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Intra-firm diffusion of pollution prevention technology: the role of 

organizational structure 

 

Abstract: This paper empirically examines the extent to which organization characteristics 

promote the diffusion of pollution prevention technologies within a firm (parent company). 

We use panel data on more than 5000 facilities reporting to the Toxics Release Inventory over 

the period of 1991 to 2011 to examine the number of pollution prevention technologies 

adopted by a facility with respect to its size, previous experience in adoption, its distances to 

its sibling facilities and firm’s headquarter, and regional density. We use a two-part hurdle 

model to estimate the likelihood of adoption and the rate of adoption, while controlling for 

public and regulatory pressures that may have affected the adoption of pollution prevention 

technologies. We find that a facility that was located in the same city with its firm’s 

headquarter were more likely to adopt pollution prevention technologies. Past experience in 

adoption of pollution prevention technology and firm’s knowledge stock on pollution 

prevention technology increased both the likelihood and rate of adoption. 

 

Key words: Pollution prevention, technology adoption, intra-firm diffusion, organizational 

structure, Toxics Release Inventory (TRI). 

JEL Classification: L22, O33, Q52, Q55 
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1. Introduction 

Pollution prevention is any practice that “reduces, eliminates, or prevents pollution at its 

source” (EPA 1992). The Pollution Prevention Act of 1990 (PPA) formally reorganized that 

pollution prevention should be the preferred approach over re-use, recycling, treatment, and 

disposal, since it has the potential to improve resource use efficiency and reduce pollutants 

being recycled, disposed and treated at the end of pipe. As per PPA, federal and state agencies 

rely on non-mandatory approaches to promote the diffusion of pollution prevention 

technologies. One of the key approaches is information disclosure through the Toxics Release 

Inventory (TRI). Following the passage of PPA in 1991, the TRI is expanded to include 

reporting of pollution prevention practices adopted for each TRI reporting chemicals by each 

TRI facility.  

Previous studies on adoption of pollution prevention technologies by TRI facilities find 

that public pressures created through information disclosure motivated facilities to adopt 

pollution prevention technologies (Harrington 2012, 2013). Additionally, facilities were more 

likely to adopt pollution prevention technologies if their peers from the same industry or from 

the same parent companies have done so (Bi, Deltas, and Khanna 2011; Harrington 2012, 

2013).  

However, these studies have not examined the extent to which firm’s organizational 

characteristics influenced intra-firm diffusion of pollution prevention technologies. 

Particularly, intra-firm information sharing is expected to stimulate the diffusion of pollution 

prevention technologies, since pollution prevention technologies are often tailored to specific 
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production processes and depend on firm-specific knowledge and managerial philosophy. 

Thus intra-firm information sharing is likely to be affected by firm’s organizational 

characteristics, which influences how firm respond to public and regulatory pressures (Doshi 

et al. 2013). Estimating the extent to which firm respond to non-mandatory pollution 

prevention policy through analyzing intra-firm diffusion of pollution prevention technologies 

could provide crucial information for policy makers to improve the existing pollution 

prevention policy.  

The objective of this paper is two-fold. First, we empirically examine the extent to which 

organization characteristics promote the diffusion of pollution prevention technologies within 

a firm (parent company). Second, we examine whether the influence of organizational 

structure is different on the likelihood and the rate of adoption. To conduct the empirical 

analysis, we compile a panel dataset on 8,062 TRI facilities over the period of 1991 to 2011 

using the annul TRI reports and the National Establishment Time Series (NETS) database.  

Following the literature on technology diffusion, we examine the number of pollution 

prevention technologies adopted by a facility with respect to its size, previous experience in 

adoption, its distances to its sibling facilities and headquarter, and regional density of similar 

facilities to measure stock, rank and epidemic effects (Karshenas and Stoneman 1993). 

Two-stage hurdle models are estimated controlling for facility-specific effects, public and 

regulatory pressures that may have affected the decision to adopt pollution prevention (P2) 

technologies.  

We find that organizational structure plays an important role in the diffusion of pollution 

prevention technology within a firm. Specifically, a facility that is located in the same city 
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with its headquarter have a higher likelihood to adopt new P2 technology than a facility that 

is not located close to its headquarter. Conditional on being an adopter of P2, such facility 

adopts fewer number of P2 technologies. Additionally, we find that information spillover is 

affected by the complexity of production processes. A facility that has more siblings is less 

likely to become an adopter of P2. A facility whose parent company has more varieties of 

facilities, identified by the number of unique industry classifications, is more likely to adopt 

new P2 technology. Furthermore, we find that a facility that repots more TRI chemicals and is 

located in a state with an environmental friendly legislature is more likely to become an 

adopter for P2 and subsequently adopted greater number of P2 technologies. Consistent with 

previous studies, we find that past experiences in adoption of P2 technologies and firm’s 

knowledge stock on P2 technologies motivate facilities to adopt new P2 technologies.  

 

2. Literature Review 

Two types of technology diffusion processes have been identified in the previous literature: 

inter-firm diffusion and intra-firm diffusion. Previous literature has employed numerous 

theoretical models to explain intra-firm diffusion. Karshenas and Stoneman (1993) categorize 

the determinants that affect inter-firm diffusion into rank, stock, order, or epidemic effects 

based on previous literature. The rank effect is referred to the assumption that potential 

adopters of technology have different inherent characteristics and consequently obtain 

different returns from employing new technology. These different returns generate different 

preferred adoption dates. The stock effect is referred to the assumption that the marginal 

profit from using one extra unit of new technology in time t depends on the firm’s existing 
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level of use. Since the marginal return is decreasing over time, it will only be profitable for 

the firm to extend the use of that new technology to a certain point, thus limiting the extent of 

intra-firm diffusion. The order effect results from assuming that the returns from adopting a 

new technology depend on its position in the order of adoption. Facilities that have higher 

potential returns are regarded as high order adopters. The epidemic effect treats the adoption 

process as endogenous learning, which is a process of self-propagation of information that 

grows with the spread of that technology. Information transfer reduces uncertainty costs, 

thereby speeding up the adoption process. 

Battisti and Stoneman (2005) further argue that the method with which to measure the 

inter-firm diffusion can also be used to measure diffusion within firms. They use data for 

computerized numerically controlled machine tools (CNC) in the UK metalworking and 

engineering industry in 1993 to examine the rank and epidemic effects within firms. They use 

employment, firm age, research and development (R&D) activities, ownership type, and 

production system characteristics to capture the rank effects. Years since the first adoption 

and the number of plants that adopted CNC in the firm by the date of the first adoption are 

used to capture the epidemic effects. The model does not include variables to capture the 

stock effect because of the cross-sectional data. 

Empirical evidence supporting Battisti and Stoneman’s model is limited. Hollenstein 

and Woerter (2008) use Swiss firm-level information and communication technologies (ICT) 

data and find the presence of rank and epidemic effects but provide little evidence of stock 

and order effects. Haller and Siedschlag (2011) use data from Irish manufacturing firms from 

2001 to 2004. Their results also support the existence of rank and epidemic effects. 
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In addition to the literature focusing on intra-firm technologies diffusion, studies 

related to the adoption of P2 technologies have examined the incentives for firms or facilities 

adopt P2 technology. Khanna, Deltas, and Harrington (2009) use firm-level data from 1991 to 

1995 to evaluate the effect of firm’s participation in a voluntary environmental program 

(EPA’s 33/50 program) on P2 adoption. They find that program participants are more likely to 

adopt P2 technologies than nonparticipants. Florida and Davison (2001) use case studies to 

analyze the motivations behind P2 adoption. Harrington (2012) finds that facilities’ 

motivation to adopt P2 activities differ by type of technology. Harrington (2013) also 

contrasts the effectiveness of state-level regulatory, management, and information-based 

regulations in promoting P2 adoption. 

These studies have not examined intra-firm diffusion of P2 technologies under the 

current non-mandatory environmental policy that focuses on information disclosure through 

the TRI. This paper contributes to the existing related literature in three ways. First, we 

extend the scope of intra-firm diffusion studies to P2 technologies. Second, we examine the 

role of organizational structure and industry networks in promoting the diffusion of P2 

technology. Last, we use a larger sample and a longer period than previous studies to examine 

whether the results from previous intra-firm diffusion studies on other technologies also 

apply to P2. 

 

3. Framework and Hypotheses 

This paper’s main objective is to establish the correlation between a firm’s 

organizational structures and the extent of its P2 adoption activities. This correlation may 
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reveal the mechanism through which P2 technologies diffuse within a firm. Unlike previous 

literature on intra-firm diffusion, which uses firm-level data and uses the percentage of new 

technology adoption of a firm to represent the extent of intra-firm diffusion, we undertake 

facility-level analysis on the number of P2 technologies adopted with respect to facilitiy’s 

characteristics firm’s organizational structure. We do not use the percentage of adoption of a 

firm as the dependent variable because P2 technologies (activities) encompass up to 43 types 

of activities that aim at reducing wastes at source. As a result, TRI facilities may adopt more 

than one practice at any given year and may adopt different types of P2 practices over time. 

In contrast, previous studies on technology adoption typically focus on a single technology or 

a small group of technologies.  

We assume that the likelihood and the rate of adoption depend on the facility’s 

marginal benefits and marginal costs from adoption. A facility will choose to adopt a new P2 

technology at the point when the marginal benefits equal the marginal costs. The 

organizational structures that affect the facilities’ marginal benefits and marginal costs of 

adoption include geographical location, ownership structure, and firm size.  

We expect that distances between siblings would influence a facility’s cost of 

obtaining information. Knowledge transfer within the firm reduces the cost involved in 

searching for and learning new technologies. Previous literature shows that reducing the costs 

of searching for and adapting technologies increases the probability for and speed of adoption 

(Lenox and King 2004; Mansfield 1968). Geographic proximity can promote knowledge 

sharing (Szulanski 1996), since knowledge transfer becomes more difficult and costly as 

distance increases (Berchicci, Dowell, and King 2011). While proximity does not mean that 
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such a transfer is inevitable, it does create a convenient opportunity for facilities that prefer 

face-to-face communication.  

Furthermore, we expect that knowledge transfer is inversely related to the number of 

distinct industries that a firm encompass. Maritan and Brush (2003) find that the knowledge 

transfer is more difficult for establishments that have different operating procedures. The U.S. 

Environmental Protection Agency (EPA) classifies 43 different types of P2 activities into 

eight categories (EPA 2007). Two of these eight categories are process and equipment 

modifications and surface preparation and finishing, which relate to specific techniques. To 

adapt these two types of practices, facilities need to learn certain knowledge that can hardly 

be obtained from sibling organizations with different productive process. We assume that the 

facilities that belong to the same industry and have similar productive process, which means 

that they are more likely to exchange information about P2 technologies than siblings that are 

not from the same industry. 

Hypothesis 1(a): Facilities that have siblings in close proximity are more likely to 

adopt technologies than facilities without siblings in close proximity. This effect is more 

significant for facilities that have siblings in close proximity and in the same industry. 

Hypothesis 1(b): Among facilities that have adopted new P2 technologies, facilities 

with proximate siblings are expected to adopt greater number of P2 technologies than 

facilities without proximate siblings. This effect is more significant for facilities that have 

proximate siblings in the same industry. 

 

We expect that the distances between facilities and their parent companies also 
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influence the cost of obtaining technical help and facilities’ degree of independence. 

Technological innovations may have been developed at the headquarters and disseminated to 

individual subsidiary facilities. We assume that headquarters would have a higher level of 

knowledge than its subsidiaries, and technical support from headquarters would reduce the 

facilities’ costs to learn and adapt new technologies. Therefore, greater distances to 

headquarters may reduce the likelihood of a facility to adopt P2 technology. However, such 

effect may also depend on the complexity of production processes within a firm. For a 

complex enterprise with subsidiaries that belong to multiple district industries, close 

proximity to headquarter may not influence a facility’s likelihood of adopting a new P2 

technology.  

 

Hypothesis 2(a) ：Facilities that are in close proximity to their headquarters are more 

likely to adopt P2 technologies than those located further away from their headquarters. 

Hypothesis 2(b) ：Among facilities that have adopted new P2 technologies, those in 

close proximity to their headquarters are expected to adopt more P2 technologies than those 

further away from their headquarters. 

 

A firm’s ownership structure may affect its facilities’ pathway to learn knowledge of 

new technologies, management costs, and expected return and costs of adoption. Erdilek and 

Wolf (1997) find that foreign-owned firms transfer new international technologies to 

domestic affiliates. La Porta, Lopez-de-Silanes, and Shleifer (1999) find that firms that have 

more than 20% private equity are more likely to adopt productivity-enhancing practices. This 
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is due to the ownership concentration, which reduces inter-agency costs between managers 

and shareholders. Private and government companies usually have a higher degree of 

ownership concentration than do public- traded companies. Thus we expect that facilities that 

belong to privately held firms are more likely to adopt P2 technology. 

However, publicly traded firms may be more motivated to reduce pollution and 

improve their public image. Konar and Cohen (1997) find that the disclosed information on 

toxic pollution affected public firms’ stock prices. On one hand, publicly traded firms may be 

motivated to adopt P2 technologies to reduce pollution. On the other hand, the adoption of 

new P2 technologies may require huge investments in the first few years. These investments 

may negatively affect firms’ profits, thereby reducing stock prices and returns to shareholders. 

Meanwhile, other types of pollution control methods, such as end-of-pipe abatements may be 

more cost effective. Thus, the effect of public ownership on P2 technology adoption may be 

ambiguous.  

 

Hypothesis 3(a): Facilities whose parent firms are publicly traded are more likely to 

adopt new P2 technologies than facilities whose parent firms are privately or government 

owned. 

Hypothesis 3(b): Among facilities that have adopted new P2 technologies, those that 

are publicly traded will adopt more new P2 technologies than facilities whose parent firms 

are privately or government owned. 

 

Firm’s size may affect its financial ability and costs for searching for an appropriate 
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P2 technology. Empirical findings on the effect of firm’s size are mixed. Most findings 

suggest that larger firms are more likely to implement new technologies than smaller firms 

(Mansfield 1968; Karshenas and Stoneman 1995). Other literature finds that smaller firms 

tend to intensity their adoptions than larger ones after the first adoption of new technology 

(Mansfield 1963; Fuentelsaz et al. 2003). In other words, intra-firm diffusion of new 

technology is faster within smaller firms than larger firms. This is likely due to the 

differences in costs for adapting to a new technology between larger and smaller firms, such 

as the cost to train employees in its use. Small firms are able to increase the intensity to adopt 

new technology to lower the average costs for each facility.  

Hypothesis 4(a): Facilities in large firms are expected to be more likely to adopt new 

P2 technologies than those in small firms. 

Hypothesis 4(b): Among the facilities have adopted new P2 technologies, Facilities 

those who in large firms are expected to adopt fewer number of new P2 technologies than 

those in small firms. 

 

4. Empirical Model 

We use a two-part model to represent facilities’ decision-making processes. We 

separate the facilities’ adoption decisions into two steps: 1) whether or not they will adopt a 

new P2 practice and 2) how many activities they will adopt once they have decided to 

become adopters. These two stages can be considered independent of each other because the 

coefficients affecting whether facilities will adopt new P2 technologies may differ from those 

that affect the extent of facilities’ adoption even we use same set of variables. 
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For the first part of this two-stage process, we assume that a facility would choose to 

adopt when the marginal profits are greater than the marginal costs. In other words, the 

facility will adopt at least one P2 technology when the net profit of adoption is greater than or 

equal to zero. We employ the logit model based on the property of the first stage: 

  1    0it itD if NP=    

  0    0    it itD if NP=    

1 2 1 3 2 4 1 5 2 6it it i it i it itNP X X Y Y Z      = + + + + + + ,  

Where itD  is a dummy variable denoting the adoption decision of facility i  at time 

t . itD  equals to one if the facility i  adopts at least one new P2 technology at time t , and 

equals zero if the facility i  does not adopt any new P2 technology at time t . itNP  is a 

latent index that represents the facility’s net profit for adopting a new P2 technology. The 

vectors 1itX  and 1itY  denote time varying firm characteristics and facility characteristics 

than can affect the facility’s expected return from adoption. The vectors 2iX  and 2iY  each 

denote the time invariant firm characteristics than can affect the facility’s expected return for 

adopting new P2 technologies. The vector itZ  denotes the time varying external 

circumstances that may affect the facility’s expected return from adoption. We assume the 

error term it  has a logistic distribution. 

We employ a truncated Poisson model to estimate the second stage of the facility’s 

decision-making process, conditioning on adopting at least one technology. In our dataset, we 

do not find an evidence for significant over-dispersion. A Poisson model is preferred to a 

negative binomial model as indicated by the Akaike and Schwarz’s Bayesian information 

criteria (as shown in Table 1). For each facility i  that adopts at least one new technology in 
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time t  ( 1itD = ), we assume that the positive count of their P2 adoption fits a Poisson 

distribution. The expected number of adoption is expressed as follows: 

E(P2
it

| D
it
=1) = exp[¶

1
+¶

2
X

1it
+¶

3
X

2i
+¶

4
Y

1it
+¶

5
Y

1i
+¶

6
Z

it
+m

it
]  

�2�� is the expected number of new P2 adoption for facility i  at time t .  

We use the same sets of explanatory variables for the truncated Poisson model as 

those used in the logit model. We expect that the coefficients of these variables differ as they 

have different effects on the likelihood and the rate of adoption. To control for the unobserved 

effects, we add a full set of year dummies to capture all unobserved time effects and add a 

full set of industry dummies to capture the unobserved industry-specific effects.  

Our variables of interests focus on organizational structure and peer effects. Jaffe 

(1986) found that a facility’s adoption decision is affected by the activities of other siblings 

belonging to the same parent company. He suggested that the experience of adoption in other 

siblings would have a spillover effect. In other words, facility’s adoption of P2 technologies 

will be influenced by its sibling’s previous P2 adoptions.  

To identify the peer effect, we use the exogenous shock experienced by all TRI 

facilities in 1995. The EPA has expanded the list of chemicals requiring reporting since the 

TRI reports were first required in 1987. The number of TRI chemicals became 593 in 2011 

versus 332 in 1987. The biggest change happened in 1995. The EPA extended the number of 

TRI chemicals from 363 to 606. We focus on 239 chemicals that were added in 1995 for the 

empirical analysis, while use the observations on P2 adoptions from the original 363 

chemicals from the period of 1991 to 1994 to represent knowledge stock and approximate 

peer effects.  
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5. Data and Variable Construction 

5.1. Data Construction 

5.1.1. Dependent variable 

We use two different variables to represent the results of the two stages of facilities’ 

decision-making. Each facility is required to report its P2 adoptions for each TRI chemical 

with up to 43 categories. To construct these two dependent variables, we focus on a set of 239 

chemicals. These 239 chemicals were added into the TRI reporting requirement in 1995, as 

EPA expanded the original list of TRI chemicals, and never experience reporting changes 

afterwards from 1995 to 2011.  

The first dependent variable, new P2 dummy, is a dichotomous variable used in the 

logit model. New P2 dummy was coded as “1” if the sum of new P2 activities is greater than 

zero, which means the facility has adopted at least one kind of P2 activity for all of its 239 

chemicals in a given year, and “0” otherwise.  

The second dependent variable, new P2, is the count variable used in the truncated 

Poisson model. New P2 is the aggregate level of new P2 activities from the 239 chemicals for 

each facility in a given year.  

 

5.2.2. Independent variables 

The elements of vector 1itX  represent time varying firm characteristics, which 

represent external knowledge, the peers effect, and capital transfer.  

We aggregate the number of employees from all subsidiaries that belong to the same 
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parent company to yield the firm’s total number of employees, which we used as the proxy of 

firm size. The variable log firm employment used the lagged one-year total of employees and 

natural log to reduce skewness. The variable number of unique SIC code represents the count 

of unique industries (defined by two digit SIC code) reported by a firm’s subsidiaries. The 

variable number of siblings represents the number subsidiaries that a parent company owns. 

We use a binary dummy variable public ownership takes a value of 1 if the parent company is 

publicly owned and 0 if the parent company is privately or government owned in a given 

year.  

Vectors 2iX  represent time invariant firm characteristics, which include facilities’ 

relative location to parent companies, parent company’s ownership, and number of 

subsidiaries. These are the main independent variables of interest, which represent firm’s 

organizational structures. We use seven variables to represent different aspects of a firm’s 

organizational structure. The sibling in same city binary dummy variable has a value of 1 if 

the facility has at least one sibling located in the same city and 0 otherwise. The same 

industry sibling in same city binary dummy variable has a value of 1 if at least one of the 

facility’s siblings is located in the same city and it also belongs to the same industry (i.e. 

Reporting the same two-digit SIC code) and 0 otherwise. The headquarter in same city is a 

binary dummy variable that takes a value of 1 if the facility is located in the same city as its 

headquarters and 0 otherwise.  

Vectors 1itY  represent time varying facility characteristics, which include facilities’ 

past experience, toxic releases, and number of employees. The total volume of release may 

proxy for the extent of specific facility regulatory pressure and further the cost of liabilities 
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related to health risk and environmental governance. We create the variable lagged toxic 

release, which takes the value of the sum of toxic release of the 239 chemicals added in 1995. 

We take the natural log (plus one) of this sum to reduce skewness.  

To control for the scope of the P2 technologies, we create the variable number of 

chemicals, which equals to the number of chemicals that belong to the group of 239 

chemicals that were added in 1995. We use the log facility employment to represent logged 

the number of employee to approximate facility’s size. 

Vectors 2iY  represent time invariant facility characteristics, which include facility’s 

propensity for adoption, industry classification, and number of toxic chemicals.  

We created the variable firm’s average P2 adoption, which takes the sum of the 

average adoption of P2 technologies by siblings belonging to the same parent company from 

1991 to 1994. We use the existed adoption data of 363 types of chemicals on siblings from 

1991 to 1994 as the proxy of the spillover effect from the siblings on the 239 newly added 

chemicals after 1995. We built a variable that capture a facility’s past experience in the same 

called facility’s average P2 adoption. The variable facility’s past P2 takes the sum of P2 

technologies adopted by the facility from 1991 to 1994. 

Vectors itZ  are used to represent exogenous time varying variables such as the 

pressure from the local community and state. Previous literature has shown that local 

communities’ economic conditions affect a facility’s environmental performance (Arora and 

Cason 1999; Earnhart 2004; Wolverton 2009). The local community can press a facility to 

adopt a new P2 technology through citizen suits or lobbying for stricter legislation (Earnhart 

2004). We also created the variable log county median income, which uses the log of median 
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household income in each county to represent the county-level community pressure. We 

created the variable LCV score, which uses the last year’s League of Conservation Voters 

National Environmental Scorecard. The scorecard calculates the proportion of environmental 

bills voted on by member of Congress. The score takes a value from 0 to 1 (100 percent). We 

used this variable to capture state-level community pressure. We also include the industry 

dummies (SIC code) and time dummies into the model to control for the specific industry and 

time effects. The summary statistics are list in Table 2. 

 

5.2. Data Source 

The main components of our dataset are facilities’ annual TRI data and the National 

Establishment Time-series (NETS) data from 1991 to 2011. The EPA requests that facilities 

belong to certain industry sectors to report the toxic release of chemicals on the list published 

by the EPA based on the Right-to-Know Act, which was issued in 1986. These public annual 

reports began in 1987. Besides the data of toxic release for each regulated chemical, the TRI 

reports also involve their location, standard industrial classification (SIC) code, information 

on the parent company, and the emission media. According to the Pollution Prevention Act of 

1990, the TRI reports are expanded to include the number of P2 technologies adopted for 

each regulated chemical since 1991. We obtained the data of P2 adoption, location, release, 

SIC code and parent company from the TRI reports between 1991 and 2011. We obtained the 

annual TRI reports from the EPA’s website (www.epa.gov/tri). We link the facilities in the 

TRI with their correspondent establishments in NETS data. The NETS involve establishment 

information between January 1990 and January 2011. We obtained facilities’ number of 
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employees and ownership type from the NETS data from 1991 to 2011. 

The TRI report data are from a facilities-level database, while the NETS data are from 

an establishment-level database. These two databases do not match perfectly. An observation 

in one database may not have a corresponding data in another database. A small proportion of 

observations in the TRI has more than one corresponding observations in the NETS database. 

We only kept observations with a unique corresponding object in each database for a given 

year.  

The information on facility location, number of employees, and parent company 

ownership are obtained from the NETS database. The subsidiaries of parent company that do 

not report to the TRI cannot be identified in our dataset.  

Using the reported location of the facility from the TRI, we have merged this original 

dataset with the county’s income data and the League of Conservation Voters (LCV) data at 

the state level over the period of 1995 to 2011. The county income data is obtain from United 

States Department of Agriculture (USDA) Economic Research Service (ERS) 

(http://www.ers.usda.gov/). The LCV data is from the website (http://scorecard.lcv.org/).  

The final dataset contains 37,942 observations involving 4,786 facilities. The sample 

size used for the logit model and logit model for facilities that have siblings are 37,248 and 

22,594, respectively. The truncated Poisson models only use the observations that have a 

positive dependent variable. The sample size used for the whole truncated Poisson model and 

truncated Poisson model for facilities that have siblings are 4,148 and 2,488, respectively. 

 

6 Results and Discussion 
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6.1 Hurdle Logit Model 

Table 3 presents our results on the logit model, which show the partial heterogeneity of 

the effect of factors across different groups of observations. The results in the first column of 

Table 3 are for the full sample, columns 2 and 3 are results on subset of the sample for those 

facilities with siblings.  

We first summarize the general results across different samples. Facilities with a smaller 

size, a larger number of chemicals on the report list, more past P2 technology adoption, and 

residence in a state with higher voter participation on environmental bills are more likely to 

choose to adopt new P2 technologies.  

Then we proceed with a summary of variables relating to our hypotheses. Column 2 of 

Table 3 shows that sibling in same city has a significant negative effect on facilities’ decision 

to adopt new P2 technologies at a 10 percent significance level. Column 3 of Table 2 

demonstrates that the similar variable same industry sibling in same city is not significant. 

These two results contradict our hypothesis that facilities with proximate siblings or 

proximate siblings belonging to same industry will be more likely to adopt new P2 

technologies. The variable same industry sibling in same city is a subset of the variable 

proximate sibling, so we cannot put them into the same regression equation due to the 

problem of multicollinearity.  

Doshi, Dowell, and Toffel (2013) show that sibling proximity will enhance a facility’s 

environmental performance as measured by the amount of toxic releases. Facilities in the 

same city are faced with similar public pressures. It is possible that facilities may use other 

toxic abatement technologies excluding P2 technology to reduce toxic releases.  
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Table 3 shows that the variable headquarter in same city has a significant positive effect 

in column 2 at a 5 percent significance level and an almost significant positive effect in 

column 3 at a 10 percent significance level, which supports our hypothesis that facilities near 

their headquarters are more likely to adopt P2 technologies than facilities that are far from 

their headquarters.  

Firm size is not significant either in column 2 or column 3, which contradicts our 

hypothesis that facilities of large firms are more likely to adopt new P2 technologies than 

those of small firms. This empirical result is similar to Astebro’s (2004) finding in the case of 

CNC technology. The variable public ownership shows a significant negative effect on the 

full sample at a 1 percent significance level, but no significant effect for facilities with one or 

more siblings. This stands in contrast to our hypothesis that facilities whose parent firms are 

publicly owned are more likely to adopt new P2 technologies than facilities whose parent 

firms are privately or government owned. The effect of ownership type is likely greater for 

single facilities than facilities that are subsidiaries of a parent company. The variable number 

of siblings has a significant negative effect both in columns 2 and 3 at a 1 percent 

significance level. The variable number of unique SIC code has a significant positive effect in 

both columns 2 and 3 at a 1 percent significance level. These two variables are likely a proxy 

for organizational complexity. We assume organizational complexity creates obstacles to 

knowledge transfer. The variable number of unique SIC code likely has a significant positive 

effect because the barriers to knowledge transfer involving P2 technologies between different 

industries may not be as strong as we initially supposed. A firm that owns subsidiaries 

belonging to more than one industry may be in better financial condition, which may, in turn, 
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promote the adoption of new P2 technologies.  

This next section summarizes the empirical results for the control variable in our 

analysis. The variable firm’s average P2 adoption has a significant positive effect both in 

columns 2 and 3. Sibling knowledge stock will have a spillover effect that provides a source 

of external information for facilities. This spillover effect seems to exist for different kinds of 

chemicals. The variable log facility employment has a significant negative effect in all 

columns. Facilities with fewer employees will require less investment in training and 

replacement equipment. This may be the reason that small facilities are more likely to adopt 

new P2 technologies than large facilities. The variable number of chemicals has a significant 

positive effect in all columns at a 1 percent significance level. Facilities with more chemicals 

on the report list may have greater choice in which kinds of chemicals they want to adopt a 

corresponding P2 technology. The variable lagged toxic release has no significant effect in 

any column, so other control variables may cover the effect of local community pressure. The 

variable facility’s past P2 adoption has a significant positive effect in all columns at a 1 

percent significance level. Past experience of P2 technology adoption promotes the decision 

to adopt for other chemicals. This variable may also reflect facilities’ preference for P2 

technology adoption. The variable log county median income has a significant negative effect 

in column 2 and 3, but no significant effect in column 1. Facilities with high levels of toxic 

chemicals released may prefer locations in counties with lower environmental preference, 

which may cause the significant negative effect we observed with the variable log county 

median income. The variable LCV score has a significant positive effect in all columns at a 1 

percent significance level, suggesting that state-level community pressure regarding the 
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environment will spur facilities to adopt P2 technologies. 

 

6.2 Truncated Poisson Model 

The regression results reflect the effect of various factors on facilities’ decision on how 

many new P2 technologies they will adopt after deciding to adopt new P2 technologies, as we 

used new P2 as the dependent variable in the truncated Poisson model. Table 4 presents 

results showing the consistent effect of factors across different groups of observations. The 

results of first column in Table 4 come from facilities that adopted at least one new P2 

technology in a year and the other two from facilities that have adopted at least one new P2 

technology and that have at least one sibling. 

As we did with the hurdle logit model, we first summarize the general results across 

different samples. We find that facilities with a smaller size, a larger number of chemicals on 

the report list, and greater past P2 technology adoption to adopt more new P2 technologies 

after deciding to adopt new P2 technologies. Then we proceed with a summary of variables 

relating to our hypothesis. The results in columns 2 and 3 of Table 4 indicate that sibling in 

same city and same industry sibling in same city do not have a significant effect on how many 

new P2 technologies facilities will adopt. These results contradict our hypothesis that 

facilities with proximate siblings or proximate siblings belonging to same industry will adopt 

more new P2 technologies. This is because the main driver of facilities’ adoption decision is 

local community pressure on each facility. The proximate sibling effect on increasing 

information transfer, which lowers adoption costs, may be the only important factor in 

promoting adoption.  
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The variable headquarter in same city has a significant negative effect at a 5 percent 

significance level in column 2 and a 10 percent significance level in column 3, which 

contradicts our hypothesis that facilities near their headquarters will adopt more new P2 

technologies than facilities far from their headquarters. Firm size has a significant negative 

effect both in columns 2 and 3, which conflicts with our hypothesis that facilities for large 

firms are more likely to adopt new P2 technologies than those for small firms. This empirical 

result is similar to Astebro’s (2004) findings in the case of CNC technology. The variable 

public ownership has a significant negative effect in the full sample at a 1 percent 

significance level but no significant effect for facilities with at least one sibling, which 

conflicts with our hypothesis that facilities whose parent firms are publicly owned are more 

likely to adopt new P2 technologies than facilities whose parent firms are privately or 

government owned. We hypothesized that the effect of ownership type would be greater for 

single facilities than for facilities that are subsidiaries of parent companies. However, the 

variables number of siblings and number of unique SIC code is not significant either in 

column 2 or 3 likely because neither sibling in same city nor same industry sibling in same 

city are significant.  

Finally, we summarize the empirical results for the control variable in our analysis. The 

variable firm’s average P2 adoption has a significant positive effect both in columns 2 and 3 

at a 1 percent significance level. This spillover effect seems to exist between different kinds 

of chemicals. The variable log facility employment has a significant negative effect in all 

columns at a 1 percent significance level. Facilities with fewer employees will need to invest 

less in training and replacement equipment, which may be the reason small facilities are more 
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likely to adopt more new P2 technologies than large facilities. The variable number of 

chemicals has a significant positive effect in all columns at a 1 percent significance level. 

Facilities with more chemicals on the report list will adopt more new P2 technologies in total 

if the rate of P2 adoption for each chemical is the same. Thus, we use the variable number of 

chemicals to control for facilities’ specific characteristics. The variable facility’s past P2 

adoption has a significant positive effect in all columns at a 1 percent significance level. Past 

experience with P2 technology adoption will influence the number of new P2 technologies 

facilities will adopt. The variable lagged toxic releases and log county median income have 

no significant effect in any column, so other control variables may cover the effect of local 

community pressure regarding toxic chemicals released. The variable LCV score has a 

significant positive effect in both columns 2 and 3 at a 1 percent significance level and but no 

significant effect in column 1, suggesting that state-level community pressure regarding the 

environment promotes not only adoption but also the number of technologies adopted in each 

facility to improve its public image. 

 

7 Conclusion 

This paper investigates the influence of firms’ organizational structure on the likelihood 

of adopting pollution prevention technology and the number of technologies. Overall, our 

empirical results show that firms’ organizational structure exerts a significant influence on 

facilities’ P2 adoption decision, but the influence may be heterogeneous in each stage. 

Specifically, headquarters proximity increases the likelihood of facilities’ adoption of new P2 

activities but reduces the number of adoptions. Sibling proximity decreases the likelihood of 
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adoption but has no effect on the number of adoption. Firm size does not affect the likelihood 

of adoption, but small firm size will increase the rate of adoption. Private or government –

owned facility have a higher likelihood and rate of adoption, but this effect may only 

significant for single facilities rather than for facilities belonging to a parent company. Our 

results prove that the positive effect of some organizational structure variables on 

environmental performance found in previous literature does not contribute to P2 technology 

adoption.  

These findings have two implications for future policy. First, it is likely that some 

facilities would not adopt P2 technology to improve their public image and they would prefer 

to use other abatement methods like treatment or recycling to reduce toxic releases. If the 

government wants P2 technology to be the main pollution reduction method, it needs to 

consider the P2 adoption a higher priority when determining facilities’ environmental 

performance. Particularly, a future policy making the public aware of the benefits of P2 

technologies may have a positive effect on P2 adoption.  

Second, our empirical results suggest that facilities make two assessments regarding 

adoption and that the effects of factors in these two stages may differ. Thus, the government 

should create a targeted policy based on its goal: either to increase the likelihood of adoption 

or increase the rate of adoption. 

The control variables also have implications for future policy. Our findings show that 

facilities’ past experience with P2 technology adoption and firms’ P2 technology knowledge 

stock will increase both the likelihood and rate of adoption. These effects influence the P2 

technology used for different kinds of chemicals, but facilities’ past experience wields more 
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influence than firms’ knowledge stock. These findings suggest that if the government still 

regards P2 technology as the main strategy for reducing pollution in the long term, it should 

pay more attention to factors that will increase the rate of the P2 adoption because facilities’ 

past experience, or the number of P2 technologies the facilities have adopted, has a strong 

positive influence on future adoption decisions and siblings’ adoption decisions.  

The positive impact of LCV score on likelihood and rate of P2 adoption suggests that a 

P2 is influenced by state’s environmental friendly legislature. Following Harrington (2012), it 

is likely that states with mandatory information disclosure on P2 adoption or P2 planning are 

more likely to report greater adoptions of P2 technologies. 
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Table 1. Model comparison between truncated Poisson model and truncated negative 

binomial model  

 

Tests    Statistics    

Poisson BIC= 12813.020 AIC= 12585.126 Prefer Over Evidence 

      
vs NB BIC= 12819.482 difference= -6.462 Poisson NB Strong 

 AIC= 12585.257 difference= -0.131 Poisson NB  

 LRX2= 1.869 prob= 0.086 Poisson NB p=0.086 

      
Note: NB is the abbreviation for negative binomial model. The results of test show that the 

Akaike and Schwarz’s Bayesian information criteria of Poisson model is smaller than 

them in negative binomial model, which suggests that the Poisson is preferred than 

negative binomial model. Countfit developed by Long and Freese (2014) is used in 

the analysis. 
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Table 2: Variable description and summary statistics 

Variable Description Mean Std. 

Dev. 

Min Max 

New P2 dummy Dummy variable: 1 if  facility adopt 

any new P2 technology in certain 

year, 0 otherwise 

0.11 0.31 0 1 

New P2  Number of new P2 technology a 

facility adopt in certain year when 

the facility choose to be a adopter 

1.86 1.57 1 22 

Sibling in same city Dummy variable: 1 if have sibling in 

same city, 0 otherwise 

0.03 0.18 0 1 

Same industry 

sibling in same city 

Dummy variable: 1 if have same 

industry sibling in same city, 0 

otherwise 

0.02 0.15 0 1 

Headquarter in 

same city 

Dummy variable: 1 if have 

headquarter in same city, 0 otherwise 

0.25 0.43 0 1 

Log firm 

employment 

Log of parent company's total 

employee (last year) 

5.77 1.84 0 11.02 

Number of unique 

SIC code 

Kind of industry the parent company 

have 

1.94 1.73 1 10 

Number of siblings Number of sibling belong to same 

parent company 

4.23 6.84 0 40 
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Table 2 Continued  

Variable Description Mean Std. 

Dev. 

Min Max 

Public ownership Dummy variable: 1 if owned by 

public, 0 if owned by private or 

government 

0.36 0.48 0 1 

Firm’s average P2 

adoption 

Average P2 adoption in sibling 

during 1991 to 1994 

7.34 13.93 0 196 

Log facility 

employment 

Log of facility's employee (last year) 5.01 1.54 0 9.98 

Number of 

chemicals 

Number of chemical reported to EPA 0.42 1.16 0 20 

Lagged Toxic 

release 

Log of toxic release (last year) 19.7 0.09 19.49 19.86 

Facility’s past P2 

adoption 

Facility's P2 adoption during 1991 to 

1994 

10.51 22.77 0 333 

Log county median 

income 

Log of county income (last year) 15.7 1.78 9.87 19.85 

LCV score LCV National Environmental 

Scorecard 

0.47 0.35 0 1 

 

 



33 
 

Table 3: Hurdle logit model 

Dependent variable: New P2 dummy (1) (2) (3) 

VARIABLES Full sample Have siblings Have siblings 

Organizational Structure    

Sibling in same city  -0.186*  

  (0.11)  

Same industry sibling in same city   0.035 

   (0.12) 

Headquarter in same city  0.183** 0.135 

  (0.09) (0.09) 

Log firm employment  0.003 0.000 

  (0.02) (0.02) 

Number of unique SIC code  0.036** 0.036** 

  (0.02) (0.02) 

Number of siblings  -0.019*** -0.019*** 

  (0.00) (0.00) 

Public Ownership -0.165*** -0.059 -0.062 

 (0.04) (0.05) (0.05) 

Control Variables    

Firm’s average P2 adoption  0.005*** 0.005*** 

  (0.00) (0.00) 

Log facility employment -0.057*** -0.064*** -0.063*** 

 (0.01) (0.02) (0.02) 

Number of chemicals 0.054*** 0.054*** 0.053*** 

 (0.01) (0.02) (0.02) 

Lagged toxic release 0.092 0.129 0.133 

 (1.06) (1.53) (1.54) 

Facility’s past P2 adoption 0.015*** 0.014*** 0.014*** 

 (0.00) (0.00) (0.00) 

Log county median income -0.005 -0.026* -0.027** 

 (0.01) (0.01) (0.01) 

LCV score 0.234*** 0.297*** 0.308*** 

 (0.05) (0.07) (0.07) 

Industry dummies Included Included Included 

Time dummies Included Included Included 

Constant -2.113 -1.991 -2.025 

 (20.92) (30.11) (30.18) 

Observations 37,248 22,594 22,594 

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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Table 4: Truncated Poisson model 

Dependent variable: New P2 (1) (2) (3) 

VARIABLES Full sample Have siblings Have siblings 

Organizational Structure     

Sibling in same city  0.177  

  (0.12)  

Same industry sibling in same city   0.005 

   (0.14) 

Headquarter in same city   -0.285** -0.223* 

  (0.12) (0.12) 

Log firm employment  -0.050* -0.051** 

  (0.03) (0.03) 

Number of siblings  -0.008 -0.007 

  (0.01) (0.01) 

Number of unique SIC code  0.018 0.018 

  (0.02) (0.02) 

Public ownership -0.146*** -0.091 -0.089 

 (0.05) (0.06) (0.06) 

Control variables    

Firm’s average P2 adoption  0.004*** 0.004*** 

  (0.00) (0.00) 

Log facility employment -0.069*** -0.068*** -0.065*** 

 (0.02) (0.03) (0.03) 

Number of chemicals 0.156*** 0.146*** 0.146*** 

 (0.01) (0.02) (0.02) 

Lagged toxic release 0.517 2.234 2.144 

 (1.74) (2.87) (2.88) 

Facility’s past P2 adoption 0.004*** 0.004*** 0.004*** 

 (0.00) (0.00) (0.00) 

Log county median income 0.018 -0.004 -0.002 

 (0.01) (0.02) (0.02) 

LCV score 0.007 0.224*** 0.215*** 

 (0.07) (0.08) (0.08) 

Industry dummies Included Included Included 

Time dummies Included Included Included 

Constant -10.087 -43.176 -41.458 

 (34.10) (56.37) (56.55) 

    

Observations 4,148 2,488 2,488 

Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 

 


