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Information technologies and field-level chemical use  

for corn production1 

 

Jae-hoon Sung and John A. Miranowski2 

 

Abstract 

We investigate the effectiveness of soil testing and pest scouting by focusing on field-level 

chemical use for corn production. Based on the ARMS phase II and phase III data, we estimate 

equations for technology adoptions and chemical use. For estimation, we incorporate nonlinear 

endogenous switching regression to account for the nonnegative chemical use and endogeneity 

problems regarding adoptions of conservation practices. We find that: 1) adopting information 

technologies are positively correlated with farmers’ human capital, field characteristics, and corn 

prices. 2) the effects of information technologies on farmers’ nitrogen use depends on crop rotation. 

To be specific, farmers who adopt soil testing and crop rotation use nitrogen less than farmers who 

use crop rotation but do not adopt soil testing by about 8 lb/acre, but soil testing has insignificant 

effects on the rate of nitrogen application by farmers who grew corn continuously. 3) farmers’ 

management practices such as the use of manure and GM corns have significant effects on their 

nitrogen and herbicide use, but the directions and sizes of them depends on adoption of information 

technologies and previous field use.  
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Introduction  

Production uncertainty has been recognized as a major factor in fertilizer and pesticide use (Feder 

1979; Babcock 1992; Ribaudo et al. 2011). Production uncertainty includes unexpected events during the 

growing season as well as imperfect information regarding heterogeneous environmental conditions and 

chemical performance (Lichtenberg 2002). Farmers may have incentives to reduce production risk by over-

applying chemical inputs.3 In addition, some farmers may also apply chemical inputs in amounts beyond 

actual crop requirements based on their desired yield goal (Ribaudo et al. 2011).  

Intensive use of chemicals by farmers has serious environmental and economic effects (Lambert et 

al. 2006; Ribaudo et al. 2011). Nutrient and pesticide runoff is one of the leading causes of impaired quality 

of water supplies, including drinking water (Lambert et al. 2006). The cost of removing nitrate from 

drinking water in the United States is estimated to be more than $4.8 billion annually, and agricultural 

production accounts for about 35% of that cost (Ribaudo et al. 2011).  

Soil testing (e.g., soil N test, soil P test, and plant tissue test) and scouting have been shown to 

decrease the agricultural use of chemicals. Soil testing provides information about nutrient availability in 

the soil and enable farmers to apply fertilizer at rates which are closer to actual crop requirements. Scouting 

provides farmers with information about pest infestation, pesticide performance, and pest resistance, 

allowing farmers to adjust their pesticide application rates to be more consistent with an economic threshold 

population of pests (Miranowski, Ernst, and Cummings 1974). 4 Scouting may also decrease farmers’ 

perceived risk by reducing uncertainty regarding pest infestation and damage. Thus, scouting could 

decrease risk-averse farmers’ pesticide use by raising their economic threshold population (Feder 1979). 

For these reasons, we consider soil testing and scouting to be information technologies 

                                                           
3 Uncertainty refers to the environment in which economic decisions are made.  Risk means the economically relevant 

implications of uncertainty (Moschini & Hennessy 2001). 
4 Miranowski, Ernst, and Cummings (1974) define “economic threshold population” as the infestation level at which 

the economic cost of reduced crop sales is predicted to exceed the cost of applying corrective pesticide or taking some 

other pest control measures. Thus, farmers will apply pesticide when the pest infestation level is higher than the 

economic threshold population.  
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However, the effectiveness of soil testing and scouting in reducing farmers’ chemical use is an 

empirical question. The information generated by soil testing and scouting will reduce farmers’ chemical 

use only if farmers recognize that the information is useful in increasing their profits or utility (Miranowski, 

Ernst, and Cummings 1974). The usefulness of information technologies thus depends on the characteristics 

of individual farmers, such as knowledge about crop production technology (Lichtenberg 2002).  

Uncontrollable market and environmental conditions, such as crop price fluctuations and severe weather 

events, can also alter farmers’ chemical application practices (Babcock 1992). Finally, chemical application 

rates may also depend on a combination of information technologies and other conservation practices, rather 

than on information technologies alone (Wu and Babcock 1998).  

In our study, we analyze the effectiveness of information technologies by focusing on field-level 

fertilizer and pesticide use for corn production. Corn production is selected for three reasons. First, corn is 

the most chemical-intensive crop (Ribaudo et al. 2011; Fernandez-Cornejo et al. 2014). Second, corn 

growers are least likely to adopt more efficient fertilizer management practices (Ribaudo et al. 2011). Third, 

recent expansion of corn acreage in the U.S. due to ethanol production raises concerns about the negative 

externalities of agriculture production (Secchi and Babcock 2007; Langpap and Wu 2011; Hendricks, 

Smith, and Sumner 2014). Specifically, the increase in demand for corn would cause farmers to cultivate 

even marginal land for corn production and increase continuous corn production. Cultivating marginal land, 

which is prone to soil erosion, is likely to increase farmers’ fertilizer use and consequently the sediment 

load in the watershed (Secchi and Babcock 2007). Continuous corn production requires more chemical use, 

which could increase nutrient and pesticide loss to ground and surface water (Meehan et al. 2011; Sawyer 

2015).   

This study examines four research questions. First, what factors encourage farmers to use 

information technologies? Second, how do scouting and soil testing affect farmers’ chemical input 

management? Third, do the effects of information technologies on farmers’ input management differ 

between farmers using crop rotation and those engaged in continuous corn production? Fourth, how do the 
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effects of field management practices on chemical use depend on historical land use and information 

technology adoptions? To answer these questions empirically, we construct equations for farmers’ 

information technologies adoption and for their input use decisions, and estimate those equations by using 

nonlinear endogenous switching regression.  

The next section of the article reviews relevant literature. Section 3 shows our model specification 

and related assumptions. Section 4 explains the implications of the variables selected and how we 

constructed our field-level data. Section 5 describes our results, and section 6 discusses our conclusions and 

policy implications. Appendix includes tables regarding summary statistics and estimation results. 

Literature review 

Theoretically, the effectiveness of information technologies on chemical use is unclear, and this 

ambiguity emphasizes the need for empirical studies. Feder (1979) finds that information regarding the 

degree of infestation, the amount of pest damage, and the effectiveness of pesticides would reduce chemical 

application only if pesticides are themselves risk-reducing. Lichtenberg (2002) explores how information 

provision affects farmers’ chemical application rates and application efficiency. He finds that the influence 

of information technologies on farmers’ chemical management is not deterministic, and the effect of 

information technologies depends on the specific relationships among production technology, chemical 

input, and production uncertainty. These studies use variance as the measure of risk; however, if we define 

risk reduction more generally, such as second order stochastic dominance, it is difficult to predict how 

reducing risk would affect farmers’ chemical input use without distributional assumptions regarding 

uncertainty (Moschini and Hennessy 2001). 

Empirically, the literature on soil testing suggests that it does decrease farmers’ fertilizer use, but 

its effectiveness depends on other factors (Babcock and Blackmer 1992; Fuglie and Bosch 1995; Wu and 

Babcock 1998; Khanna 2001; Ribaudo et al. 2011). Fuglie and Bosch (1995) find that soil N testing is more 

effective in reducing nitrogen use when farmers have greater uncertainty about available nitrogen in the 

soil. Wu and Babcock (1998) show that soil testing reduces nitrogen use when it is used in combination 
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with conservation tillage and crop rotation. Khanna (2001) analyzes the effects of soil testing and 

application technique on the productivity of nitrogen. Her results show that gains in nitrogen productivity 

from soil testing differ from one farmer to another. However, except for Ribaudo et al. (2011), all of these 

results are difficult to generalize because of their limited study area and untreated missing data.5 Also, only 

Wu and Babcock (1998) deal with endogeneity problems regarding other conservation practices. Lastly, 

most of previous literature does not take into account nonnegative chemical use even though farmers’ 

chemical use is always greater than zero. 

Scouting has been studied as a factor in Integrated Pest Management (IPM), but few empirical 

studies have examined its effects on pesticide management in isolation. Carlson (1970) and Miranowski, 

Ernst, and Cummings (1974) construct simulation models which predict that scouting could reduce 

insecticide use. Mishra, Nimon, and El-Osta (2005) find positive effects of scouting on pesticide 

expenditure. Yee and Ferguson (1996) find scouting of cotton fields actually increases the number of 

pesticide treatments.  

Insufficient empirical evidences for the usefulness of information technologies may be an obstacle 

in designing more effective chemical management. To improve the efficiency of chemical management 

policies, policy makers should understand the factors influencing individual farmers’ responses. Our 

empirical study contributes to filling this gap. First, our results are based on extensive field-level data 

covering the 16 major corn-producing states. Second, by using weights in field-level data, our results can 

be generalized in a statistically reliable manner. Third, in order to control for endogenous conservation 

practices and guarantee nonnegative chemical use, we use exponential function and nonlinear endogenous 

switching regression models for estimation (Terza 2009; Wooldridge 2014). Thus, our model is more 

adequate in reflecting farmers’ chemical use than models in previous literature. Fourth, by identifying 

                                                           
5 Fuglie and Bosch (1995) and Wu and Babcock (1998) study only farmers in Nebraska, and Khanna (2001) look only 

at Iowa, Illinois, Indiana, and Wisconsin. Khanna (2001) employed survey data, but simply dropped missing 

observations based on an assumption of missing at random.   
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factors influencing individual farmers’ chemical use and adoptions of the technologies, the results can serve 

as an important source of information for policy makers. 

Empirical Model 

To evaluate the impact of information technologies and crop rotation on farmers’ input 

management, we employ nonlinear regression with endogenous switching (Terza 2009). This technique is 

chosen for two reasons. First, the extent to which adopters of information technologies would use fertilizers 

and pesticide without adopting these technologies cannot be observed. Second, farmers’ input management 

decisions are voluntary. This may result in a correlation between farmers’ decisions regarding adoptions of 

information technologies and their input use – for example, more risk-averse farmers may have a higher 

demand for both accurate information from the technologies and risk-reducing inputs.  

Our model consists of equations for farmers’ information technology adoption, crop rotation use, 

and chemical use. First, consider farmer i can choose from four management plans consisting of two 

practices: crop rotation and the use of information technologies.  Let U1,i represent his expected utility from 

adopting information technology, and  U0,i  represent his expected utility from staying with traditional 

management. The farmer should adopt the technology if Ut,i
∗ = U1,i − U0,i > 0. Likewise, farmer i knows 

his expected utility from using crop rotation (U2,i) and his expected utility from continuous corn production 

(U3,i), and he uses crop rotation if Ur,i
∗ = U2,i − U3,i > 0 .  Let 𝐼𝑗,𝑖 be an index representing the farmer’s 

decisions regarding practice j for 𝑗 ∈ {crop rotation, information technology} , then the farmer’s 

observable choice among four management plans can be represented by 

𝐼𝑡,𝑖 = 1 𝑎𝑛𝑑 𝐼𝑟,𝑖 = 1, 𝑖𝑓 𝑈𝑡,𝑖
∗ > 0, 𝑈𝑟,𝑖

∗ > 0; 

𝐼𝑡,𝑖 = 1 𝑎𝑛𝑑 𝐼𝑟,𝑖 = 0, 𝑖𝑓 𝑈𝑡,𝑖
∗ > 0, 𝑈𝑟,𝑖

∗ < 0;  

𝐼𝑡,𝑖 = 0 𝑎𝑛𝑑 𝐼𝑟,𝑖 = 1, 𝑖𝑓 𝑈𝑡,𝑖
∗ < 0, 𝑈𝑟,𝑖

∗ > 0;  

𝐼𝑡,𝑖 = 0 𝑎𝑛𝑑 𝐼𝑟,𝑖 = 0, 𝑖𝑓 𝑈𝑡,𝑖
∗ < 0, 𝑈𝑟,𝑖

∗ < 0;  
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For estimation, we specify Ut,i
∗  and Ur,i

∗  as linear functions of observed explanatory variables 

(Zt,i, Zr,i) :  

* ' * '

, , , ,, ,
;

t i t i r i r i rt t i r i
U Z U Z          (1) 

where γ is a vector of parameters, and εt,i and εr,i are error terms and follow standard bivariate normal 

distribution.  

Second, incorporating information technologies and crop rotation has an effect on farmers’ 

chemical management. Let Y = f(X) represent the relationship between farmers’ input demand and a vector 

of explanatory variables. A farmer’s input use based on decisions regarding adoption of the technologies 

and crop rotation would be specified as 
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where Y.,i is the input demand depending on farmer i’s decisions to use information technology and crop 

rotation. The exponential function is used to model the expected value of nonnegative dependent variable 

directly. Equation (3) represents the expected value of a farmer’s input use conditional on adoption status.  
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  (3) 

If Equation (1) and Equation (2) are correlated, nonlinear least square (NLS) estimates of coefficients in 

Equation (2) should be biased because the last terms in Equation (3) are not one. To correct for this sample 

selection bias, we assume that (εt,i, εr,i, ε1,i, ε2,i, ε3,i, ε4,i) follows multivariate normal distribution with mean 

of zero and the following covariance matrix:  
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where  𝑉𝑎𝑟(εm,i) = 𝜎𝑚
2 , 𝐶𝑜𝑣(εm,i, εn,i) = 𝜎𝑚
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where Φ2 is a cumulative density function of the standard bivariate normal distribution (see Appendix). As 

a result, the following equations are estimated separately: 
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where ξ𝑚,𝑖 = Y𝑚,𝑖 − 𝐸(Y𝑚,𝑖) for ∀ 𝑚 ∈ (𝑡𝑟, 𝑡𝑜, 𝑟𝑜, 𝑜𝑜) . 
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The above approach can be used to examine the effects of information technologies on farmers’ 

chemical input application. We separately calculate the effects of information technologies on famers using 

crop rotation and farmers growing corn continuously. To be specific, for a farmer with characteristics (X, 

Z), we calculate the effects of information technology adoption on chemical use of crop rotation users as 

the difference between two equations in Equation (7).   
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Also, the effects of information technologies on chemical use of farmers growing corn continuously can be 

calculated by the difference between two equations in Equation (8). 
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Estimation 

Terza (2009) and Wooldridge (2010, pp 724~748; 2014) suggest a two-step method to estimate a 

nonlinear endogenous switching regression model. The first step is to estimate Equation (1) by using a 

bivariate probit model to get consistent estimates of 𝛾𝑡, 𝛾𝑟, and 𝜌. Second, we use Poisson quasi-maximum 

likelihood estimator (QMLE) to estimate Equation (6). The advantage of Poisson QMLE is that consistency 

of the estimator does not depend on the distributional assumption when conditional expectations in 

Equation (5) and the probit model regarding technology adoption and crop rotation are correctly specified 

(Wooldridge 2010, pp 724~748). 

Two issues must be addressed in the above estimations: potential endogenous variables and 

inconsistent variance estimates. First, some explanatory variables related to farm management practices in 
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Equation (2) could be endogenous, such as crop insurance, conservation tillage, and genetically modified 

(GM) seeds adoption. To address these endogenous variables, we use the control function approach as 

specified in Terza, Basu, and Rathouz (2008) and Wooldridge (2014). This method assumes that proposed 

control functions act as a kind of sufficient statistic for capturing endogeneity (Wooldridge 2014). Thus, by 

inserting control functions in the second stage estimation, we alleviate the endogeneity problem.  

Wooldridge (2014) suggests using generalized errors as control functions. To be specific, when the 

endogenous variable (y2) is discrete, we assume that y2 follows a probit model and the control function is 

e2 = y2𝜆(𝑍𝛿) − (1 − y2)𝜆(−Z𝛿) where 𝑍 is the vector of explanatory variable for y2 , 𝛿 is a vector of 

parameters, and λ(. ) is the inverse Mills ratio. To apply control function, we have to impose at least one 

exclusion restriction on 𝑍. That is, in addition to X, Z has to include at least one variable which is not 

included in X and satisfies properties of instrument variables (IV) (Terza, Basu, and Rathouz 2008; 

Wooldridge 2014). 6  Lastly, based on the coefficients of generalized errors, we do a simple test of 

endogeneity.  

The second issue is that variance estimates from the two-step method are not consistent because it 

does not take into account the variation of first-step estimates. We also have to account for the sampling 

design of our field-level data. To correct for standard errors, we apply design-based variance estimation. 

That is, based on probability weights, we generate 1,000 random bootstrap samples, and then estimate 

Equation (6) 1,000 times (Goodwin & Mishra 2005).7 The USDA provides replicate weights for Delete-a-

Group Jackknife estimators. However, the number of replicate weights have been changed from 15 to 30 

after 2008. Also, Goodwin, Mishra, and Ortalo-Magné (2003) suggest that a jackknife procedure may not 

be valid when only a subset of the data are used.   

                                                           
6 We apply this restriction only when we estimate equations regarding adoptions of technologies and crop rotation for 

the two-step procedures. However, when we estimate results in Table 3, 4, and 5, we exclude unreasonable variables 

in X. For example, we exclude total GDD, HDD, and precipitation during the growing season when we analyze 

adoptions of crop rotation because crop rotation is determined before planting.  
7 The crucial assumption of this approach is that the sampling scheme of the data and population of samples are 

constant from 2001 to 2010.  
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Data and Model Specification 

The data for this study come from the USDA’s Agricultural Resource Management Survey (ARMS) 

Phase II and Phase III in 2001, 2005 and 2010. The ARMS Phase II data contain field-level information on 

production practices. The ARMS Phase III data include financial information related to farm operation and 

socioeconomic characteristics of farmers. The ARMS data have two useful attributes. First, we can link 

production practices of farmers and their individual characteristics by merging the ARMS Phase II and 

Phase III data. Second, the ARMS data include the weights accounting for sampling design. Our results and 

inferences can thus be generalized in a statistically reliable manner by using these weights (Dubman 2000).   

We select 3,180 fields for corn grain and corn silage harvested in 16 states in 2001, 2005, and 

2010.8 We exclude fields for organic corn and fields operated by the retired farmers, and only include fields 

operated by mainstream farms (Goodwin and Mishra 2005).  Table 1 and 2 show the summary statics of 

variables and their definitions. About 70% of farmers adopted scouting or crop rotation, but only 27% were 

using soil testing for nitrogen application. In the case of chemical application, more than 72% of farmers 

applied nitrogen or herbicide for corn production. Only about 17% of farmers applied insecticide for corn 

production, and the quantity of insecticide applied and its variation are smaller than herbicide and nitrogen 

application rates.   

Adopting Information Technologies and Crop Rotation 

We assume that adopting information technologies and crop rotation depends on farm or farmer 

characteristics, management practices, input and output prices, and environmental conditions. Corn fields 

are defined as being in crop rotation if corn was not planted on the fields during the previous season.  

Characteristics of operators or their farms include years of farming experience and education levels, 

field ownership, and farm size. Years of farming experience, education levels are used as proxies of 

available human capital (Khanna 2001). Education levels have been proven to have a positive effect on 

                                                           
8 The states included in this study are Colorado, Illinois, Iowa, Indiana, Kansas, Kentucky, Michigan, Minnesota, 

Missouri, Nebraska, North Dakota, Ohio, Pennsylvania, South Dakota, Texas, and Wisconsin. 
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adoption of information technologies (Fuglie and Bosch 1995; Yee and Ferguson 1996; Wu and Babcock 

1998). In this paper, we add a dummy variable having a value of one when the farmer graduated from 

college. However, the effect of years of farming experience on adoption of new technologies and practices 

will vary among farmers and technologies. To be specific, as farmers’ experience accumulates, they have 

more knowledge and information about current management practices. More experience may make risk-

averse farmers reluctant to adopt new practices and technologies. On the other hand, accumulated 

knowledge about a given field could reduce uncertainty regarding the adoption of unfamiliar practices or 

technologies. Farm size would have positive effects on adoption of information technologies since large 

farms are able to spread both the cost and the risk of adopting the technologies across more acreage (Gould, 

Saupe, and Klemme 1989; Wu and Babcock 1998). We use total acreage as the measure of farm size. Lastly, 

farmers may have more incentives to adopt information technologies for their rented fields because they 

will have less information about the fields such as historical land use and pest infestation levels than the 

landowner (Wu and Babcock 1998). We include a dummy with a value one for rented fields.  

Second, irrigation status, manure use (tied to animal production), and fall application of nitrogen 

are included as variables that represent specific management practices, and we expect that they have 

positive effects on adoption of information technologies. The potential payoffs of information technologies 

would be greater for irrigated farms because such farms use chemical inputs more intensively. In addition, 

only high yields of irrigated fields may be able to support the cost of adopting information technologies. 

Irrigation would also motivate farmers to use continuous corn production because irrigation would make 

continuous corn production more profitable than crop rotation (Wu and Babcock 1999).9 We include 

dummy variables for manure use and nitrogen application during the previous fall in equations for soil 

testing and crop rotation. Since manure use and fall application of nitrogen would increase a farmer’s 

uncertainty about the availability of nitrogen in the soil, farmers who use manure or apply nitrogen during 

                                                           
9 Irrigated corn yield is higher than dryland corn yield, and irrigation could compensate for the corn yield-loss resulting 

from continuous corn production. However, if we consider the risk of production such as pesticide resistance and soil 

erosion, continuous, corn production would be less profitable than crop rotation in the long term.  
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the fall are more likely to adopt soil testing during the spring. In addition, if manure application is related 

to farms’ livestock production, manure use would be positively correlated with continuous corn production 

because livestock production increases on-farm demand for corn as livestock feed.  

Third, state-level relative prices of corn to soybeans and multistate-level nitrogen prices are 

included to control for market conditions. Chicago Board of Trade (CBOT) futures prices are used for corn 

and soybeans, and these prices are adjusted to take into account regional differences in farm-gate prices 

(Barr et al. 2011). A high relative price of corn to soybeans would give farmers an incentive to grow more 

corn. Nitrogen prices would be negatively correlated with continuous corn production.10 Also, high prices 

for nitrogen would motivate farmers to use soil testing so as to apply nitrogen more efficiently.  

Chemical use11 

We include farmers’ management practices as control variables for their chemical use: conservation 

tillage, manure use, irrigation, chemical application timing, and GM corn adoption.12 First, conservation 

tillage systems are likely to reduce fertilizer use and soil erosion by increasing soil quality (Lambert et al. 

2006). However, the relationship between conservation tillage and pesticide use is an empirical question 

because it depends on the conservation tillage system employed and given environmental conditions such 

as soil type and pest infestation levels during the previous years (Fernandez-Cornejo et al. 2012).  Second, 

since manure is an important source of nitrogen, using manure would reduce commercial fertilizer 

application rates. Third, since irrigated fields are more productive than non-irrigated fields, irrigated farms 

would have more incentive to apply more chemical to maximize corn yields than non-irrigated farms 

                                                           
10 The comparative advantage of using information technologies would depend on its cost and the price of the chemical 

in question. When applying more nutrients and pesticides is cheaper than using information technologies, farmers are 

unlikely to adopt information technologies. However, many of the observations in the ARMS data reported zero cost 

or did not report the cost of adopting information technologies. Indirectly, nitrogen prices would be one way to control 

for economic returns of soil testing. However, equations for pesticide usage do not take into account market conditions, 

which is one of the limitations of this study.  
11 We use the sum of quantities of active ingredients in pesticides. However, the sum of active ingredients may not 

be appropriate since it does not take into account heterogeneity among active ingredients (Fernandez-Cornejo and 

Jans 1995).    
12 In this study, variables for manure use and application timing are used only in equations for fertilizer use, and 

variables for GM seeds are used only for pesticide use. Conservation tillage includes mulch-till, ridge-till, and no-till 

practices.  
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generally. Lastly, farmers applying nitrogen in the fall would apply more nitrogen in order to compensate 

for nitrogen loss during the winter.  

The adoption of biotechnologies has serious implications for farmers’ pesticide use. 13 Herbicide 

tolerant (HT) corn encourages farmers to use more glyphosate, which is less toxic but more efficient than 

traditional herbicides such as Atrazine (Fernandez-Cornejo et al. 2014). Insect resistant (Bt) corn seeds are 

a substitute for insecticides because they contain a gene producing a protein toxic to targeted insects such 

as corn rootworm and the European corn borer.  

As government policies, we include federal crop insurance to measure the effects of income 

stabilizing policies on field-level chemical input use. We use a dummy having one if a corn field was 

covered by federal crop insurance. The moral hazard effects of crop insurance on farmers’ chemical use are 

controversial. At the field level, reducing production risk may encourage farmers to use a lower amount of 

risk-reducing inputs in their corn fields, even though they increase the acreage allocated to corn. However, 

if banks offer more attractive loans to insured farmers (e.g., lower interest rates), farmer may choose to 

invest more money in chemical inputs to achieve the maximum corn yield (Weber, Nigel, and O’Donoghue 

2015).  

Environmental Variables 

We include the number of heavy rainfalls during the early spring, from March to May, in the equation for 

farmer decisions regarding crop rotation, soil testing adoptions, and nitrogen use. Since high soil moisture 

hinders corn root development, farmers would be reluctant to grow corn when soil moisture in their fields 

is high. The number of heavy rainfalls during the early spring is also used to control for the nitrogen loss 

caused by rainfalls before planting or during the planting season.14 The total growing degree days (GDD) 

                                                           
13 In the category of GM seeds, we include HT corn seeds and Bt corn seeds. However, this classification does not 

account for the effects of GM corn stacked traits such as Bt and HT and GM corn stacked Bt traits, and may make the 

effect of GM seeds on farmers’ pesticide use statistically insignificant by aggregating or averaging the various effects 

of GM seeds. 
14 The number of heavy rainfalls means the number of rainy days with totals above 25.4 mm (Grossman, Knight, and 

Karl 2012) 
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and total precipitation during the growing season are included to take into account weather effects on crop 

choices, information technologies adoptions, and chemical use (Snyder 1985). Since farmers decide crop 

rotation before planting, we include the average values of total GDD and precipitation during the growing 

season over previous 20 years as farmers’ expected weather conditions during the growing season. The 

daily Parameter-elevation Regression on Independent Slope Model (PRISM) data are used for weather 

variables.  For soil quality and land characteristics, we include the county-level National Commodity Crop 

Productivity Index (NCCPI) – Corn and soybeans in all equations to control for time-invariant soil 

productivity.  Soil variables are based on the Soil Survey Geographic database (SSURGO). 

Endogenous Variables 

Among the explanatory variables in equations for chemical application, we assume that 

conservation tillage, GM seed adoptions and crop insurance purchases are endogenous (Wu and Babcock 

1998; Fernandez-Cornejo and Wechsler 2012; Fernandez-Cornejo et al. 2012). Farmers’ choices of GM 

seeds and tillage systems would be correlated with input use because of their chemical management skills 

and uncontrolled variables such as historical pest infestation levels. To control for these unobserved factors 

in adopting GM seeds, we use the multi-state GM seed prices as instrument variables of GM seeds. To be 

specific, we calculate the average values of ratios between field-level total cost per unit of purchased GM 

seeds and that of conventional corn varieties over multiple states.15  

Conservation tillage systems are considered as an adaptation strategy for abnormally dry conditions 

because it increases soil moisture (Ding, Schoengold, and Tadesse 2009). We use dry weather conditions, 

available water capacity (AWS), and depth to water table, saturated hydraulic conductivity (Ksat) as the 

                                                           
15 Since, in our data set, few observations have information about the cost of Bt corn resistant to corn rootworm, we 

use total cost of GM Bt variety for insect resistance to the European corn borer (Bt-ECB) and GM herbicide resistant 

seed variety. Also, we separate the 16 states into four regions based on USDA farm production regions. Region 1 

(Corn Belt) is Iowa, Illinois, Indiana, Missouri, and Ohio. Region 2 (lake states) is Michigan, Minnesota, and 

Wisconsin. Region 3 (Northern Plain areas) is Colorado, Kansas, Nebraska, North Dakota, and South Dakota. Region 

4 is Kentucky, Pennsylvania, and Texas.    
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IVs for adoption of conservation tillage. As a measure of dry weather conditions, we construct the drought 

index based on Yu and Babcock (2010).   

  In addition, we use off-farm work hours per week of an operator and his or her spouse as the IV 

for adoption of conservation tillage systems and GM seeds. Since conservation tillage systems and GM 

seeds could lower labor requirements for chemical management, a high degree of commitment to off-farm 

work would increase farmers’ incentive to adopt conservation tillage systems and GM seeds (Gould, Saupe, 

and Klemme 1989).  

Crop insurance demand would be affected by farmers’ attitude toward the risk and asymmetric 

information (Just, Calvin, and Quiggin 1999). More risk-averse farmers are likely to choose higher coverage, 

and their attitude toward risk would be one factor affecting input use. As IVs for corn insurance, we use 

farm debt (Ifft, Kuethe, Morehart 2015). To be specific, farms having a higher debt are more likely to be 

subject to borrower-imposed insurance purchases.  

Results 

Decisions on adoption of information technologies and crop rotation  

Table 3, 4, and 5 include the results regarding farmers’ decisions on adoption of information 

technologies and crop rotation. To begin with, the results show that field characteristics have significant 

effects on farmers’ cropping patterns and adoption of information technologies. From the results, we know 

that farmers are more likely to be used for information technologies when their fields are irrigated, due to 

the fact that irrigated fields reap a higher potential payoff from information technologies than non-irrigated 

fields by using chemical more efficiently. In addition, the results show that irrigation has positive effect on 

crop rotation, supporting our hypothesis that continuous corn production is more profitable for irrigated 

fields than crop rotation.  

The results regarding soil testing and pest scouting imply that farmers’ knowledge or ability 

regarding chemical management have a significant effect on adoption of information technologies. To be 

specific, education levels and years of farming experience, proxy variables for human capital of farmers, 
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have opposite effects on adoption of information technologies: farmers who graduated from college are 

more likely to adopt information technologies, as we hypothesized in previous section. However, as the 

number of years a farmer has operated the field increases, the likelihood of adopting information 

technologies decreases. This may reflect the fact that farmers do not want to change their practices and 

adopt new technologies as they become more familiar with current or conventional practices. 

The results indicate that farmers are more likely to adopt pest scouting and crop rotation for their 

rented fields, but the effects of field ownership on facilitating weed scouting are insignificant. As we 

hypothesized, lack of information regarding pests, such as the history of pest infestation and the emergence 

of pest resistance in rented fields, makes farmers more likely to adopt insect scouting and crop rotation. In 

addition, from the results, we know that only farmers’ decisions on insect scouting adoption is significantly 

affected by their farm size.  

 Adopting crop rotation is significantly affected by corn prices. The result shows that, as the relative 

price of corn increases, the likelihood of crop rotation decreases significantly. Also, the large effects of 

output prices would show that farmers’ responses to output prices are much responsive. 16  However, 

increases in nitrogen price do not have significant effects on the likelihood of crop rotation.17  

Lastly, the results indicate that farmers are more likely to produce corn continuously when they 

produce corn silage. If farmers grow corn silage for their livestock, they have the higher likelihood of using 

continuous corn production to meet their feed requirements.  

Decision on chemical application 

                                                           
16 This result coincides with the findings in Hendricks, Smith, and Sumner (2014). They estimate farmers’ short-term 

and long-term acreage elasticity to corn price. They find that the short-term acreage elasticity to corn price is larger 

than the long-term acreage elasticity to corn price  
17 There are two possible reasons for this unexpected result. First, the price of nitrogen has a smaller effect on farmers’ 

annual return than corn prices. Thus, if corn prices and nitrogen prices move in opposite directions simultaneously, 

farmers would choose continuous corn production even though nitrogen prices drop. Second, nitrogen prices would 

be endogenous (Hendricks, Smith, and Sumner 2014) – that is, for major corn producing states, the price of fertilizer 

would increase as acres allocated to corn increase.  
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Table 6 shows the results regarding farmers’ nitrogen application based on soil testing adoption 

and previous field use. To begin with, the results regarding the timing of nitrogen application and manure 

use support our hypothesis in the previous section, but the significance of these variables depends on 

farmers’ previous land use and adoption of soil testing. To be specific, the results show that manure 

applications reduce nitrogen applications, except for farmers using soil testing and growing corn 

continuously. In addition, nitrogen application during the previous fall increases nitrogen application rates 

of farmers who did not use soil testing by 13~15%, but the effects of fall nitrogen applications are not 

significant for soil testing adopters. This result would show that soil testing result in similar nitrogen 

application rates regardless of the timing of nitrogen applications by providing farmers with more accurate 

information about soil nutrient conditions. In addition, the results show that irrigation increases nitrogen 

application rates by 44%~83%. The explanation for this is straightforward since the marginal productivity 

of nitrogen use are larger for irrigated farmers than non-irrigated farmers.  

The results regarding pesticide application are given in Table 7 and 8. As shown, fewer explanatory 

variables are statistically significant compared to results regarding nitrogen applications. First, the effects 

of management practices are worth noting. The use of herbicide tolerant GM seeds has positive effects on 

the rate of herbicide application by weed scouting adopters. The results show that the use of herbicide 

tolerant GM seeds increases the herbicide use of weed scouting adopters by 38 to 128%, reflecting the fact 

that herbicide tolerant GM seeds induce farmers to use more glyphosate.  

In the case of weather conditions, the results show that total GDD and precipitation during the 

growing seasons have positive effects on herbicide use generally. These results may be due to the fact that 

good weather conditions such as enough GDD and precipitation also positively affect weed infestation 

levels.   

Also, the effects of crop insurance on farmers’ chemical application rates are insignificant for most 

groups. These results show that the intensive margin effects of crop insurance on farmers’ chemical use are 
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ignorable, and that crop insurance would alter farmers’ chemical use by changing farmers’ land allocation 

(Wu 1999; Mishra, Nimon, and El-Osta 2005).   

Lastly, in Table 6-8, there is evidence that self-selection occurred in the adoption of information 

technologies and crop rotation. To be specific, the coefficients of  𝜎𝑟𝑜
𝑟  are significant at 1% level in all 

equations for chemical use. Also, 𝜎𝑟𝑜
𝑡  and 𝜎𝑡𝑟

𝑡  are significant in equations for nitrogen use and herbicide 

use. These results suggest that, prior to adopting crop rotation or weed scouting, chemical use of farmers 

who adopt these practices are different from chemical use of non-adopters on average. 

Table 9 shows the effects of information technologies based on farmers’ historical land use. The 

results show that only soil testing has a statistically significant effect on farmers’ chemical use.18 Farmers 

who grow corn after another crop and adopt soil testing use less nitrogen than farmers who use crop rotation 

but do not adopt soil testing by about 8 lb/acre, or about 7% of average nitrogen use (see Table 1).  However, 

soil testing has no effect on the rate of nitrogen application by farmers who grew corn continuously. One 

explanation for this result is that the available carryover soil nutrient after growing soybeans or another 

crop would be more uncertain than that in the soil after growing corn continuously (Fuglie and Bosch 1995; 

Wu and Babcock 1999). Thus, soil testing may decrease farmers’ nitrogen application by reducing this 

uncertainty and related risks.  

Conclusions 

Information technologies can reduce production uncertainty resulting from lack of information 

about farms’ pest management and decrease farmers’ chemical application rates. However, although 

measuring the effectiveness of information technologies is an empirical problem, few studies have analyzed 

the effects of information technologies on farmers’ chemical management. In our study, we investigate the 

effectiveness of soil testing and pest scouting by focusing on field-level chemical use for corn production. 

First, we find that information technologies adoption depends on the benefit and cost of adopting new 

                                                           
18 In the case of insecticide and herbicide, the effects of insect scouting are extremely low and have extremely large 

variance. These unexpected results may stem from the large proportion of farmers who did not apply insecticides.  
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technology. For example, rented fields (which have larger production uncertainty than own fields), and 

irrigated fields (which have a higher potential payoff of adopting the technologies) higher likelihood of 

adopting information technologies. The factors which reduce time cost of adopting technologies (such as 

farmers’ human capital) are positively correlated with the adoption of information technologies.  

Second, after controlling for bias resulting from unobserved heterogeneity of fields or operators 

and the non-negativity of farmers’ chemical use, we find that the effects of information technologies depend 

on historical land use. Farmers who adopt soil testing and crop rotation apply less nitrogen than farmers 

who use crop rotation but do not adopt soil testing by about 8 lb/acre. However, soil testing has no effects 

on nitrogen use of farmers who grow corn continuously, and the effects of pest scouting on pesticide use 

are insignificant. 

Third, the effects of farmers’ field management practices on their chemical use depend on 

information technology adoption. The results show that fall nitrogen application increases nitrogen use of 

farmers who do not adopt soil testing. Also, HT corn seeds have positive effects only on weed scouting 

adopters. However, the results also show that the effects of irrigation and manure use are robust to 

information technologies adoption and historical land use.  

This study also has several limitations. First, we do not control for heterogeneous features of active 

ingredients in pesticide. For future study, by using quality-adjusted pesticide quantities as our dependent 

variables, we may overcome this limitation (Fernandez-Cornejo and Jans, 1995). Second, the poor estimates 

regarding insecticide use would show that unobserved variables such as farmers’ yield goal, pest infestation 

levels, field-level soil conditions, and pest resistance would be more important to explain insecticide use. 

Third, we do not control for the effects of the cost of scouting and the effects of GM corns stacked traits. 
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Appendix 

For any 𝑚 ∈ (𝑡𝑟, 𝑡𝑜, 𝑟𝑜, 𝑜𝑜), we know that 
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Based on this, we can calculate 𝐸(exp (𝜖𝑚,𝑖)|𝜖𝑡,𝑖, 𝜖𝑟,𝑖) as  
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For simplicity, let’s assume 𝑚 = 𝑡𝑟,  The expected value of 𝑦𝑡𝑟,𝑖 becomes  
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As a result, the final equation for the expected value of 𝑦𝑡𝑟,𝑖 is as follows:  
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Table 1. Summary statics: Dependent variables, prices, policies, and farm characteristics 

Variable Mean 
Standard 

deviation 
Definition 

Chemical use 

Nlb 113.88 75.32 Nitrogen application rate (lb/acre) 

Aiqty_her 1.82 1.43 Herbicide application rate (lb AI/acre)1 

Aiqty_ins 0.08 0.32 Insecticide application rate (lb AI /acre) 

Technology and crop rotation selection 

Soil_n_test 0.27 0.49 Soil testing adopted in field (1=yes, 0=no) 

Scout_w 0.72 0.45 Scouting for weed adopted in field (1=yes, 0=no) 

Scout_ins 0.68 0.47 Scouting for insect adopted in field (1=yes, 0=no) 

Rotation 0.73 0.44 Corn alternated with other crops 

Prices and farmer characteristics 

𝑃𝑐𝑜𝑟𝑛 0.44 0.04 Corn price/soybean price 

𝑃𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 0.39 0.06 Nitrogen price ($/lb) 

𝑃𝐻𝑇 1.20 0.07 
Total cost of HT corn seeds/ total cost of conventional 

seeds ($/approximately 80,000 Kernel Bag) 

𝑃𝐵𝑡 1.34 0.16 
Total cost of Bt corn seeds/ total cost of conventional 

seeds ($/approximately 80,000 Kernel Bag) 

Off-work 382.48 798.6 Off-work hours per year (operator and operators' spouse) 

Debt 311.30 634.66 Farm debt (1,000$) 

Tenure 28.30 12.69 Number of  years farmer has operated the field  

Legal 0.77 0.42 Sole or family farm (1=yes, 0=no) 

College 0.21 0.41 Farm operator graduated college  (1=yes, 0=no) 

Ownership     0.55 0.50 Field owned by farm operator (1=yes, 0=no) 

Total_land 1348.69 2059.19 Total land operated during the survey year (1,000 acres) 

Public programs 

Insurance 0.71 0.46 Fields covered by federal crop insurance (1=yes, 0=no) 
Note: 1. We use the sum of active ingredients in herbicides and insecticides as dependent variables for pesticide use. 
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Table 2. Summary statistics: Practices and environmental variables 

Variable Mean 
Standard 

deviation 
Definition 

Practices 

Tillage 0.46 0.50 Conservation tillage adopted in field (1=yes, 0=no) 

Manure 0.29 0.45 Manure applied in field (1=yes, 0=no) 

Irrigation 0.10 0.29 Field irrigated (1=yes, 0=no) 

GMHT 0.29 0.45 Herbicide tolerant GM seeds used (1=yes, 0=no) 

GMBt 0.39 0.49 Insect resistant GM seeds used (1=yes, 0=no) 

Fall_app 0.22 0.41 Nitrogen applied during the previous fall (1=yes, 0=no) 

Silage 0.14 0.35 Field used for silage production (1=yes, 0=no) 

Environmental conditions 

NCCPI 0.48 0.21 NCCPI-Corn and Soybeans 

AWS 0.09 0.05 Hydraulic conductivity (m/second) 

Ksat 6.10 8.16 Available water capacity (in./in.) 

Depth 29.43 21.42 Depth to water table (cm) 

GDD 1958.72 319.87 Growing degree days during growing seasons 

Precipitation 524.76 180.59 Total precipitation days during growing seasons 

H_rain_early 0.83 0.96 Number of heavy rainfalls during March and May 

Ave_GDD 1902.58 274.08 Average of GDD over previous 20 years 

Ave_Pre 461.10 81.04 Average of Total precipitation over previous 20 years 

Drought 0.33 0.11 Average values of drought index in Yu and Babcock (2010) 

Number of observations 3180 
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Table 3. Estimates regarding soil testing and crop rotation 

  

  

Soil testing Crop rotation 

Estimates (S.E) Estimates (S.E) 

𝑃𝑐𝑜𝑟𝑛 -3.798 (1.438)*** -7.189 (1.397)*** 

𝑃𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 1.532 (0.549)*** -0.149 (0.548) 

Silage -0.084 (0.093) -0.452 (0.086)*** 

College 0.199 (0.066)*** 0.043 (0.071) 

Tenure  -0.004 (0.002)* 0.002 (0.002) 

Total_land 0.024 (0.018) -0.013 (0.020) 

Ownership 0.045 (0.056) -0.193 (0.053)*** 

Irrigation 1.028 (0.106)*** -0.895 (0.121)*** 

Fall_app 0.114 (0.067)* 0.186 (0.068)*** 

Manure -0.024 (0.077) -0.385 (0.066)*** 

NCCPI -0.305 (0.181)* 0.507 (0.184)*** 

H_rain_early -0.019 (0.032) -0.135 (0.033)*** 

GDD -0.000 (0.000) 0.001 (0.000)*** 

Precipitation -0.001 (0.001)** -0.000 (0.001) 

Constant 0.829 (0.650) 2.956 (0.693) *** 

ρ - 0.042 (0.043) 

Year dummies Yes Yes 

# of Convergence 1000 

# of Observations 3178 

Wald Statistic 383.99*** 

McFaddens’ Pseudo R-squared  0.115 
Note: a significant at 1% level. b significant at 5% level. c significant at 1% level. ( ) standard errors of estimates. 

Estimates and their standard errors are from about 1,100 bootstrap runs. For crop rotation, the average values of 

growing degree days (GDD) and total precipitation during the growing season over the previous 20 years.  
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Table 4. Estimates regarding weed scouting and crop rotation 

  

  

Insect scouting Crop rotation 

Estimates (S.E) Estimates (S.E) 

𝑃𝑐𝑜𝑟𝑛 -0.676 (1.395) -7.353 (1.403)*** 

Silage 0.034 (0.085) -0.457 (0.086)*** 

College 0.259 (0.072)*** 0.048 (0.071) 

Tenure  -0.008 (0.002)** 0.002 (0.002) 

Total_land 0.095 (0.059) -0.014 (0.020) 

Ownership -0.007 (0.055) -0.200 (0.053)*** 

Irrigation 0.422 (0.132)*** -0.897 (0.121)*** 

NCCPI 0.292 (0.164)* 0.477 (0.182)*** 

GDD 0.001 (0.000)*** 0.001 (0.000)*** 

Precipitation 0.000 (0.001) -0.001 (0.001) 

𝑃𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 -  -0.066 (0.547) 

Fall_app -  0.219 (0.069)*** 

Manure -  -0.369 (0.066)*** 

Heavy rainfall -  -0.133 (0.033)*** 

Constant -2.790 (0.871)*** 2.986 (0.684)*** 

ρ - -0.190 (0.037)*** 

Year dummies Yes Yes 

# of Convergence 1000 

# of Observations 3178 

Wald Statistics 507.48*** 

McFaddens’ Pseudo R-squared 0.102 
Note: a significant at 1% level. b significant at 5% level. c significant at 1% level. ( ) standard errors of estimates. 

Estimates and their standard errors are from about 1,100 bootstrap runs. For crop rotation, the average values of 

growing degree days (GDD), extreme heat degree days (HDD), and total precipitation during the growing season over 

the previous 20 years.  
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Table 5. Estimates regarding insect scouting and crop rotation 

  

  

Weed scouting Crop rotation 

Estimates (S.E) Estimates (S.E) 

𝑃𝑐𝑜𝑟𝑛 1.858 (1.430) -7.324 (1.405)*** 

Silage 0.119 (0.084) -0.455 (0.086)*** 

College 0.314 (0.078)*** 0.046 (0.071) 

Tenure  -0.005 (0.002)** 0.001 (0.002) 

Total_land 0.139 (0.030)*** -0.015 (0.020) 

Ownership -0.145 (0.054)*** -0.200 (0.053)*** 

Irrigation 0.655 (0.151)*** -0.895 (0.121)*** 

NCCPI 0.270 (0.165) 0.490 (0.182)*** 

GDD 0.000 (0.000)*** 0.001 (0.000)*** 

Precipitation 0.000 (0.001) -0.000 (0.001) 

𝑃𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 -  -0.071 (0.547) 

Fall_app -  0.209 (0.069)*** 

Manure -  -0.376 (0.066)*** 

Heavy rainfall -  -0.136 (0.033)*** 

Constant -2.291 (0.678)*** 2.990 (0.684)*** 

ρ - -0.156 (0.044)*** 

Year dummies Yes Yes 

# of Convergence 1000 

# of Observations 3178 

Wald Statistics 715.33*** 

McFaddens’ Pseudo R-squared 0.138 
Note: a significant at 1% level. b significant at 5% level. c significant at 1% level. ( ) standard errors of estimates. 

Estimates and their standard errors are from about 1,100 bootstrap runs. For crop rotation, the average values of 

growing degree days (GDD), extreme heat degree days (HDD), and total precipitation during the growing season over 

the previous 20 years.  
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Table 6. Estimates regarding nitrogen use 

 TR TO RO OO 

Insurance -0.642 (0.306)** -0.763 (0.549) 0.191 (0.167) -0.053 (0.348) 

Tillage -0.573 (0.327)* 1.049 (0.676) -0.253 (0.169) 0.767 (0.375)** 

𝑃𝑐𝑜𝑟𝑛 0.957 (2.527) -9.108 (3.708)*** 3.954 (1.298)*** -3.082 (2.237) 

𝑃𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 0.670 (1.045) 0.230 (1.238) -0.481 (0.635) -0.820 (0.530) 

Irrigation 0.442 (0.173)** 0.831 (0.308)*** 0.772 (0.136)*** 0.460 (0.191)** 

Silage -0.061 (0.187) 0.082 (0.252) -0.223 (0.095)** -0.223 (0.109)** 

Fall_app 0.075 (0.058) 0.189 (0.150) 0.134 (0.032)*** 0.123 (0.070)* 

Manure -0.515 (0.135)*** -0.103 (0.223) -0.169 (0.065)*** -0.630 (0.094)*** 

NCCPI 0.020 (0.158) 0.583 (0.358) -0.056 (0.112) 0.609 (0.203)*** 

H_rain_Early -0.005 (0.035) -0.076 (0.065) -0.011 (0.019) -0.012 (0.030) 

Constant 5.052 (1.131)*** 7.925 (1.834)*** 3.604 (0.595)*** 6.314 (1.130)*** 

𝑔𝑟𝑝𝑟𝑒𝑚𝑖𝑢𝑚 0.486 (0.179)*** 0.471 (0.332) -0.080 (0.096) 0.107 (0.184) 

𝑔𝑟𝑐𝑜𝑛𝑡𝑖𝑙𝑙  -0.179 (0.306) -0.654 (0.401) 0.176 (0.102)* -0.449 (0.228)** 

𝜎𝑚
𝑡  -0.088 (0.141) 0.100 (0.224) 0.302 (0.099)*** 0.299 (0.329) 

𝜎𝑚
𝑟  -0.411 (0.224)* -0.331 (0.315) -0.546 (0.132)*** 0.096 (0.137) 

Year dummies Yes  Yes  Yes  Yes 

# of observations 547  231  1768  632 

# of  convergence  951  951  951  947 

Wald Statistic 45.41***  38.66***  130.38***  130.62*** 

R-squared 0.151  0.202  0.258  0.266 

Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. ( ) standard errors of estimates. 

Estimates and their standard errors are from about 1,100 bootstrap runs. “TR” is farmers adopting soil testing and 

growing corn after other crops. “TO” is farmers who adopt soil testing but grow corn continuously. “RO” is farmers 

who grow corn after other crops but do not use soil testing. “OO” is farmers who grow corn continuously and do not 

adopt soil testing for corn production. 𝑔𝑟𝑥 is the generalize errors related to variable x, 𝜎𝑚
𝑡 , m ∈ (TR, TO, RO, OO) is 

the covariance between soil testing and nitrogen application, and 𝜎𝑚
𝑡  is the covariance between growing corn after 

other crops and nitrogen application. R-squared means the squared correlation coefficient between actual nitrogen 

application rates and predicted nitrogen application rates (Wooldridge 2010, pp 731~732). 
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Table 7. Estimates regarding herbicide use 

 TR TO RO OO 

GMHT 0.383 (0.232)* 1.280 (0.500)** -0.448 (0.617) -0.153 (0.898) 

Insurance 0.113 (0.229) 0.590 (0.341)* -1.256 (0.418)*** 0.441 (0.445) 

Tillage 0.144 (0.228) 0.313 (0.484) 0.174 (0.365) -0.951 (0.854) 

𝑃𝑐𝑜𝑟𝑛 3.275 (1.442)** 5.230 (2.017)*** 4.017 (2.567) 2.550 (4.140) 

Irrigation 0.002 (0.151) 0.167 (0.212) 0.255 (0.308) -0.171 (0.438) 

Silage 0.144 (0.117) 0.341 (0.144)** -0.059 (0.165) -0.390 (0.281) 

GDD 0.000 (0.000)*** 0.001 (0.000)*** 0.000 (0.000)** 0.001 (0.000)*** 

Precipitation 0.001 (0.000)** 0.001 (0.001) -0.001 (0.001) 0.003 (0.002)** 

NCCPI -0.263 (0.147)* -0.519 (0.247)** -0.023 (0.306) -0.193 (0.454) 

Constant -1.241 (0.825) -3.865 (1.027)*** 0.314 (1.388) -1.370 (2.298) 

𝑔𝑟𝐺𝑀_ℎ𝑖  -0.218 (0.140) -0.832 (0.306)*** 0.264 (0.380) 0.313 (0.526) 

𝑔𝑟𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 -0.046 (0.134) -0.261 (0.204) 0.829 (0.249)*** -0.300 (0.268) 

𝑔𝑟𝑐𝑜𝑛𝑡𝑖𝑙𝑙  -0.014 (0.139) -0.271 (0.289) -0.054 (0.228) 0.691 (0.521) 

𝜎𝑚
𝑡  -0.373 (0.167)** 0.503 (1.668) -0.331 (0.255) -0.036 (0.474) 

𝜎𝑚
𝑟  -0.314 (0.174)* -0.031 (0.198) -0.899 (0.236)*** 0.700 (0.413)* 

Year dummies Yes  Yes  Yes  Yes 

# of observations 1,643  628  671  234 

# of  convergence  1000  1000  1000  1000 

Wald Statistic 69.42***  49.11***  39.00***  54.49*** 

R-squared 0.116  0.025  0.149  0.197 

Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. ( ) standard errors of estimates. 

Estimates and their standard errors are from about 1,100 bootstrap runs. “TR” is farmers who adopt weed scouting 

and grow corn after other crops. “TO” is farmers who adopt weed scouting but grow corn continuously. “RO” is 

farmers who grow corn after other crops but do not use weed scouting. “OO” is farmers grow corn continuously and 

do not adopt weed scouting for corn production. 𝑔𝑟𝑥  is the generalize errors related to variable x, 𝜎𝑚
𝑡 , m ∈

(TR, TO, RO, OO)  is the covariance between weed scouting and herbicide application, and 𝜎𝑚
𝑡  is the covariance 

between corn growing after other crops and herbicide applications. R-squared means the squared correlation 

coefficient between actual herbicide application rates and predicted herbicide application rates (Wooldridge 2010, pp 

731~732). 
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<Table 8> Estimates regarding insecticide use 

 TR TO RO OO 

GMBt -1.567 (2.209) -2.881 (2.654) 1.422 (4.110) 7.946 (5.024) 

Premium 2.406 (1.151)** 2.200 (1.678) 2.263 (1.967) -1.170 (1.880) 

Tillage -2.573 (1.536)* 1.780 (1.865) -3.547 (2.023)* -0.713 (2.640) 

𝑃𝑐𝑜𝑟𝑛 20.376 (12.067)* -13.895 (10.812) 57.042 (18.344)*** 21.748 (15.479) 

Irrigation -0.235 (1.194) -1.163 (0.913) 1.149 (2.546) -0.081 (1.110) 

Silage -0.470 (1.064) -0.410 (0.548) 1.225 (0.756) 0.987 (0.705) 

GDD 0.002 (0.001)*** 0.001 (0.001) 0.001 (0.001) 0.001 (0.001) 

Precipitation -0.003 (0.002) -0.006 (0.003)** 0.005 (0.005) 0.002 (0.005) 

NCCPI 0.638 (1.074) 2.503 (1.248)** -2.039 (1.525) 1.631 (1.701) 

Constant -16.865 (6.222)*** 7.299 (6.378) -29.700 (8.972)*** -15.067 (8.410)* 

𝑔𝑟𝐺𝑀_𝑖𝑛𝑠 0.626 (1.353) 1.446 (1.652) -1.116 (2.416) -5.073 (2.937)* 

𝑔𝑟𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 -1.745 (0.655)*** -1.200 (1.015) -1.155 (1.167) 0.754 (1.083) 

𝑔𝑟𝑐𝑜𝑛𝑡𝑖𝑙𝑙  1.414 (0.944) -0.836 (1.120) 2.159 (1.185)* 0.894 (1.671) 

𝜎𝑚
𝑡  1.205 (1.729) -0.168 (2.129) 0.880 (1.267) 0.842 (1.137) 

𝜎𝑚
𝑟  -0.106 (2.233) 1.957 (0.713)*** -2.286 (0.939)** -2.290 (2.010) 

Year dummies Yes  Yes  Yes  Yes 

# of observations 1,562  604  752  258 

# of  convergence  997  990  988  965 

Wald Statistic 79.19***  85.72***  86.15***  65.35*** 

R-squared 0.058  0.069  0.035  0.052 

Note: *** significant at 1% level. ** significant at 5% level. * significant at 10% level. ( ) standard errors of estimates. 

Estimates and their standard errors are from about 1,000 bootstrap runs. “TR” is farmers who adopt insect scouting 

and grow corn after other crops. “TO” is farmers who adopt insect scouting but grow corn continuously. “RO” is 

farmers who grow corn after other crops but do not use weed scouting. “OO” is farmers who grow corn continuously 

and do not adopt insect scouting for corn production. 𝑔𝑟𝑥  is the generalize errors related to variable x, 𝜎𝑚
𝑡 , m ∈

(TR, TO, RO, OO) is the covariance between insect scouting and insecticide application, and 𝜎𝑚
𝑡  is the covariance 

between corn growing after other crops and insecticide applications. R-squared means the squared correlation 

coefficient between actual insecticide application rates and predicted insecticide application rates (Wooldridge 2010, 

pp 731~732). 
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<Table 9> The effects of information technologies on chemical use 

 Nitrogen (lb/acre) Herbicide (lb AI /acre) Insecticide (lb AI /acre) 

Corn after 

other crops 

-8.392** -0.017 1.611 

(.368) ( 0.089 ) ( - ) 

Continuous 

corn  

-1.656 -0.079 -0.066 

(11.240) ( 0.168 ) ( - ) 

Note: *** significant at 1% level. ** significant at 5% level. * significant at 1% level. ( ) standard errors of estimates. 

Standard errors are from about 1,000 bootstrap runs. (-) means that the variances of estimates are unreasonably large 

because of outliers in each iteration make.   

 

 


