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Estimating Site-Specific Crop Yield Response using Varying Coefficient Models 

 

Abstract 

This study estimates the site-specific crop yield response function using varying coefficient 

models.  It is widely recognized that the parameters of yield response function vary dramatically 

across space and over time.  Previous studies usually capture this variability of response by using 

locational and time dummy variables.  While that approach reveals the existence of the response 

variability, the exact pattern of the variability is unknown, and the capacity of ex ante prediction 

of such models are limited.  This study takes a step forward to explicitly explain how the 

response varies with the actual site characteristic variables, such as soil, water, topography, 

weather, and other factors that are commonly available to producers.  By using the varying 

coefficient model, the parameters of the response function are specified to change continuously 

with those site variables.  Based on a simulation data set, the varying coefficient model is 

demonstrate to outperform the site-dummy model by creating better variable rate application 

(VRA) fertilizer prescriptions.  We further propose to apply the model to large sample of high 

resolution production data, and create ex ante spatially explicit optimal VRA fertilizer 

recommendations.  The ultimate goal is to develop a precision decision system which can 

statistically turn the soil testing and weather forecasting information into input application 

prescriptions for producers. 

 

Keywords: Site-specific crop response, varying coefficient regression, ex ante prediction, 

precision agriculture, big data 

 

  



2 

 

Estimating Site-Specific Crop Yield Response using Varying Coefficient Models 

 

1. Introduction 

Precision agriculture is attracting more attention in recent years for its economic and 

environmental benefits.  Advancing GIS technologies, computers, and farming equipment have 

developed the techniques and data for applying precision agriculture.  However, a major barrier 

for the wide adoption of precision agriculture is obtaining the precision prescriptions of 

optimality of input applications. 

  

The correct estimation of site-specific yield response to inputs is crucial for the success of 

generating optimal precision prescriptions.  Due to the considerable heterogeneity in soil and 

weather, the optimal input rates vary both spatially and temporally.  The identification of 

localized optimal input quantities (and thus profits) across heterogeneous within-field locations 

depends crucially on the ability to credibly estimate site-specific production relationships, or 

yield response functions.  This is complicated both by the complexities of the physiological 

processes underlying crop growth and the lack of available data at such a fine scale.  

 

In general, there are mainly two types of approach to estimate the yield response functions.  The 

first one is the simulation models.  They are mechanistic models which simulate the 

physiological process of crop growth such as photosynthesis, transpiration, nutrient update, etc.  

Those type of models have been widely used in agronomy, physiology, soil science, and 

agricultural engineering.  Examples include the “School of de Wit” crop growth model (de Wit, 

1978; Penning de Vries et al., 1989), DSSAT model (Tsuji et al., 1994), Hybrid-Maize (Yang et 

al., 2004), APEX model (Williams and Izaurralde, 2006), and Adapt-N (Melkonian et al., 2008).  

The fertilizer recommendation rates in many farming management support systems are based on 

simulation methods.  Despite the popularity, due to the complexities of crop growth’s 

interactions with various conditions, parameterization is a big issue.  Those simulation models 

are usually too complicated to accurately estimate their parameters (Spitters, 1990).  Many 

parameters are estimated based on strict assumptions, or even the modelers’ subjective opinions.  

The model predicting error ranges are usually large.  Therefore, those simulation models may 

serve better for the purpose of explanation rather than prediction (ten Berge et al, 1997). 
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The second approach is statistical regression.  It works by empirically fitting yield data to input 

levels using single or multiple regressions.  Regression models have been widely used in 

analyzing the agronomic experimental data.  In particular, in recent years a growing body of 

literature has applied spatial econometric models to field-trial experimental data to empirically 

estimate site-specific crop response functions (SSCRFs).  Studies include Anselin et al. (2004), 

Hurley et al. (2004), Lambert et al. (2004), Liu et al. (2006), Ruffo et al. (2006), and Lambert et 

al. (2006).  The most common approach is to divide a field into sub-blocks or “sites”, and then 

use discrete variables (i.e. block-specific dummies) to capture spatial variations of the response.  

Similarly, temporal variations in response are captured through interaction with year dummies.  

These approaches are useful for explaining yield variation and capturing ad-hoc forms of 

coefficient variation.  However, the arbitrarily defined site dummy variables do little to help us 

better understand the causal influences of such variation.  The relation between the response 

variability and site characteristics (soil, water, weather, etc) is not explicitly revealed.  

Consequently, the models are only capable of providing ex post evaluation of the same field’s 

profit potential from variable rate application technology (VRA), while its capacity of ex ante 

prediction for other fields under various other agronomic and climatic conditions is very limited.  

 

This study builds upon the existing literature of site-specific crop yield response functions, and 

takes a step forward in attempting to explicitly model the variation of yield response with respect 

to actual site-specific characteristics.  As a starting point, we focus on estimating corn yield 

response to nitrogen (N) fertilizer.  Following most studies, we specify a baseline nonlinear 

(quadratic) relationship.  But instead of interacting response parameters with site-dummy 

variables, we allow the parameters to vary in a smooth and continuous manner across alternative 

site-specific soil, topography, and weather characteristics.  Based on the estimated yield response 

function, the ultimate goal is to derive ex ante site-specific input quantity recommendations that 

achieves profit maximization in each specific location within field. 

 

This study proposes to use observational producer data to estimate the comprehensive yield 

response functions.  We start from collecting a cross-sectional data in 2014 from a group of corn 

producers spanning many locations in the United States.  Observed variables include within-field 
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GIS data on seed rates, fertilizer application, and yield from producers’ production records.  

Those production data are then matched to the public soil and weather databases such as the 

USDA Gridded Soil Survey Geographic (gSSURGO) 10-meter resolution maps and the 4-km 

resolution PRISM Climate Data.  Our research data differ from most previous studies typically 

using on-farm experimental data.  There are two advantages of producer data: (1) It has a much 

larger sample size.  The total number of observed field spots are in millions or even billions.  

That can support the estimation of more comprehensive response functions with a large set of 

variables.  (2) There is a rich amount of variation across inputs applications as well as agro-

climatic conditions.  It allows the simultaneous estimation of all kind of factors in impacting 

yield, which is normally impossible in experimental data where all other factors are controlled 

the same and only allow one factor to vary.  Despite the downsides of non-random application 

rates and less accurate measurements, producer data better serve the purpose of estimating our 

comprehensive yield response functions. 

 

The output of the estimation is a site-specific yield response function whose coefficients vary 

explicitly with soil and weather factors commonly available to producers (soil fertility and 

texture, elevation, slope, water, temperature, etc.).  Based on the function, a spatially explicit 

profit surface can be derived after combining price information, and the optimal inputs rates in 

each specific site can be predicted by maximizing profit.  That is, our estimation makes possible 

ex ante site-specific optimal inputs application maps, which can be predicted universally for all 

fields as long as the soil testing and weather information are available.  Our study provides an 

approach to integrate the farming data as well as other weather and geography information into a 

precision decision supporting system for producers to achieve economically optimum fertilizer 

application in crop production practices.  

 

 

2. Literature review 

Agricultural economists have a long history of estimating output response to input applications 

(Bullock et al., 2002).  In recent years, there has seen a growing body of empirical regression 

studies on the site-specific crop yield response functions.  Those studies typically use spatial 

econometric models and high resolution yield data, and their major focuses are usually to 
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examine the spatial and temporal instability of the response functions, as well as to estimate the 

potential profitability of site-specific inputs application. 

 

Mamo, Malzer, Mulla, Huggins and J. Strock (2003) uses sub-blocked experimental data to 

analyze the corn response to N rate with both spatial and temporal variations, and find the site-

specific N response shows some temporal instability across the sample years of 1997 and 1999.  

Anselin, Bongiovanni and Lowenberg-DeBoer (2004) estimate the site-specific yield response 

functions of corn production to nitrogen (N) application in Argentina.  Hurley, Oishi, and Malzer 

(2005) estimate the variable rate nitrogen applications using spatial autoregressive error model 

and geostatistical model, and find the results for the two models differ notably for the 1995 

Southern Minnesota data.  They further find the model performances are location specific.  

Lambert, Lowenberg-DeBoer and Malzer (2006) examine the spatial and temporal stability of 

corn and soybean response to nitrogen (N) and phosphorus (P) using a five-year corn-soybean 

rotation experiments in Minnesota over 1997—2000.   Liu, Swinton, and Miller (2006) estimate 

the site-specific response of corn to nitrogen based on field trial data in Calhoun and Hillsdale 

counties, Michigan, during 1999–2001, and find the site-specific response function is unstable in 

dryland fields, while more stable in irrigated fields.  Ruffo, Bollero, Bullock and Bullock (2006) 

estimate the site-specific corn production function for nitrogen fertilization in eight experimental 

fields in Central Illinois, and find soil and terrain attributes affect the responses.  Bongiovanni, 

Robledo and Lambert (2007) analyze the site-specific response of wheat yield and grain quality 

to nitrogen in the semiarid region of Argentina.  Tremblay et al. (2012) find the corn response to 

nitrogen is influenced by soil texture and weather by reviewing across 51 N rate treatment 

studies in North America during 2006 to 2009.  The above list of site-specific response studies is 

not complete, and more studies are being conducted in this literature. 

 

 

2.1 Methodologies 

The basic research methodology in the site-specific response literature is to use spatial 

econometric models with a quadratic regression, and based on on-farm experimental data.  The 

frequently used model specification is the quadratic functional form like: 

2

ij i i ij i ij ijY N N       , 
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where Y is the crop yield, and N denotes the nitrogen fertilizer application rate.  The subscript i 

denotes the “site” or “zone” or location within a field, and subscript j denotes the spot within a 

site.  Note that this specification allows intercepts and slopes to vary across space, where the 

parameters (αi, βi, γi) are corresponding to specific site Di.  The field is divided into different 

sites, denoted by dummies (D1, D2, ··· Dm).  It assumes the crop growing conditions are 

homogenous within a site.  

 

The quadratic function is theoretically appealing because they are interpretable as second-order 

approximations of any crop response function to inputs.  Hurley et al. (2004) provide a detailed 

derivation of this feature based on Taylor series expansion.  From an economic perspective, the 

quadratic function is also intuitive as it captures the diminishing marginal return of inputs.  

Mathematically, the concave functional form also allows a closed-form solution to optimal input 

rates.  Those features promote the popularity of quadratic functional form in the regression 

specification of response function.  But some also challenge the misspecification of quadratic 

form (Tumusiime et al., 2011).  Some alternative functional forms such as linear plateau, 

quadratic plateau, Spillman-Mitscherlich, etc., are also considered (Liu et al., 2006; Lambert et 

al., 2006; Tumusiime et al., 2011).  But the quadratic function is clearly more computational 

tractable, and is widely adopted by most of recent work estimating site-specific crop response 

functions. 

 

Spatial econometric models are commonly used due to the existence of spatial correlated data.  

Early studies tend to use the classical ordinary least squares (OLS) approach to estimate site-

specific response functions (for example, Mamo et al. (2003)).  However, OLS assumes 

observations are independent in space.  In the real world, the agronomic plots and on-farm 

experiments data are usually spatially correlated.  In that case, OLS produces inefficient 

estimates, mainly due to the incorrect variance estimates, and consequently wrong statistical 

significance, inference and prediction (Anselin et al., 2004; Lambert et al., 2004).  To account 

for the spatial correlation in the data, spatial econometric models are more appropriate and gain 

popularity in more recent studies.  They are believed to outperform the OLS model by generating 

better fit of the data and more correct variance estimates. 
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Particularly, the predominantly used model is the Spatial Error model.  As raised by Anselin et 

al. (2004), the source of spatial correlation in the yield data is from the unobservable micro-

climate and subsoil characteristics that drive yield variation.  Hurley et al. (2004) provide a 

mathematical demonstration of error spatial autocorrelation from the general production 

function.  In addition, since heteroscedasticity is also prevalent in the field data, the most 

appropriate is proposed to be the spatial autoregressive error model with heteroscedasticity.  

Hurley et al. (2004) suggests a model that include soil, spatial and treatment strip 

heteroscedasticity and correlation. 

 

Beyond the spatial econometric approach, other spatial statistical methods are also employed in 

analyzing response functions.  Lambert et al. (2004) compare four different spatial regression 

models.  Hurley et al. (2005) compare spatial econometric and geostatistical methods.  It is found 

that the non-spatial and spatial models usually lead to different estimate results.  While some 

studies find the variant spatial models results are generally similar, some find notable 

differences. 

 

2.2 Experimental data 

The estimations of site-specific response functions are mostly based on field experimental data.  

The experiments are usually conducted in one or several farms, using the classical agronomic 

experimental layout called randomized complete block design.  The application of fertilizer is 

usually by long strip (for example, in Hurley et al. (2005), it is the strip of 274 meters long and 

4.6 meters wide).  The application rate of fertilizer (often called “treatment”) within each strip is 

uniform.  Several adjunct strips are grouped together as a “replication”.  The treatment levels are 

usually fixed, but the order of the six levels (strips) is random within each replication.  The entire 

field is then comprised of several replications.  The spatial units of the yield observations are 

grids divided from the strips.  The size of the grids differ in different studies, such as the 15.2 × 

4.6 meters grids (Hurley et al., 2005), 7 × 7 meters grids (Anselin et al., 2004), 15 × 15 meters 

grids (Lambert et al., 2006), and so forth. 

 

One important advantage of using experimental data for regression analysis is that the 

explanatory variable (fertilizer rate) is completely exogenous.  It rules out the endogeneity issue 
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that harasses most empirical economic analysis, and leads to clear causality relation from the 

regression.  However, the sample size of experimental data is usually quite small due to the high 

costs, with at most hundreds of observations.  Also, the experiments normally only allow for one 

or several factors to vary while all other factors are carefully controlled.  Due to those 

limitations, the model built on experimental data cannot support a simultaneous estimate of a 

large set of factors and their interactions. 

 

2.3 Spatial heterogeneity of responses 

The major interest in site-specific response function studies is to examine how the yield response 

to fertilizer varies with site-specific characteristics over space, mainly due to interactions with 

different soil, topography, and water conditions.  In the modeling, this spatial heterogeneity is 

mainly shown by the stability of the coefficients of response function.  The general idea of 

testing the stability of coefficients is to interact the coefficients with the site variables. 

 

Most studies use locational dummy variables to denote the sites, or simply divide the field into 

latticed sub-blocks or sites.  Anselin et al. (2004) and Lambert et al (2004) divide the sample 

field into four “regimes” based on landscape position (Low East, Slope East, Hilltop, and Slope 

West).  Hurley et al. (2004) divide the experimental field into 6, 48 or 102 lattice “sites”.  

Lambert et al. (2006) partitioned the field into 69 sub-blocks.  Only a few studies include actual 

site characteristic variables.  For example, Liu et al. (2006) use organic matter, cation exchange 

capacity, leaching, water availability and sunlight reception.  Ruffo et al. (2006) interact with 

terrain attributes.  Mamo et al., (2003) interact with different soil types.  But the list of site 

variables differ notably in different studies.  A summary of the delineations of the “site” for the 

site-specific response studies are described in Table 1.   

 

Most studies find the response varies across the sites.  However, though the site dummy 

approach allows for modeling spatial variation of response function without knowledge of site 

characteristics (such as soil, topography, water, or any other agronomic variables which 

significantly affect the growth process of crops), on the other hand it only tells whether there is 

response heterogeneity over space, while the exact heterogeneity pattern is unclear. 
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2.4 Temporal heterogeneity of responses 

In addition to heterogeneity over space, it is also well documented that the response function 

varies over time, mainly due to weather variations across growing seasons.  Several efforts have 

been made using multiple years’ data to estimate the temporal instability of response function.  

The typical modeling strategy is to interact with year dummies, or to estimate separately for 

different years and compare the coefficients.  

 

Mamo et al. (2003) estimate site-specific response functions for three separate years, 1995, 1997, 

and 1999, and find significant temporal variations.  Liu et al. (2006) expand the site-specific 

nitrogen response study from single-year to over-time analysis, mainly focusing on how water 

affects the optimal nitrogen rates.  They estimate separately for years 1999, 2000, and 2001, and 

find the yield response functions vary dramatically across years, mostly due to weather and 

rainfall variations.  Lambert et al. (2006) use 5-year corn-soybean rotation data to estimating 

response functions separately for each year from 1997 to 2001, and find that response of corn 

and soybean to P is temporally stable in some parts of the field, but unstable in other parts, while 

response of N was not temporally stable.  The temporal heterogeneity is stronger in dryland 

fields.  In irrigated fields, however, the response functions are found to be more stable across 

years (Liu et al., 2006).   

 

Though the underlying reason for the temporal heterogeneity of response is the variation of 

weather (precipitation, temperature, wind, etc) across years, estimations that directly include the 

actual weather variables are rare.  The year dummy approach suggests the response is instable 

across years, but the explicit form of instability with weather conditions is not revealed. 

 

 

2.5 Profitability of site-specific application 

The ultimate goal of estimating site-specific response function is to evaluate the profitability of 

site-specific application of inputs.  Almost every study of site-specific response functions 

estimation also reports the final profitability estimate.  But the estimated profitability results are 

dramatically different across studies, as well as across estimation models within a same study. 
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Most studies report net gains in return of VRA against uniform rate application strategy (VRA 

costs are mainly dependent on authors’ choices).  For example, Anselin et al. (2004) estimate the 

VRA profit gain against optimal uniform rate application is $1.3 ha−1 for OLS models and 3.5 

ha−1 for spatial error models.  Hurley et al. (2004) find VRA could have increased profit by 

$14.5 ha−1 at one location of experiment, and $48.3 ha−1 at another location.  Using the same data 

but different estimation models, Hurley et al. (2005) find the VRA profit gain is around $8 to 

$ 12 ha−1.  Other estimates of profit gain of VRA against uniform rate application include: $3 to 

$7 ha−1 (Lambert et al., 2004), $28 ha−1 (Lambert et al., 2006), $8 and $23 ha−1 (Mamo et al., 

2003), and so on.  But on the other hand, Liu et al. (2006) find the VRA gain only ranges from 

$0.1 to $3 ha−1 for most estimation models they used, which is usually not sufficient to cover the 

VRA management cost.  

 

Note that we should interpret those estimated dollar values of VRA with caution.  First, those 

profitability calculations are all heavily depend on the crop prices chosen, which differ 

significantly across the authors.  Thus, those numbers are not directly comparable in this sense.  

In that sense, it appears more desirable to compare yield instead of profit in the VRA gain 

estimation as that avoids the influence of crop price fluctuations.  Second, the site-specific 

characteristics used in the response functions differ substantially across studies.  Especially, the 

location dummies in the regressions vary in number, size and the way of definition. 

 

2.6 ex-post assessment 

A major drawback of the existing site-specific response estimates is that, they only demonstrate 

the existence of variability in response over space or time, but do not explicitly study the 

interaction of the response with site characteristics, and therefore provide little information on 

the exact pattern of the variability.  Consequently, those estimation results essentially only 

provide assessment of site-specific applications from an ex post perspective, while they are 

unable to provide ex ante predictions of site-specific input rates for new fields or the same fields 

in different years.  This substantially undermines the prediction ability of those models in real 

production practice. 
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To enable the prediction of ex ante site-specific application maps, the actual measurable site 

variables need to be explicitly incorporated in the modeling.  Those include soil, topography, and 

weather characteristics which impact the crop growth and fertilizers’ effect.  This study is an 

exploratory effort toward that goal. 

 

 

3. Models 

This study focuses on estimating corn yield response to nitrogen (N) fertilizer.  The response for 

other crops and to other inputs can be estimated in a similar manner.  Following the literature of 

site-specific yield response estimate, we specify a quadratic response of yield to nitrogen 

fertilizer as the baseline model.  Instead of interacting the coefficients of the response with the 

sub-block or site dummy variables which are defined on a lattice basis (or some other 

geographical basis), we allow for the coefficients to vary explicitly across measurable site-

specific soil, topography and weather characteristics in a continuous manner.  Formally, we 

employ the varying coefficient regression model: 

2( ) ( ) ( )i i i i i i iY X X N X N       , 

where i denotes the site of the observation, which is usually a small gridded land area within a 

field.  Yi is the yield in site i, Ni is the nitrogen input rate in site i, and Xi contains a set of actual 

site characteristics.  The site variables in Xi are those factors that are commonly raised in 

agronomy that either directly affect yield or interact with nitrogen’s effect, and also factors 

which can be relatively easily monitored by producers in practice.  The candidate variables 

include soil texture, soil water capacity, soil organic matter, pH, elevation, slope, precipitation, 

and temperature. 

 

A fundamental feature of the varying coefficient model is that the coefficients (α, β, γ) are no 

longer constant.  Instead, they are changing as transition functions of site characteristics Xi.  The 

choice of functional forms for α(), β() and γ() highly depends on agronomic and physiologic 

knowledge.  Given the complexity of the plant growth process and its interactions with soil and 

environment, it remains an open question as to what the appropriate functional forms for α(), β() 

and γ().  A large effort is required to test and compare several different candidate transition 

functions spanning both parametric and nonparametric alternatives.  As a starting point, we use 
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the regime functions which divide observations into discrete groups based on the values of site 

variables.  Note that this regime function is not strictly speaking continuous.  But it can delineate 

a rough shape for the transition functions, which provides useful information for further 

imposing the appropriate parametric functional structures or for the refined nonparametric 

smoothing. 

 

The response function takes a quadratic form, which is mathematically easy to estimate.  

However, the quadratic function may not be the best fit for yield response of corn production.  

Alternative response functional forms such as various plateau functions can be considered for 

comparison. 

 

The yield data display strong spatial correlation, which suggests the incorporation of spatial 

effects in the modeling.  The source of spatial correlation is mainly from the underlying soil 

characteristics that are unobserved in the model.  For that reason, the spatial error model is 

appropriate (Anselin et al., 2004).  Given the highly soil heterogeneity within a field, that is, the 

soil characteristics often vary dramatically in a short distance, an immediate 1st order 

autoregressive error structure is desirable for the spatial modeling.  In addition, the errors are 

also highly likely to be heteroscedastic, and it motivates us to further correct for the 

heteroscedasticity in the spatial error model. 

 

The ultimate goal for producers is to obtain profit maximization in the crop production.  Given 

that the site-specific yield response function is correctly estimated, it is relatively straightforward 

to solve for the profit-maximizing nitrogen input rate for each specific site within the field.  After 

combining the corn output price (p) and fertilizer cost (r), the spatially explicit profit 

maximization problem is: 

2

ˆ 

ˆˆ ˆ              = [ ( ) ( ) ( ) ] ,

i

i i i
N

i i i i i i

Max pY rN

p X X N X N rN



  

 

  

 

where πi denotes the profit at a specific site i, and the coefficients estimates ̂ , ̂  and ̂  are 

from the yield response model listed above.  The optimal nitrogen rate for site i is calculated as:  
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p X






 , 

which depends on the values of site variables Xi.  It provides a variable rate application (VRA) 

prescription of nitrogen fertilizer *

iN .  Based on that, the profitability gain of VRA can be further 

estimated. 

 

 

4. Data 

 

4.1 Production data 

Ideally, the data we need is a large comprehensive field experiments, with adequate variabilities 

in inputs and agro-climatic conditions.  However, in reality this experiment is impossible. 

 In this study, we use actual production data for the estimate.  The sources of data are from 

producers’ production records of yield and input applications.  Currently, many farming 

machines and software packages can automatically generate high resolution yield maps from 

yield monitors.  The operations of input applications such as fertilizer inputs and seeding rates 

are also well digitalized.  An example of the spatial explicit sample production data in one field 

may look like in Figure 1.  

 

As the advancing of farming equipment and management software, those types of data are 

becoming more available.  Many are stored in producers’ computer hard drives, online clouds, or 

collected by agricultural companies (consulting, equipment makers, and supplier).  As can be 

easily seen, one field could have thousands of observations of the spots, while if we can put 

together the data there will be billions or even trillions of observations.  That is a very large 

spatial data set for analysis. 

 

In addition to those production data, we also need soil, topography, and weather data.  Producers 

usually do not have complete information about those data.  Instead, we use the public databases 

about soil and weather.  For the soil information we use the USDA Gridded Soil Survey 

Geographic (gSSURGO) 10-meter resolution maps.  The soil property variables include soil 

water capacity, soil pH, soil texture, etc., which are relatively stable over time.  For weather we 
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use the daily temperature and precipitation of the 4-km resolution PRISM Climate Data.  The 

production data, including the yield maps and application maps, are then matched to the public 

soil and weather maps to compose a final highly spatially disaggregated large data set. 

 

Comparing with experimental data, there are mainly two advantages of the observational 

production data: (1) Large sample size. Experimental data usually only have dozens of 

observations, or hundreds at most, due to the high expense to conduct controlled experiments.  

While this sample size is sufficient to estimate single regression of yield on one input factor, it is 

too small to estimate the comprehensive regression with multiple factors and also to capture the 

complicated nonlinear interactions between the factors.  The degree of freedom is not enough.  

For production data, it is possible to gather billions or even trillions of observations.  That allows 

to support the estimate of very comprehensive models.  (2) Substantial variations in yield-

impacting factors.  The experiments are often designed to only allow the variation of one or a 

few factors, while all the other factors are controlled the same.  While this design greatly 

guarantees the accuracy of response estimation, it also restricts the response only under a specific 

condition (usually claimed as the “optimal condition”).  The observed production data have 

variations in all kinds of factors.  As long as the data cover large regions, all kinds of soil 

conditions will be included.  Weather be the same in one field, but varies if we can get different 

regions there will be enough variations too.  Those rich variations allow the estimation model 

that allows simultaneous interactions of fall factors. 

 

It should also be noted that there are limitations to using the producer data.  (1) The first 

disadvantage is lower data quality.  The measurement accuracy in actual production practices are 

usually much lower comparing to the carefully measured experimental data. Due to producers’ 

skills and operation errors, as well as equipment accuracy, there are more errors and mistakes in 

the data.  What is worse, the errors are sometimes systemic and cannot be treated as random 

noise.  The public national soil and weather databases are also coarser in accuracy, comparing to 

the on-site soil sampling tests.  There is no quick solution to that issue, but it may be mitigated 

by increasing sample size.  (2) The second weakness is the non-randomness of variabilities.  

Unlike experimental design where the amount of application is random, in real production the 

input levels of fertilizer, seeding, and water are decided based on soil and weather conditions.  
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That is essentially an endogeneity issue.  While there is no perfect solution for that, fortunately 

the well-developed empirical economics literature has provided adequate amount of econometric 

techniques to address the endogeneity issue.  In addition, the finally estimated model can be 

assessed using experimental data to check the biasness. 

 

Collecting and organizing the disaggregated production data is a challenging task.  There are 

many practical difficulties in both the data collecting techniques and data ownership legal issues.  

Many companies and organizations have already started some efforts to integrate farmers’ data 

(such as JohnDeere, Montanto, etc.).  As a starting point, our research team works with a local 

agricultural consulting company and collects corn producers’ data spanning many locations 

across Southern United States.  The process is ongoing and a pilot database will be built shortly.  

For the purpose of this paper, we use the simulated data to test the feasibility of our 

comprehensive regression model estimation of yield response functions. 

 

4.2 Simulation data 

We use a simulated data set to illustrate the regression estimation of site-specific yield response 

functions and the generating of VRA prescriptions.  The goal is to demonstrate the issues with 

the prevailing site-dummy estimation approaches, and to illustrate the improvement obtained by 

explicitly incorporating continuous site variables in the regression.  A major advantage of 

simulation data is that it allows for solid comparison of different site-specific prescriptions since 

the true data generating process is known to us.  The simulated data results can provide useful 

insights for the model building and testing.  

 

We design the simulation data in the following way.  Assume there is a large crop field which is 

divided into 100 by 100 grids.  The soil properties vary across the grids.  For simplicity, we 

describe the soil properties by a single soil index ranging from 0 to 80.  The distribution of the 

soil index is illustrated in Figure 2(a).  Not surprisingly, the soil is highly spatially 

autocorrelated.  We also assume the only input for the crop production in nitrogen fertilizer.  The 

application rate of nitrogen for each grid is completely random, as shown in Figure 2(b).  The 

values of nitrogen rate span from 0 to 120.  However, those numbers are merely for illustration 

purpose and do not have direct meaning. 
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The yield of the crop in each grid is based on a simplified 100-day crop growth process, 

following the prevailing mechanistic crop growth models but is simplified in many aspects.  We 

assume the higher soil index is associated with stronger holding capacity of nitrogen, while the 

lower-indexed soil leaks nitrogen faster.  The crop plan takes up nitrogen from the soil and 

grows in body biomass on a daily basis.  Nitrogen taking up rate is positively related to soil 

nitrogen density and the body’s need.  Growth rate is increasing with body nitrogen density, but 

too much nitrogen also stresses plant growth.  The final yield is a proportion of the body biomass 

at the 100th day.  Based on this simple growth model, the simulated yields for each grid of the 

field is as shown in Figure 2(c).   

 

We proceed to use the simulated 10,000 observations of field grids to estimate the site-specific 

crop yield response functions, and subsequently compare the performances of different variable 

rate application prescriptions.  We only look at the yield at this point, but it is relatively 

straightforward to extend the analysis to profit after adding price information. 

 

 

5. Result 

 

5.1 Yield response functions 

We use the simulated soil index, nitrogen rates, and yield data to estimate the varying coefficient 

model.  Here there is only one site variable, the soil index, and therefore Xi=Si.  The exact 

functional forms of α(), β(), and γ() are not clear here.  To get started we use a discrete transition 

function which simply creates six regimes based on the value of soil index.  Essentially this can 

be viewed as a simple non-parametric model.  The estimated yield responses to nitrogen rate is 

shown in Figure 3, where each curve is corresponding to a response in a soil regime.  It shows a 

clear pattern that the response differs with soil index values.  For lower soil index value, the 

response curve is located farther to the right, and also slightly flatter.  It suggests the optimal 

nitrogen rate is higher for lower soil index value, and lower for higher soil index value.  The 

difference in the optimal rates is notably large, with the highest rate as of 88 for the soil regime 

(0, 20], and the lowest rate as of 51 at the soil regime (60, 80].  Note that the response change is 
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not strictly speaking continuous from the soil regime model, but it approximately delineates the 

pattern of the change with respect to soil index. 

 

To compare with the soil regime estimate, we also follow the prevailing approach of estimating 

the site-specific response based on lattice site dummy variables.  The field is divided into 16 (4 

by 4) regular sub-blocks, as shown in Figure 4(a).  Each site is represented by a dummy variable, 

and interacts with the parameters of response function.  The estimation results are shown in 

Figure 4(b).  As can be seen, the responses are quite different across the sites.  The underlying 

reason for this difference is the soil variation.  However, the site-dummy approach does not 

explicitly take into account the soil information since the regular sites are delineated rather 

arbitrarily. 

 

Finally, a uniform response function is also estimated by simply pooling all the grid data 

together, regardless of the soil index.  The result is shown in Figure 5.  That estimated response 

curve can be viewed as the average response for the entire field.  

 

5.2 Variable rate prescriptions 

Based on the estimated yield responses to nitrogen, the ultimate goal is to generate spatially 

explicit variable-rate-application (VRA) nitrogen prescriptions to achieve best output in each 

grid.  Especially, we are interested to test whether the prescription created by the varying 

coefficient model has any advantage.   

 

The quadratic functional form of response makes the derivation of the optimal nitrogen (N) fairly 

straightforward.  For the uniform yield response, the optimal N rate at grid i is simply: 

ˆ 41.6
* 68.8

ˆ2 2 0.302
iN




    


. 

Note that because the parameters ̂  and ̂  are constant across space, it is actually the uniform-

rate-application (UAR) prescription.  The N prescriptions from the site dummy regression and 

soil regime regression can be obtained in a similar way, except that the parameters ̂  and ̂  

vary with the 16 sub-blocks or the 6 soil regimes.  The visualization of the nitrogen prescriptions 

generated by the three estimated response functions are shown in Figure 6(a). 



18 

 

 

Given that the data generating process is known by us, it allows to compare the performances of 

the three VRA prescriptions.  For simplicity, we do not consider output price and input cost at 

this moment, and only compare the physical yield achieved.  The comparison is conducted by 

applying the VRA nitrogen rates to the field, and re-simulate the crop growth process to obtain 

the new yield maps.  The new yields from the three VRA prescriptions are shown in Figure 6(b).  

Through visual comparison, the soil regime VRA prescription yield is the higher than the rest 

two, and the uniform prescription yield is the lowest.  The aggregate yield from the three VRA’s 

are compared in Table 2.  The soil regime model improves the total yield level by 6%, while the 

site dummy model improves 3%.  Note that those numbers are determined by the simulation 

model parameters we choose, and are only for illustration purpose here.  The actual magnitudes 

of improvement from VRA need to be assessed using actual production data. 

 

The results demonstrate the potential yield improvement from using varying coefficient (soil 

regime) model.  At the presence of soil heterogeneity, VRA of nitrogen can increase yield.  Even 

from the ex post perspective VRA from explicitly incorporating soil information achieves higher 

yield than VRA from arbitrarily delineated sites.  Furthermore, the varying coefficient (soil 

regime) model is able to generate ex ante VRA prescriptions to be applied to new fields, which is 

a large advantage against the dummy site-specific response model. 

 

 

6. Conclusions and future research 

This study explores the development of a new methodology to estimate the site-specific crop 

yield response function.  Instead of using dummy variable to represent the sites, this study 

explicitly incorporates the actual site characteristic variables to explain the changes in the 

response.  It uses the varying coefficient model where the parameters of the response changes as 

a function of the site conditions such as soil, water, topography, weather, and other factors that 

are commonly available to producers.   

 

Based on a simulated data set, the varying coefficient model is estimated where the response 

changes with respect to the regimes of soil index values.  The variable rate application (VRA) of 
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fertilizer prescription is generated based on the model estimate result, which provide site-specific 

optimal input rate in an ex ante perspective.  The simulation results also demonstrate the varying 

coefficient model VRA prescription performs better than the dummy site-specific VRA 

prescription.  This finding suggests evidence for the potential improvement by using the varying 

coefficient model in yield response estimation. 

 

The next step is to collect high resolution crop production data for the model estimates, and 

incorporating more actual agro-climatic variables in the varying coefficient model.  A limitation 

of actual production data is that we can no longer test the performance of the estimated response 

functions as well as their associated VRA prescriptions, since the true data generating process is 

unknown.  We propose to design a validation algorithm of the prescriptions on the basis of 

mean-squared-error measure of the departure of model predicted yields from actual yields.   

 

Furthermore, market fluctuations and price uncertainty ought to be included in the analysis to 

obtain profit-maximizing input rates.  The ultimate goal is to build a precision input rates 

decision system, which can turn the soil testing and weather forecasting information into 

recommendations of spatially explicit economically optimal inputs application, and assist the 

producers to increase their output in precision farming. 
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Figure 1. An Example of Farm Production Data 
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(a)     (b)     (c) 

Figure 2. A Simulate Sample Field. 

 Size: 100 by 100 grids, with total observations of 10,000.  

 Soil index ranges from 1 to 80. The higher the number, the stronger nitrogen holding capacity. 

 Assume nitrogen rates are completely random. More realistic non-random nitrogen rate cases will be 

addressed later. 

 White colored grids in yield map represent zero yield. 
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Figure 3. Estimated yield response to nitrogen by varying coefficient model 

Note: The delineation of regimes by soil index value is as follows: 
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(a) Division of the field into 16 sites 

 

 

(b) Response curves for each site 

 

Figure 4. Estimated yield response by site dummy model 
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Figure 5. Estimated uniform yield response to nitrogen 
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(a) VRA nitrogen prescriptions generated from different yield response functions 

 

 

(b) Optimal yields from the different VRA nitrogen prescriptions 

Figure 6. VRA Performance Comparison from the Different Yield Response Functions  
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Table 1. “Site” Variables used in the Site-Specific Response Estimates 

Study Site variables 

Liu et al. (2006) 
Organic matter, cation exchange capacity, leaching, water 

availability and sunlight reception 

Ruffo et al. (2006) Terrain attributes 

Mamo et al. (2003)  7 different soil types 

Anselin et al. (2004), 

Lambert et al (2004)  
4 regimes, according to the slope of land 

Hurley et al. (2004)  6, 48 or 102 lattice “sites” 

Long (1998) Elevation, vegetation index: 2 blocks 

Bongiovanni et al. (2007) 
2 types of soil/landscapes: Hilltop and Lowland; and 2 

antecessor crops: corn and soybean 

Lambert et al. (2006)  69 sub-blocks 
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Table 2. Yield comparison of VRA prescriptions 

VRA N prescription Total yield % 

Uniform 13215656 100 

Site Dummy 13644886 103 

Soil Regime 14050461 106 

 

 

 

 


