Reduced Tariffs of Net Energy Metering: More Competitive Retail Rates of Electric Utilities Come Next?

Dyna Ty
Department of Agricultural and Applied Economics
University of Georgia, Athens, GA 30602-7509.
Email: dt28125@uga.edu

John C. Bergstrom
Department of Agricultural and Applied Economics
University of Georgia, Athens, GA 30602-7509.
Email: jberg@uga.edu


Copyright 2016 by Ty, Dyna and Bergstrom, John C. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Reduced Tariff of Net Energy Metering: More Competitive Retail Rates of Electric Utilities Come Next?
Dynia Ty and John C. Bergstrom
Department of Agricultural and Applied Economics, The University of Georgia

ABSTRACT

This study seeks to analyze competitiveness in electric rates in the U.S. residential sector under a market-based solar feed-in tariff system and a market-based energy trading platform. We argue that the retail rate structure of electric utilities is determined by the competitive environment of distributed generation (DG) of renewable energy among greenbills, photovoltaic (PV) systems, and micro-hydro systems. These DG systems serve as an alternative energy source for electric utilities, leading to more competitiveness in the electric retail market. Therefore, the study examines the competitiveness of electric utilities through the comparison of retail rates with greenbills and micro-hydro systems. The results show that the greenbills and micro-hydro systems provide more competitive retail rates than the electric utilities. This study is expected to provide insights into the competitiveness of electric utilities, which can help governments and policymakers develop more competitive retail rates for electric utilities.

BACKGROUND

Since electricity was introduced for various electric utilities, the Pearl Street Station in AHE (Albert Einstein), it is considered to meet societal needs beyond its original purpose—electricity for electric light lamps. Nowadays, it is seen as an important part of society. The electric utility is a complex system that is not only important to the industry but also to the environment and society. The electric utility is a complex system that is not only important to the industry but also to the environment and society. The electric supply also poses a threat to the environment, and the study of electric utilities is crucial to address this issue.

OBJECTIVES

The primary objectives of this study are to evaluate economic welfare gains and losses from newly modified NEM, competitive NEM, and retail market sharing networks. To achieve our objectives, we provide empirical results that could provide importances to energy policy makers. The results are expected to contribute to the understanding of the competitiveness of electric utilities, especially for households and businesses that are connected to renewable energy systems.

DATA

Data analysis will be based on use of available statistical data from a large number of households and individual or household provider products. The data will be derived from household surveys, economic welfare gains and losses, and other relevant data sources. The data will be analyzed using statistical methods to evaluate the competitiveness of electric utilities.

THEORETICAL FRAMEWORK

The theoretical model is based on a perfectly competitive market framework. The model includes the following assumptions:

1. Competitive traders: The market is assumed to be perfectly competitive with no market power. The trader is a sole owner of the assets and has full control over the price and quantity of goods.
2. Perfect information: The market is assumed to be perfectly informed. All participants have complete information about the market and can make optimal decisions.
3. Homogeneous goods: The goods being traded are assumed to be homogeneous. The price of goods is determined by market conditions and not by the characteristics of the goods.

NEM SNC in the State of Georgia (2014)

THEORETICAL ANALYSIS

The NEM SNC in the State of Georgia (2014) is the most significant incentive for promoting renewable energy generation and reducing greenhouse gas emissions. The NEM SNC program aims to support the development of renewable energy resources and encourage the use of renewable energy in the state. The program offers a variety of incentives, including tax credits, grants, and loan programs, to promote the use of renewable energy.

The NEM SNC program is designed to provide financial incentives to businesses and individuals who invest in renewable energy projects. The program offers several benefits, including tax credits, grants, and loan programs, to promote the use of renewable energy.

Conclusion & Policy Implications

Supportive incentives: Supportive incentives for renewable energy sources. This includes the use of financial incentives, tax credits, and grants to promote the use of renewable energy.

Policy Implications

- NEM policies and projects can lead to low social welfare among the four dimensions of externalities and social welfare among the four dimensions of externalities and social welfare among the four dimensions of externalities.
- NEM policies and projects can lead to low social welfare among the four dimensions of externalities and social welfare among the four dimensions of externalities.
- NEM policies and projects can lead to low social welfare among the four dimensions of externalities and social welfare among the four dimensions of externalities.