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1. Introduction 

Investment in the production of advanced biofuel has been encouraged by the federal regulation 

which enacted the Renewable Fuel Standard (RFS). However, investments and production of 

advanced biofuel has been lower than expected in recent years, leading regulators to substantially 

reduce required volumes of advanced biofuel (U.S. Environmental Protection Agency, 2015). 

Real option analysis is used to help explain why uncertainty has reduced investment in advanced 

biofuel and eroded the requirements put forth by USEPA. As Dixit (1989) showed, hysteresis 

can have a significant effect on a firm’s decision to enter the market. Uncertainty and 

irreversibility are key ingredients to hysteresis, leading to prices which trigger entry (exit) that is 

greater (Brigo, Dalessandro, Neugebauer, & Triki) than would be expected using traditional 

discounted cash flow methods. Schmit, Luo, and Conrad (2011), solve for optimal entry and exit 

trigger prices for a firm producing ethanol from corn, a first-generation biofuel. First-generation 

biofuels are produced from sugars such as those found in corn or sugar cane. The authors extend 

previous research, which relied on a single stochastic variable, by assuming both revenues and 

costs follow a stochastic process. When originally conceived, the RFS targeted second-

generation biofuels to account for 16 billion gallons of biofuel production by year 2022. Second 

generation biofuels are produced from non-food feedstocks, and thus do not face the same 

volatilities in feedstock cost, as is the case with first-generation biofuels. Relying on a single 

stochastic variable, McCarty and Sesmero (2014), have conducted an analysis on the effect of 

hysteresis in the investment of second-generation biofuel production.  

This study examines the effect of uncertainty and irreversibility on a second-generation biofuel 

investment while considering the volatility of Renewable Identification Number (RIN) price, 

conventional fuel price and their correlations by applying a two stochastic variable approach. 



Previous studies have not included both conventional fuel price and RIN price as two sources of 

uncertainty faced by the firm. Producers of renewable fuel face an output price which can be 

decomposed into the price of conventional fuel, plus the price of applicable RINs. Therefore the 

firm is subject to uncertainty in both markets. Results have important policy implications, as 

uncertainties in the RIN market, created to encourage biofuel production, may be counteracting 

intended policy design.  

2. Renewable Identification Numbers 

The Energy Policy Act of 2005 (EPAct) established the Renewable Fuel Standard (RFS), 

requiring the use of biofuels (such as ethanol) in the U.S. automotive fuel supply. The RFS 

mandated that ethanol production increase from the 4 billion gallons of ethanol produced in 2006 

to 7.5 billion gallons per year by 2012. Two years later the Energy Independence and Security 

Act of 2007 (EISA) amended the RFS to include: 

 Blending requirements for diesel as well as gasoline; 

 An increase in the volume of renewable fuel required to be blended into transportation 

fuel from the original RFS requirement of 7.5 billion gallons per year by 2012 to 36 

billion gallons per year by 2022; 

 New categories of renewable fuel with separate minimum volume requirements for each 

category; and 

 Lifecycle greenhouse gas performance threshold standards requiring the renewable fuel 

used to satisfy the RFS emit fewer greenhouse gases (GHG) than the petroleum-based 

fuel it replaces (Yacobucci, 2012). 



The RFS is implemented by requiring Obligated Parties, or refiners that produce gasoline or 

diesel fuel in the United States and anyone who imports gasoline or diesel fuel into the United 

States (U.S. Environmental Protection Agency, 2014), to meet four different Renewable Volume 

Requirements (RVOs): (1) Total Renewable Fuel, (2) Advanced Biofuel, (3) Biomass-based 

Diesel, and (4) Advanced Cellulosic Biofuel. The RVOs are based on RFS percentages, and may 

be amended from year-to-year. The RFS percentages are the ratio of renewable fuels to all non-

renewable gasoline and diesel fuels. For example, USEPA set the 2013 total renewable fuel 

requirement at 16.55 billion gallons, the advanced biofuel requirement at 2.75 billion gallons, the 

biomass-based diesel requirement at 1.28 billion gallons and the cellulosic biofuel requirement at 

6 million gallons. The 6 million gallon requirement for cellulosic fuels is less than half of the 

initial proposed minimum volume of 14 million gallons. These minimum requirements translate 

to a total renewable fuel percentage standard for 2013 of 9.74% (since the 16.55 billion gallons 

of renewable fuel represented 9.74% of all fuel volume), an advanced biofuel percentage 

standard of 1.52%, a biomass-based diesel percentage standard of 1.13% and a cellulosic biofuel 

percentage standard of 0.004% (U.S. Environmental Protection Agency, 2013).  

Obligated Parties show compliance with RVOs using a tracking system developed by USEPA. In 

this system, every gallon qualifying as a renewable fuel produced or imported is assigned a 

renewable identification number (RIN). A RIN is a 38-character numeric code which biofuel 

producers self-generate every time a gallon of qualifying renewable fuel is produced or imported. 

To qualify as a renewable fuel, the fuel must meet the requirements above. The RIN system was 

designed to provide a flexible way of meeting annual RVOs by obligated parties. 

Once it is determined a qualifying feedstock has been acquired, the feedstock is then tracked 

through its processing at the biofuel plant and a RIN is attached to that batch of biofuel. The RIN 



must not be separated from the biofuel as it moves through the distribution system, and is 

transferred along with the biofuel as ownership changes. This process is similar for importers of 

renewable fuel as well. Once the renewable fuel is blended into a transportation fuel, the RIN is 

separated from the renewable fuel and used for compliance by Obligated Parties, or it may be 

traded as a stand-alone commodity (McPhail et al 2011). 

The type of RIN generated depends on the type of renewable fuel being produced, feedstock and 

production process. EISA requires that for a fuel produced from a Renewable Biomass to qualify 

as renewable fuel under the RFS2, the fuel’s lifecycle GHG emissions must be less than the 

lifecycle GHG emissions of the 2005 baseline average gasoline or diesel fuel that it replaces. 

How much less, depends upon the category of biofuel.  

Table 1: RIN type by D-code and production pathway 

Fuel (D Code) Fuel Type 

Cellulosic Biofuel (D3)*** 
Cellulosic ethanol, Renewable CNG/LNG, Naphtha, Renewable 

Gasoline 

Cellulosic Diesel (D7)*** Cellulosic diesel, Renewable Jet Fuel 

Biomass-Based Diesel (D4)** Biodiesel, Renewable Diesel, Jet Fuels, etc. 

Advanced Biofuel (D5)** Sugarcane ethanol, Renewable Heating oil, etc. 

Renewable Fuel (D6)* Corn ethanol, etc. 

*20% reduction in GHG emissions **50% reduction in GHG emissions ***60% reduction in GHG emissions 

Table 1 summarizes RIN types and the primary fuel types which qualify under the corresponding 

categories. U.S. Environmental Protection Agency (2016), provides a full listing of approved 

pathways and detailed fuel types. 

2.1 RIN Price 

RIN prices are determined on a secondary market where they are traded amongst 

obligated parties after the renewable fuel has been blended with conventional fuels. To 



form a basic idea of how a RIN price is determined suppose, the market for biofuel is 

represented by the following diagram (McPhail, Westcott, & Lutman, 2011). 

Figure 1: Core Value of the RIN 

 

When the market is in equilibrium without any mandates, equilibrium price is given 𝑝𝑒 , 

and equilibrium quantity is given by 𝑄𝑒 . Under the Renewable Fuel Standard (RFS) 

mandated quantities of biofuel are required to be blended into the nation’s fuel supply. 

When the mandated quantity is greater than equilibrium quantity demanded the mandate 

is said to be binding and will lead to a supply price (𝑝𝑠) which is greater than demand 

price (𝑝𝑑).   This creates a gap between the willingness to pay for biofuel at the mandated 

quantities and a price of supplying biofuel at the mandated quantities. RIN prices bridge 

this gap and ensure the mandate is met, therefore the core RIN price is determined by the 

size of this gap. RIN prices also have a time value. When a RIN is generated in year (𝑡) it 

can be held and submitted for future compliance for up to two years. This is also known 



as RIN banking and provides a time value to RINs. However, the core value of the RIN is 

the largest component of a RINs value.  

Figure 2: Historical biodiesel RIN prices and biodiesel blend margin 

 

Figure 2 depicts the biodiesel blend margin and biomass-based D4 RIN prices over time. 

The biodiesel blend margin is calculated as the difference between conventional diesel 

prices and biodiesel prices, plus applicable tax credits and adjusted for the ethanol 

equivalent value (Irwin, 2014). Since the core value of any RIN is determined by the gap 

between the supply price and demand price, it comes as no surprise that the biodiesel 

blend margin and D4 RINs follow quite similar paths. A simple ordinary least squares 

regression of D4 RIN price against the biodiesel blend margin, while suppressing the 

constant results in an R-squared of 0.8645, indicating that blend margins explain a large 

portion of D4 variation. 

For this study, the focus is on producers of second-generation biofuels which generate 

biodiesel D4 RINs. Recall that the four different Renewable Volume Requirements 



(RVOs) are: (1) Total Renewable Fuel, (2) Advanced Biofuel, (3) Biomass-based Diesel, 

and (4) Advanced Cellulosic Biofuel. These four renewable fuel standards are nested 

within each other so that fuels with higher GHG reductions can be used to meet the 

standards for a lower GHG reduction. For example, cellulosic biofuels with a lifecycle 

greenhouse gas emission that results in a 60% reduction from the baseline can be 

submitted for the cellulosic biofuel category, the biomass-based diesel category, the 

advanced category or the conventional renewable fuel category. Therefore the cellulosic 

D7 and D3 RINs are worth at least as much as D4, D5, and D6 RINs.  Similarly, fuels in 

the biomass-based diesel D4 category are worth at least as much as D5 and D6 RINs. 

However, production of cellulosic biofuel has not been in significant quantity and as of 

March 10, 2016 the total RIN count was 2,842,575,051 and only 14,755,743 D3 RINs 

and zero D7 RINs were generated. Therefore historical data for D3 and D7 RIN price is 

lacking and thus D4 RIN prices are evaluated in this study. 

3. Motivation for the Two-Variable Model 

A two-variable model allows the conventional fuel price and RIN price to be modeled separately 

and account for the relationship between these two variables. Figure 1 illustrates the relationship 

between conventional fuel price and RIN price. Recall that (𝑝𝑑) of Figure 1 represents the price 

at which biofuel is demanded. Therefore this implies that (𝑝𝑑) also represents the price of 

conventional fuel, since producers and importers of conventional fuel have no incentive to 

purchase a biofuel which is more costly than conventional fuel. Furthermore, biofuel and 

conventional fuels are meant to be substitutes. One could argue that the two may well be 

complement goods under the RFS, but this is not borne out in the data, as shown in section 7. 



Regardless whether the two goods are substitutes or complements, a change in conventional fuel 

price will lead to a demand shift in biofuel, and thus a change in the core value of the RIN.  

Figure 3: Outward demand shift causes decrease in RIN value 

 

If the two goods are indeed substitutes, an increase in the price of conventional fuel, will cause 

an outward shift in the demand for biofuel, which would decrease the core value of RINs. This 

negative relationship between RIN price and conventional fuel price may affect a firm’s 

investment decisions where the effect is dependent on a variety of factors. For example, if the 

price demanded for biofuel increases by $1 per gallon, the core value of RINs would decline and 

thus the price of RINs would decline. In reality however, it is not clear how large of a decline in 

RIN price would occur. Thus it is also not clear what the overall effect on total price paid to 

suppliers would be. Presumably this overall effect would be an increase in the price paid to 

suppliers of $0.00 < ∆𝑃 < $1.00 where ∆𝑃 represents the change in total price paid to biofuel 

suppliers. 



Potential entrants to the market for second-generation biofuels are influenced by the observed 

price of both conventional fuel and RIN price. The price of the RIN will be reflected in the price 

of the biofuel. However, second-generation biofuels are not yet produced in large quantities and 

the market is in a nascent stage. There is no common exchange or market for cellulosic biofuel, 

green-diesel or renewable jet fuels. And as such, there are no well-known prevailing prices or 

historical data for which reasonable estimates for future price and future price behavior can be 

made. However, the price of second-generation biofuels is modeled as the price of conventional 

fuel, plus the applicable RIN price. A firm interested in generating economic rents through the 

investment of second-generation biofuel production is likely to observe the market behavior of 

conventional fuels and applicable RINs when deciding to enter the market or remain idle. 

Seemingly the RFS and the RIN market would appear to lower the risk of investing in second-

generation biofuels. However, the RIN market itself is very volatile. 

Figure 4 

 

In Figure 4, RIN prices appear to be even more volatile than price for conventional diesel fuel. 



One possible reason for highly volatile RIN prices is due to the uncertain nature of annual 

renewable fuel standards. The RFS is evaluated and potentially revised each year. U.S. EPA has 

the authority to revise the annual standards upwards or downwards based on projected demand 

and production capacities, and there is precedent for these revisions. There is also potential for 

the standards to be challenged judiciously. For example, the District of Columbia Circuit Courts 

vacated 2012 cellulosic standards. 

Investigating how the price volatility of both conventional fuel price, RIN price and their 

correlations effect the firm’s decision to enter the market, remain idle or to abandon the market if 

already active, will provide important insights into an industry which may be critical to long term 

energy independence and national security. Furthermore, results could have important policy 

implications. If high levels of price volatility are show to depress investment in second-

generation biofuels, then perhaps a more prudent policy effort would be to reduce uncertainties 

in the market for advanced biofuels, as opposed to setting production floors. 

A real options analysis provides the framework for the problem of the firm, which is when to 

invest if inactive, and when to abandon if already active. Real option models are well suited to 

model the adaptive decision making of a firm while accounting for the irreversibility and 

uncertainty inherent in the firm’s decision. 

4. Literature 

In 1977, the term “real option” was coined by Stewart Myers in “Determinants of Corporate 

Borrowing.” Myers observes that firms are valued as an ongoing operation, a value which 

reflects the expectation of continued investment. Investment decisions however, are discretionary 

and dependent on the future net present values. Future net present values are a function of the 



state of the world, and future states which present unfavorable conditions will lead the firm to 

invest nothing. Thus a portion of the firm’s value is accounted for by the present value of the 

option to make future investments. A firm’s value can be segmented into two distinct asset types; 

real assets which have market value independent of strategy, and real options or “growth 

options” which are opportunities for discretionary investment  (Myers, 1977). Before Myers 

introduced us to growth opportunities viewed as an option, Black and Scholes (1973) and Merton 

(1973) provided us with a concise mathematical valuation of financial options. This valuation, 

known as the Black-Scholes formula, is a function of known variables and estimated volatility of 

returns, and sets the foundation for quantitative modeling of options (Merton, 1998). Derivation 

of the Black-Scholes formula relies on an equilibrium condition such that the expected return of 

a portfolio of hedged positions is equal to the return on a riskless asset (Black & Scholes, 1973) . 

Hedged positions are created by combining investments to reduce risk. If the portfolio of hedged 

positions provided an expected return different from the return on a riskless asset, the market 

would be in violation of the No-Arbitrage Condition and would not be in equilibrium. The 

importance of arbitrage conditions or the absence of arbitrage was first recognized in the work of 

Modigliani and Miller (1958). The authors show that arbitrage cannot exist in equilibrium, as any 

opportunities for arbitrage will be exploited by investors causing the value of overpriced shares 

to fall, underpriced shares to rise and thereby eliminating arbitrage opportunities.  

Dixit (1989), develops an entry and exit model with general implications while explicitly taking 

into account the effect of hysteresis on a firms entry and exit decisions. Hysteresis in this setting 

can be best explained as a lasting effect from a reversible cause. So even in the case of reversible 

decisions, hysteresis can act as a partial irreversibility. In the presence of sunk costs hysteresis 

has a large effect on a firm’s decision to enter and exit. Given an output of unity a firm’s 



revenues can be represented by output price alone. Under Marshallian theory entrance should 

occur when output price is greater than variable plus fixed costs, this is the trigger price of entry. 

Conversely when the output price is less than variable cost, the firm should shut down, and this 

price is the trigger price of exit. Due to uncertainty and the value of options, Dixit (1989) shows 

that hysteresis causes the gap between the trigger price of entry and exit to be substantially larger 

than the Marshallian gap between full and variable costs. For example the author finds the trigger 

price for entry to be 33 percent above the variable plus fixed costs, while the trigger price for exit 

is found to be 24 percent below variable costs.  

Irreversibility and uncertainty are two key characteristics needed in determining to apply a real 

options analysis approach. This was made clear by Dixit and Pindyck (1994) in their landmark 

text which provides a thorough and accessible treatment of real options analysis. Later, 

Trigeorgis (1996) provided another highly accessible resource and together the two illuminating 

texts further propelled the application of real option analysis. One area that has recently become 

of interest is the application of real option analysis to renewable energy and biofuel investment 

problems. 

Schmit et al. (2011), solve for optimal entry and exit trigger prices for a firm producing ethanol 

from corn. The authors extend previous research, which relied on a single stochastic variable, by 

incorporating two stochastic variables to model revenues and costs separately. By separating the 

revenues and costs, the effect of financial incentives and policy measures can be identified and 

analyzed. Trigger prices for entry were found to be approximately 85% and 25% higher than 

NPV and single-variable solutions respectively. Trigger prices for exit were found to be 

approximately 30% and 18.5% lower than NPV and single-variable solutions, suggesting a 

significant effect of hysteresis in the investment of first-generation biofuels. Policy measures 



supporting the use of ethanol have lowered entry trigger prices, increased exit trigger prices, and 

thus increased the overall volatility of investment (Schmit et al., 2011). 

Relying on a single stochastic variable, McCarty and Sesmero (2014), have conducted an 

analysis on the effect of hysteresis in the investment of second-generation biofuel production. 

The authors find a significant effect on the trigger prices of entry and exit in the cellulosic 

ethanol market. In their model, the firm has the option to switch between idle to active, active to 

mothballed, mothballed to exit, and mothballed to active. Each of these four options to switch 

has a trigger price which would induce the firm into each decision. The authors find a real 

options trigger price for entry to be 72% higher than a traditional break-even price, while the real 

option trigger price for exit was about the same as the Marshallian exit price.  

The literature on real option theory and it’s applications to biofuel investments is growing. As 

energy demands rise there is an increasing need for alternative energy sources. The importance 

of understanding the economic challenges to bringing alternative energy to market is of 

increasing need as well. There are many areas of challenge, but one in particular is the area of 

private investment. Applying the theory of real options to biofuel investment problems will 

contribute to the understanding of the challenges in this area, and the impacts of policy 

instruments. This paper contributes to the literature by examining the uncertainty effects of 

renewable identification numbers on biofuels investment. To do so, a two-variable real options 

model is employed while allowing RIN price and conventional fuel price to follow stochastic 

processes.  



5. The Model 

Producers of renewable fuel face an output price which is composed of the price of conventional 

fuel, plus the price of applicable RINs. Both prices are determined exogenously. The firm 

producing renewable fuel decides to enter the market based on conditions observed in both the 

conventional fuel markets and the RIN market. Therefore the firm is subject to uncertainty in 

both markets.  

Should an inactive firm decide to enter the market for renewable fuel the firm will incur an initial 

cost of investment which is sunk and irreversible. An active firm has the option to either 

continue operation or exit operations by incurring a sunk cost which is less than or equal to the 

initial investment cost. 

Given the option to delay, the firm’s decision to enter or exit is impacted by the irreversibility 

and uncertain nature of the investment. The plant can be in two different states, idle or active. In 

an idle state the firm is not paying either fixed or capital costs since the investment has not yet 

been initiated and therefore the building of the plant has not begun. When the firm decides to 

become active it incurs the investment cost, 𝑘, to enter the market and pays operating costs 𝑤, 

and earns revenue 𝑃 + 𝑅. The revenue is a decomposition of the biofuel producer’s output price 

which is determined by the price of conventional fuel, 𝑃, plus the RIN price, 𝑅 (Figure 1). The 

conventional fuel could be gasoline, diesel or jet fuel, depending on the advanced biofuel 

produced. Similarly the particular RIN type is dictated by the type of biofuel being produced, 

production pathways, and feedstocks. In this case, the conventional fuel is ultra-low sulfur 

number two diesel and the applicable RINs are biomass-based diesel D4 RINs. Operating 



costs  𝑤, consist of the feedstock costs, plus transportation of that feedstock to the conversion 

facility.  

An active plant has the option to exit the market and recover a salvage value 𝑠 . The trigger 

prices which induce each of the decisions under the real options approach are 

𝑃ℎ ,  𝑃𝑙  , 𝑅ℎ 𝑎𝑛𝑑 𝑅𝑙 respectively. Output price (trigger price) which induces entry and exit under 

conventional break-even analysis are denoted by 𝑊ℎ and 𝑊𝑙 respectively. 

Price per gallon  𝑃 is the price of a gallon of conventional fuel.  Price is assumed to follow a 

Geometric Brownian Motion such that the change in price 

 𝑑𝑃 =  𝛼𝑝𝑃𝑑𝑡 + 𝜎𝑝𝑃𝑑𝑧𝑝  (1) 

 Where 𝛼𝑝 represents a drift parameter and 𝜎𝑝 represents the standard deviation.  Drift changes 

over the time increment 𝑑𝑡 . The change in 𝑧 , 𝑑𝑧𝑝 , follows a Wiener process such that  𝑑𝑧𝑝 =

 휀𝑡√𝑑𝑡  where, 휀𝑡 is a normally distributed random variable with a mean of zero and a standard 

deviation of unity. Furthermore 휀𝑡 is serially uncorrelated so that 𝐸(휀𝑡, 휀𝑠) = 0  ∀ 𝑡 ≠ 𝑠 and thus 

the values of 𝑑𝑧𝑝 for any two different intervals of time are independent, following a Markov 

process with independent increments. It is also assumed that the discount rate  𝛿 is greater than 

the drift rate 𝛼𝑝, which indeed must hold otherwise investment would never be optimal as the 

growth rate would outpace the discount rate. Hence it would always be possible to do better by 

waiting longer. 

The price at which RINs are traded is determined on a secondary market and prices have 

exhibited high degrees of volatility throughout RIN history. One primary cause of RIN price 

volatility is uncertainty in annual RFS obligations. This uncertainty is captured by assuming 



RINs follow a stochastic process. In this case, RIN prices are assumed to follow a GBM just as is 

the case for the price of conventional gasoline. 

 𝑑𝑅 =  𝛼𝑟𝑅𝑑𝑡 + 𝜎𝑟𝑅𝑑𝑧  (2) 

 Where 𝛼𝑟 represents a drift parameter, 𝜎𝑟 represents the standard deviation and the same 

assumptions of equation (1) apply.  

Feedstock production costs and feedstock transportation costs are influenced by the price of 

conventional fuel. Therefore, these costs can be expressed as a function of the conventional fuel 

price multiplied by some scale factor, 𝜂.   

 𝑤 = 𝜂𝑃 (3) 

As the conventional fuel price increases, the cost of a given feedstock changes according to this 

relationship. This assumption represents an extreme case where feedstock costs are linearly 

related to fuel price over all ranges of fuel price. Modeling the operating costs in this manner 

achieves two things. First, it captures the influence of oil price on the production of alternative 

fuels. Crude oil and conventional fuels are used throughout the input stream of producing 

alternative fuels. The cost of fertilizers, machinery, harvesting, processing and transportation are 

all directly influenced by the cost of conventional fuels. Indirect effects are also captured. As the 

price of oil and conventional fuel increases, the attractiveness of biofuels and biodiesel increase, 

this in turn puts upward pressure on the prices of biofuel and biodiesel feedstocks. Second, 

modeling operating costs as linearly related to the price of conventional fuel allows for an 

analytical solution. Later this assumption is relaxed under a numerical analysis and operating 

costs are modeled as being non-linearly related to conventional fuel price. 



In a 2013 study, the International Energy Agency examined the influence of oil price on 

production costs of biofuels. To examine oil price effect on the feedstock procurement and 

transportation costs, the authors use two methods. The first method is to use a petroleum 

intensity method where they estimate the quantity of petroleum used in the production and 

transportation of each feedstock. As oil price increases, feedstocks with the highest petroleum 

intensity incur the highest rises in cost. The second method is the historical trend method, which 

relies on the historical relationship between the price of oil and global average price of a given 

feedstock. In both methods, the authors found cellulosic ethanol and biodiesel to have large 

changes in production cost as oil price fluctuates (Cazzola et al., 2013). An advantage of the 

historical trend method is that it captures indirect effects, whereas the petroleum intensity 

method only accounts for direct effects. 

6. Firm Decisions 

6.1 The Firm’s Decision to Enter 

The idle project’s expected net present value is denoted as 𝑉0(𝑃, 𝑅). Over the range of prices 

𝑃 and 𝑅  where it is optimal for an idle firm to remain idle, the asset of the investment 

opportunity must be willingly held. Since there are no operating profits being generated, the only 

return is the expected capital appreciation 𝐸𝑡[𝑑𝑉0(𝑃, 𝑅)]𝑑𝑡−1.  

The discounted expected net present value on the investment opportunity is represented by the 

function 𝛿𝑉0(𝑃, 𝑅). The no-arbitrage condition of efficient markets sets these two returns equal, 

resulting in the Bellman equation. 

 𝛿𝑉0(𝑃, 𝑅) = 𝐸𝑡[𝑑𝑉0(𝑃, 𝑅)]𝑑𝑡−1 (4) 



Under the efficient markets theorem, equation (4) must hold and implicitly defines the entry 

trigger prices for jet fuel and RINs. Equation (4) essentially says that over an infinitesimal 

period 𝑑𝑡, the total expected return on the investment opportunity is equal to its expected rate of 

capital appreciation and facilitates the evaluation of the affect that changes in output price have 

on the value of an inactive firm.  

Using Ito’s Lemma 𝑑𝑉0(𝑃, 𝑅) is expanded using a Taylor series expansion. It is assumed 

that 𝑃 and 𝑅  are both continuous-time stochastic processes as represented by equation (1) and 

(2). Consider that the function 𝑉0(𝑃, 𝑅) is at least twice differentiable in 𝑃 and 𝑅. Total 

differentiation of 𝑉0(𝑃, 𝑅) to higher-order terms, and making the necessary substitutions yields  

 
𝑑𝑉0(𝑃, 𝑅) =  

𝜕𝑉0

𝜕𝑃
𝛼𝑃𝑑𝑡 +

𝜕𝑉0

𝜕𝑃
𝜎𝑃𝑑𝑧 +

𝜕𝑉0

𝜕𝑅
𝛼𝑟𝑅𝑑𝑡 +

𝜕𝑉0

𝜕𝑅
𝜎𝑟𝑅𝑑𝑧

+
1

2

𝜕2𝑉

𝜕𝑃2
(𝜎𝑃)2𝑑𝑡 +

1

2

𝜕2𝑉

𝜕𝑅2
(𝜎𝑟𝑅)2𝑑𝑡 +

𝜕2𝑉

𝜕𝑃𝜕𝑅
(𝜎𝑃𝜎𝑟𝑅)𝜌𝑝𝑟𝑑𝑡 

(5) 

Now, substituting equation (5) into equation (4) the following is obtained 

 
𝛿𝑉0(𝑃, 𝑅) = 𝐸𝑡 [

𝜕𝑉0

𝜕𝑃
𝛼𝑃𝑑𝑡 +

𝜕𝑉0

𝜕𝑃
𝜎𝑝𝑃𝑑𝑧𝑝  +

𝜕𝑉0

𝜕𝑅
𝛼𝑟𝑅𝑑𝑡 +

𝜕𝑉0

𝜕𝑅
𝜎𝑟𝑅𝑑𝑧𝑝

+
1

2

𝜕2𝑉

𝜕𝑃2
(𝜎𝑃)2𝑑𝑡 +

1

2

𝜕2𝑉

𝜕𝑅2
(𝜎𝑟𝑅)2𝑑𝑡 +

𝜕2𝑉

𝜕𝑃𝜕𝑅
(𝜎𝑃𝜎𝑟𝑅)𝑑𝑡] 𝑑𝑡−1. 

(6) 

Given that 𝐸(𝑑𝑧) = 0 the middle terms 
𝜕𝑉0

𝜕𝑃
𝜎𝑝𝑃𝑑𝑧𝑝 =

𝜕𝑉0

𝜕𝑅
𝜎𝑟𝑅𝑑𝑧𝑟 = 0 and equation becomes the 

second-order homogenous differential equation 

 𝜎𝑝𝜎𝑟𝜕2𝑉0

𝜕𝑃𝜕𝑅
(𝜌𝑝𝑟𝑃𝑅) +

𝜎𝑝
2

2

𝜕2𝑉0

𝜕𝑃2
(𝑃)2 +

𝜎𝑟
2

2

𝜕2𝑉0

𝜕𝑅2
(𝑅)2 +

𝜕𝑉0

𝜕𝑃
𝛼𝑝𝑃 +

𝜕𝑉0

𝜕𝑅
𝛼𝑟𝑅

− 𝛿𝑉0(𝑃, 𝑅) = 0 

(7) 



6.2. The Firm’s Decision to Exit 

The value of the active firm is denoted as 𝑉1(𝑃, 𝑅). Over the range of prices 𝑃 and 𝑅, where it is 

optimal for an active firm to remain active, the firm is earning (𝑃 + 𝑅 − 𝑤). Similar to the 

Bellman equation (4) the active firm has an option value and a value of ongoing operations 

(𝑃 + 𝑅 − 𝑤) and efficiency in markets requires   

 𝛿𝑉1(𝑃, 𝑅) = (𝑃 + 𝑅 − 𝑤) + 𝐸𝑡[𝑑𝑉1(𝑃, 𝑅)]𝑑𝑡−1. (8) 

Applying Ito’s Lemma to expand 𝑑𝑉1(𝑃, 𝑅) and following similar procedures as in equations 

(5)-(7) results in the second-order non-homogenous differential equation 

 𝜎𝑝𝜎𝑟𝜕2𝑉1

𝜕𝑃𝜕𝑅
(𝜌𝑝𝑟𝑃𝑅) +

𝜎𝑝
2

2

𝜕2𝑉1

𝜕𝑃2
(𝑃)2 +

𝜎𝑟
2

2

𝜕2𝑉1

𝜕𝑅2
(𝑅)2 +

𝜕𝑉1

𝜕𝑃
𝛼𝑝𝑃 +

𝜕𝑉1

𝜕𝑅
𝛼𝑟𝑅

− 𝛿𝑉1(𝑃, 𝑅) = 𝑤 − 𝑃 − 𝑅. 

(9) 

Firms will face a single composite price of conventional fuel price plus the price of the RIN. 

Therefore the value function can be written as 𝑉(𝑃, 𝑅) = 𝑓(𝑃 + 𝑅). Because this value function 

is homogenous of degree one in prices, the price of conventional fuel is normalized and the value 

function becomes a function of a numeriare plus the relative price of RINs over conventional 

fuel price. Therefore the value function is written as 𝑉(𝑃, 𝑅) = 𝑓(𝑃 + 𝑅) = 𝑃𝑓 (1 +
𝑅

𝑃
) . Using 

this form, the partial derivatives for 𝑉(𝑃, 𝑅) are found and substituted into equations (7) and (9). 

Making this substitution results in a differential equation for the function 𝑓(𝑟). 

 
−

𝑟

𝑃
𝑓′′(𝑟)(𝜎𝑝𝜎𝑟𝜌𝑝𝑟𝑃𝑅) +

𝜎2

2

𝑟2

𝑃
𝑓′′(𝑟)(𝑃)2 +

𝜎𝑟
2

2

1

𝑃
𝑓′′(𝑟)(𝑅)2 + 𝑓(𝑟)

− 𝑟𝑓′(𝑟)𝛼𝑝𝑃 + 𝑓′(𝑟)𝛼𝑟𝑅 − 𝛿𝑃𝑓(𝑟) = 0 

(10) 

Rearranging terms and dividing through by 𝑃 results in: 



  
(

1

2
𝜎𝑝

2 − 𝜎𝑝𝜎𝑟𝜌𝑝𝑟 +
1

2
𝜎𝑟

2) 𝑟2𝑓′′(𝑟) + (𝛼𝑟 − 𝛼𝑝)𝑟𝑓′(𝑟) − (𝛿 − 𝛼𝑝)𝑓(𝑟) = 0 
(11) 

Equation (11) can now be solved using the same general solution as in the single variable case. 

The solution 𝑓(r) = 𝑟𝛽 is tried and substituted into equation (11). 

 
(

1

2
𝜎𝑝

2 − 𝜎𝑝𝜎𝑟𝜌𝑝𝑟 +
1

2
𝜎𝑟

2) 𝑟2𝛽(𝛽 − 1)𝑟𝛽−2 + (𝛼𝑟 − 𝛼𝑝)𝑟𝛽𝑟𝛽−1 − (𝛿 − 𝛼𝑝)𝑟𝛽

= 0 

(12) 

This becomes: 

 
(

1

2
𝜎𝑝

2 − 𝜎𝑝𝜎𝑟𝜌𝑝𝑟 +
1

2
𝜎𝑟

2) 𝑟𝛽(𝛽2 − 𝛽) + (𝛼𝑟 − 𝛼𝑝)𝛽𝑟𝛽 − (𝛿 − 𝛼𝑝)𝑟𝛽 = 0 
(13) 

Dividing both sides of the equation by 𝑟𝛽 results in the characteristic equation: 

 
(

1

2
𝜎𝑝

2 − 𝜎𝑝𝜎𝑟𝜌𝑝𝑟 +
1

2
𝜎𝑟

2) (𝛽2 − 𝛽) + (𝛼𝑟 − 𝛼𝑝)𝛽 − (𝛿 − 𝛼𝑝) = 0 
(14) 

To solve for the roots of the characteristic equation the terms are rearranged to isolate 𝛽2. 

 
(

1

2
𝜎𝑝

2 − 𝜎𝑝𝜎𝑟𝜌𝑝𝑟 +
1

2
𝜎𝑟

2) 𝛽2 + [(𝛼𝑟 − 𝛼𝑝) − (
1

2
𝜎𝑝

2 − 𝜎𝑝𝜎𝑟𝜌𝑝𝑟 +
1

2
𝜎𝑟

2)] 𝛽

= (𝛿 − 𝛼𝑝) 

(15) 

Let (
1

2
𝜎𝑝

2 − 𝜎𝑝𝜎𝑟𝜌𝑝𝑟 +
1

2
𝜎𝑟

2) = 𝑢 , (𝛼𝑟 − 𝛼𝑝) = 𝜇  and (𝛿 − 𝛼𝑝) = 𝑧  and divide both sides by 

𝑢. 

 𝛽2 +
𝜇

𝑢
 𝛽 −

𝑢

𝑢
𝛽 =

𝑧

𝑢
  (16) 

Let  
𝜇

𝑢
= 𝛾 and 

𝑧

𝑢
= 𝜏 . 

 𝛽2 + 𝛾 𝛽 − 𝛽 = 𝜏 (17) 



 𝛽2 − (1 − 𝛾)𝛽 − 𝜏 = 0 (18) 

To solve for 𝛽 complete the square by adding  
(1−𝛾)2

4
 to both sides resulting in two solutions, the 

positive root and negative root. 

 
𝛽 =

(1 − 𝛾)

2
±

√4𝜏 + (1 − 𝛾)2

2
 

(19) 

Dixit and Pindyck (1994), show that the negative root  𝛽1can be any negative number, but the 

positive root  𝛽2 must be any number greater than one. To show why let equation (18) be denoted 

as ∅(𝛽)and note that 

 ∅(0) = −𝜏 < 0  (20) 

and ∅(1) = 𝛾 − 𝜏 < 0 which must be the case since it must be that 𝛼𝑟 < 𝛿 (21) 

Equation (20) must hold because as noted above, if the discount rate 𝛿 is not greater than the 

drift rate (a.k.a. growth rate) 𝛼𝑟, it would never be optimal to invest, and the firm could always 

do better by waiting longer. The same condition and corresponding intuition holds true for the 

growth rate of the conventional fuel price 𝛼𝑝 so that 𝛼𝑝 < 𝛿. Since ∅(𝛽 = 1) < 0 , then it must 

be true that the positive root  𝛽2 > 1. Therefore the two roots of the characteristic equation (18) 

are: 

 
𝛽1 =

(1 − 𝛾)

2
−

√4𝜏 + (1 − 𝛾)2

2
< 0 

(22) 

 
𝛽2 =

(1 − 𝛾)

2
+

√4𝜏 + (1 − 𝛾)2

2
> 1 

(23) 

Under the conditions  𝛼𝑟 , 𝛼𝑝 < 𝛿 and 𝛽1 < 0 and 𝛽2 > 1 the general solution to equation (11) is 

found to be 



 𝑓0(𝑟) = 𝐴0𝑟𝛽1 + 𝐵0𝑟𝛽2 . (24) 

The constants 𝐴0 and 𝐵0 are yet to be determined,  𝛽1and 𝛽2 are known constants whose values 

depend on the parameters 𝜎𝑝, 𝜎𝑟 , 𝜌𝑝𝑟 , 𝛼𝑝, 𝛼𝑟  and 𝛿. The term 𝐴0𝑟𝛽1 represents the value of the 

option to switch states if 𝑟 is very small and 𝐵0𝑟𝐵2 represents the value of the option to switch 

states when  𝑟  increases. When the firm is inactive and 𝑟 is very small, there is no value in the 

option to enter the market. In order for the solution to hold on the whole domain 

 𝑓0(𝑟) = 0  𝑎𝑠 𝑟 → 0. (25) 

To comply with the condition in (25)  𝐴0 is set to equal zero. So the value of an idle firm in 

equation (24) can be rewritten as  

 𝑓0(𝑟) = 𝐵0𝑟𝛽2. (26) 

Applying the same methods to the active firm, the ratio 𝑟 is substituted into the equation (9) to 

obtain 

 
(

1

2
𝜎𝑝

2 − 𝜎𝑝𝜎𝑟𝜌𝑝𝑟 +
1

2
𝜎𝑟

2) 𝑟2𝑓′′(𝑟) + (𝛼𝑟 − 𝛼𝑝)𝑟𝑓′(𝑟) − (𝛿 − 𝛼𝑝)𝑓(𝑟)

=
𝑤

𝑃
− (1 + 𝑟) 

(27) 

Recall from (3) that  𝑤 = 𝜂𝑃, where 𝜂 is the influence of conventional fuel price on operating 

costs.  Making this substitution will further simplify (27) to result in 

 
(

1

2
𝜎𝑝

2 − 𝜎𝑝𝜎𝑟𝜌𝑝𝑟 +
1

2
𝜎𝑟

2) 𝑟2𝑓′′(𝑟) + (𝛼𝑟 − 𝛼𝑝)𝑟𝑓′(𝑟) − (𝛿 − 𝛼𝑝)𝑓(𝑟)

= 𝜂 − (1 + 𝑟) 

(28) 



Equation (28) is a second-order non-homogenous differential equation. Differential equations of 

the non-homogenous form can be generally solved in two parts by trying a particular solution for 

the homogenous part, and a specific solution to the non-homogenous part. It has already been 

shown that the general solution to the homogenous part of equation (28) is equal to equation 

(24). To find a particular solution to the non-homogenous part of equation (28) the method of 

undetermined coefficients is used and a particular solution of the form 𝑓(𝑟) = 𝜓 − 𝜉 − 𝜔𝑟 is 

substituted in. This substitution results in (29) and (30). 

 
(

1

2
𝜎𝑝 − 𝜎𝑝𝜎𝑟𝜌𝑝𝑟 +

1

2
𝜎𝑟) (0) − (𝛼𝑟 − 𝛼𝑝)𝑟𝜔 − (𝛿 − 𝛼𝑝)(𝜓 − 𝜉 − 𝜔𝑟)

= 𝜂 − (1 + 𝑟) 

(29) 

 −(𝛼𝑟 − 𝛼𝑝)𝑟𝜔 − (𝛿 − 𝛼𝑝)(𝜓 − 𝜉 − 𝜔𝑟) = 𝜂 − 1 − 𝑟 (30) 

Equating the coefficients set (𝛿 − 𝛼𝑟)𝜔 = −1 ; (𝛿 − 𝛼𝑝)𝜓 = −1 ;  and  (𝛿 − 𝛼𝑝)𝜉 = −1 ; to 

solve for 𝜓, 𝜉, and 𝜔.  

Therefore the solution to the non-homogenous second-order differential equation in (28) is 

 
𝑓1(𝑟) = 𝐴1𝑟𝛽1 + 𝐵1𝑟𝛽2 +

𝑟

𝛿 − 𝛼𝑟
+

1

𝛿 − 𝛼𝑝
−

𝜂

(𝛿 − 𝛼𝑝)
 

(31) 

Similarly to equation (24), the term 𝐴1𝑟𝛽1  represents the value of the option to switch states if 

the ratio decreases and  𝐵1𝑟𝛽2 represents the value of the option to switch states when the ratio 

increases. In this case, the firm is currently active and has the option to exit ongoing operations if 

the ratio becomes very small and the option to exit operations if the ratio becomes very large. As 

the ratio becomes very large, the value of the option to exit approaches zero. For the solution to 

hold on the whole domain, 𝐵1is set to equal zero. So equation (31) can be simplified as 



 
𝑓1(𝑟) = 𝐴1𝑟𝛽1 + {

𝑟

𝛿 − 𝛼𝑟
+

1

𝛿 − 𝛼𝑝
−

𝜂

𝛿 − 𝛼𝑝
} 

(32) 

The expression in brackets of equation (32) represents the expected value of ongoing operations 

if the firm stays active. So equation (32) is the expected present value of the firm when active, 

composed of an option value to exit the market and the expected present value of operations.  

7. Deriving the Trigger Prices 

The firm can be in two different states, idle or active, giving decision makers two options to 

either enter, or exit. The ratio of prices which induce each of the decisions under the real options 

approach are 𝑟𝐻,  and 𝑟𝐿 respectively. The conditions which characterize each of the trigger ratios 

are known as value matching and smooth pasting conditions. Smooth pasting conditions require 

the tangency of the firm’s value in each state. If the slopes of the two value functions were to 

differ, the firm could exploit the kink formed by the two and depart from the supposedly optimal 

policy to obtain a better payoff (Dixit 1989). The value matching condition requires that 

switching from one state to another occurs when the value of the current state becomes less than 

the value of the next most desirable state minus the cost of switching states. The firm incurs a 

cost to switch to active and to exit.  Given that 𝑟𝐻 triggers entry to an active state then based on 

value matching and smooth pasting conditions 𝑟𝐻 must satisfy 

 𝑉0(𝑟𝐻) = 𝑉1(𝑟𝐻) − 𝑘 (33) 

 𝑉0
′(𝑟𝐻) = 𝑉1

′(𝑟𝐻) (34) 

Similarly, the ratio of prices 𝑟𝐿 which triggers the firm to exit the market must satisfy 



 𝑉1(𝑟𝐿) = 𝑉0(𝑟𝐿) + 𝑠 (35) 

  𝑉1
′(𝑟𝐿) = 𝑉0

′(𝑟𝐿) (36) 

The next step is to substitute equations (33) and (35) into the value matching and smooth pasting 

conditions. This will generate a system of four equations with four unknowns which can be 

solved simultaneously to derive the unknown constants of 𝐴1, 𝐵0, 𝑟𝐻 and 𝑟𝐿. 

 
𝐵0𝑟𝐻

𝛽2 = 𝐴1𝑟𝐻
𝛽1 + {

𝑟𝐻

𝛿 − 𝛼𝑟
+

1

𝛿 − 𝛼𝑝
−

𝜂

𝛿 − 𝛼𝑝
} − 𝑘 

(37) 

 
𝛽2𝐵0𝑟𝐻

𝛽2−1 = 𝛽1𝐴1𝑟𝐻
𝛽1−1 +

1

𝛿 − 𝛼𝑟
 

(38) 

 
𝐴1𝑟𝐿

𝛽1 + {
𝑟𝐿

𝛿 − 𝛼𝑟
+

1

𝛿 − 𝛼𝑝
−

𝜂

𝛿 − 𝛼𝑝
} = 𝐵0𝑟𝐿

𝛽2 + 𝑠 
(39) 

 
𝛽1𝐴1𝑟𝐿

𝛽1−1 +
1

𝛿 − 𝛼𝑟
= 𝛽2𝐵0𝑟𝐿

𝛽2−1 
(40) 

This system can now be solved for unique solutions for each of the four unknown values. The 

system is solved using MATLAB, and what is left is to estimate the unknown parameters which 

determine 𝛽1 and 𝛽2. These parameters are the variance and covariance parameters, growth rates 

and the discount rate denoted as 𝜎𝑟 , 𝜎𝑝, 𝜌𝑝𝑟 , 𝛼𝑟 , 𝛼𝑝 and 𝛿 respectively. The growth rates, 

covariance and variance parameters are characteristic of the stochastic nature of output price in 

equation (1) where 𝑑𝑃 =  𝛼𝑃𝑑𝑡 + 𝜎𝑃𝑑𝑧 , RIN price in equation (2) 𝑑𝑅 =  𝛼𝑟𝑅𝑑𝑡 + 𝜎𝑟𝑅𝑑𝑧 and 

their covariance. 



8. Data Analysis 

Two parameters are estimated for each stochastic process, the drift rate 𝛼, and the standard 

deviation  𝜎. Next the covariance of the two stochastic processes 𝜌𝑝𝑟  is estimated. One potential 

method to estimate the parameters is maximum likelihood estimation (MLE). 

Solving for the first-order conditions, MLE estimates for �̂� and 𝑣 yield 

�̂� = ∑
𝑋(𝑡𝑘)

𝑛

𝑛

𝑘=1

     𝑎𝑛𝑑    𝑣 = ∑
(𝑋(𝑡𝑘) − �̂�)2

𝑛

𝑛

𝑘=1

. 

The above expressions are simply the sample mean and sample variance of the normally 

distributed ∆𝑙𝑛𝑃𝑡  . This result requires ∆𝑙𝑛𝑃𝑡being independent of autoregressive lags and 

normally distributed and is therefore a naïve approach to the GBM parameter estimation. To 

examine the independence or potential lack thereof, the autocorrelation and partial 

autocorrelation are plotted for both the transformed series of conventional fuel price ∆𝑙𝑛𝑃𝑡  and 

RIN price ∆𝑙𝑛𝑅𝑡. 

Figure 5: ACF and PACF of ∆𝑙𝑛𝑅𝑡 

 



Based on Figure 5, it does not appear that independence is tenable for∆𝑙𝑛𝑅𝑡. This implies ∈𝑅𝑡
is 

not white noise in ∆𝑙𝑛𝑅𝑡 = 𝜑1∆𝑙𝑛𝑅𝑡−1 +∈𝑅𝑡
. Therefore, additional lags are added to the 

specification until ∈𝑅𝑡
 becomes white noise in ∆𝑙𝑛𝑅𝑡 = ∑ 𝜑𝑖∆𝑙𝑛𝑅𝑡−𝑖

𝑝−1
𝑖=1 +∈𝑅𝑡

.  A Portmanteau 

test for white noise is used to determine that the third lag produces white noise in the residual 

term. Given that ∈𝑅𝑡
 is white noise, I specify the Augmented Dickey Fuller (ADF) test to verify 

the process is a unit root and thus satisfies GBM properties. By simply including an additional 

term of 𝑙𝑛𝑅𝑡−1  and a constant term, I can test for a unit root using Case II of the Augmented 

Dickey Fuller such that 

∆𝑙𝑛𝑅𝑡 = 𝛾0 + 𝛾1𝑙𝑛𝑅𝑡−1 + ∑ 𝜑𝑖∆𝑙𝑛𝑅𝑡−𝑖

𝑝−1

𝑖=1

+∈𝑅𝑡
. 

The null hypothesis in Case II is that 𝛾1 = 0 . After conducting the ADF test under Case II a p-

value of 0.5763 is obtained, signaling a failure to reject the null hypothesis and thus reaching a 

conclusion that the series is indeed unit root.  This implies the estimated autoregression includes 

a constant term, but the true process follows a unit root with no drift. The result is consistent with 

GBM, but the sensitivity of such tests to null specification motivates a second test. 

Based on an examination of D4 RIN price against time, the data appear to have a non-zero 

intercept and follow a time trend.  



Figure 6: D4 RIN price in levels 

 

Therefore, Case IV of the ADF test is specified such that 

∆𝑙𝑛𝑅𝑡 = 𝛾0 + 𝛾1𝑙𝑛𝑅𝑡−1+𝛾2𝑡 + ∑ 𝜑𝑖∆𝑙𝑛𝑅𝑡−𝑖

𝑝−1

𝑖=1

+∈𝑅𝑡
. 

In Case IV the null hypothesis is that 𝛾1 = 𝛾2 = 0 and 𝛾0 is allowed to be any value. In this case, 

test results are even stronger in failing to reject the null with a p-value of 0.9957. D4 RIN prices 

are thus appropriately modeled as a GBM. Therefore drift and variance parameters can be 

deduced from the regression of 

 ∆𝑙𝑛𝑅𝑡 = 𝑐 + ∑ 𝜑𝑖∆𝑙𝑛𝑅𝑡−𝑖

𝑝−1

𝑖=1

+∈𝑅𝑡
 

.  

Recall that 𝜇𝑟 = (𝛼𝑟 −
1

2
𝜎𝑟

2) such that, Δ𝑙𝑛𝑅(𝑡) = 𝜇𝑟𝑑𝑡 + 𝜎𝑟𝑑𝑧  and  Δ𝑙𝑛𝑅(𝑡) = (𝛼𝑟 −

1

2
𝜎𝑟

2)𝑑𝑡 + 𝜎𝑟𝑑𝑧. If 𝑑𝑡 = 1 then 𝐸[Δ𝑙𝑛𝑅(𝑡)] = 𝜇𝑟 and taking the expectation of both sides of the 



above regression 

𝐸[∆𝑙𝑛𝑅𝑡] = 𝐸 [𝑐 + ∑ 𝜑𝑖∆𝑙𝑛𝑅𝑡−𝑖

𝑝−1

𝑖=1

+∈𝑅𝑡
]  

results in 𝜇𝑟 = 𝑐 + 𝜇𝑟 ∑ 𝜑𝑖
𝑝−1
𝑖=1 . Therefore, 𝜇𝑟 =

𝑐

1−∑ 𝜑𝑖
𝑝−1
𝑖=1

= (𝛼𝑟 −
1

2
𝜎𝑟

2) and the standard 

deviation can be read directly from the regression results root mean squared error (Schmit et al., 

2011). 

Table 2 

Ordinary Least Squares result for the equation: ∆𝑙𝑛𝑅𝑡 = 𝑐 + ∑ 𝜑𝑖∆𝑙𝑛𝑅𝑡−𝑖
𝑝−1
𝑖=1 +∈𝑅𝑡

  

Dependent                       

∆𝑙𝑛𝑅𝑡 
 

Coef. 

 

Std. Err. 

 

t  

 

P > t 

 

[95% Conf. Interval 

Independent     

 

  

 

  

 

  

 

    

∆𝑙𝑛𝑅𝑡−1 
 

0.08366 

 

0.0254 

 

3.300 

 

0.001 

 

0.033927 0.1333873 

∆𝑙𝑛𝑅𝑡−2 
 

0.01104 

 

0.0254 

 

0.430 

 

0.664 

 

-0.03886 0.060936 

∆𝑙𝑛𝑅𝑡−3 
 

0.07701 

 

0.0253 

 

3.040 

 

0.002 

 

0.027295 0.1267253 

𝑐 
 

0.00099 

 

0.0012 

 

0.810 

 

0.417 

 

-0.00141 0.0033868 

            Observations 

 

1543 

         F(3,1539) 

 

7.16 

         Prob > F 

 

0.0001 

         Root MSE   0.04793                   

 

OLS results indicate the constant 𝑐 is not statistically different from zero. Therefore (�̂�𝑟 −
1

2
�̂�𝑟

2) 

is set equal to zero and the drift parameter is solved for by plugging the root mean squared error 

in for �̂�𝑟. 

(�̂�𝑟 −
1

2
�̂�𝑟

2) = 0 

�̂�𝑟 =
1

2
�̂�𝑟

2 



�̂�𝑟 =
1

2
(0.04793)2 = 0.0011486 

Recall that 𝑑𝑡 was set to equal one, therefore the drift and variance parameters are annualized 

following the convention of converting 1-day parameters to h-day parameters. This requires 

scaling by a factor of √ℎ  resulting in a drift rate of  �̂�𝑟 = 0.0011486 ∗ √252 = 0.0182 and a 

standard deviation of �̂�𝑟 = 0.04793 ∗ √252 = 0.7608. This same process is carried out for the 

drift and standard deviation of conventional fuel price. By examining the correlogram of ∆𝑙𝑛𝑃𝑡 it 

appears that independence is tenable. 

Figure 7: ACF and PACF of ∆𝑙𝑛𝑃𝑡  

 

A Portmanteau white noise test is conducted with the null hypothesis that white noise is present 

in the residuals ∈𝑃𝑡
 of ∆𝑙𝑛𝑃𝑡 = 𝜑1∆𝑙𝑛𝑃𝑡−1 +∈𝑃𝑡

. The Portmanteau Q-test statistic is 43.079, 

resulting in a p-value of 0.3411, signaling a failure to reject the null hypothesis.  Based on an 

examination of diesel price against time, the data appear to have a non-zero intercept and time 

trend. So an ADF test of Case IV is specified such that 

∆𝑙𝑛𝑃𝑡 = 𝛾0 + 𝛾1𝑙𝑛𝑃𝑡−1+𝛾2𝑡 +∈𝑃𝑡
. 



The null hypothesis in Case IV is that 𝛾1 = 𝛾2 = 0 and 𝛾0 is allowed to take any value. The 

above ADF test with zero lags produces a p-value of 0.7915 signaling a failure to reject the null 

hypothesis of unit root. Variations of the Case IV ADF test with additional lags is also tested and 

results signal a failure to reject the null hypothesis in all cases. 

Figure 8 

 

To obtain the drift and variance parameters an OLS regression of ∆𝑙𝑛𝑃𝑡 = 𝑐 + 𝜑1∆𝑙𝑛𝑃𝑡−1 +

∈𝑃𝑡
 is conducted just as was the case for D4 RIN price. Regression results are presented in Table 

2 below. Once again the constant term is not statistically different from zero. Reading the root 

mean squared error directly from the OLS results and plugging into the expression for the mean, 

the drift rate is found to be 

�̂�𝑝 =
1

2
(0.01844)2 = 0.00017. 

With a 1-day drift rate of 0.00017 the annual drift rate becomes �̂�𝑝 = 0.00017 ∗ √252 =

.0026986 and the annual standard deviation becomes�̂�𝑝 = 0.01844 ∗ √252 = 0.2927. 



Table 3: 

Ordinary Least Squares result for the equation: ∆𝑙𝑛𝑃𝑡 = 𝑐 + 𝜑1∆𝑙𝑛𝑃𝑡−1 +∈𝑃𝑡
 

Dependent                       

∆𝑙𝑛𝑃𝑡 
 

Coef. 

 

Std. Err. 

 

t 

 

P > t 

 

[95% Conf. Interval 

Independent     

 

  

 

  

 

  

 

    

∆𝑙𝑛𝑃𝑡−1 
 

-0.0209821 

 

0.025505 

 

-0.82 

 

0.411 

 

-0.07101 0.0290455 

𝑐 
 

-0.0004234 

 

0.000469 

 

-0.90 

 

0.367 

 

-0.00134 0.0004969 

            Observations 

 

1,545 

         F(1, 1543) 

 

0.680 

         Prob > F 

 

0.41080 

         Root MSE   0.01844                   

 

Next, the correlation coefficient of conventional fuel price and D4 RIN price is obtained by 

estimating the correlation between the residuals of the fitted OLS regressions on ∆𝑙𝑛𝑅𝑡 and 

∆𝑙𝑛𝑃𝑡. Results are presented below in Table 4. 

Table 4: Parameter Estimation Results 

Parameter Definition Value Scale 

𝛼𝑝 Drift Rate Conventional Fuel 0.0027 Per year 

𝛼𝑟 Drift Rate D4 RINs 0.0182 Per year 

𝜎𝑝 Standard Deviation Conventional Fuel 0.2927 Per year 

𝜎𝑟 Standard Deviation RINs 0.7609 Per year 

𝜌𝑝𝑟 Correlation of Fuel and RINs -0.0129 Per year 

 

9. Cost Parameters 

Production of renewable fuel can occur through a number of technological processes. One such 

technological process which shows considerable promise is a Green Fuel Technology capable of 

producing three different types of alternative fuel through the conversion of eight or more 

different feedstocks. A firm deciding to invest will employ this technology to produce the most 

profitable alternative fuel. Presumably this would imply that the firm produces the alternative 



fuel which generates the most valuable RIN at the lowest operating cost and is the alternative 

fuel with the greatest demand. Of the three types of RINs under consideration in this study, D4 

Biodiesel RINs have the greatest value due to the nested structure of RINs discussed in section 2. 

Based on this nested structure cellulosic biofuel (D3) and cellulosic diesel (D7) RINs are more 

valuable than biodiesel D4 RINs. However, D3 and D7 RINs are not considered in this case due 

to a lack of significant historical production and thus lacking historical data. The first year D3 

and D7 RINs were generated was 2012, but of the 15,306,658,432 total RINs generated in 2012, 

only 21,810 of those were D3 or D7 RINs. That translates to just 0.0001425% of total RINs 

attributed to D3 or D7 RINs. In 2015 the total RIN count, including D3, D4, D5, D6 and D7 was 

17,908,121,504 RINs. Of the 17.9 billion 2015 RINs, D3 and D7 RINs made up just 

141,557,292, or 0.7905%. As of March 10, 2016 the total RIN count was 2,842,575,051 and only 

14,755,743 D3 RINs and zero D7 RINs were generated. 

D4 RINs are generated through the production of biodiesel, green-diesel and renewable jet fuel. 

Firms employing the Green Fuel Technology are able to produce either of these fuels. Producers 

of conventional diesel are required to submit a specified number of RINs each year based on 

their annual production of conventional diesel. So the Renewable Fuel Standard supports 

demand for either biodiesel or green-diesel. On the other hand, producers and importers of 

conventional jet fuel are not obligated to submit RINs.  

Green-diesel is a second-generation alternative fuel that can be blended at any proportion with 

conventional diesel. Chemically, green-diesel is identical to conventional petroleum based diesel, 

so there is no blend limit. Vehicles can operate on 100% green-diesel without any engine 

modifications. It requires no changes to infrastructure and it has a higher cetane rating the 

conventional diesel (UOP, 2016). A promising feedstock for this conversion technology is 



pennycress oil. Pennycress is a non-food, winter annual cover crop that produces high quality oil 

seeds. As a winter cover crop, it does not displace any land for food crops, and it provides all the 

soil benefits associated with other cover crops. Additionally the high quality oil seed has 

potential to generate significant farm revenue for land normally left fallow (Moser et al. 2009).  

Cost parameters are therefore based on the production of a green-diesel using purchased 

pennycress oil. Typically a techno-economic analysis is required to estimate cost parameters of a 

production pathway. Techno-economic analysis (TEA) is a method used to assess the technical 

and economic performance of a particular production pathway  (Brown & Brown, 2013).  TEA’s 

represent a simplified version of commercial scale projects, that allows the biorefinery’s 

production pathway to be evaluated for feasibility. The primary method of developing a TEA is 

through a detailed process model.  Performance information is collected on the technologies 

under consideration. Appropriate production scenarios are identified and the process model is 

designed using process engineering software. Based on the process design, capital investments 

and determined and a discounted cash flow analysis is performed. This allows the investment 

and production cost of a biorefinery to be determined. 

Due to the detailed and specialized information required to conduct a TEA, cost parameters are 

sourced from previous literature. Two primary cost parameters utilized in this study are operating 

costs and capital costs (initial investment cost). English, Menard, Yu Edward T., and Jensen 

(2016), provide a thorough review of operating and capital costs for a variety of production 

pathways. For green fuel production pathways, the authors examine four different conversion 

processes: 1) hydro-processing of purchased oils, 2) pyrolysis to hydro-processing, 3) 

gasification and 4) pyrolysis of biomass. Since pennycress is the chosen feedstock under 

consideration for this study, cost parameters represent the hydro-processing of purchased oils 



process. Based on a conversion facility which demands 96.3 million pounds of pennycress oil, 

with a production capacity of 13 million gallons, the capital costs are estimated to be $3.93 per 

gallon. Operating costs are based on feedstock production and transportation costs and are 

estimated to be $3.38 per gallon (English et al., 2016). Table 5 summarizes the cost parameters 

and their source. 

Table 5: Cost parameters obtained from prior literature 

Parameter Definition Value Scale Source 

𝛿 Discount Rate 0.10 per year (Brown & Brown, 2013) 

𝜂 Oil Price Influence 2.34 per gallon (Cazzola et al., 2013) 

𝑤 Operating Cost 3.38 per gallon (English et al., 2016) 

𝑘 Capital Cost 3.93 per gallon of total capacity (English et al., 2016) 

𝑠 Salvage Value 2.48 per gallon of total capacity (Schmit, Luo, & Tauer, 2009) 

 

10. Results 

In a single parameter model break-even entry price is defined as 
𝑊ℎ

𝛿−𝛼𝑝
≥

𝑤

𝛿
+ 𝑘 where 

𝛼𝑝 represents the annual drift rate of conventional fuel price, implying the firm produces an 

alternative fuel whose price is on par with the conventional fuel. The price which triggers 

investment in this single variable break-even analysis is  
𝑊ℎ

0.10−0.0027
≥

3.38

0.10
+ 3.93 or that 𝑊ℎ ≥

$3.67 per gallon. Similarly the single variable break-even exit price is defined as 
𝑊𝑙

𝛿−𝛼𝑝
≤

𝑤

𝛿
+

𝑠 →
𝑊𝑙

0.10−0.0027
≤

3.38

0.10
+ 0.9825 or that 𝑊𝑙 ≤ $3.38 which is equivalent to operating costs for the 

production pathway being modeled.   

In a two variable model, break-even entry price is defined as 
𝑊ℎ

𝛿−𝛼𝑟−𝛼𝑝
≥

𝑤

𝛿
+ 𝑘 where the output 

price is now a composite of both the conventional fuel price and D4 RIN price, as is the case 



under a binding RIN market. Using the drift rate for both D4 RIN and conventional diesel price, 

the two-variable break-even prices which triggers investment is 
𝑊ℎ

0.10−0.0027−0.0182
≥

3.38

0.10
+

3.93 or that 𝑊ℎ ≥ $2.98. Two-variable break-even exit price is defined as
𝑊𝑙

𝛿−𝛼𝑟−𝛼𝑝
≤

𝑤

𝛿
+ 𝑠 and 

is calculated to be $2.75 per gallon. So when uncertainty and irreversibility are not considered, 

RIN prices reduce the entry price and reduce the gap between the entry and exit prices. From this 

perspective RIN markets are accomplishing the goals set forth by policy makers. However, RIN 

markets have been highly volatile since their inception. The volatility in RIN markets 

exacerbates the volatility already present in the market for transportation fuels, and entering into 

production of biofuels requires significant capital investment which is at least partially 

irreversible. The trigger price which induces investment is significantly larger when uncertainty 

and irreversibility is considered. Before examining the results of the real options approach using 

two stochastic variables, the trigger prices under a single variable real option analysis is 

examined. 

In the absence of a RIN market, firms considering investment into the production of drop-in 

alternative fuel such as green-diesel would face a single output price. Because the firm is 

producing a drop-in alternative, the firm would observe the price of conventional diesel when 

deciding to enter or exit the market. Using this rational a real option analysis with a single 

stochastic variable is performed using the same parameters from conventional diesel, and the 

same cost parameters found for the production pathway discussed earlier.  To summarize, the 

parameters used in the single stochastic variation are presented in Table 6. 

 



Table 6: Parameters used for Single Variable ROA 

Parameter Definition Value Scale 

𝛼𝑝 Drift Rate Conventional Fuel 0.0027 per year 

𝜎𝑝 Standard Deviation Conventional Fuel 0.2927 per year 

𝛿 Discount Rate 0.10 per year 

𝑤 Operating Cost 3.38 per gallon 

𝑘 Capital Cost 3.93 per gallon  

𝑠 Salvage Value 0.9825 per gallon  

 

10.1 Results of the Single Stochastic Variable Case 

Assuming the above parameters, the single stochastic variable case shows that uncertainty 

increases the price required for a firm to enter the market. Furthermore the price with induces the 

firm to exit the market is decreased under uncertainty, creating a gap between the entry and exit 

price that is larger than under the break-even analysis. This gap represents hysteresis in the 

market which is a zone of inaction for the firm. The greater the uncertainty the firm is subject to, 

the larger this hysteresis effect becomes. In this case, the entry price is found to be $4.26 per 

gallon and the exit price is found to be $2.94 per gallon. Recall that the break-even entry (exit) 

price was found to be $3.67 ($3.38) per gallon. Table 7 and Figure 9 illustrate the uncertainty 

effect on entry and exit prices for the single variable case. The level of hysteresis increases with 

increasing levels of uncertainty as can be seen in Figure 5.  



Table 7: Entry and Exit Prices with 

varying uncertainty 

𝜎𝑝 

 
𝑃ℎ 

 
𝑃𝑙 

0.2000 

 

3.992 

 

3.122 

0.2927 

 

4.262 

 

2.941 

0.3500 

 

4.445 

 

2.835 

0.4000 

 

4.613 

 

2.747 

0.4500 

 

4.786 

 

2.663 

0.5000 

 

4.965 

 

2.585 

0.6000 

 

5.332 

 

2.443 

0.7000 

 

5.711 

 

2.318 

0.7500 

 

5.904 

 

2.262 

0.8000 

 

6.099 

 

2.209 

0.9000 

 

6.493 

 

2.113 

1.0000 

 

6.895 

 

2.027 

𝛼𝑝 

 

0.00269 

  𝛿 
 

0.10 

  𝑤 
 

3.38 

  𝑘 
 

3.93 

  𝑠   -0.9825     

Varying the standard deviation parameter from 0.20 up to 1 demonstrates the effect uncertainty 

has on the firm’s investment decision. Results are consistent with theoretical expectations. The 

larger the price uncertainty becomes, the more valuable is the option to invest. It is this option 

value that induces the firm to delay until the discounted value of observed price outweighs the 

value of holding the option. This implies that the chosen discount rate also has a significant 

effect on the firms decision and indeed is does. Figure 10 and Table 8 demonstrate the effect of a 

varying discount rate on both the real option trigger prices and the break-even entry and exit 

prices. In this case, the gap between the real option entry and exit price remains constant over the 

range of discount rates. However, a varying discount rate creates a widening gap for the break-

even entry and exit price. 

 

Figure 9: Entry and Exit Prices with varying 

uncertainty 



Table 8: Entry and Exit prices with 

varying discount rate  

𝛿 
 

𝑃ℎ 
 

𝑃𝑙 

0.0200 

 

4.0011 

 

2.4165 

0.0500 

 

4.1499 

 

2.7153 

0.1000 

 

4.2620 

 

2.9415 

0.1500 

 

4.3862 

 

3.0910 

0.2000 

 

4.5259 

 

3.2102 

0.2500 

 

4.6777 

 

3.3121 

𝛼𝑝 

 

0.00269 

  𝜎𝑝 

 

0.2927 

  𝑤 
 

3.38 

  𝑘 
 

3.93 

  𝑠   -0.9825     

 

10.2 Results of the Two-Stochastic Variable Case 

In the two-variable case, the firm is subject to uncertainty in both conventional fuel price and 

RIN price. The interesting question becomes how these two uncertainties interact with each other 

and how that interaction effects the firm’s investment decision. Theoretical RIN prices are 

thought to be negatively correlated with conventional fuel price. As the price of conventional 

fuel increases, substitution effects take hold and shift the demand for alternative fuels which in 

turn causes a decrease in the price of RINs. This negative relationship between RIN price and 

conventional fuel price is borne out in the data as evidenced by the estimated correlation of -

0.0129. 

When solving the two-variable case, the variables were transformed into a ratio to facilitate a 

derived analytical solution to the value functions. Therefore the solutions in the two-variable 

case are in the form of a ratio. However, our primary interest is not in the ratio itself, rather in the 

composite price of conventional fuel plus RIN price. To convert ratios back into a composite 

price compatible with model assumptions, the implied conventional fuel price in operating costs 

Figure 6: Entry and Exit with varying discount rate Figure 10: Entry and Exit with varying discount rate 



is employed. Recall that operating cost is defined as  𝑤 = 𝜂𝑃 where 𝜂 is the scale factor as 

determined by historical fuel price influence on feedstock and transportation costs. 

Since 𝜂 and 𝑤 are specified, they together imply a conventional fuel price of  
𝑤

𝜂
= 𝑃. In the case 

of this model the implied conventional fuel price becomes 
3.38

2.34
= 𝑃 = 1.44̅. From the variable 

transformation 𝑉(𝑃, 𝑅) = 𝑓(𝑃 + 𝑅) = 𝑃𝑓 (1 +
𝑅

𝑃
) and therefore ratios are converted back into 

trigger prices by 1.44̅ ∗ (1 + 𝑟) = (𝑃𝑇 + 𝑅𝑇) where 𝑃𝑇 and 𝑅𝑇 represent trigger prices and  𝑇 ∈

[ℎ, 𝑙]. 

Using the parameters specified in Table 3 and Table 4, entry and exit ratios are found to be 

2.9915 and 0.7182 respectively. To convert these ratios into entry and exit prices compatible 

with the model, the entry price of the two-variables becomes 1.44̅ ∗ (1 + 2.9915) = 𝑃ℎ =

$5.765. This is the price per gallon of biofuel that would be required to trigger investment in the 

two-variable case. The price per gallon of biofuel that would trigger the firm to exit the market is 

found to be1.44̅ ∗ (1 + 0.7182) = 𝑃𝑙 = $2.4819.  

Solving the optimal switching problem through a system of equations and unknowns, of equal 

dimension, results in a unique solution for the assumed parameters. Any combination of RIN 

price and conventional fuel price with a combined price of $5.765 is predicted to trigger the firm 

to enter the market. Conversely any combination of RIN price and conventional fuel price with a 

combined price of $2.4819 is predicted to trigger the firm to abandon the project and exit the 

market.  



Figure 11 

 

Figure 11 traces out all combinations of entry and exit prices found to trigger the firm’s action to 

switch states. The resulting trigger prices of the two-variable model are significantly higher than 

results found in the one-variable model. For the two-variable model, entry trigger prices are 

approximately $1.50 per gallon higher than in the one-variable model. The higher trigger price 

which induces the firm to enter the market under the two-variable model is thought to be the 

result of high volatility in RIN price and its negative correlation to conventional fuel price. 

Increasing levels of uncertainty have been shown to increase the price required by the firm to 

enter the market, and also results in increasing strength of hysteresis effect. The additional 

uncertainty of RIN price leads to an exit trigger price of $2.4819, which is nearly $0.50 per 

gallon less than that was found in the one-variable case. Compared to the two-variable break-

even entry price, the real option trigger price under the two-variable model is nearly twice as 

large with a difference of $2.7811 per gallon. However, the two-variable real option model 

predicts an exit price which is approximately $0.27 per gallon less than the two-variable break-

even exit price. 



Table 9: Comparison of Entry and Exit prices 

Method 

 

Entry 

 

Exit 

Single Variable Break-Even 

 

$3.6711 

 

$3.3843 

Two Variable Break-Even 

 

$2.9844 

 

$2.7513 

Single Variable Real Option 

 

$4.2620 

 

$2.9415 

Two Variable Real Option 

 

$5.7655 

 

$2.4819 

 

Table 9 demonstrates the entry and exit prices found under each case. As discussed previously, 

the addition of the RIN market would appear to accomplish the goal of encouraging investment 

if viewed in the light of a two-variable break-even approach. However, when accounting for the 

uncertainty in conventional fuel price, RIN price and their correlations, the entry and exit prices 

required for investment are higher than the single variable case. In the one-variable case, the 

uncertainty level of conventional fuel price was varied from a standard deviation of 0.20 up to 

one to examine the effect of a changing volatility. To draw comparisons between the two-

variable case and the one-variable case, RIN price volatility is held constant at the estimated 

level of 0.7608 while allowing conventional fuel price to vary again from 0.20 up to one. Doing 

so results in an increasingly wide gap between entry and exit price that is substantially greater 

than the one-variable case.  

Figure 12: RIN volatility constant at the estimated 0.7608 

 



When the standard deviation of RIN price is held constant at the estimated value of 0.7608 and 

the standard deviation of conventional diesel is varied from 0.20 up to one, the difference 

between the two-variable case and the one-variable case is significant, particularly for the entry 

prices. Figure 12 indicates that additional uncertainty brought forth by the RIN market has a 

significant effect on the firm’s investment decision. If the standard deviation of conventional 

diesel is held constant at the estimated rate of 0.2927 and the standard deviation of RIN price is 

varied from 0.20 up to one, the path of the entry and exit prices are quite similar between the 

two-variable case and one-variable case.  

Figure 13: Conventional diesel volatility constant at the estimated 0.2927 

 

 

Figure 13 depicts the two-variable model against the one-variable model over varying levels of 

RIN price volatility, while holding diesel price volatility constant. As is the case in Figure 7, the 

gap between entry and exit trigger prices is wider under the two-variable model, at lower levels 

of volatility. As volatility nears unity, the zone of inaction widens to a comparable area for both 

the one-variable and two-variable models. The one-variable model predicts entry and exit trigger 

prices which are clearly lower than the two-variable model, across the range of RIN price 



volatility. Intuitively, this is likely the result of increased volatility in the two-variable model, in 

the form of diesel price volatility.  

The choice of 𝜂 is based on findings of Cazzola et al. (2013) where the historical influence of oil 

price on feedstock production and transportation costs ranged from 2.07 to 2.62. When operating 

costs consist of feedstock production and transportation, this implies that the operating cost 

would range from 2.07 to 2.62 times the historical price of conventional fuel. The median of this 

range is chosen in parameter estimations to facility analytical solutions. Using this historical 

relationship, the operating cost of $3.38 per gal implies the price of conventional fuel is $1.44 

per gal. This is the price which is used to convert the entry and exit trigger ratios into entry and 

exit trigger prices, given the parameter specifications. Therefore, results are inspected for 

sensitivity to  𝜂, given that operating costs are known and held constant. 

Figure 14: Examining the sensitivity of results to 𝜂 

 

Figure 14 shows that the results are not highly sensitive over a wide range of values for 𝜂. The 

lack of sensitivity is clearer when the range of 𝜂 is restricted to the historical range of 2.07 to 

2.62 as found by (Cazzola et al., 2013).  



Figure 15: Examining the sensitivity of results to 𝜂 ranging from 2.07 to 2.62 

 

Figure 15 indicates that entry and exit trigger prices under the two-variable model are not highly 

sensitive over the range of historical values of η. By modelling the operating cost as linearly 

related to conventional fossil fuels and relying on prior literature to arrive at reasonable estimates 

of  η, an analytical solution for the two-variable model was made possible. A relaxing of these 

assumptions requires the use of numerical methods to approximate solutions to the entry and exit 

thresholds. Solving the entry and exit problem without these assumptions will provide a sort of 

robustness to the analytical results by verifying similar results are found under alternative 

methods. 

11. Numerical Approach 

This section relies on a function approximation and collocation method to solve the firm’s 

problem of optimal entry and exit timing. Fackler (2008), provides a general approach and 

MATLAB implementation which is applied to the optimal entry and exit problem of second-

generation biofuel producers. 

Recall from equation (7) the firm’s decision to enter can be represented as 
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Combining this with the value matching condition (33)  

𝑉0(𝑃, 𝑅) = 𝑉1(𝑃, 𝑅) − 𝑘, 

the optimal value function thus satisfies the conditions, 
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(41) 

and   

 𝑉0(𝑃, 𝑅) ≥ 𝑉1(𝑃, 𝑅) − 𝑘. (42) 

Whichever of these two hold with equality determines the optimal firm decision. So if the value 

matching condition holds with strict equality such that 𝑉0(𝑟𝐻) = 𝑉1(𝑟𝐻) − 𝑘, then the optimal 

firm decision is to invest the sunk cost 𝑘 and enter the market.  

Allow 
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The optimality conditions (41) and (42) can then be written in equivalent form 

 0 = min[(𝛽0(𝑃, 𝑅) − 0) , 𝑚𝑖𝑛(𝑉0(𝑃, 𝑅) − 𝑉1(𝑃, 𝑅) + 𝑘)]  (43) 

 (Fackler, 2008). 

Similarly the optimality conditions for the active firm can be expressed as 

 0 = min[(𝛽1(𝑃, 𝑅) − 𝜋1(𝑃, 𝑅)) , 𝑚𝑖𝑛(𝑉1(𝑃, 𝑅) − 𝑉0(𝑃, 𝑅) − 𝑠)]. (44) 

where 𝜋1(𝑃, 𝑅) is the flow of payments generated by the active firm. 

To find the optimal value function in each state, suppose the firm’s value function 𝑉𝑖(𝑃, 𝑅) , 

where 𝑖 = 0,1, can be approximated by 𝜙(𝑃, 𝑅)𝜃𝑖 where 𝜙(∙)  represents a family of 𝑛-basis 



functions and 𝜃𝑖  is an 𝑛-vector of approximating coefficients. The approximating coefficients 𝜃𝑖 

solve the optimality conditions at 𝑛-nodal state values and are found by collocation methods. 

The set of 𝑛-basis functions for a family of approximating functions form the 𝑛 × 𝑛 matrix 

represented by Φ and Β represents 𝑛 × 𝑛 matrix of 𝛽𝑖(𝑃, 𝑅) evaluated at 𝑛-nodal points. 

Similarly 𝜋𝑖  is defined as the flow of payments in state (𝑖), and 𝐶𝑖𝑗  is defined as the cost to 

switch from state (𝑖)to state (𝑗). 

Now the problem is written as an extended vertical linear complementary problem (EVLCP) 

which solves for the value of 𝜃1and 𝜃2in 

 0 = min(𝑀1𝜃1 + 𝑞1 , 𝑀2𝜃2 + 𝑞2). (45) 

𝑀1 = [

Β1 0 … 0
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⋮
Φ 0
0 Φ

0
⋮

−Φ 0 … Φ

] 

𝑀2 = [

Φ −Φ … 0
0
⋮

Β2 0
−Φ Φ

0
⋮

0 −Φ … Φ

] 

𝑞1 = [
0

𝐶2,1
] 

𝑞2 = [
𝐶1,2

−𝜋1(𝑃, 𝑅)
] 

Note that the switching costs 𝐶2,1 and 𝐶1,2  represent the exit cost and the entry cost respectively. 

So practically speaking, these are represented as the salvage cost (𝑠) and the capital cost (𝑘). 

Similarly, 𝜋1(𝑃, 𝑅) represents the flow of payments when the firm is active which is specified 

as 𝑃 + 𝑅 − 𝑤.  



To solve the EVLCP, a smoothing Newton algorithm is employed while specifying the family of 

approximating solutions to be a piecewise linear function using upwind finite differences to 

approximate first and second order differentiation. Piecewise linear functions are most 

appropriate for entry and exit problems because of the inherent discontinuities in the second 

derivative of the value function where it becomes optimal for the firm to switch states from idle 

to active, or from active to idle. 

An important choice in specifying the model is the choice of lower and upper limits on the 

approximation interval and the number of nodal points. If the interval is too wide, a large number 

of node points will be required to obtain accurate solutions. Conversely if the approximation 

interval is too narrow, such that the process starts near an optimal switching point, the solutions 

may be inaccurate (Fackler, 2008). 

In this case, the approximation interval spans the possible prices of conventional fuel price and 

RIN price. Therefore the lower bound is set to $0.01 and the upper bound is set to $10 per gallon 

for both conventional fuel and RIN price. Between each lower and upper bound, 100 nodes are 

specified, so that the matrices of nodal points for both conventional fuel price and RIN price are 

both 100 × 100. Therefore 𝑀1 and 𝑀2 are each 10,000 × 10,000 matrices, while 𝑞1 and 𝑞2 are 

each 10,000 × 1 matrices.      

Performing the numerical approximation results in entry and exit trigger prices which are very 

similar to those found under the analytical approach. Numerical approximation results in zone of 

inaction which widens with lower conventional fuel price and higher RIN price. In other words 

the ratio of relative prices is not constant over the entire range of prices. For example, if RIN 

prices are at the lower bound of the approximation interval of $0.01, the entry and exit thresholds 



are found to be $5.3682 and $2.6436 respectively. This implies that if RIN prices are near zero, 

firms would require a conventional fuel price of $5.3582 per gallon to enter the market. 

Conversely, firms would exit the market if conventional fuel price fell to $2.6436 per gallon. 

These two entry and exit thresholds also represent the lower bound of entry trigger prices and the 

upper bound of exit trigger prices, so that the zone of inaction is most narrow when RIN prices 

are near zero at $0.01 per gallon. However, this minimum entry price threshold occurs for larger 

values of RIN price as well. For example if conventional fuel prices are $4.1473 per gal. the RIN 

price which would induce the firm to enter the market is found to be $1.2209 resulting in a 

combined output price of $5.3682 per gallon. Similarly, if conventional fuel price were to fall to 

$1.9273, a RIN price of $0.7164 would induce the firm to abandon operations and exit the 

market. Figure 16 traces out the combination of conventional fuel price and RIN price which 

triggers entry and exit actions. 

Figure 16: Numerical Solution entry and exit price thresholds  

 

Notice in Figure 16 that the slopes of the entry and exit thresholds are not constant. As lower 

conventional fuel prices prevail, higher RIN prices are required to trigger firm entry and lower 



RIN prices are required to trigger firm exit. Intuitively this result seems logical. RIN prices are 

substantially more volatile than conventional fuel price, so with less price support in the form of 

conventional fuel price, and even higher RIN price is required to overcome the price uncertainty.  

Table 10 reports the entry and exit thresholds under the various methods discussed. The entry 

and exit trigger prices reported for the two-variable numerical approximation are the lower 

bound of the entry trigger price and the upper bound of the exit trigger price.  

Table 10: Comparison of entry and exit thresholds 

Method 

 

Entry 

 

Exit 

Single Variable Break-Even 

 

$3.6711 

 

$3.3843 

Two Variable Break-Even 

 

$2.9844 

 

$2.7513 

Single Variable Real Option 

 

$4.2620 

 

$2.9415 

Two Variable Real Option 

 

$5.7655 

 

$2.4819 

Two Var. Numerical Solution  $5.3682  $2.6436 

 

Figure 17: Entry and exit thresholds under both the numerical and analytical approach 

 

By plotting the entry and exit thresholds found under both the analytical approach and the 

numerical approach, similarities in the solutions are even clearer. For both the entry and exit 



thresholds, the two solutions intersect at $5.7655 and $2.4819, which is the value of the entry 

and exit thresholds along the entire solution curve for the analytical approach. So it seems that 

both analytical and numerical methods arrive at similar solutions. Under the two-variable model, 

the entry trigger price threshold is substantially larger than the threshold predicted under the one-

variable real option model and the traditional break-even analysis models. Similarly the exit 

trigger price is lower than the exit price predicted in the one-variable and break-even models. It 

appears then, that while accounting for the volatility in both conventional fuel price and RIN 

price, the hysteresis effect, brought about by uncertainty and irreversibility, is stronger than 

would be predicted under a single-variable model. 

12. Conclusion 

The price which triggers the firm to invest and enter the market is significantly higher under the 

real options model with two stochastic variables. The underlying cause is price volatility and 

partially irreversible capital costs. In the market for second-generation biofuels, the price 

volatility faced by potential market entrants comes in the form of both conventional fuel price 

and RIN price. Conventional fuel prices have historically exhibited large volatilities, but RIN 

prices are found to be even more volatile, compounding the uncertainty faced by potential 

market entrants. 

Analytical solutions are found under the two-variable approach by transforming the two-

stochastic variables into a single ratio, following the technique pioneered by (Schmit et al., 

2011). In this case however, the ratios of variables are both output prices, in the form of 

conventional fuel price and RIN price. The analytical model of a single stochastic ratio, results in 

entry and exit ratios which trigger the firm’s action. The ratios are then converted back into 

trigger prices, using an assumed relationship between operating costs and conventional fuel 



price. The resulting entry and exit thresholds are found to be in line with expectations. The entry 

and exit thresholds are significantly higher (lower) than the entry (exit) thresholds found in the 

single-variable real option model. The analytical model relies on the assumption of geometric 

Brownian data generating process for both stochastic variables. A second assumption needed to 

arrive at analytical solutions is that operating costs are linearly related to the price of 

conventional fossil fuels. Operating costs consist of feedstock production costs and feedstock 

transportation costs, so these costs are certainly dependent upon fossil fuel input costs. However, 

the linearity is a strong assumption. To avoid this assumption, numerical solutions are found 

through the use of a projection and collocation method. 

Solving the two-variable real option model through the use of numerical methods has a number 

of advantages. First, the GBM data generating assumption can be relaxed, and a linearly related 

operating cost can be relaxed as well. Numerical solutions for the two-variable model are 

obtained while specifying a GBM process. Data analysis in section 8 support the notion of a 

GBM data generating process, however, the addition of a jump diffusion process has been argued 

for in previous studies. Plans are in place to specify a jump diffusion process in subsequent 

revisions of this paper.  

Both numerical and analytical methods produce similar results and are in line with expectations. 

However, numerical methods rely on fewer assumptions and seem to more accurately account 

for differing volatilities between the two stochastic prices. For example, when diesel price is near 

zero, the firms would require very large RIN prices of $8 per gallon. Conversely if RIN prices 

are near zero, diesel prices are only about $5 per gallon. So the slopes of the thresholds vary over 

the range of prices under the numerical solution. Intuitively this would be explained by the larger 



uncertainties in RIN price compared to conventional fuel price. Using the analytical method, the 

slope of the thresholds remains constant over the range of prices. 

Results indicate that high levels of uncertainty in RIN price, contribute to the widening of the 

range of inaction. Compared to the one-variable model, the entry (exit) trigger prices are higher 

(lower) in the two-variable model. This implies that uncertainties in annual volume standards and 

the future stability of the renewable fuel standard may be contributing to market volatility and 

actually impeding private investment. If this is indeed the case, it seems a more prudent policy 

effort would be to reduce uncertainties faced by producers of second-generation biofuels, rather 

than mandate minimum quantities of consumption. 

This study could be strengthened by including additional policy incentives, such as USDA’s 

Advanced Biofuel Payment Program 9005. Enacted in the 2008 Farm Bill and reauthorized in 

the 2014 Farm Bill, program 9005 authorizes payment to producers of advanced biofuels 

(English et al., 2016). Directions for future research include the addition of these types of policy 

incentives, the use of alternative stochastic processes and the inclusion of investment lags in the 

firm’s optimal decision analysis. 
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