constraint on emissions. Greenhouse gas emissions are 

included as “bad” outputs to understand the impact they have on the cost efficiencies of power 

plants.  Reduction in emissions can occur for two reasons: firms using efficient technology from 

a cost perspective, or by constraining firms to have no more emissions in the cost minimizing 

case than they currently have.   
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 Previous Studies 
There have been two different approaches regarding undesirable outputs of electric 

generation plants within the DEA framework.  The approach followed depends on the research 

question at hand. The first approach builds on the work of Charnes, Cooper, and Rhodes (1978) 

and Banker, Charnes, and Cooper (1984). This work is focuses on the production function of a 

firm.  The second approach builds on the work of Färe et al. (1989) that focuses on determining 

the efficiency of a firm determined by the undesirable outputs. Färe et al. (1989) expanded upon 

the work of Farrell (1957) to develop a DEA model that allows for undesirable outputs to be 

incorporated into the model as weakly disposable.  

Production Studies 

One of the first studies to include undesirable outputs in a DEA analysis of electricity 

plants was Golany, Roll, and Rybak (1994).  They determined the overall technical efficiency of 

87 Israeli power plants operating in a closed market.  Four outputs and three inputs were 

considered.  The four outputs considered were generated power (MWh), operational availability, 

deviation from operational parameters, and sulfur dioxide (SO2) emissions.  SO2 was measured 

in three levels as a set of binary codes with three levels:  good, medium, and bad.  Good implied 

that the plant is polluting at an acceptable emissions rate where there was one or less violation 

per quarter.  Medium implied that there were between two and four violations per quarter while 

bad implied that there were five or more violations per quarter.  

Yaisawarng and Klein (1994) considered how SO2 control policies affect the efficiency 

of power plants in the U.S.  They used overall technical, pure technical, and scale efficiencies to 

analyze the impact of these policies on 60 coal-fired plants from 1985 through 1989.  They found 

that plants with scrubbers experience lower overall technical and pure technical efficiency levels 

than plants without scrubbers.   
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Raczka (2001) using a two-stage model estimates technical efficiency for 41 heat plants 

in Poland.  The pure technical efficiency score is estimated in the first stage analysis using one 

output and three inputs.  Instead of including pollution as an undesirable output, it is included as 

an input.  The pollution variable is represented the amount the utility pays in penalties due to 

polluting.  The average age and average capacity of the boilers are included in the second stage 

analysis of which neither are found to be statistically significant in measuring efficiency. 

Arocena and Price (2002) determine the efficiency change, technological change, scale 

index, and the Malmquist productivity index of electricity producers in Spain from 1984 through 

1997 as environmental regulation was being implemented.  Five outputs and three inputs are 

used in the analysis including annual net power produced (GWh), availability, SO2 (tons), NOX 

(tons), and particulates (tons) 1.  They found that public firms were more efficient than private 

firms and that incentive regulation would increases efficiency of private firms.  

Nag (2006) used DEA to estimate emissions for coal based thermal power generation for 

utility plants in India using a slack-based input-oriented pure technical efficiency for the plants.  

By calculating the slack, it allows the researchers to determine if there is excess input use after a 

proportional reduction in inputs.  He found that plantwise energy conservations targets should be 

set to achieve the maximum reduction in emissions. 

Sarica and Or (2007) determined the efficiencies of 65 thermal power plants in Turkey 

using overall technical and pure technical efficiencies.  The model included four outputs and two 

inputs.  The four outputs were availability, thermal efficiency, environmental cost, and carbon 

monoxide (CO) (tons).  The two inputs included fuel cost and production (kWh). Three of the 

four output variables are undesirable.  Thermal efficiency reflects the effects of CO emissions by 

                                                 
1 NOx refers to nitrogen oxides. 
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converting heat dissipated into electric energy.  When thermal efficiency is maximized, it implies 

that emissions are minimized.  The environmental cost is the monetary value that is determined 

using dollars per ton of annual SO2, NOx, and particulate emissions of each plant.  

Welch and Barnum (2009) evaluate what it would take for steam powered plants to move 

from the cost efficient point to the environmental efficient point.  They find that it could be 

costly to move from the cost efficient point to the environmental efficient point, however for 

some firms, they could improve both their cost and environmental efficiencies by reducing the 

amount of input used.  

Sozen, Alp, and Ozdemir (2010) created two efficiency indexes for state owned thermal 

plants in Turkey. One analysis focused on the slack-based overall technical efficiencies while the 

other focuses on environmental performance. The environmental performance model included 

emissions as outputs. The outputs taken into consideration are CH4, N2O, non-methane volatile 

organic compounds (NMVOC), CO, CO2, mono-nitrogen oxide (NOX), and SO2 (all in tons). 

In another study, Majumder and Marcus (2001) used a two-stage model to determine if 

the change in the 1970 Clean Air Act affected the overall technical and pure technical 

efficiencies of 150 of the largest investor-owned utilities in the U.S. in 1990. Instead of including 

pollution variables in the DEA analysis, they included numerous pollution variables in a second-

stage tobit model.  

 Environmental Studies 
In addition to looking at production based efficiencies several other DEA analysis have 

been used. Färe, Grosskopf, and Tyteca (1996) use a distance function and include the bad 

outputs SO2, NOX, and CO2 in their DEA analysis. Tyteca (1997) compares three different 

approaches to analyzing the environmental efficiency of coal-fired power plants. There is one 
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desirable and three undesirable outputs considered in the analysis – net generation (kWh), and 

SO2, NOX, and CO2 (all in tons). The inputs considered include installed capacity (MW), coal 

(1,000 short tons), oil (100 bbls), gas (mmcf), and labor. They find that there are considerable 

differences between the ranking of firms based on the model that is used. However, they say that 

in order to decide which model is best, it likely depends on what the model is going to be used 

for. Since all of these models are designed to show which power plants are most environmentally 

efficient, simply showing a ranking might be sufficient enough to encourage the least 

environmentally efficient firms to reevaluate their production process and increase their 

environmental efficiency by decreasing their undesirable outputs.  

Korhonen and Luptacik (2004) develop several different models to deal with undesirable 

outputs. The models used include: all outputs as a weighted sum where the bad outputs are 

negative; the bad outputs enter the analysis as inputs; the ratio of the weighted sum of desirable 

inputs minus the inputs of the undesirable outputs; and an output-oriented version of the 

aforementioned models. In order to test the models, 24 European power plants were studied. The 

desirable output included is electricity generation (MW) and the input is costs. The undesirable 

outputs include dust, NOx, and SO2. Comparing the results of the first three models, they find 

that similar results are obtained regardless of which model is used.   

Xie, Fan, and Qu (2012) use a network DEA to determine the environmental efficiencies 

of 30 provincial administrative regions in China. They find that the percentage of thermal power 

versus clean energy power effects the environmental efficiency of a plant. In most years of the 

study, the electric generation plants that used at least 25% clean energy power were the most 

efficient plants. They also find that policies developed to incentivize clean energy development 

has achieved its objective. A single undesirable output is used in the analysis – CO2.  
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Zhou et al. (2013) introduces a non-radial DEA approach that uses entropy weights to 

determine the environmental efficiency of the power industry in China. The three inputs are 

labor, investment, and energy. The three undesirable outputs are SO2, NOX, and CO2. The energy 

and environmental efficiencies of 28 provinces’ thermal power plants in China are determined by 

Bi et al. (2014) using a slack-based model. Four outputs and four inputs are considered. The four 

outputs include one good output – power generated (108 kWh), and three bad outputs – SO2, 

NOX, and soot (all in tons).  

There are a series of studies by Sueyoshi and Goto that have two overarching goals. The 

first goal is to determine if the Clean Air Act has helped curtail SO2 and NOx pollution. The 

second goal is to determine an appropriate model to calculate the environmental efficiency of a 

firm in a given year or over a series of years. Analyzing coal-fired plants in the U.S., the three 

undesirable outputs analyzed are SO2 (tons), NOX (tons), and CO2 (1000 tons). The one desirable 

output considered is net generation (MWh). Sueyoshi, Goto, and Ueno (2010) and Sueyoshi and 

Goto (2010) evaluate the plants’ operational, environmental, and unified performance, where 

unified performance takes into account both operational and environmental aspects. The DEA 

model of choice is a range-adjusted measure model. They find that the Clean Air Act has helped 

to curtail SO2 and NOx pollution and conclude that the policy should be extended to also include 

CO2. 

Sueyoshi and Goto (2012) compare the results of radial and non-radial DEA analysis for 

the unified efficiencies of coal-fired power plants in the U.S. Both quantities and prices are used 

as input variables. The input variables include number of employees, total cost of the plant, total 

non-fuel operation and management cost, and fuel consumption (1000 tons). They find that there 

is not a large difference in using either the radial or non-radial models, however, the number of 



7 
 

decision making units (DMUs) used can make a significant difference in the analysis. They 

recommend, whenever possible, it is better to use more DMUs. Two regional transmission 

organizations in the U.S. were compared by Sueyoshi and Goto (2013) to determine both their 

environmental and operational performances.  

In 2013 two different time series analysis were conducted by Sueyoshi and Goto. One 

study creates a Malmquist index to take into account improvements in technology with respect to 

CO2 emissions (Sueyoshi and Goto 2013). They find that there is a time lag with respect to 

technology innovation for electricity production and CO2 emission reduction. The second 

proposes a DEA window analysis in order to capture the frontier shift for environmental 

assessment (Sueyoshi, Goto and Sugiyama 2013). Over the time frame of the study, the 

efficiency of coal-fired power plants has increased implying that the Clean Air Act has succeed 

in reducing pollution by coal-fired power plants. They suggest that a policy like the Clean Air 

Act should be implemented or extended to also control for CO2 emissions.  

 The previous studies have taken one of two approaches when considering undesirable 

outputs in an efficiency analysis.  The first is to include undesirable outputs as a component of a 

traditional production DEA analysis.  The second approach is to develop an environmental 

efficiency that is less concerned with the production or costs of the firm and more concerned 

with the emissions of the firm.  The current study more closely follows the first approach.  This 

study contributes to the literature in a couple ways.  First, this is one of the first DEA studies in 

the U.S. to only include greenhouse gas emissions as undesirable outputs instead of SO2 that is 

heavily regulated and has been for decades whereas greenhouse gas emissions are not regulated 

in most states but may become regulated in the future.  Second this study is the first to evaluate 

the effect that greenhouse gas emission have on cost efficiencies of U.S. electric power plants.  
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 Methods 
Electric generation plants, do not operate in a perfectly competitive market but they do 

minimize the costs of producing electricity. This implies that these firms should try to produce 

the highest level of output at the lowest cost.  With the use of input such as coal, natural gas, and 

petroleum, electricity is produced as well as undesirable outputs such as carbon dioxide (𝐶𝐶𝑂𝑂2), 

methane (𝑁𝑁𝐻𝐻4), and nitrous oxide (𝑁𝑁𝑂𝑂2).  It is possible that electricity plants could reduce the 

undesirable outputs by simply improving cost efficiency.   

Three input-oriented efficiency models are used in this study – allocative efficiency, 

economic efficiency, and technical efficiency.  By considering all three types of cost efficiencies, 

and the corresponding shadow prices a firm is able to determine how best to adjust their 

production practices to become more efficient.  A second set of the three efficiency models are 

estimated that takes into account the undesirable outputs in the model.  In these models, the 

negative of the undesirable quantities are used as an output.  This has the same effect as the firm 

trying to reduce the undesirable output.  

All of the efficiency scores range from zero to one, where one implies the firm is 

efficient.  For every type of efficiency, at least one DMU must have an efficiency score of one, 

however no DMU has to have an efficiency score of zero.  In most DEA analysis multiple firms 

will have an efficiency of one.  Those with an efficiency of one are on the cost frontier that all 

other firms try to reach. If a firm has a technical efficiency or an allocative score of less than one, 

this implies that the firm could become more efficient by using less inputs to reach the same 

level of output or a different mix of input, respectively.  If the economic efficiency is one, this 

implies that the firm is operating on the variable cost frontier.  
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The economic efficiency is used to determine the cost frontier with variable returns to 

scale without consideration of the undesirable outputs.  The frontier cost under variable returns 

to scale without consideration of the undesirable output is: 

(1) 𝐦𝐦𝐦𝐦𝐦𝐦∑ 𝒘𝒘𝒎𝒎𝒎𝒎𝒙𝒙𝒎𝒎𝒎𝒎∗𝑴𝑴
𝒎𝒎=𝟏𝟏  

Subject to: 

�𝑧𝑧𝑘𝑘𝑥𝑥𝑚𝑚𝑘𝑘 ≤ 𝑥𝑥𝑚𝑚𝑚𝑚∗
𝐾𝐾

𝑘𝑘=1

  for 𝑚𝑚 = 1, … ,𝑀𝑀 

�𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑧𝑧𝑘𝑘 ≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚

𝐾𝐾

𝑘𝑘=1

 

�𝑦𝑦𝑟𝑟𝑘𝑘𝑧𝑧𝑘𝑘 ≥ 𝑦𝑦𝑟𝑟𝑚𝑚

𝐾𝐾

𝑘𝑘=1

  for 𝑟𝑟 = 1, … ,𝑅𝑅 

−�𝑏𝑏𝑠𝑠𝑘𝑘𝑧𝑧𝑘𝑘 = 𝑟𝑟𝑚𝑚 
∗   for 𝑠𝑠 = 1, … , 𝑆𝑆

𝐾𝐾

𝑘𝑘=1

 

�𝑧𝑧𝑘𝑘 = 1
𝐾𝐾

𝑘𝑘=1

 

(𝑧𝑧1, … , 𝑧𝑧𝐾𝐾) ≥ 0, 

where 𝑧𝑧 is an intensity (or weight) of each electric generation plant 𝑘𝑘, 𝑥𝑥𝑚𝑚𝑘𝑘 are the inputs, 𝑤𝑤𝑚𝑚𝑚𝑚 

are the input prices, 𝑦𝑦𝑘𝑘 is the desirable output and 𝑏𝑏𝑘𝑘 are the “bad” outputs of each electric 

generating plant 𝑘𝑘. Notice that the constraint simple adds up the amount of undesirable output 

and the frontier cost under variable returns to scale.  There are 𝑀𝑀 different inputs where 𝑥𝑥𝑚𝑚𝑚𝑚∗  is 

the optimal quantity of inputs.  

The economic efficiency (EE) is ratio of the optimal minimum cost of producing the 

outputs and the observed costs under variable returns to scale. 
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𝐸𝐸𝐸𝐸𝑚𝑚 =
∑ 𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚∗𝑀𝑀
𝑚𝑚=1

∑ 𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑀𝑀
𝑚𝑚=1

 

The economics cost efficiency model (equation 1) can be modified to include a constraint 

to require undesirable outputs to be less than or equal to the amount the firm is currently 

producing.  The frontier variable returns to scale cost with an undesirable cost constraint is: 

(2) 𝐦𝐦𝐦𝐦𝐦𝐦∑ 𝒘𝒘𝒎𝒎𝒎𝒎𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎∗𝑴𝑴
𝒎𝒎=𝟏𝟏  

Subject to: 

�𝑧𝑧𝑘𝑘𝑥𝑥𝑚𝑚𝑘𝑘 ≤ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚∗
𝐾𝐾

𝑘𝑘=1

  for 𝑚𝑚 = 1, … ,𝑀𝑀 

�𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑧𝑧𝑘𝑘 ≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚

𝐾𝐾

𝑘𝑘=1

 

�𝑦𝑦𝑟𝑟𝑘𝑘𝑧𝑧𝑘𝑘 ≥ 𝑦𝑦𝑟𝑟𝑚𝑚

𝐾𝐾

𝑘𝑘=1

  for 𝑟𝑟 = 1, … ,𝑅𝑅 

−�𝑏𝑏𝑠𝑠𝑘𝑘𝑧𝑧𝑘𝑘 ≥ 𝑟𝑟𝑚𝑚

𝐾𝐾

𝑘𝑘=1

for 𝑠𝑠 = 1, … , 𝑆𝑆 

�𝑧𝑧𝑘𝑘 = 1
𝐾𝐾

𝑘𝑘=1

 

(𝑧𝑧1, … , 𝑧𝑧𝐾𝐾) ≥ 0, 

where the same definition exists as in the economic efficiency model with the exception that rq is 

the amount of the undesirable of firm q and that 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚∗  is the optimal input quantity with the 

undesirable output constraints.   

Pure technical efficiency is a measure of how far off the production function a firm is, 

utilizing variable returns to scale. Pure technical efficiency is calculated by the following model: 
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(3) 𝐦𝐦𝐦𝐦𝐦𝐦𝝀𝝀𝒎𝒎 

Subject to: 

�𝑧𝑧𝑘𝑘𝑥𝑥𝑚𝑚𝑘𝑘 ≤ 𝝀𝝀𝒎𝒎𝑥𝑥𝑚𝑚𝑚𝑚

𝐾𝐾

𝑘𝑘=1

  for 𝑚𝑚 = 1, … ,𝑀𝑀 

�𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑧𝑧𝑘𝑘 ≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚

𝐾𝐾

𝑘𝑘=1

 

�𝑦𝑦𝑟𝑟𝑘𝑘𝑧𝑧𝑘𝑘 ≥ 𝑦𝑦𝑟𝑟𝑚𝑚

𝐾𝐾

𝑘𝑘=1

  for 𝑟𝑟 = 1, … ,𝑅𝑅 

−�𝑏𝑏𝑠𝑠𝑘𝑘𝑧𝑧𝑘𝑘 = 𝑟𝑟𝑚𝑚 
∗   for 𝑠𝑠 = 1, … , 𝑆𝑆

𝐾𝐾

𝑘𝑘=1

 

�𝑧𝑧𝑘𝑘 = 1
𝐾𝐾

𝑘𝑘=1

 

(𝑧𝑧1, … , 𝑧𝑧𝐾𝐾) ≥ 0, 

where 𝜆𝜆𝑚𝑚 is the measure of pure technical efficiency and the other variables follow from the 

model 1 above. 

Pure technical efficiency with the undesirable output considered calculated by the 

following model: 
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(4) 𝐦𝐦𝐦𝐦𝐦𝐦𝝀𝝀𝒎𝒎𝒎𝒎 

Subject to: 

�𝑧𝑧𝑘𝑘𝑥𝑥𝑚𝑚𝑘𝑘 ≤ 𝝀𝝀𝒎𝒎𝒎𝒎𝑥𝑥𝑚𝑚𝑚𝑚

𝐾𝐾

𝑘𝑘=1

  for 𝑚𝑚 = 1, … ,𝑀𝑀 

�𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑧𝑧𝑘𝑘 ≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚

𝐾𝐾

𝑘𝑘=1

 

�𝑦𝑦𝑟𝑟𝑘𝑘𝑧𝑧𝑘𝑘 ≥ 𝑦𝑦𝑟𝑟𝑚𝑚

𝐾𝐾

𝑘𝑘=1

  for 𝑟𝑟 = 1, … ,𝑅𝑅 

−�𝑏𝑏𝑠𝑠𝑘𝑘𝑧𝑧𝑘𝑘 ≥ 𝑟𝑟𝑚𝑚

𝐾𝐾

𝑘𝑘=1

for 𝑠𝑠 = 1, … , 𝑆𝑆 

�𝑧𝑧𝑘𝑘 = 1
𝐾𝐾

𝑘𝑘=1

 

(𝑧𝑧1, … , 𝑧𝑧𝐾𝐾) ≥ 0, 

Allocative efficiency for both models (AE) is determined by dividing the minimum cost 

from the constant returns to scale model by the actual cost multiplied by the pure technical 

efficiency.  Allocative efficiency measures whether a firm is using the optimal input mix to 

produce the observed level of output. The formula for allocative efficiency is:  

𝐴𝐴𝐸𝐸𝑚𝑚 =
∑ 𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚

∗𝑀𝑀
𝑚𝑚=1

∑ 𝑤𝑤𝑚𝑚𝑚𝑚𝜆𝜆𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚
𝑀𝑀
𝑚𝑚=1

. 

 Data 
Plant level data is used to determine the economic, allocative, and scale efficiencies for 

coal, natural gas, and petroleum power plants in 2012 in the U.S.  Because only one year’s data 

are used, we assume the law of one price, i.e., that all electricity producers faced the same 

relative input prices during 2012 (Featherstone, Langemeier and Ismet 1997).   Thus, the cost 
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data are used in the estimated models.  The variable inputs used in the analysis are the fuel types 

and the fixed input is capacity.  There are up to 12 different types of fuel included in the analysis 

(Table 1).  The fuel sources are measured as total fuel consumption MMBTU (million British 

Thermal Units) annually.  Capacity is net capacity in megawatts (MW) at the power plant.  One 

desirable and three undesirable outputs are included in the analysis (Table 1).  The one desirable 

output is net generation in megawatt hours (MWh).  The three undesirable outputs are CO2, NH4, 

and N2O measured in metric tons.  There are 503 plants considered in the analysis.  

The production and cost data comes from the U.S. Energy Information Administration 

(EIA) Form 923 (EIA 2015) and the greenhouse gas data comes from the U.S. Environmental 

Protection Agency (EPA) Greenhouse Gas Reporting Program (EPA 2015).  Since the study 

focuses on power plants that emit greenhouse gases, only power plants that used only coal, 

natural gas, and/or petroleum are used in the analysis.   

It is important to make sure there are enough degrees of freedom to estimate the DEA 

model.  In general, there are enough degrees of freedom if the number of DMUs is greater than 

or equal to three times the number of inputs plus the number of outputs (Barros 2008).  Given 

that the number of observations is 503, degrees of freedom is not an issue for even the 

disaggregate analysis (503 > 3(13+4 or 503>51).  

 Results 
 Without the consideration of undesirable outputs, the average economic efficiency is 

14.8%, average pure technical efficiency is 24.1%, and the average allocative efficiency is 32.4% 

(Table 2).  Of the 503 electric generation plants in the data, 26 were efficient in production 

(PTE) and 14 were on the minimum variable cost frontier.  Constraining the undesirable output 

results in an average economic efficiency of 20.9%, average pure technical efficiency is 26.9%, 
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and the average allocative efficiency is 52.1%.  Of the 503 electric generation plants in the data, 

34 were efficient in production (PTE) and 25 were on the minimum variable cost frontier 

constrained by undesirable outputs.  Graphically for the unconstrained undesirable output, the 

frontier costs, predicted electricity generation, and the capacity are found in Figure 1.   

 The average amount of undesirable outputs are reported in Table 3 under the pure cost 

minimization model and the cost minimization with the undesirable outputs constrained.  The 

actual level of undesirable output is also included for comparison purposes.  If all firms would be 

on the cost frontier, the amount of carbon dioxide would be reduced by 69.6%, the amount of 

methane would be reduced by 59.2%, and the amount of nitrous oxide would be reduced by 

66.8%.  Choosing the cost minimizing technology to produce electricity would reduce 

undesirable outputs by more than 50%.  Under the model where undesirable outputs are 

constrained, the additional amount of reduction is 47.5% for carbon dioxide, 76.6% for methane, 

and 77.7% for nitrous oxide.  The correlation between electricity produced and the amount of 

reduction in the undesirable output are -0.252, -0.221, and -0.251 for carbon dioxide, methane, 

and nitrous oxide.  The less electricity generated by a plant offers a larger opportunity for 

greenhouse gas emissions than at the larger plants.  Certainly the constrained model suggests 

significant reduction, but in terms of metric tons if all firms achieved economic efficiency, there 

would be a significant decrease in the production of undesirable output. 

 While the average amount of undesirable output would decrease by moving to a cost 

minimization solution without consideration of undesirable output, 189 electric generation plants 

would increase carbon dioxide emissions, 271 electric generation plants would increase methane 

emissions, and 265 electric generation would increase nitrous oxides emissions.  Further 

analyzing the cost under the undesirable output constraints, 58 electric generation plants were 
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constrained by the amount of carbon dioxide (𝐶𝐶02)  produced, 59 were constrained by the 

amount of methane (NH4) produced, and 224 were constrained by the amount of nitrous oxide 

(𝑁𝑁02) produced (Table 4).  For these constrained electric generation plants, the shadow cost of 

relaxing the output constraint was calculated.  This represents the amount that costs could 

decrease if that constraint would be relaxed.  Costs would decrease on average by $1,637 for 

carbon dioxide (𝐶𝐶02), $647,964,439 for methane (NH4), and $147,940,949 for nitrous oxide 

(𝑁𝑁02).  To put this in perspective, that is a cost reduction of 0.00001%, 3.00%, and 0.66% 

respectively for carbon dioxide(𝐶𝐶02), methane (NH4) and nitrous oxide (𝑁𝑁02) (Table 4).  These 

results illustrate that the electric generation plants that are constrained in the amount of 

greenhouse gas emissions the plants produce could reduce cost without the undesirable output 

constraints.   

 Table 5 shows the breakdown of efficiency scores by those electric generation plants that 

were constrained by a greenhouse gas emission output and those that were not constrained. 

These results showed that the electric generation plants that were not constrained in the amount 

of greenhouse gas emissions they produced were more efficient with regards to the economic, 

allocative, and pure technical efficiency measures.  Because the model accounted for greenhouse 

gas emissions as a negative input, the electric generation plants that polluted less are more 

efficient.  Thus, the less the electric generation plants polluted, assuming the greenhouse gas 

emissions were constrained by policy, the more efficient they appear in the model.  This analysis 

shows is the importance of limiting pollutants as an output in the production process as these 

policies would affecting the cost and production frontiers. 

The efficiency results under the model with the undesirable outputs are further analyzed 

to examine how each greenhouse gas emission affects the allocative efficiency of each electric 
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generation plan (Table 6).  Both carbon dioxide (𝐶𝐶02) and nitrous oxide (𝑁𝑁02) were statistically 

significant.  An increase in an electric generation plant’s emissions of carbon dioxide (𝐶𝐶02) is 

positively correlated with an increase in the allocative efficiency of the respective plant’s input 

mix.  An increase in nitrous oxide (𝑁𝑁02) is also positively correlated with an increase in 

allocative efficiency.  The effect of the greenhouse gas emissions on economic efficiency is the 

same as allocative efficiency with an increase in carbon dioxide (𝐶𝐶02) and nitrous oxide (𝑁𝑁02) 

emissions increases the economic efficiency.  For pure technical efficiency, an increase in 

nitrous oxide (𝑁𝑁02) emissions is positively correlated with pure technical efficiency and a 

decrease in methane emissions is negatively correlated with pure technical efficiency (Table 7).   

 Conclusions 
Nonparametric Data Envelopment Analysis (DEA) models were used to estimate cost 

and production frontiers of 503 electric generation plans in 2012.  The undesirable outputs of 

carbon dioxide(𝐶𝐶02), methane (NH4) and nitrous oxide (𝑁𝑁02) were considered.  Results of 

models of short-run cost minimization without consideration of undesirable outputs were 

compared to models were the undesirable outputs were constrained. 

Results showed if all firms were on the efficiency cost frontier, the amount of carbon 

dioxide could be reduced by 69.6%, the amount of methane could be reduced by 59.2%, and the 

amount of nitrous oxide could be reduced by 66.8%.  Inefficiency in the production of electricity 

also result in the additional release of undesirable outputs.  However, the release of all 

undesirable outputs would results in a decrease by moving to a cost minimization solution 

without consideration of undesirable output as 189 electric generation plants would increase 

carbon dioxide emissions, 271 electric generation plants would increase methane emissions, and 

265 electric generation would increase nitrous oxides emissions.  The correlation between the 
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reduction in undesirable output reduction and the amount of electricity generated is negative 

indicating that smaller plants have greater opportunity for reduction in undesirable outputs by 

becoming cost efficient. 

When adding a constraint for the undesirable outputs, further reduction of carbon dioxide, 

methane, and nitrous oxide would occur with an additional decline of 47.5%, 76.6%, and 77.7%, 

respectively.  When the model accounts for greenhouse gas emissions as a bad output, the 

electric generation plants that were constrained were more efficient by most of the efficiency 

measures.  This shows that the inclusion of a pollutant, in this case the greenhouse gas emissions 

of an electric generation plant, are accounted for in the production process, the efficiency scores 

and the frontier curves of the plant are affected and must be examined. 
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Figure 1. Variable Cost Frontier for Electric Generation Plants in 2012 
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Table 1. Input and Output Summary Statistics of Electric Generation Plants in 2012 

 Mean Standard Deviation 
 Total Input Cost 
Bituminous Coal 114,957,271 324,254,291 

Sub-Bituminous 

Coal 115,966,961 315,823,307 

Lignite Coal 12,179,903 105,099,065 

Distillate Fuel Oil 16,094,204 36,947,162 

Jet Fuel 747 16,739 

Kerosene 149,182 3,342,478 

Petroleum Coke 1,062,272 10,261,008 

Residual Fuel Oil 1,313,195 22,261,324 

Waste/Other Oil 81,757 1,066,450 

Natural Gas 22,229,367,111 346,337,078,376 

Other Gas 26,722,242 587,175,643 

Gaseous Propane 31,985 324,254,291 

Installed Capacity 819 719 

 Output Quantity 
Net Generation 804,447 1,987,649 

Carbon Dioxide 

(CO2) 2,364,548 3,430,488 

Methane (CH4) 185 374 

Nitrous Oxide (N2O) 35 59 
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Table 2. Mean Efficiency Scores of Electric Generation Plants, 2012 

Efficiency Measure Unconstrained Model “Bad” Output Constrained 
Model 

Economic Efficiency 14.83% 20.93% 
Pure Technical Efficiency 24.10% 26.89% 
Allocative Efficiency 32.39% 52.06% 

 

 

 

Table 3. Average Undesirable Outputs for Electric Generation Plants in Metric Tons, 2012 

 
Undesirable Output 

 
Actual 

 
Unconstrained Model 

“Bad” Output 
Constrained Model 

Carbon Dioxide (CO2) 2,364,548 719,823 377,781 
Methane (CH4) 185 75 18 
Nitrous Oxide (N2O) 35 11 3 

 

 

 

Table 4. Marginal Costs of Undesirable Output Constraints, 2012 

 
Undesirable Output 

Number 
Constrained 

Average 
Shadow Value 

Standard 
Deviation 

Percent of 
Total Cost 

Carbon Dioxide (CO2) 58 1,637 685 0.00001% 
Methane (CH4) 59 647,964,439 1,149,278,316 3.00% 
Nitrous Oxide (N2O) 224 147,940,949 211,061,837 0.66% 
Numbers represent the amount total cost would decrease if pollution constraint would be 
relaxed at the frontier. 
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Table 5. Mean Efficiency Scores of Electric Generation Plants by Emission Constraints, 2012 

 Economic 
Efficiency 

Pure Technical 
Efficiency 

Allocative 
Efficiency 

                                                   If Constrained by Greenhouse Gas Emissions 

Carbon Dioxide (CO2) 0.481 0.517 0.858 

Methane (CH4) 0.470 0.490 0.808 

Nitrous Oxide (N2O) 
0.281 0.317 0.796 

 Not Constrained by Greenhouse Gas Emissions 

Carbon Dioxide (CO2) 0.174 0.237 0.477 

Methane (CH4) 0.175 0.240 0.482 

Nitrous Oxide (N2O) 
0.152 0.231 0.299 

 

 

 

Table 6. Tobit Model, Allocative Efficiency, 2012 

 
Efficiency Measure Parameter Standard Error Test Statistic 

Intercept -1.083000*** 0.038780 -27.935000 
Carbon Dioxide (CO2) 0.000000*** 0.000000 -6.987000 
Methane (CH4) -0.000145 0.000101 -1.439000 
Nitrous Oxide (N2O) 0.015100*** 0.001610 9.377000 
***Significant at 1%, **Significant at 5%, *Significant at 10% 
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Table 7. Tobit Model, Economic Efficiency, 2012 

 
Efficiency Measure Parameter Standard Error Test Statistic 

Intercept -1.323000*** 0.038410 -34.456000 
Carbon Dioxide (CO2) 0.000000*** 0.000000 -9.551000 
Methane (CH4) -0.000091 0.000078 -1.167000 
Nitrous Oxide (N2O) 0.011980*** 0.001125 10.651000 
***Significant at 1%, **Significant at 5%, *Significant at 10% 

 

 

 

Table 8. Tobit Model, Pure Technical Efficiency, 2012 

 
Efficiency Measure Parameter Standard Error Test Statistic 

Intercept -1.266000*** 0.036960 -34.268000 
Carbon Dioxide (CO2) 0.000000 0.000000 -8.169000 
Methane (CH4) -0.000106*** 0.000079 -1.329000 
Nitrous Oxide (N2O) 0.011980*** 0.001125 10.651000 
***Significant at 1%, **Significant at 5%, *Significant at 10% 
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