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Abstract 

Recent agronomic and soil science research draws attention to the importance of continuous 

conservation tillage (CCT), as many environmental benefits of this conservation tillage are 

realized only when it is used continuously over a period of years. However, little is known about 

the dynamics of farmers’ tillage choices. To address the need for quantitative estimates of time 

patterns of tillage practices and the factors that affect the use of CCT, the paper to be presented 

develops and estimates a dynamic model of bundled tillage-crop choices for the state of Iowa. 

We develop a first-order, four-state Markov chain model of tillage-crop dynamics for corn and 

soybean production systems. We assume that matrixes of transition from one tillage-crop state to 

another could vary by county but remain stationary from 1992 to 1997, and use quadratic 

programming to estimate the transition matrix for each of the 99 counties in the state using 

county-average, year–and crop–specific tillage data from Conservation Technology Information 

Center for 1992-1997. Analysis of Variance of the estimated county-specific transition matrixes 

shows that CCT occurs more often on Highly Erodible Land (HEL) when compared to other 

cropland. Also, the county-average probabilities of rotational conservation tillage (RCT), i.e., the 

farming systems in which CT is rotated with conventional tillage systems, are higher in the 

counties that have higher proportion of HEL. In addition, we identified a significant effect of 

crop rotations on tillage dynamics: the cropland under corn monoculture is less likely to be in 

RCT when compared to land in corn-soybean rotation. The results of the study indicate that both 

natural conditions (soil erodibility) and other economic choices (crop rotations) affect farmers’ 

choices of CCT and RCT in Iowa.  
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1. Introduction 

Conservation tillage (CT), defined as any tillage system that leaves at least 30% of the soil 

covered with crop residue after planting (CTIC, 2015), has been a subject of considerable 

research. Controlled experiments conducted under a wide range of soil and climatic conditions 

show that continuous CT (CCT), i.e., CT used continuously over a number of years, contributes 

to protection of soil from erosion, enhances beneficial microbial activity, and sequesters carbon, 

when compared to continuous conventional tillage (CVT), i.e., tillage systems other than CT, 

practiced continuously over the same number of years (Kahlon et al., 2013; Lal, 2004, 2011; 

Rittenburg et al., 2015; Sainju et al., 2008; West and Post, 2002). Intermittent use of CT, i.e., the 

use of CT that is alternated with other tillage practices in some years, has received less attention 

in the literature. Nevertheless, it has been shown that the many environmental benefits of CT are 

lost with the reversal back to conventional tillage even for a single year (Conant et al., 2007; 

Grace et al., 2011; Ratta and Lal, 1998). 

Because of the associated environmental benefits, CCT use has been promoted by 

multiple U.S. agricultural conservation programs (Claassen et al., 2014; Duriancik et al., 2008; 

USDA, 2014). Although the planning, monitoring, and evaluation of such conservation programs 

requires historical data on land use and CT (Claassen et al., 2014; Gallant et al., 2011; Jackson-

Smith et al., 2010; Osmond et al., 2012; Tomer et al., 2014), the spatial patterns of CCT, CVT, 

and other tillage sequences remain poorly understood. Identification of tillage data through 

remote sensing remain challenging (Zheng et al., 2013), and the known tillage dynamics 

estimates come from field-level surveys. 

The surveys, conducted almost exclusively in the U.S. Corn Belt, reveal complex time 

patterns of tillage practices. Hill (1998) and Hill (2001) focused on no-till, the version of CT that 
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results in the least soil disturbance (CTIC, 2015), on the fields that were in corn-soybean 

rotation. Hill (1998) estimated that 16% of land were in no-till for both 1994 and 1995 based on 

a survey of 14,748 fields in Illinois and Indiana. Hill (2001) study’s tracking of 17,550 fields in 

Illinois, Indiana, and Minnesota from 1994 to 1999 showed that although 58%, 77%, and 29% of 

the fields no-tilled at least once over the study period, only 13% and 9% of all observed fields 

were in no-till all six years in Illinois and Indiana, and no fields have been in no-till for six years 

in a row in Minnesota. Napier and Tucker (2001) surveyed 1,011 farm operators in three 

Midwest watersheds in 1998-1999 about the use of tillage practices in the preceding five years. 

Crops grown by the surveyed farmers were not reported in the paper. The study found that some 

22%, 6%, and 54% of the farmers used deep moldboard plowing, a form of conventional tillage, 

every year, and the additional 8%, 5%, and 9% percent used moldboard plowing every other year 

in Ohio, Iowa, and Minnesota, respectively. 

More recently, Reimer et al. (2012) describes a diverse, rotational tillage regimes for corn 

and soybean systems for two watersheds in Indiana observed over 2007 and 2008. Andrews et al. 

(2013) conducted a national survey of famers growing corn, soybeans and wheat in the U.S. in 

2009 and 2010. The study found that out of 622 farmers surveyed in the Corn Belt, which 

includes Illinois, Indiana, Iowa, Missouri, and Ohio, some 55% were using CT on all crops in 

both years, 14% used conventional tillage on all crops in both years, with the remaining part of 

the sample varying the tillage systems between the crops and/or years. The difficulty of 

extrapolating of the results of the survey-based studies of the time patterns of alternative tillage 

systems is that they are limited to few specific regions and cropping patterns, and no explanation 

of the spatial variation in observed rates of CCT or CVT has been attempted. 
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To address the need for quantitative estimates of time patterns of tillage practices and the 

factors that affect the use of CCT, the paper develops and estimates a dynamic model of bundled 

tillage-crop choices for the state of Iowa. The results of estimation are then used to assess how 

both natural conditions (soil erodibility) and other economic choices (crop rotations) interact 

with the farmers’ choices of CCT, CVT, and RCT, , i.e., the farming systems in which CT is 

rotated with conventional tillage systems. 

The remainder of the paper is organized as follows. We first present the methodology. In 

this section, we describe the Quadratic Programming (QP) approach to estimate transition matrix 

(TM) in a Markov chain model and the data used for the model. We then summarize our results 

and discuss implications of the study as well as the power of the prediction of the model. 

Summary and conclusions are discussed in the last section. 

 

2. Materials and Methods 

The study involves two major steps. At step one, we develop a first-order, four-state Markov 

chain model of tillage-crop dynamics for corn and soybean production systems. We use 

quadratic programming (Lee et al., 1965) to estimate the transition matrix for each of the 99 

counties in the state using county-average, year–and crop–specific tillage data from CTIC for 

1992-1997 (CTIC, 2015). The estimated transition matrixes are then used to calculate the 

county-specific probabilities of CCT and RCT. At step two, we study how CCT and CT 

probabilities vary with crop rotations and soil erodibility as measured by the county proportion 

of Highly Erodible Land (HEL).  

Corn and soybeans are the only two crops considered in this study since they occupy the 

overwhelming majority of Iowa cropland: according to the Census of Agriculture, the combined 
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share of corn and soybeans in Iowa harvested cropland was 91%, 92%, 93%, and 94% in 1992, 

1997, 2002, and 2007, respectively (http://www.agcensus.usda.gov/, accessed 05/2016). 

Typically, farmers in Iowa alternate corn and soybeans crops in consecutive years (Stern et al., 

2008, 2012). 

 

2.1. Data 

The National Crop Residue Management (CRM) survey by CTIC is the only nation-wide survey 

that documents different tillage practices, by county and by crop. For the purposes of the study, 

we refer to no-till, ridge till, mulch till as CT, and the rest of the tillage systems, as conventional 

tillage (CV). The CRM survey data are available annually from 1989 to 1998, biannually from 

1998 to 2004, and for selected counties from 2005 to present (CTIC, 2015). The CRM records 

are based on a combination of county conservation experts’ opinions and the roadside transect 

method that requires visual assessment of tillage systems while driving a set course through the 

county. Quantitative measures of the precision of CRM survey data are not available, but in 

general, the data have been assessed to be complete and deemed reasonably accurate (Baker, 

2011; Gassman et al., 2006). The four tillage-crop shares including CT corn, CV corn, CT 

soybeans and CV soybeans, corresponding to the four states of Markov chain TM are considered 

in this study. 

Estimation of transition matrix with time-ordered aggregate data requires the number of 

time periods (N) be greater than the number of Markov model states, which is equal four in our 

model. Based on the nature of state-aggregate CT dynamics, we choose to estimate our model 

using the 1992 to 1997 data, i.e., N = 6. While a longer time series could improve the precision 

of estimation, the six years of data are the longest time span we can have that fits the task. There 

http://www.agcensus.usda.gov/
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is little variation in the tillage shares of CT corn and soybeans, whereas CV corn is monotone 

decreasing over 1989-1991 and thus tillage shares over the period might not pose the Markov 

properties. Beginning with 1998 the data are available biannually only (figure 1). 

Vulnerable cropland is determined based soil erodibility index, which is measured by the 

Highly Erodible Land (HEL) code. USDA Natural Resource Conservation Service (NRCS) 

classifies cropland as HEL if the potential of a soil to erode, considering the physical and 

chemical properties of the soil and climatic conditions where it is located, is eight times or more 

the rate at which the soil can sustain productivity (USDA/NRCS, 2002). ISPAID assigns each 

map unit to one of four categories: 1 for HEL, 2 for a potentially HEL, 3 for a not HEL, and 0 if 

no data are available. Figure 3 shows the HEL acres over total acres planted for 99 counties in 

Iowa. 

 

2.2. Statistical model 

The choice of tillage-crop can be described as stochastic process because farmers may consider 

the choice as a way to reduce the loss of soil productivity, to break weed and disease cycles, and 

to stabilize the profits (Hill, 1998; Howitt & Reynaud, 2003). The model we propose starts with 

the assumption that farming choices in any given year can be classified into four distinct, non-

overlapping tillage-crop states: CT corn, CV corn, CT soybeans, and CV soybeans.  

It is further assumed that the TM possesses first-order stationary Markov property.  

Each element of the transition matrix,
ijp , represents the probability of tillage-crop state j  

in the current year given tillage-crop choice i  in the year before. Here ,i j  1 (CT corn), 2 (CV 

corn), 3 (CT soybeans), 4 (CV soybeans): 



8 

 

 
4

1

0 1, , 1,..., 4; 1, 1,..., 4.ij ij

j

p i j p i


           (1) 

Due to the problems with soybean cyst nematode (CAST, 2009), as well as the significant yield 

decline associated with consecutive years of soybeans (Hennessy, 2006; ), following soybeans 

with soybeans is a highly unlikely choice for Iowa farmers (Sahajpal et al., 2014; Secchi et al., 

2011; Stern et al., 2008). Therefore, all the probabilities of transitioning from soybeans to 

soybeans are restricted to zero in the model: 

 0, , 3,4.ijp i j             (2) 

The Markov model is specified as follows: 

'P n n-1 ns s ε  ,           (3) 

where 2,...,n N , N  is the number of years for which tillage-crop shares are observed, ns  is 

the four-by-one vector of proportions 
n

js of the four tillage-crop areas of the region in year n such 

that 
4

1

0 1, 1,..., 4, 1n n

j j

j

s j s


    , 'P  is the transpose of the transition matrix, and n is the 

four-by-one vector of year n random errors , 1,..., 4n

j j  .  

 

2.3. Model estimation and fit 

We use the QP approach to estimate the transition matrix P (Lee at al., 1965, 1970), which is 

regarded as preferred method for estimating the Markov model with time-ordered spatially 

aggregate data (MacRae 1977; Kelton 1981, 1994). Under QP, the estimates of transition matrix 

probabilities are found by minimizing the sum of squared errors in model (1) – (3), i.e., by 
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minimizing the quadratic form  
4

2

2 1

N
n

j

n j


 

  subject to constraints (1) and (2). We used MATLAB 

R2014a routine lsqlinsolver to perform QP. 

We evaluate measure of accuracy of the estimates, Mean Absolute Error (MAE), which is 

defined by  

4

1

1
ˆ

4

n n n

j j

j

MAE s s


  .         (4) 

We used the shares in 1992 as a starting point to calculate MAE to avoid ambiguity. 

Let P̂ be the estimated transition matrix. ˆns in equation (4) is estimated as (5) 

 
1

1ˆˆ ' , 2,...,6
n

ns P s n


  .         (5) 

We also calculate correlation coefficient (r) to evaluate how well the approach performs. 

Correlation coefficient shows the ability of the approach to simulate not only the shares but also 

the trend of these shares.  

 

2.4. Dynamics of CT in relation to HEL and crop rotation.  

Statistical analyses of variance for the data were conducted using the SAS version 9.2 statistical 

package (SAS, 2013). Effect of the HEL on the probabilities of CCT, ACT and CCV were 

evaluated using the Proc GLM. We used the Proc ANOVA to analyze the influence of crop 

rotation on the probabilities. In this study, we evaluated the effects of HEL and crop rotation for 

the CCT, ACT and CCV for two and three-year tillage-crop sequences. Probabilities for longer 

tillage-crop sequences can be computed in the same fashion.    
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3. Result and discussions 

3.1. Model estimation and fit 

Figure 2 presents the measures of in-sample MAE prediction error, calculated as the difference 

between observed shares and estimated ones for each county. MAE is relatively small: MEA are 

less than 10% for all counties and majority of counties have less than 5% in MEA. Figure 6 

shows the graphical results of the comparison of simulated and observed shares for CT corn, CV 

corn, CT soybeans and CV soybeans in 1993. The simulated shares clearly agree well with 

observed shares: all correlation coefficients are greater than 0.75 (0.82, 0.87, 0.80 and 0.77, 

respectively) and the p-values (at 5% least significant difference) are smaller than 0.0001. The 

points on the graphs are very close to y=x line of perfect correspondence.  

For the years 1994, 1995, 1996 and 1997, p-value and r are showed in table 1. High r-

values indicate that the percentage QP tillage-crop shares estimations are quite close to the 

observed shares: all the r-values are in between 0.69-0.86. Kalbfleisch and Lawless (1984) and 

McLeish (1984), who studied the least squares approach to estimate Markov Models from 

aggregate data, noted that aggregate data often do not contain much information about a Markov 

chain. However, in this case, the Markov model shows the ability to infer the parameters of 

interest with very limited data. Moreover, since all the predicted tillage-crop shares in the MAE 

reported are computed from the 1992 observed tillage-crop shares and the r-values are all 

positive, the model captures the time-path of the shares as well. 

Table 1 shows the estimation of CCT, ACT and CCV probabilities for both two and 

three-year tillage-crop sequences. Overall, the findings imply that when farmers use CT, they 

more often than not rotate it with CV. The ACT probability increases after one year. The 

increase indicates that farmers will alternate CT with CV tillage practices at one point in the 
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future after CT has been adopted. CT has a smaller chance of being followed by CT than being 

followed by CV: for two-year tillage-crop sequences, probability of being ACT is almost equal 

to the sum of the probability of CCV and CCT whereas there is 70% acres in ACT for three-year 

tillage-crop sequences, an increase by 21% after one year.   

   

3.2. Dynamics of CT in relation to HEL  

The 1993 probability of (or share of cropland in) two-year CCT can be estimated as the 

probability that tillage is CT in both years 1992 and 1993, i.e., as the sum of three shares of land: 

that in CT corn after CT corn, 1

11 1p̂ s , CT corn after CT soybeans, 1

31 3p̂ s , and CT soybeans after 

CT corn: 1

13 1p̂ s . The 1993 probability of (or share of cropland in) two-year CCV is estimated as 

the probability that tillage is CV in both years 1992 and 1993, i.e., as the sum of three shares of 

land: that in CV corn after CV corn, 1

22 2p̂ s , CV corn after CV soybeans, 1

42 4p̂ s , and CV soybeans 

after CV corn: 1

24 2p̂ s . The 1994 probabilities of three-year CCT and CCV are calculated in a 

similar fashion, as 1 1 1 1 1

11 11 1 11 13 1 13 31 1 31 13 3 31 11 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆp p s p p s p p s p p s p p s     and 

1 1 1 1 1

22 22 2 22 24 2 24 42 2 42 22 4 42 24 4
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆp p s p p s p p s p p s p p s    , respectively. The probabilities of CCT and 

CCV for the other years under consideration could be calculated by replacing 1s with the 

corresponding ˆns  for the appropriate years n = 2,…,N. Similarly, we can be computed 

probabilities of ACT for any year n. It is noted that the sum of CCT, CCV and ACT in any year 

n is equal to one. 

Statistical comparison between adoption level of CCT for two-year tillage-crop 

sequences and HEL gives a slope of 0.19 with the p-value of 0.006, indicating significant 

relationship between CCT adoption for two-year tillage-crop sequences and HEL. Similarly, 

HEL is found significant effect the CCT adoption for three-year tillage-crop sequences, with the 
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slope of 0.13 and the p-value of 0.036. The results show that there are no significant differences 

in probabilities of CCV and ACT between HEL and non-HEL for both two and three-year-year 

tillage-crop sequences. Figure 4 and 5 represent the spatial distribution of the probability of CCT 

for two-year tillage-crop sequences. In general, it can be seen that if counties have more cropland 

in HEL, the average probability of CCT are higher than those have less HEL.  

 

3.3. Dynamics of CT in relation to crop rotation 

Table 3 shows the effect of crop rotation on CCT for two-year tillage-crop sequences. It is not 

surprising that there are no significant differences in CCT probability between the two standard 

corn-soybeans rotations, alternating corn and soybeans crops in consecutive years for a single 

field (called corn-soybeans rotations). Comparison of CCT probability among corn after corn, 

and corn-soybeans rotations show that the CCT probability is significantly lower under corn after 

corn than corn-soybeans rotations: averagely, just 0.10 under corn after corn rotation compared 

to 0.44 and 0.51 under corn after soybeans and soybeans after corn, respectively. Likewise, corn-

soybeans rotations have higher likelihood of being ACT than corn after corn rotations whereas 

there is no significant difference between ACT probability of the two corn after corn rotations 

(table 4).  

Table 5 represents the comparison of ACT and CCT probabilities between more corn and 

less corn rotations in three-year tillage-crop sequences. If farmer only planted one year of corn in 

three-year tillage-crop sequences, both the probability of CCT and ACT are significant higher 

than who adopt more corn rotations (i.e., corn monoculture, soybeans after corn after corn and 

corn after corn after soybeans rotations). For CCT, less corn rotation increases the average 

probability of CCT by 0.1, from 0.03 to 0.13. In comparison with more corn rotations, the 



13 

 

average probability of ACT is significantly higher compare with less corn rotation: average 

probability of ACT for more corn and less corn rotation are 0.17 to 0.53, respectively. 

 

4. Summary and conclusions 

Despite the importance of yearly tillage dynamics, the spatial patterns of CCT, CVT, and other 

tillage sequences remain poorly understood. To fill the gap in the understanding of tillage 

dynamics, we considered CT adoption in a dynamic framework using Markov chain. We apply 

QP approach to model the dynamics of CT adoption, and quantify the effect of HEL and crop 

rotation on the probability of CCT, RCT and CCV.  

A number of interesting and pertinent findings have emerged. The findings show that 

HEL and crop rotation are found to have significant effects of the CCT adoption, and the 

overwhelmingly large share of CT is in RCT, both for corn and soybeans. Analysis of Variance 

shows that CCT occurs more often on HEL when compared to other cropland. Also, the county-

average probabilities of RCT are higher in the counties that have higher proportion of HEL. In 

addition, we identified a significant effect of crop rotations on tillage dynamics: the cropland 

under corn monoculture is less likely to be in RCT when compared to land in corn-soybean 

rotation. The results of the study indicate that both natural conditions (soil erodibility) and other 

economic choices (crop rotations) affect farmers’ choices of CCT and RCT in Iowa.  

There is an urgent need for understanding the farmer's tillage choices over time and the 

factors driving the choices. While micro (e.g., farm-level) data for modeling bundled tillage-crop 

dynamics are often incomplete and/or unavailable, this study provides an alternative approach to 

leverage and increase the use of available data. The probabilities estimated would benefit 

simulation modeling for assessment of the economic and environmental effects of the policies 
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that encourage CT adoption. From the methodological perspective, the modeling approach 

introduced in the study is applicable to corn-soybean production systems in other regions and is 

generalizable to other cropping systems. 
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Table 1. Average probability for two and three-year tillage-crop sequences 

Tillage-crop Two-year tillage-crop sequences Three-year tillage-crop sequences 

CCT 0.27 0.16 

ACT 0.49 0.70 

CCV 0.24 0.14 

Source: Authors’ calculations based on estimated transition probabilities and shares in 1992 

Table 2. Correlation coefficient of alternative two-year tillage-crop sequences 

Year 

Tillage-crop share 

CT Corn CV Corn CT Soybeans CV Soybeans 

1993 0.82 0.87 0.80 0.77 

1994 0.78 0.80 0.78 0.65 

1995 0.83 0.81 0.81 0.85 

1996 0.84 0.81 0.82 0.86 

1997 0.84 0.74 0.69 0.73 

Source: Authors’ calculations based on CTIC (2015a) and estimated shares in 1992 

Notes: p-values are smaller than 0.0001 for all correlation coefficients 
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Table 3. Estimated mean CCT probabilities of alternative two-year tillage-crop sequences  

Current tillage-crop, year t Previous tillage-crop, year t-1 probability* 

CT corn CT corn 0.10a 

CT corn CT soybeans 0.44b 

CT soybeans CT corn 0.51b 

LSD (0.05)  0.07 

*Within-column simulated means followed by the same letter are not significantly different using Fisher’s LSD 

at P≤0.05. 

Source: Authors’ calculations based on estimated transition probabilities and shares in 1992 

Table 4. Crop rotation effect on ACT probabilities of alternative two-year tillage-crop 

sequences  

Current tillage-crop, year t Previous tillage-crop, year t-1 probability* 

CT corn CV corn 0.12a 

CV corn CT corn 0.13a 

CT corn CV soybeans 0.40b 

CV corn CT soybeans 0.56c 

CT soybeans CV corn 0.48d 

CV soybeans CT corn 0.27e 

LSD (0.05)  0.07 

*Within-column simulated means followed by the same letter are not significantly different using Fisher’s LSD 

at P≤0.05. 

Source: Authors’ calculations based on estimated transition probabilities and shares in 1992 
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Table 5 Crop rotation effect on CCT and ACT probabilities of alternative three-year 

tillage-crop sequences  

Rotation CCT* ACT* 

Less corn rotations 0.13a 0.53a 

More corn rotations 0.03b 0.17b 

P(T<=t)  <0.001 <0.001 

*Within-column simulated means followed by the same letter are not significantly different using Fisher’s LSD 

at P≤0.05. 

Source: Authors’ calculations based on estimated transition probabilities and shares in 1992 

Notes: more corn rotations include; less corn rotations has only one year of corn in three-year tillage-crop 

sequences 
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Figure 1. Shares of alternative tillage-crop areas in the combined corn and soybeans total 

area, Iowa, based on CTIC (2015a) data  

 

Figure 2. Percentage of cropland in HEL for counties in Iowa  

 

Source: Authors’ calculations based on Iowa Soil Properties and Interpretations Database (ISPIAD). Note: 

Percentage cropland in HEL was computed by dividing total cropland acres in HEL (code 1) by total cropland acres.  
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Figure 3. Mean absolute error (MAE) 

 

 Source: Authors’ calculations based on CTIC (2015a) data and simulated shares.  Note: Counties are sorted in 

alphabetical order. 

 Figure 4. Probability of CCT for two-year tillage-crop sequences  

 

Source: Authors’ calculations based on estimated transition probabilities and shares in 1992. 
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Figure 5. Probability of CCT for three-year tillage-crop sequences  

 

Source: Authors’ calculations based on estimated transition probabilities and shares in 1992 
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Figure 6. Correlation of simulated and observed shares: (a) for CT corn, (b) for CV corn, 

(c) for CT soybeans and (d) for CV soybeans in 1993 

 

Source: Authors’ calculations based on CTIC (2015a) data and simulated shares 
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