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Accounting for farm heterogeneity in the
assessment of agricultural policy impacts on

structural change

Abstract

This study aims at investigating the impact of agricultural policies on structural change

process in the French farming sector. As farms may behave differently, a mixture model-

ing approach is applied in order to account for unobserved farm heterogeneity. A multi-

nomial logit specification is used for the transition probabilities and the parameters of the

model are estimated by maximum likelihood method using the expectation-maximization

(EM) algorithm. An empirical application to an unbalanced panel over 2000-2013 shows

that the French farming sector consists of a mixture of two types of farms with transition

processes very different. The results also show that the impact of subsidies from the First

and the Second Pillars of the Common Agricultural policy (CAP) depends on the type

membership of farms. I thus argued that agricultural policy assessment should pay more

attention on potential unobserved heterogeneity in farms’ behavior.

Key words: Agricultural policy, EM algorithm, Farm structural change, Mixed Markov

model, Unobserved heterogeneity

JEL classification: Q12, C15, D92

Introduction

The farming sector has faced important structural change over the last decades. In par-

ticular, the number of farms has decreased sharply and their average size has increased

continually in most developed countries, implying some changes in the farm size distri-

bution. Such changes may have important consequences for equity among farmers, pro-

ductivity and efficiency of farming (Weiss 1999). Structural change has been therefore the
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subject of considerable interest among agricultural economists and policy makers over the

last decades. In this respect, studies aim in particular at understanding the mechanisms un-

derlying this process in order to identify the key drivers that influence the observed trends,

and to generate prospective scenarios.

Many theoretical studies pointed out potential impacts of agricultural policy on farm size

changes (see for example Goddard et al. (1993); Harrington and Reinsel (1995)) . Empir-

ically, it has become quite common in the agricultural economics literature to study the

way farms experience size change over time and the impact of time-varying variables in-

cluding agricultural policies by applying the so-called Markov chain model (Zimmermann,

Heckelei, and Dominguez 2009). Empirical investigations however generally found limited

impacts of public programs on structural change in agriculture (Ben Arfa et al. 2015). Such

results may be explained by the fact that impacts of agricultural policies as well as effects

of some other structural characteristics (market conditions, technical change process, etc.)

are usually investigated at a macro level using aggregate data when applied Markov chain

models. Indeed, focusing on agricultural policies, impacts of public supports on transition

probabilities of farms across category of sizes are generally investigated using transition

probability matrices estimated for the overall population of farms (see Huettel and Jonge-

neel (2011); Zimmermann and Heckelei (2012); Ben Arfa et al. (2015) for recent exam-

ples). Even using micro level data, yearly transition probability matrices are computed for

the overall population of farms first; then, effects of exogenous variables are estimated on

transition probabilities of farms (see for example Rahelizatovo and Gillespie (1999)).

This study aims at investigating the impacts of some public supports from the First and

the Second Pillars of the Common agricultural Policy (CAP) on structural change in the

French farming sector using individual farm level data. The paper adds to the existing

literature on farm structural change in two ways: i) assuming that structural change in

farming may result from individual farmer’s decisions, a discrete choice approach is used

to model the transition process of farms and to study the impacts of some agricultural
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policy measures on farm size changes at the individual farm level; ii) as farmers’ choices

of optimal farm size may not be fully linked to observed farmer and farm characteristics, a

mixture modeling framework is applied in order to take account potential unobserved farm

heterogeneity. As policy instruments may affect farm size changes differently, we expect

that accounting for both observed and unobserved farm heterogeneity may lead to better

represent the structural change process in farming and therefore to estimate agricultural

policy impacts in a more efficient way than the usual modeling approaches.

This paper is structured as follows. In the next section, I provide theoretical arguments

supporting the empirical application of this study. Section presents the proposed model,

the methods of specification and estimation of the parameters. In section , we present

some the methods for the model assessment. Section reports the application to a panel

of French farms, starting with a description of the data used and explanatory variables

investigated following by a presentation of the main results. Finally, I conclude with some

considerations on possible improvements of this study for further research.

Theoretical background

Structural change has been subject of considerable interests in the agricultural economics

literature. In this case, Markov Chain (MCM) model has become a quiet common modeling

approach since it has been shown that such a model is convenient to represent transition pro-

cess of farms across category of sizes (Bostwick 1962; Padberg 1962; Krenz 1964). More

recently, Stokes (2006) showed that a Markovian transition process may derived from a

structural model of inter-temporal profit maximization, given theoretical grounds to using

the MCM. Basically, this model states that the size of a farm at a given time period is the

result of the probabilistic process which only depends on its size in the previous period. In

general, a first-order Markov process is assumed and empirical studies used aggregate data

since such data are most often easier to obtain than individual level data. Since, Lee, Judge,

and Takayama (1965) and Lee, Judge, and Zellner (1977) have shown that robustly esti-
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mating a MCM from aggregate data is possible, such a modeling approach has been then

widely used to study farm size dynamics and the impacts of some recent agricultural poli-

cies, with increasing improvements of the estimation methods (see Zimmermann, Heckelei,

and Dominguez (2009) for a review).

However, as argued Freshwater and Reimer (1995), the best way of analysing agricul-

tural policies is to do this at the individual farm level. Indeed, structural change in farming

may results from farms’ individual behavior. If it is the case, analysing of transition pro-

cess of farms should take into account potential heterogeneity between farms since not

all farms will behave alike, conversely to the basic assumption of the MCM using aggre-

gate data. The implicit homogeneity assumption of the MCM states that all farms have

the same probability to change the category of sizes over time given their initial category.

Even some improvements in order to take into account effects of time-varying variables,

the homogeneity assumption still remains since the model considers that all farms will be-

have alike at a certain level of a specific exogenous variable. One may however supposed

that the impact of public supports for example may vary across farms since the response

of farms to such stimuli may depend on some individual characteristics, which may be

considered as sources of farm heterogeneity (Howley 2015).

Farm heterogeneity may come from several sources. One of the most important sources

of farm heterogeneity is farmers’ motivation. The responses of farmers to some incita-

tions such as supports from some public programs or the market conditions may highly

depend on their motivation. Not all farmers will increase their operated farm size even

if, for example, they received the same amount of subsidies because of less or even non-

financial/pecuniary motives (?) or potential farming lifestyle values (Hallam 1991). How-

ley, Dillon, and Hennessy (2014) argued that goals of some farmers such as maintaining

farming lifestyle may be as important, or even more important than a profit maximization.

Farmers’ motivation may also depends on some others characteristics and socio-economic

environment of farms. For example, at a certain age, more specifically closed to retire-
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ment, farmers may be less motivated to enlarge their farm. Such a situation may depend

on potential existence of family members for farm succession (Potter and Lobbley 1992).

Some environmental constraint may also play an important role on farmers’ behavior. For

example, when considering size as measured in terms of the operated area, farmers may

not all have the same opportunities to enlarge their farm simply because they may not face

the same land supply: as land is mostly released at retirement time, a farmer surrounded by

young colleagues only will not find plots to buy or rent. Even if land offers exist, farmers

may have different abilities to negotiate with land owners or may face unequal conditions to

access credit. Similarly, investigating potential impact of economic environment of farms,

Dong, Hennessy, and Jensen (2010) also showed that farmers who expected a sell contract

are less likely to exit the farming.

Considering all the potential sources of heterogeneity mentioned above among others,

farms may response differently to some incitations (agricultural policy, market condition,

ect.). If all sources of farm heterogeneity were observed, it would be able to control for

their impact on the responses of farms using for example crossed effects between farm

characteristics and the exogenous variables under investigation. However, not all sources

of heterogeneity can be observed by the researcher or some of them cannot be fully linked

to some observable variables related to human capital such as education, to land market

such as land prices, to credit market such as the interest rate, etc. As a result, even if shar-

ing the same observed characteristics, farms with an equal initial size and received the same

amount of subsidies may not experience structural change at the same speed and/or to the

same extent. Ignoring unobserved heterogeneity in the estimation procedure may thus lead

to inconsistent parameters and therefore to some unrealistic or erroneous impacts of ex-

ogenous variables, specially when aggregated at the population level (Pennings and Garcia

2004; Holloway, Lacombe, and LeSage 2007). Accounting for unobserved heterogeneity

may thus lead to more accurately estimate the impact of the causative factors of structural

change in farming.
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Modelling approach

In this study, a mixture modeling approach is applied in order to capture unobserved farm

heterogeneity. Mixture models have a long story in the literature and has been proved

to have several advantages over others techniques also used in order to account for un-

observed heterogeneity (see Greene and Hensher (2003); Garver, Williams, and Taylor

(2008)). While Markov has been the subject of considerable applications in several strands

of the economic literature, Saint-Cyr and Piet (2014) are the first to applied this approach

in the context of the farming sector, to the best our Knowledge.1 They showed that such

kinds of models is more accurate in representing farm size dynamics since this modeling

framework allows capturing unobserved heterogeneity in the farm transition process. In the

following section, we improve Saint-Cyr and Piet (2014) modeling approach by relaxing

the pure stayer assumption and allowing transition probabilities to vary over time, as they

suggested in their concluding remarks..

The mixed of Markov chain model

Let by N the total number of farms in the population and K the total number of farm

size categories (choice alternatives). As farm category of sizes are observed at discrete

times, generally 1-year interval, a discrete-time process is assumed. Denote by yit the

category of sizes of a specific farm i (i ∈ N) at time t (1 ≤ t ≤ T ). The indicator yi1 = j

(∀ j = 0,1,2, · · · ,K) if farm i is in category j at time t = 1. The category j = 0 may

indicate entry in or exit from farming. Since farms may enter and leave the farming sector

at different time points, the length of the vector yi may vary across farms (i.e, Ti≤ T ). Over

a time period T , the size evolution of a specific farm i can be represented by the vector

yi = (yi0,yi1, · · · ,yiTi) where each element of yi indicates the farm size category at each

time point t (t ∈ Ti). As structural change in farming results from individual movements of

farms across category of sizes, this process can thus be described within individual farm’s

behavior.
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In the agricultural economics literature, transition process is generally supposed to fol-

low a first order Markov process specially in the context of farm size changes over time

(Zimmermann, Heckelei, and Dominguez 2009). It is thus assumed that farm category of

sizes at any time t (yit) only depends on its immediately previous location, that is, its cate-

gory of sizes at time t−1 (yit−1). The Markov assumption implies that the observed random

variables (yi1,yi2, · · · ,yiTi) are not independent from each other and yi can be described by

the probability function (Dias and Willekens 2005):

(1) f (yi) =
Ti

∏
t=1

P(yit |yit−1)

where P(yit |yit−1) is the probability that farm i chooses a specific category of sizes at time

t given its location at time t−1, so-called transition probability. In this framework, farm i

enters the farming sector if it makes a transition from category j = 0 to any other category

j 6= 0 (∀ j ∈ K), that is, yit = j given yit−1 = 0. Conversely, farm i leaves the farming sector

if a transition to category j = 0 is observed.

Suppose now that the observed random sample of farms is divided into G homogeneous

types instead of just one, each type gathers farms with similar behaviors, the density func-

tion of yi as a discrete mixing distribution with G support points can thus be rewritten

(McLachlan and Peel 2004):

(2) f (yi) =
G

∑
g=1

πg fg(yi)

where fg(yi) is the probability function describing the evolution of farm type g as specified

in equation (1); and πg, the mixing proportions, are non-negative and sum up to one. In

the statistics literature, πg is called the mixing distribution and fg(yi) is called the mixed

function (Train 2009). As we defined a finite number of farm types, the mixed model can

be also called a ‘latent class model’ with G latent transition processes. The density function

of yi is thus conditional on the mixing distribution and we can represent the evolution of
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farm size as (Vermunt 2010):

(3) f (yi) =
G

∑
g=1

P(gi = g)

[
Ti

∏
t=1

P(yit = k|yit−1 = j,gi = g)

]
Under the mixed Markov model farm size evolution has thus two set of probabilities. From

the left hand size, the first term equation 3 are probabilities that farm i belongs to a specific

farm type g while the second term are probabilities of making transitions across category

of sizes given farm i belongs to type g.

Specifying transition probabilities

As that categories of sizes are mutually exclusive, finite and exhaustive, a discrete-choice

model is used to specify transition probabilities of farms. The discrete choice model as-

sumes that farmers’ choice of initial category of sizes as well as to make some transitions

across category of sizes can be represented by a random utility model (Train 2009). The

farmer’s utility may represent in our case the net benefit that arise from choosing or moving

to a specific category of sizes at a given time t.

Denote by Ui jkt the utility of farm i arising upon moving from category of sizes j to

another one k at time t. Under the basic behavioral assumption, it is supposed that farmers

choose the category which maximized their utility. Therefore, a move from j to k (i.e,

yit = k|yit−1 = j) will be observed if and only if Ui jkt ≥Ui jlt (∀ j,k, l ∈ K). We consider

that farms staying in the same category two consecutive times make a transition from j to

j. Under a mixture assumption, farm utility level is conditional on its type specific g. A

farm belonging to a specific type g will thus make a transition from a specific category of

sizes j to another one k if and only if Ui jkt|g ≥Ui jlt|g (∀g ∈G), where Ui jkt|g is the utility of

farms given belonging to the specific type g.

As this study is interested in determining the impacts of some exogenous variables on

farm size change, transition probabilities (i.e, the utility arising from moving across cat-

egory of sizes) are specified as a function of some public supports and other causative
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factors. Under mixture assumption, the utility that would accrue to farm i upon moving

from category j to another one k at time t given belonging to type g can be expressed as:

(4)
P(yit = k|yit−1 = j,gi = g,xit−1) =P(Ui jkt|g ≥Ui jlt|g)

pi jkt|g = f (xit−1,βββ g,εi jkt|g), ∀t ∈ Ti; j,k, l ∈ K;g ∈ G

where xit−1 are explanatory variables; βββ g and εi jkt|g are parameters to estimate and an iid

random error term given type g, respectively. Generally, explanatory variables are lagged

1-year since farmers’ decisions for entering the farming sector as well as for expansion, or

contraction are likely dependent upon information available during the previous period.

Since farmers may face multiple choices at each occasion, it is econometrically conve-

nient to used a multinomial specification (Greene 2006).2 Assuming that the error terms

εg,i jkt are randomly drawn from a Gumbel distribution (type I extreme value), the condi-

tional probability of making a transition from a specific category of sizes j to the category

k at time t is given by:

(5) P(yit = k|yit−1 = j,gi = g,xit−1) =
exp(βββ

′

jk|gxit−1)

∑
K
l=1 exp(βββ

′
jl|gxit−1)

(∀ j,k = 1,2, · · · ,K)

where βββ jk|g is a vector of parameters specific to each type of farm g and each couple jk of

transitions. Assuming permanence in a same category of sizes two consecutive years as the

reference lead to state βββ j j|g = 0 ∀g = 1,2, · · · ,G and ∀ j = 1,2, · · · ,K for identification.

Estimation procedure

The parameters of the model are estimated using the maximum likelihood estimation

method. Let y = (y1,y2, · · · ,yn) the observed random sample of farms obtained from the

mixture density, where the vector yi = (yi0,yi1, · · · ,yiTi) gathering farmer’s choices (or

farm’s locations) over the time period T ≥ Ti. According to equation (3) and the model

specification, state that:

P(yit = k|yit−1 = j,gi = g,xit−1) = pi jkt|g = P(xit−1;βββ jk|g)
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Under a mixture assumption, the log-likelihood (LL) function for the parameters (βββ ) of the

model, conditional on observing y, writes:

(6) LL(βββ ) =
N

∑
i=1

ln

{
G

∑
g=1

πg

Ti

∏
t=1

K

∏
j,k

[
P(xit−1;βββ jk|g)

]di jkt

}

where βββ = (βββ 1,βββ 2, · · · ,βββ G) is a matrix of parameters with βββ g =
{

βββ jk|g

}
∀g ∈ G and

j,k = 1,2, · · · ,K; the indicators di jkt = 1 if farm i moves from j to category k at time t (i.e,

yit = k|yit−1 = j) and zero otherwise. Since farm type is unknown beforehand and given

some numerical difficulties associated to the maximization of the above expression, the

expectation-maximization (EM) algorithm is generally used to estimate the parameters of

such a model (McLachlan and Krishnan 2007).3 The EM algorithm developed by Demp-

ster, Laird, and Rubin (1977) simplifies the complex log-likelihood in equation (6) in a set

easily solvable log-likelihood functions by introducing a so-called ‘missing variable’.

Let vgi be a discrete unobserved variable indicating the type membership of each farm.

The random vector vi = (v1i,v2i, · · · ,vGi) is thus g-dimensional with vgi = 1 if farm i be-

longs to type g and zero otherwise. Assuming that vgi is unconditionally multinomial dis-

tributed with probability πg, the complete likelihood for (βββ ,,,πππ), conditional on observing

yc = (y,v), therefore writes:4

(7) Lc(βββ ,,,πππ) =
N

∏
i=1

G

∏
g=1

{
πg

Ti

∏
t=1

K

∏
j,k

[
P(xit−1;βββ jk|g)

]di jkt

}vgi

where πππ = (π1,π2, · · · ,πG) vector gathering share of each type of farms to estimate. The

complete log-likelihood is thus obtained as:

(8) LLc(βββ ,,,πππ) =
N

∑
i=1

G

∑
g=1

vgiln

{
πg

Ti

∏
t=1

K

∏
j,k

[
P(xit−1;βββ jk|g)

]di jkt

}
In this case, vgi is called the ‘posterior’ probability that farm i belongs to the g-th type with

yi have been observed, that is P(vgi = 1|yi), while πg is a ‘prior’ probability of the mixture

McLachlan and Peel (2004). This log-likelihood can be then divided into two components:
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(9)

LL1 =
N

∑
i=1

G

∑
g=1

vgilnπg

LL2 =
N

∑
i=1

G

∑
g=1

vgi

Ti

∑
t=1

K

∑
j,k

di jkt ln
{

P(xit−1;βββ jk|g)
}

As the farm type is not observed, the posterior probability that farm i belongs to type g

(vgi) has to be estimated from the observations. The EM algorithm therefore consists in the

four following steps:

(i) Initialization: Arbitrarily choose initial values ΦΦΦ
0 = (φφφ 0

1,φφφ
0
2, · · · ,φφφ 0

G) where φφφ
0
g =

(π0
g ,βββ

0
jk|g) ∀ j,k = 1,2, · · · ,K and ∀g = 1,2, · · · ,G for the parameters of the model, with

some parameters set to zero for identification as previously mentioned in section .

(ii) Expectation: At iteration p+ 1 of the algorithm, compute the expected probability

that farm i belongs to a specific type g while observing yi and given parameters ΦΦΦ
p. This

conditional expectation probability, that is, the posterior probability v(p+1)
gi = vgi(yi;ΦΦΦ

p),

can be obtained according to the Bayes’ law:

(10) v(p+1)
gi =

π
p
g ∏

Ti
t=1 ∏

K
j,k

[
P(xit−1;βββ

p
jk|g)

]di jkt

∑
G
h=1 π

p
g ∏

Ti
t=1 ∏

K
j,k

[
P(xit−1;βββ

p
jk|h)

]di jkt

Replacing vgi by its expected value in equation (8) leads to the conditional expectation of

the complete data log-likelihood.

(iii) Maximization: Update ΦΦΦ
p by maximizing the complete log-likelihood conditional on

the observations. The model parameters are thus updated as:

(11) βββ
(p+1) = argmaxβββ

N

∑
i=1

G

∑
g=1

v(p+1)
gi

Ti

∑
t=1

K

∑
j,k

di jkt ln
[
P(xit−1;βββ jk|g)

]
The maximization process of the above equation is straightforward. The transition prob-

ability parameters (β̂ββ
p
) are updated considering vgi(yi;ΦΦΦ

p) as a weighted factor for each
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observation (Pacifico and Yoo 2012). Then, the posterior probabilities of belonging to a

specific type are updated as follows :

(12) π
(p+1)
g =

∑
N
i=1 v(p+1)

gi

∑
N
i=1 ∑

G
h=1 v(p+1)

hi

, ∀g ∈ G

(iv) Iteration: Return to expectation step (ii) using πππ(p+1) and βββ
(p+1) and iterate until

convergence of the observed log-likelihood given by equation (6). At convergence, the

resulting parameters are considered as the optimal values (Φ̂ΦΦ).

A problem which often occurs in a mixture analysis with several components is that some

solutions may be suboptimal. Indeed, the non-concavity of the log-likelihood function in

equation (6) does not allow the identification of a global maximum in the mixture model,

even for discrete mixtures of multinomial logit (Hess, Bierlaire, and Polak 2006). Given

the potential presence of a high number of local maxima, the EM solutions may be highly

dependent on the initial values of ΦΦΦ
0. Various techniques are used in the literature to avoid

suboptimal solutions (see Baudry and Celeux (2015) for a short review). In this study, the

EM algorithm are run with various initial values of parameters (randomly chosen) and the

starting values providing the largest likelihood at convergence are chosen as the best ones.

Model assessment and elasticities

As there exist no background on the exact total number of farm types in the population,

some selection criteria are used to choose an optimal number of types. Given the total farm

type chosen, transition probability and structure elasticities are derived for each type of

farms and also for the overall population, respectively.

Choosing optimal number of farm types

The total number of components for a mixture model can be chosen either by a priori as-

sumptions or via information statistics. In the latter case, statistics are generally based on
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the value of −2LLG(y;Φ̂ΦΦ) of the model, where matrix Φ̂ΦΦ represents the maximum likeli-

hood estimates adjusted for the number of free parameters in the model with a total of G

homogeneous types. The basic principle under these information criteria is parsimony, that

is, all other things being the same, the model with fewer parameters is chosen (Andrews

and Currim 2003). The selection of the total number of homogeneous types is generally

based on the following criterion:

(13) CG =−2
{

LLG(y;Φ̂ΦΦ)
}
+κNG

where LLG(y;Φ̂ΦΦ) is the overall population log-likelihood value computed with the result-

ing estimated parameters for the model specified with G types; NG is the total number of

free parameters in the model and κ a penalty constant. Different values of κ lead to the

two well known information criteria: Akaike Information Criterion (AIC) with κ = 2 and

the Bayesian Information Criterion (BIC) using κ = logN with N the total number of ob-

servations. Other information criteria can be also derived such as the Consistent Akaike

Information Criterion (CAIC) stating κ = logN + 1 and the modified AIC (AIC3) which

uses κ = 3 as penalizing factor (Andrews and Currim 2003; Dias and Willekens 2005). For

these heuristic criteria, smaller values mean more parsimonious models.

There is no general consensus in the literature for using a specific type of criteria to

choose an optimal number of components for a mixture model. However, some studies

suggest that the CAIC and AIC3 may be more useful in the context of mixture models

since these criteria penalize more severely the addition of parameters (Andrews and Currim

2003; Dias and Willekens 2005).

Probability elasticities

Since choice probabilities are function of observed variables, the model tests whether the

investigated exogenous variables have significant impacts on the probability to enter the

farming sector in a specific category of sizes and or to move across categories. As the
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estimated coefficients indicate marginal effects on the log-odds ratios in equation ??, the

impacts of the explanatory variables are difficult to interpret directly (Greene 2006). In this

case, the impacts of explanatory variables are usually evaluate in terms of elasticities. The

probability elasticities measure the effect of a 1% change in the ith explanatory variable

(Zepeda 1995). In the mixture model these probability elasticities may depend on farm

type. Yearly transition probability elasticities for farms belonging to a specific type g are

obtained as:

(14) δδδ jkt|g =
∂ p jkt|g
∂xt−1

× xt−1

p jkt|g
, ∀ j,k ∈ K ∀g ∈ G

where δδδ jkt|g is a vector gathering elasticities at the means of the explanatory variables in

vector xt−1; and p jkt|g is the probability to move from category j to category k at time

period t given belonging to type g. The first term of the above equation thus represents the

marginal effects of explanatory variables and is given by (Greene 2006):

(15)
∂ p jkt|g
∂xt−1

= p jkt|g

(
βββ jk|g−

K

∑
l=1

βββ jl|g p jlt|g

)
where βββ jk|g is the vector of estimated parameters.

Replacing the marginal effects in equation (14) leads to express the probability elastici-

ties of transitions as:

(16) δδδ jkt|g =

(
βββ jk|g−

K

∑
l=1

βββ jl|g p jlt|g

)
xt−1

Given the constraint βββ j j|g = 0 for identification, the probability elasticities for the reference

pair of transitions j j is thus obtained as:

(17) δδδ j jt|g =

(
−

K

∑
l=1

βββ jl|g p jlt|g

)
xt−1

Farm structure elasticities

Since this study concerns structural change in farming, one could be interested to know

whether a specific chosen explanatory variable has significant impact on the distribution
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of farms across category of sizes. Yearly structure elasticities are thus derived for each

category of sizes. The elasticity of farm structure measures the percentage change in the

total number of farms in a specific category j at time t for a 1% change in the investigated

explanatory variable (Zepeda 1995).

Under the mixture modeling framework, the total number of farms in a specific category

k at time t can be obtained as:

(18) nkt =
G

∑
j=1

πg

K

∑
j

n jt−1 p jkt|g, ∀k ∈ K,∀t ∈ T

where πg is the probability of belonging to type g; n jt−1 is the total number of farms located

in category of sizes j at time t−1; and p jkt|g the probability for farm i to make a transition

from category of sizes j to category k at time t. The farm structure elasticities are then

given by:

(19) ηηηkt =
∂nkt

∂xt−1
× xt−1

nkt

Only transition probabilities in equation (18) depend on exogenous variables (xt−1). The

farm structure elasticities can be therefore obtained using the corresponding probability

marginal effects in equation (15). The farm structure elasticities with respect to the ex-

planatory variables at any specific time t are then derived as:

(20) ηηηkt =

(
G

∑
g=1

πg

K

∑
j=1

n jt−1
∂ p jkt|g
∂xt−1

)
xt−1

nkt

where the marginal effects at the means of the corresponding explanatory variable may be

replaced by their values.

Empirical application

For the empirical application, an unbalanced panel from the “Réseau d’Information Compt-

able Agricole” (RICA) database is used. In this section, the data are describe followed by

the selection of the explanatory variables, specially focusing on the main programs from

Common Agricultural Policy (CAP). Finally, the results are discussed.
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Data

Online available RICA data from 2000-2013, the French implementation of the Farm Ac-

countancy Data Network (FADN), are used. FADN is an annual survey which is defined at

the European Union (EU) level and is carried out in each member state. The information

collected at the individual level relates to both the physical and structural characteristics

of farms and their economic and financial characteristics. It is the only database providing

information about the total subsidies received by farms from the Common Agricultural Pol-

icy (CAP) (see http://ec.europa.eu/agriculture/rica/index.cfm to learn more about FADN).

In France, RICA is produced and disseminated by the statistical and foresight office of the

French ministry for agriculture. It focuses on ‘medium and large’ farms and constitutes a

stratified and rotating panel of approximately 7,000 farms surveyed each year. Some 10%

of the sample is renewed every year so that, on average, farms are observed during 5 con-

secutive years. However, some farms may be observed only once, and others several, yet

not consecutive, times. Some farms remained in the database over the whole of the studied

period, i.e., fourteen consecutive years. Each farm in the dataset is assigned a weight-

ing factor which reflects its stratified sampling probability, allowing for extrapolation at

the population level (see http://www.agreste.agriculture.gouv.fr/ to learn more about RICA

France).

In order to consider all farms in the sample whatever their type of production, the study

concentrates on farm size as defined in economic terms. In accordance with the EU regu-

lation (CE) No1242/2008, European farms are classified into fourteen economic size (ES)

categories, evaluated in terms of total standard output (SO) expressed in Euros. As men-

tioned before, in France, RICA focuses on ‘medium and large’ farms, those whose SO is

greater than or equal to 25,000 Euros; this corresponds to ES category 6 and above. Ac-

cording to the EU regulation (CE) No1242/2008, the nine ES categories available in RICA

are aggregated into three categories: strictly less than 100,000 Euros of SO (ES6); from

100,000 to less than 250,000 Euros of SO (ES7); 250,000 Euros of SO and more (ES8 to
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ES14). It should be noted that, according to the EU regulation (CE) No1242/2008, the two

last categories correspond to only large farms. The large sized farms are divided in two

classes to have at least 3 category of sizes in the population. In the following, I refer to the

defined farm size categories as medium, large and very large, respectively. As RICA being

a rotating panel, farms which either enter or leave the sample in a given year cannot be con-

sidered as actual entries into or exits from the agricultural sector. Because of that constant

population is assumed and only transitions between the category of sizes as defined in this

study will be investigated.

For the estimations, the sample is restricted to farms which were present in the database

for at least two consecutive years in order to observe at least one transition. The corre-

sponding unbalanced panel then comprised 13,325 farms out of the 15,841 farms in the

original database (84.12%), leading to 89,229 (farm×year) observations and 75,904 indi-

vidual 1-year transitions (including staying in the same category of sizes) from 2000 to

2013. Table 1 shows that farms are more likely to remain in their initial category of sizes

two consecutive years. More than 90% of farm remain in their initial category whatever the

category of size considered. It should be noted that remaining in the initial category does

not means that farms do not increase or decrease size, but the change is not sufficient to fall

into a different category of sizes as defined in this study.

Explanatory variables

Several theoretical and empirical studies provide various factors that may play an impor-

tant role on structural change in farming (see for example Goddard et al. (1993); Boehlje

(1992); ?)). These studies distinguish several categories among factors that could affect

farm structural change. In the following, the selected causative factors of structural change

are presented, focusing on some recent public support programs. The selection of the

explanatory variables is based on the objective of the study and their availability in the

database.
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As the aim of this paper is to investigate the impacts of agricultural policies on farm

structural change, subsidies received by farms from some public support programs are used

as explanatory variables of transition probabilities. Considering all farms all together, this

study analyzes the impacts of public support programs mainly originate from the Common

Agricultural Policy (CAP). Indeed, subsidies from the CAP in France and other countries

in the European Union are divided into two main components called Pillars. The aims of

the support programs from these two Pillars are different from each order. Theoretically,

no consensus has been found for the real effects of such public programs (Zimmermann

and Heckelei 2012). Given the conflicting influences on farm structure, Goddard et al.

(1993) argued that the impact of public supports to farms may depends on how programs

are designed for that commodity. The impacts of public supports from the two Pillars of

the CAP are thus separately investigated on the transition probabilities of farms.

Subsidies to farms from the First Pillar of the CAP are considered first. The subsidies to

farms from the First Pillar are divided in coupled and decoupled subsidies. Despite the fact

that decoupled subsidies were introduced in order to reduce the impacts on level of activity

of farms, it has been shown that this kind of supports appear to increase the farm size on the

long run (Harrington and Reinsel 1995). Indeed, decoupled subsidies may become coupled

since the first ones are based on historical production. Therefore, farmers had better to

increase their operate farm size if they expected more subsidies in the future. According to

the literature, a positive impacts of subsidies from the First Pillar of the CAP is expected

one farm growth, gathering coupled and decoupled subsidies. As the amount of subsidies

from the First Pillar is highly correlate to farm size, we divided the total subsidies received

by total area used.

The impact of public support programs to farms from the Second Pillar of the CAP is

also analyzed. In respect of the CAP, policy instruments from the Second Pillar are devoted

to promote rural development. According to the potential impacts on farm size changes,

subsidies from the Second Pillar could be divided into two components. The first com-
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ponent would include all subsidies allocated for the agri-environment and climate change

programs. These kinds of supports may have a negative impacts on farm growth since

agri-environment measures supposed to facilitate change in farming systems towards more

resilient styles of production, better able to cope with future climate-related stress (Dwyer

2013). The second component of the Second Pillar would gather subsidies allocated for

farm’s investments, climatic damage and production diversification. Such kinds of sup-

port programs are more likely to favour farm size stagnation and growth by reducing risk.

Gathering all kinds of subsidies from the Second Pillar of the CAP, a positive impact is thus

expected on farm size stagnation.

Several factors other than agricultural policy have proved to affect structural change

in farming (see Harrington and Reinsel (1995); Zimmermann, Heckelei, and Dominguez

(2009)). In this study, only factors related to farm path dependency and economic environ-

ment of farms are considered. The reason for only considering these factors is because of

data limitations. Indeed, proxies for other factors that may play an import role on farm size

change, such as market condition, technical change, ect., are not available at the individ-

ual farm level in the RICA database. Nevertheless, as factors that affect transition process

of farms may relate to each other (Goddard et al. 1993), proxies used may also capture

impacts of some other causative factors of farm size change.

Following Zimmermann and Heckelei (2012), the total initial stocks is used as a proxy

of path dependency. Initial stocks is supposed to negatively affect farm size declined since

high initial stocks are assumed to result from former investment. Conversely to Zimmer-

mann and Heckelei (2012), we do not used initial size in term of capacity of production as

proxy of path dependency because farms are categorized on their capacity of production

(see section ) and this variable is quiet correlated to the total initial stocks.

We use the Gross Operating Surplus (GOS) minus the total amount of subsidies received

and the debt rate of farms to reflect the economic environment of farms. The GOS rep-

resents the financial capacity of a farm and as such is a very important indicator to obtain
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credit from a bank which can be used for new investments. The GOS could also relate to the

self-financing capacity of farms. A positive effect of the Gross Operating Surplus is thus

expected on the probability of farm to grow. Debt rate is also expected to have a positive

impact on farm growth since credit generally enables firms to obtain necessary resources

Goddard et al. (1993).

Finally, some farm and farmer characteristics such as age, managerial capacity of farmers

and legal status, localisation, specialisation of farms are also used in the specification of the

transition probabilities. Farm and farmer characteristics may allow controlling for observed

heterogeneity and are introduced in the model specification using dummy variables. Table

2 presents the description and summary statistics for the all chosen explanatory variables.

Before starting with the results, it should be noted that, given some potential sources of

unobserved heterogeneity as mentioned in section , the impacts of the investigated explana-

tory variables may vary according to the types that a farm belong to.

Results

The mixed Markov model is applied to the RICA data described above. It is assumes

that farms do not move from medium to very large size and vice versa since only few

movements between these two category of sizes are observed (see Table 1). That is a

common procedure in the agricultural economic literature when using Markov modeling

approach (see Ben Arfa et al. (2015) for a recent example). The main results are presented

and discussed in this section.

Type membership and transition probability matrices

According to the information criteria presented in section , a mixture of two types of farms

seems to be the most appropriated data generating process. I chose two types as the opti-

mal number specifically for two reasons: first, the criteria BIC and CAIC indicate that two

types is the optimal number of farm types; second, even the other criteria (AIC and AIC3)
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indicate a higher optimal number of farm types, the results show that the improvement of

these criteria is relatively small when specifying more than two types of farms (see Figure

1). This means that increasing the total number of homogeneous types in the population in-

crease much more the total number of parameters to estimate than the representativeness of

the data generating process. A mixture of two types of farms is thus preferable to represent

farm size dynamics in the French farming sector.

Table 3 reports the estimated type shares and the resulting transition probability matrices

(TPMs) for the two types of farms. As expected, the resulting TPMs are quite different

from each other. The average posterior probabilities of belonging to a specific type indicate

that a majority of farms tends to remain in their initial category of sizes indefinitely (at least

during the whole period of observation). Indeed, about 68% of the sample consists of farms

who predominantly stay in their initial category of sizes. Conversely, farms belonging to

the second type, about 32% of the sample, are more likely to change category of sizes two

consecutive years than farms in the first type. In the following, I refer to farms in the first

type as ‘stayers’ and those in the second farm type as ‘movers’.

For the stayers farm type, the categories are almost all absorbing states (see Table 3.a).

The probability to remain in the same category of sizes two consecutive years for those

farms are close or over 0.99. This result means that these farms have about 99% of chance

to remain in the same category of sizes during a long time period. The transition probability

matrix of the ‘movers’ type is also strongly diagonal meaning that even farms which are

likely to change category of sizes also have a high probability to remain in their initial

category two consecutive years (table 3.b). However, the probability to remain in the same

category of sizes for movers is around 0.85 meaning that farms in this type have about 15%

more chance to change their category of sizes than those in the stayers type. In both farm

types, large sized farms represent the largest category with about 43% of the total number

of farms. These larger proportions of large sized farms in both types of farms could be

explained by the fact that this category of sizes is the largest in the sample (see Table 1).
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Some summary statistics for various farm and farmer characteristics for both stayers and

movers farm types are then computed in order to identify the profile of farms in each type.

The summary statistics reported in Table 4 show that farmers who are close retirement and

farms specialized in crops or operated under individual legal status are more likely to be-

have like a stayer. Contrary, farms whose most of part is located in area without natural

handicap (mountains, piedmont plains, etc.) and farms whose farmers have received at

least a minimum agricultural training are more likely to behave as a mover. However, the

probability of belonging to a specific type is not very correlated to the farm and farmer char-

acteristics considered in the model specification. Indeed, the statistics are quiet similar for

all observed characteristics of farms and farmers in both types. The difference in the distri-

bution of these characteristics between the two types of farms is very low. The difference

in the proportion of farms with a specific observed characteristic in the two types is lower

than 1% for almost all characteristics considered in the study. For example, the proportion

of farmers over 55 years old in the stayers type and in the movers type are 17.80% and

17.50%, respectively. The descriptive statistics thus show that unobserved heterogeneity

cannot be sufficiently controlled by some observed farms and/or farmer characteristics and

accounting for both kinds of heterogeneity may therefore lead to more efficiently estimate

the impacts of explanatory variables, including agricultural policies.

The transition probability matrix for the overall population of farms can be easily derived

by summing the two types of TPMs weighted by their respective shares in the population.

The resulting 1-year TPM for the overall population is reported in Table 5. The transition

probabilities show that, on overall, farms are more likely to remain in their initial category

two consecutive years which is a common features in the agricultural economics literature

(see for example (Hallberg 1969; Stokes 2006; Piet 2011)). Indeed, the overall population

TPM is strongly diagonal. The probability to remain in the same category of size two con-

secutive years is around 0.94. This high probability to remain in the same category of sizes

is due to the high proportion of the stayers type in the population. Consequently, consid-
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ering an homogeneous population to describe farm size dynamics as well as to investigate

the impact of some explanatory variables on transition probabilities may be not sufficiently

informative. Analysis under a mixture approach may be more informative by separating

the impacts of explanatory variables, including agricultural policies, on different behaviors

of farms in the population (stayers and movers in this case).

Impact of explanatory variables

The parameters of transition probabilities are estimated under the mixture Markov assump-

tion. For each type of farms, a multinomial logit regression is estimated using the posterior

probability of belonging to a specific type as a weighted factor as described in section .

As mentioned in section , for each initial category of sizes the alternative to remain in the

same category of sizes two consecutive years is used as the reference. The estimated co-

efficients for the odds ratios are reported in Table 6. As expected, the results show that

the impacts of the explanatory variables are different given the type of farms considered.

Even the same sign is most often observed for some parameters, the coefficient values are

generally different meaning that the impacts of explanatory variables depend on the type

membership of farms. On overall, subsidies per hectare from the First and the Second

Pillars, initial stocks, total Gross Operating Surplus and debt rate of farms have a positive

impact on the probability to grow and negatively affect farm size declined whatever the

farm type considered. These results are consistent to the literature and confirm the expecta-

tions. Several studies showed that subsidies from some support programs of the Common

Agricultural Policy (CAP) are likely to favour farm growth (see Ben Arfa et al. (2015) for a

recent example). Zimmermann and Heckelei (2012) found that stocking density positively

affect farm growth. Contrary to the later authors, the results also support that initial stocks

decrease the probability of farms to decline. Furthermore, it should be noted that subsidies

from the Second Pillar are more likely to increase the probability of farms to grow only

for medium sized farms. These kinds of subsidies generally decrease the probability to
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decline. This result confirms our expectation that subsidies from the Second Pillar of the

CAP are less likely to encourage farm growth than public supports from the First Pillar.

The results also show that farms are more likely to decrease category of sizes when

farmers are over 55 years, in both types of farms. Individual legal status as well as special-

isation in crop productions have the same impacts on farm growth. These results can be

explained by the fact that: first, farmers may be less motivated to increase their capacity of

production when they are close of retirement because they should be more interested to the

farm succession (Potter and Lobbley 1992) or by the fact that younger farmers are more

likely to seek to increase agricultural activity, as they would be less financially secure than

their older counterparts (Howley, Dillon, and Hennessy 2014); second, farms involving

under individual legal status may face much more economical constraints (capital, access

to credit, etc.) than corporate farms which may constrain new investments or such farms

may just have less financial motives than corporate farms (Boehlje 1992); third, it may be

more difficult for farms specialized in crop productions to increase their operated farm size

over time because of the regulation of the land market, specially in France, since increasing

the production capacity for crop farms may generally need to increase the total land used

more than for livestock production systems. Conversely to the previous farm and farmer

characteristics, the probability to grow increase if the most part of the farm is located in an

area without natural handicap or if farmers have received a minimum agricultural trainings.

The later result confirm the positive impact of the managerial capacity on farm size growth

(Boehlje 1992; Goddard et al. 1993).

Because of the coefficient values from the multinomial logit model are difficult to in-

terpret (Greene 2006), the probability elasticities for the main explanatory variables are

derived. As the study specially investigates impacts of agricultural policies on farm size

changes, more attention is paid on the impact of subsidies received by farms from the two

Pillars of the CAP. The results are then compared to those obtained under the assumption

of homogeneous farm population.

25



Tables 8, 9 and 10 respectively report the probability elasticities for farms to grow, de-

cline and remain in the same category of sizes two consecutive years. The results show

that the impact of subsidies both from the First and the Second Pillars of the CAP on the

probability of farms to grow or decline is higher for farms belonging to the stayers type

than for farms in the movers one. For example, a 1% increase of subsidies from the First

Pillar (in 1000 Euros) will increase the probability of farms in the stayers type to move

from medium sized to large about 0.57 but only 0.17 for the movers type. The impact of

coupled and decoupled subsidies is thus about 70% higher for farms in the stayers than for

the movers ones. This result may be explained by the fact that the stayers type could gather

farms who have some liquidity constraints and aids from government programs may have

an income multiplier effect for those farms (Latruffe et al. 2010).

Nevertheless, the results also show that for the stayers type of farms the subsidies from

the First Pillar of the CAP only have a positive impact on growth of medium sized farms.

Indeed, large and very large sized farms in this type are more likely to remain in their

category of sizes when increased their amount of subsidies. It could be the fact that farms

in the stayers type may be less motivated to increase their operated farm size at a certain

level for some of the reasons mentioned in section . In particular, they may have less

financial motives and therefore may have a lower optimal size than farms in the movers

type. As the subsidies received will increase the total profit, the probability for these farms

to become very large may decrease with the amount of subsidies received.

Structure elasticities are then computed at the mean effects of subsidies from each Pillar.

Since it is impossible to take into account entry and exit in farming and constant population

were assumed, the structure elasticities are computed on proportion of farms by category of

sizes. The structure elasticities thus represent the variation of farm proportion in a specific

category of sizes that will occur by 1% change of the total amount of subsidies received by

farms. Figure 2 and 3 present the resulting structure elasticities for both the homogeneous

and the mixture model. The figures show that the resulting structure elasticities from the
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homogeneous model and the mixture one are quite different. Overall, the homogeneous

model tends to overestimate the impacts of subsidies from both the first and the Second

Pillars of the CAP. For example, the homogeneous model predicts that a 1% increase of

subsidies from the First Pillar will decrease the proportion of medium sized farms by about

2.72% while the mixture model predicts a decrease only about 1.82% (see Figure 2). Like-

wise, the homogeneous model predicts a about 0.67% increase of the proportion of very

large sized farm if subsidies from the Second Pillar increase by 1% (see Figure 3) while this

proportion is only about 0.41% for the mixture model. These results confirmed that ignor-

ing unobserved heterogeneity in modeling farm size dynamics can lead to different level of

agricultural policy impacts on structural change and thus to misleading conclusions.

Concluding remarks

This paper provides a new approach for modeling structural change in agriculture. Us-

ing individual level data, a mixture of homogeneous types of farms is considered in or-

der to incorporate unobserved heterogeneity in farm transition process. A discrete choice

modeling approach is used to describe farm size choices by the farmers as decision mak-

ers. A multinomial logit specification of the transitions probabilities were applied and the

expectation-maximization algorithm allowed estimating parameters of the mixed Markov

model. Transition probability elasticities as well as structure elasticities are derived to an-

alyze the impacts of some exogenous variables on farm size change in the French farming

sector, specially focusing on the impact of some agricultural policies.

Using a sample of farms from the ’Réseau d’Information Compatable Agricole’ (RICA)

from 2000 to 2013, the results showed that French farms can be divided in two types:

‘stayers’ who are more likely to remain in their initial category of sizes and ‘movers’ who

change category of sizes more frequently than the farms in the stayers type. The results

also showed that the population of French farms consists of a higher proportion of farms

that behave like stayers which leads to a strongly diagonal transition probability matrix
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for the overall population. Descriptive statistics showed that the probability to belong to

the stayers type or the movers one are not very correlated with the observed farm and/or

farmer characteristics meaning that unobserved heterogeneity cannot be fully controlled by

the observed heterogeneity.

The results also showed that the impacts of some explanatory variables of structural

change in farming, including subsidies from the First and the Second Pillars of the Com-

mon Agricultural Policy (CAP), depends on the type that farms belong to. Aggregated

at the population level, structure elasticities showed that mixture model leads to different

results and overall the homogeneous model tends to overestimate the impacts of subsidies

both from the First Pillar and the Second Pillars on farm size change over time. These

results are relevant for policy assessment since they confirmed that ignoring potential un-

observed heterogeneity in farmer behavior may lead to incorrect parameters and therefore

to misleading conclusions.

This study has some limitations that may motivate further research. In the current paper,

the estimations were performed under constant population assumption since we could not

take into account entries and exits in the French farming sector because some data limi-

tations. Accounting for entry and exits could be an obvious way to analyze the impact of

agricultural policy on total number of farms by category of sizes. The results could be also

improved considering other explanatory variables than those used in this application since

it has been proved that several other factors may play an important role on structural change

in farming.
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Notes

1Mixture models have been so far applied to the study of economic issues such as labor

mobility (Blumen, Kogan, and McCarthy 1955; Fougere and Kamionka 2003), bounds

rating (Frydman and Kadam 2004; Frydman and Schuermann 2008), income or firm size

dynamics (Dutta, Sefton, and Weale 2001; Cipollini, Ferretti, and Ganugi 2012).

2It should be noted that, the multinomial logit model is often used in the agricultural

economics literature to specify transition probabilities even using aggregate data (see Zim-

mermann and Heckelei (2012) for a recent example). Storm (2014) used this specification

method to generate individual transition probabilities for farms in a Monte Carlo simula-

tion.

3The likelihood does not yield to an explicit solution for the model parameters. The EM

algorithm transforms the maximization of a log of sums into a recursive maximization of

the sum of logs (McLachlan and Krishnan (2007) pp. 15).

4This assumption means that the distribution of the complete-data vector (yc) implies

the appropriate distribution for the incomplete-data vector (y) (see McLachlan and Peel

(2004) pp.48).
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Figures

Figure 1. Comparison of model-fit statistics for different numbers of types.
Source: Agreste, RICA France 2000-2013 – authors’ calculations
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Figure 2. Yearly structure elasticities of subsidies from the First Pillar of the CAP for
the homogeneous and the mixed Markov models.

Source: Agreste, RICA France 2000-2013 – authors’ calculations
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Figure 3. Yearly structure elasticities of subsidies from the Second Pillar of the CAP
for the homogeneous and the mixed Markov models.

Source: Agreste, RICA France 2000-2013 – authors’ calculations
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Tables

Table 1. Farm 1-year interval transitions across category of sizes, 2000-2013

ES class

25-100 100-250 ≥ 250 Total transitions
E

S
cl

as
s 25-100 26,034 1,310 27 27,371

100-250 1,257 32,425 1,055 34,737
≥ 250 31 840 12,925 13,796

Note: ES in 1,000 Euros of standard output (SO).

Source: Agreste, RICA France 2000-2013 – authors’ calculations
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Table 2. Descriptive statistics and definition of the explanatory variables (n=75,904)

Variable Mean Std. Dev. Min. Max.

pillar1/hectare 1.667 1.073 0.000 10.692
(Subsidies per hectare from the 1st pillar)
pillar2/hectare 0.420 0.718 -0.001 11.202
(Subsidies per hectare from the 2nd pillar)
in_stocks 91.547 128.361 0.000 1,814.976
(Total initial stocks)
output/AWU 85.651 52.594 -364.297 646.905
(Total output per AWU)
GOS/utans 26.053 38.480 -421.569 561.165
(GOS per non-salaried UTA)
debt_rate 39.678 26.679 0.000 366.400
(Total debt/liabilities)
close_retirement 0.177 0.381 0.000 1.000
(over 55 years olda)
crops 0.451 0.498 0.000 1.000
(Specialized in crops)
individual 0.513 0 .500 0.000 1.000
(Operate under individual legal status)
well_located 0.599 0.490 0.000 1.000
(Most part in area without natural handicap)
agri_skills 0.936 0.246 0.000 1.000
(Has agricultural trainings)

pillar1/hectare, pillar2/hectare, in_stock and GOS/utans in 1,000 Euros;
aIn order to take into account anticipation of farmers, 55 years old is used instead of 62 which is the legal age of retirement in France.

Source: Agreste, RICA France 2000-2013 – authors’ calculations
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Table 3. Estimated farm type shares and 1-year transition probability matrices
(TPMs)

Shares ES class

68.15% 25-100 100-250 ≥ 250
E

S
cl

as
s 25-100 40.10% 0.992(0.014) 0.008(0.014) 0.000(.)

100-250 42.92% 0.007(0.009) 0.986(0.012) 0.007(0.007)
≥ 250 16.98% 0.000(.) 0.011(0.019) 0.989(0.019)

a) Stayers TPM

Shares ES class

31.85% 25-100 100-250 ≥ 250

E
S

cl
as

s 25-100 36.90% 0.858(0.113) 0.142(0.113) 0.000(.)
100-250 43.12% 0.091(0.076) 0.828(0.080) 0.081(0.074)
≥ 250 19.98% 0.000(.) 0.151(0.100) 0.849(0.100)

a) Movers TPM

Note: ES in 1,000 Euros of standard output (SO); standard deviations in parenthesis

Source: Agreste, RICA France 2000-2013 – authors’ calculations
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Table 4. Descriptive statistics for observed farm characteristics by type membership.

Variable Stayers type Movers type

close_retirement 0.822 (0.382) 0.825 (0.380)
crops 0.453 (0.498) 0.447 (0.497)
individual 0.516 (0.500) 0.506 (0.500)
well_located 0.599 (0.490) 0.600 (0.490)
agri_skills 0.933 (0.249) 0.940 (0.238)

Standard deviations in parenthesis

Source: Agreste, RICA France 2000-2013 – authors’ calculations
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Table 5. Overall population 1-year transition probability matrix.

ES class

25-100 100-250 ≥ 250

E
S

cl
as

s 25-100 0.951(0.045) 0.049(0.045) 0.000(.)
100-250 0.034(0.029) 0.935(0.027) 0.031(0.025)
≥ 250 0.000(.) 0.055(0.038) 0.945(0.038)

Note: ES in 1,000 Euros of standard output (SO); standard deviations in parenthesis

Source: Agreste, RICA France 2000-2013 – authors’ calculations
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Table 6. Estimated parameters of farm probabilities to grow two consecutive years for
the homogeneous and the mixed Markov models.

Odds ratios Variables Homogeneous Stayers type Movers type

p12/p11 intercept -3.912*** (0.208) -6.804*** (0.385) -2.998*** (0.193)
pillar1/hectare 0.274*** (0.044) 0.417*** (0.071) 0.141*** (0.042)
pillar2/hectare -0.119 (0.071 ) 0.229** (0.080) -0.206** (0.070)
in_stocks 0.003 *** (0.001) 0.004*** (0.001) 0.013*** (0.001)
GOS/utans 0.010*** (0.002) 0.005* (0.002) 0.011*** (0.002)
debt_rate 0.010*** (0.001) 0.010*** (0.001) 0.015*** (0.001)
close_retirement 0.307** (0.100) 1.046*** (0.214) 0.150 (0.096)
crops -0.387*** (0.081) -0.254 (0.137) -0.363*** (0.072)
individual -0.783*** (0.074) -1.412*** (0.115) -0.714*** (0.068)
well_located 0.283*** (0.083) 0.641*** (0.134) 0.249*** (0.070)
agri_skills 0.285* (0.146) 0.362 (0.264) 0.314* (0.137)

p23/22 intercept -4.782*** (0.242) -4.697*** (0.342) -4.400*** (0.263)
pillar1/hectare 0.169*** (0.044) -0.536*** (0.057) 0.311*** (0.039)
pillar2/hectare 0.055 (0.053) -0.049 (0.089) 0.024 (0.058)
in_stocks 0.003*** (0.000) 0.001 ( 0.001) 0.005*** (0.000)
GOS/utans 0.006*** (0.001) 0.003** (0.001) 0.008*** (0.001)
debt_rate 0.012*** (0.001) 0.009*** (0.002) 0.014*** (0.001)
close_retirement 0.096 (0.096) -0.030 (0.150) 0.164 (0.099)
crops -0.436*** (0.081) 0.220 (0.122) -0.750 (0.083)
individual -0.520*** (0.082) -0.040 (0.119) -0.716*** (0.083)
well_located 0.200* (0.087) 0.180 (0.146) 0.167*** (0.083)
agri_skills 0.222 (0.184) -0.201 ( 0.240) 0.384*** (0.210)

Note: Standard errors in parenthesis; ***, ** and * are significant at 0.1%, 1% and 5%, respectively.

Source: Agreste, RICA France 2000-2013 – authors’ calculations
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Table 7. Estimated parameters of farm probabilities to decline two consecutive years
for the homogeneous and the mixed Markov models.

Odds ratios Variables Homogeneous Stayers type Movers type

p21/p22 intercept -1.471*** (0.195) -4.509*** (0.326) 0.228 (0.185)
pillar1/hectare -0.224*** (0.037) -0.377*** (0.066) -0.161*** (0.035)
pillar2/hectare -0.053 (0.040) 0.045 (0.063) -0.083 (0.043)
in_stocks -0.009*** (0.001) 0.002* (0.001) -0.013*** (0.001)
GOS/utans -0.014*** (0.002) -0.013*** (0.002) -0.014*** (0.002)
debt_rate -0.005*** (0.002) 0.008*** (0.002) -0.009*** (0.001)
close_retirement -0.327*** (0.081) -1.068*** (0.127) -0.163 (0.085)
crops -0.158* (0.075) -0.379** (0.122) -0.104 (0.071)
individual 0.802*** (0.075) 0.761 (0.122) 0 .675*** (0.070)
well_located -0.485*** (0.075) 0.013 (0.130) -0.539*** (0.073)
agri_skills -0.105 (0.149) 0.536* (0.249) -0.526*** (0.141)

p32/p33 intercept -1.066*** (0.252) -2.434*** (0.375) 0.469* (0.244)
pillar1/hectare -0.060 (0.038) -0.355*** (0.067) -0.122** (0.040)
pillar2/hectare -0.201** (0.067) -0.139 (0.097) -0.203** (0.071)
in_stocks -0.004*** (0.001) 0.001 (0.001) -0.006*** (0.001)
GOS/utans -0.007*** (0.001) -0.01*** (0.002) -0.007*** (0.001)
debt_rate -0.006*** (0.002) -0.003 (0.003) -0.009*** (0.002)
close_retirement -0.131 (0.099) -1.111*** (0.159) -0.073 (0.105)
crops -0.266** (0.098) -1.170*** (0.190) -0.037 (0.084)
individual 0.431*** (0.099) 1.914*** (0.154) 0.147 (0.091)
well_located -0.261* (0.102) 0.055 (0.233) -0.212* (0.096)
agri_skills 0.018 (0.188) -0.659** (0.257) -0.013 (0.171)

Note: Standard errors in parenthesis; ***, ** and * are significant at 0.1%, 1% and 5%, respectively.

Source: Agreste, RICA France 2000-2013 – authors’ calculations
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Table 8. Yearly probability elasticities of farm growth for the homogeneous and the
mixed Markov models.

Probability Variables Homogeneous Stayers type Movers type

Medium/Large (p12) pillar1/hectare 0.363 (0.058) 0.574 (0.098) 0.171 (0.051)
pillar2/hectare -0.058 (0.035) 0.118 (0.041) -0.090 (0.031)
iin_stocks 0.111 (0.031) 0.155 (0.045) 0.381 (0.026)
GOS/utans 0.103 (0.021) 0.056 (0.024) 0.103 (0.020)
debt_rate 0.298 (0.027) 0.323 (0.043) 0.393 (0.026)
close_retirement 0.241 (0.078) 0.855 (0.175) 0.105 (0.068)
crops -0.149 (0.032) -0.101 (0.055) -0.128 (0.026)
individual -0.594 (0.057) -1.115 (0.091) -0.491 (0.048)
well_located 0.118 (0.034) 0.277 (0.058) 0.093 (0.026)
agri_skills 0.248 (0.127) 0.329 (0.241) 0.246 (0.106)

Large/V. large (p23) pillar1/hectare 0.304 (0.075) -0.955 (0.102) 0.522 (0.062)
pillar2/hectare 0.020 (0.019) -0.018 (0.031) 0.012 (0.020)
in_stocks 0.231 (0.028) 0.085 (0.056) 0.421 (0.028)
GOS/utans 0.155 (0.028) 0.095 (0.034) 0.218 (0.024)
debt_rate 0.480 (0.049) 0.372 (0.069) 0.558 (0.055)
close_retirement 0.086 (0.077) -0.020 (0.123) 0.137 (0.076)
crops -0.197 (0.037) 0.103 (0.057) -0.326 (0.037)
individual -0.227 (0.033) -0.019 (0.047) -0.338 (0.036)
well_located 0.136 (0.055) 0.118 (0.095) 0.125 (0.049)
agri_skills 0.208 (0.169) -0.192 (0.225) 0.384 (0.186)

Note: Standard errors in parenthesis

Source: Agreste, RICA France 2000-2013 – authors’ calculations
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Table 9. Yearly probability elasticities of farm declined for the homogeneous and the
mixed Markov models.

Probability Variables Homogeneous Stayers type Movers type

Large/Medium (p21) pillar1/hectare -0.397 (0.065) -0.669 (0.118) -0.312 (0.058)
pillar2/hectare -0.019 (0.014) 0.016 (0.022) -0.029 (0.015)
in_stocks -0.751 (0.107) 0.148 (0.062) -1.070 (0.079)
GOS/utans -0.366 (0.042) -0.344 (0.052) -0.368 (0.055)
debt_rate -0.224 (0.062) 0.342 (0.092) -0.386 (0.057)
close_retirement -0.264 (0.065) -0.878 (0.104) -0.133 (0.064)
crops -0.067 (0.034) -0.178 (0.057) -0.024 (0.031)
individual 0.315 (0.028) 0.300 (0.048) 0.264 (0.026)
well_located -0.312 (0.048) 0.008 (0.085) -0.33 (0.045)
agri_skills -0.102 (0.136) 0.504 (0.233) -0.483 (0.124)

V. Large/Large (p32) pillar1/hectare -0.106 (0.067) -0.643 (0.121) -0.206 (0.069)
pillar2/hectare -0.073 (0.024) -0.054 (0.038) -0.063 (0.023)
in_stocks -0.794 (0.150) 0.209 (0.114) -1.171 (0.110)
GOS/utans -0.379 (0.055) -0.530 (0.097) -0.325 (0.051)
debt_rate -0.269 (0.080) -0.167 (0.168) -0.383 (0.071)
close_retirement -0.100 (0.076) -0.886 (0.127) -0.051 (0.073)
crops -0.127 (0.047) -0.601 (0.098) -0.015 (0.035)
individual 0.089 (0.020) 0.421 (0.033) 0.026 (0.016)
well_located -0.191 (0.075) 0.043 (0.182) -0.138 (0.063)
agri_skills 0.016 (0.167) -0.612 (0.239) -0.011 (0.138)

Note: Standard errors in parenthesis

Source: Agreste, RICA France 2000-2013 – authors’ calculations
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Table 10. Yearly probability elasticities of farms to remain in the same category of
sizes for the homogeneous and the mixed Markov models.

Probability Variables Homogeneous Stayers type Movers type

Medium/Medium (p11) pillar1/hectare -0.021 (0.004) -0.006 (0.001) -0.031 (0.010)
pillar2/hectare 0.003 (0.001) -0.001 (0.001) 0.012 (0.004)
in_stocks -0.008 (0.003) -0.003 (0.001) -0.088 (0.008)
GOS/utans -0.008 (0.002) -0.001 (0.000) -0.025 (0.006)
debt_rate -0.020 (0.002) -0.004 (0.001) -0.087 (0.007)
close_retirement -0.013 (0.004) -0.008 (0.002) -0.018 (0.012)
crops 0.007 (0.001) 0.001 (0.000) 0.020 (0.003)
individual 0.023 (0.002) 0.005 (0.000) 0.064 (0.005)
well_located -0.007 (0.002) -0.003 (0.001) -0.018 (0.005)
agri_skills -0.013 (0.007) -0.003 (0.002) -0.042 (0.018)

Large/Large (p22) pillar1/hectare 0.003 (0.003) 0.008 (0.001) -0.027 (0.009)
pillar2/hectare 0.000 (0.001) 0.000 (0.000) 0.003 (0.002)
in_stocks 0.008 (0.002) -.002 (0.001) 0.018 (0.006)
GOS/utans 0.001 (0.002) 0.000 (0.000) -0.002 (0.004)
debt_rate -0.010 (0.003) -0.006 (0.001) -0.021 (0.008)
close_retirement 0.007 (0.003) 0.005 (0.001) 0002 (0.009)
crops 0.008 (0.001) 0.000 (0.001) 0.025 (0.003)
individual -0.014 (0.002) -0.003 (0.001) -0.028 (0.005)
well_located 0.005 (0.002) -0.001 (0.001) 0.018 (0.005)
agri_skills -0.003 (0.008) -0.002 (0.002) 0.018 (0.019)

V.Large/V.Large (p33) pillar1/hectare 0.007 (0.004) 0.004 (0.001) 0.038 (0.012)
pillar2/hectare 0.004 (0.001) 0.000 (0.000) 0.010 (0.003)
in_stocks 0.028 (0.004) -0.002 (0.002) 0.104 (0.007)
GOS/utans 0.015 (0.002) 0.004 (0.000) 0.035 (0.004)
debt_rate 0.017 (0.005) 0.002 (0.002) 0.069 (0.012)
close_retirement 0.006 (0.005) 0.007 (0.001) 0.009 (0.013)
crops 0.006 (0.002) 0.006 (0.001) 0.002 (0.005)
individual -0.008 (0.002) -0.013 (0.002) -0.006 (0.004)
well_located 0.011 (0.004) 0.000 (0.002) 0.023 (0.010)
agri_skills -0.001 (0.011) 0.006 (0.002 ) 0.002 (0.025)

Note: Standard errors in parenthesis

Source: Agreste, RICA France 2000-2013 – authors’ calculations
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