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Abstract 

Little is known about the factors affecting pastoralists’ livestock vaccination decisions. In this 

paper, we use a novel survey-based dataset on pastoralists living in the Ruaha landscape in 

Tanzania, and employ several econometric approaches to identify the factors affecting 

pastoralists’ decision-making process about vaccination when disease occurrence and severity, 

vaccination and healthcare access costs and other related variables are known. Results from 
binary choice models that account for excess zeros indicate that socially and economically 

active households are more likely to vaccinate their livestock. The results also identify positive 

marginal effects of having wage earners and illness incidence on vaccination decisions. The 
results from mixture models also find that these same variables significantly lower the 

pastoralist’s probability to vaccinate no livestock. Most notably, vaccination cost significantly 

lowers the probability that pastoralists vaccinate any livestock, as well as the number of 

vaccinated livestock. These findings have important policy implications considering livestock 
health education, veterinary service infrastructure, and supply-side management. 

  
JEL codes: D13, D83, Q12, Q13, R28. 

Keywords: Africa, averting action, averting expenditure, hurdle model, zero inflated model, 

vaccination decision.   
 

 

1 Introduction 
 

Livestock production plays a crucial role in meeting global nutritional needs, accounts for 

approximately 40 percent of agricultural GDP, and provides pathways out of poverty for more than 
one billion people whose livelihoods depend directly or indirectly on it (McPeak et al., 2011; World 

Bank, 2011). Livestock disease is a persistent problem in many developing countries, and Tanzania is 
not an exception (Perry and Sones, 2009), with approximately 60 percent of family-owned livestock 

suffering from some type of preventable disease like bovine and caprine pleuropneumonia, brucellosis, 

and foot and mouth disease (Kivaria, 2003; Covarrubias et al., 2012; Clifford et al., 2008). These 
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disease affects pastoralist households through multiple pathways: it contributes to food and nutritional 

insecurity, loss of wealth and income, and can lead to an increased disease burden for humans. 
Pastoralist households, which rely heavily on livestock as a source of nutrition, store of wealth, and 

for cultural status (Hesse and MacGregor, 2006; Coppolillo et al., 2009; Lybbert et al., 2004), are 
particularly affected by livestock disease losses. 

 

The likelihood and severity of livestock diseases are important threats to livelihoods and the 
burden of losses is high, especially for households in less developed rural settings where veterinary 

services are limited (Allport et al., 2005). Preventive measures like vaccination, commonly referred to 

as averting actions or decisions, can lower the expected loss to disease (Mclnerney, 1996). Pastoralists’ 
averting decisions are based on risk preferences, but are likely also shaped by previous experience with 
disease infection and loss. Their decision mechanism is a complex issue, and depends on various socio-

economic and household behavioral factors. The literature on livestock keepers’ vaccination averting 

decisions is limited, especially for pastoralist households. In the context of high exposure to livestock 

diseases (World Bank, 2011), we empirically analyze household survey data to identify the factors that 

likely affect their averting actions to decrease the likelihood of future disease losses.  

  

This paper extends the literature on households’ averting decisions, incorporating information 

on households’ livestock disease experience, through two related aspects. First, we use household survey 

data to examine the impacts of potential socio-economic and behavioral factors of pastoralists’ averting 

decisions for livestock diseases, i.e., vaccination. In particular, we empirically test two major 
hypotheses. We test the hypothesis that the vaccination decision and number of vaccinated livestock 

is positively influenced by prior disease experience, i.e., illness incidence and livestock death in the past 
twelve months. Another hypothesis relates to vaccination cost. We hypothesize that higher vaccination 

cost negatively influences the vaccination decision. Second, based on pre-survey qualitative 

observations and empirical findings, we conclude the paper with a few policy suggestions on ways to 
address barriers to vaccination. 

 

Following traditional averting behavior frameworks such as Bontemps and Nauges (2016), we 
assume that a pastoralist will choose to vaccinate their livestock if the expected utility when 

vaccinating livestock is higher than the expected utility from not vaccinating. As this decision to 
vaccinate or not is a latent representation of the relative difference in utility, we use their binary 

vaccination decision to capture differences in relative expected utility. The decision depends on a 

variety of economic, community, and behavioral variables. Therefore, in explaining the pastoralists’ 
averting behavior for livestock diseases, we need to consider the role of disease experience and socio-
economic factors together with related social beliefs. We assume that the binary vaccination decision 

and resulting number of vaccinated livestock are associated with previous disease infection and loss, 

with the costs of vaccination and travel to access vaccination services, the household head’s age and 

education level, and family and herd size, among others. Additionally, we include a dummy for socially 
and economically active households as a control variable for households with at least one cell phone, a 

wage earner, and a primary school-educated household head. Another categorical control variable 

representing diversified sources of income is also included to identify the effect of wage income on 
vaccination decisions. The empirical basis of the study is a household survey conducted in 2012 in 

Pawaga and Idodi divisions near Ruaha National Park and community wildlife management areas in 
Iringa region, Tanzania. We collected household-level data on livestock disease and vaccination and 

related household and community characteristics using a structured questionnaire to analyze factors 

influencing households’ averting decisions through descriptive and econometric analyses. 

  

We consider an averting decision model where pastoralists’ have a binary choice variable that 

includes the decision to vaccinate or not vaccinate. Maximum likelihood approaches, such as logit and 

probit estimators, are frequently used as the estimation strategy to examine binary averting decisions. 

In logistic regression, maximum likelihood estimates can be biased when events are rare. As our binary 
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decision variable consists of few positive actions, we consider three variants of the logistic model that 

account for rare events in the outcome variable. First, we consider an exact logistic regression model 
that is appropriate for small samples with dichotomous covariates, but excluded from final analysis as 

our sample size is considerably high for this estimation. Second, the King and Zeng (2001) bias 
correction method of logistic estimation is employed. Finally, we use the penalized maximum likelihood 

estimation procedure proposed by Firth (1993). While another class of estimators, known as zero-

truncated procedures, exists that produces more robust estimates, we cannot implement this procedure 

as it is only suitable for large datasets (𝑛 ≥ 2000) with zero-truncated data. 

 
We extend the analysis to estimate a count data model where the number of vaccinated 

livestock is considered as the outcome variable. Given that most households did not administer any 

vaccinations, we find them with zero vaccinated livestock. This is due to the presence of both true and 
excess zeros. There is also a considerable gap between observed zeros (89.29%) and predicted zeros 

(30% using a Poisson analysis). Moreover, the distribution of non-zero counts (10.71%) shows 

dispersion with a possibility of over dispersion. In this case, both hurdle and zero-inflated models (with 

or without over dispersion) can explain the high occurrence of zeros in the outcome variable. The 

hurdle model assumes a two-step decision-making process and expects a positive number of vaccinated 
livestock if and only if the household decides to vaccinate. The reason behind this zero in the count 

outcome variable is structural and depends on the binary first-step vaccination decision. On the other 

hand, zero-inflated or zero-altered models assume that some pastoralists either do not know about 

vaccination or do not have the financial ability to vaccinate, which inflates the number of ‘excess’ 
zeros. Households that have vaccination knowledge and financial ability to vaccinate generate non-

zero count values. Their counterparts are unable to vaccinate due to financial constraints and generate 

zero count values even though they may want to vaccinate their livestock. The latter leads to ‘true’ 

zeros. Therefore, we need to consider a few variants of the hurdle and zero-inflated models—for example 

negative binomial and Poisson—to explain true zeros and excess zeros with or without over dispersed 

count data simultaneously. We find that negative binomial-logit hurdle (NBLH) and zero-inflated 
negative binomial (ZINB) models are the most robust techniques to analyze the number of vaccinated 

livestock based on the Vuong (1989) test, Greene (2012) likelihood ratio test, and various information 

criteria. 
 

Descriptive analyses provide a summary overview of the livestock vaccination status of three 
ethnic groups who faced disease infection and consequent death loss in the twelve months prior to the 

survey (see table 2 for details). Even though 49.74 percent of pastoralist households have experienced 

livestock deaths, only 10.71 percent vaccinated their livestock in the study areas. A higher percentage 

of the households experiencing livestock disease—compared to households not experiencing disease—
vaccinated their livestock, which is uniform across the ethnic groups. A Pearson chi-square test 

confirms that the difference is not significant among the ethnic groups. 

 
We further compare and contrast the findings revealed from the maximum likelihood, hurdle 

and zero-inflated estimations. Results from zero-inflated models, which explain excess zeros based on 
household types, indicate that pastoralist households that are socially and economically active, have 

at least one wage earner, and that are far from the nearest livestock extension officer are less likely 

than their counterparts to be in the excess zeros group. Additionally, households that experienced 
livestock illness are less likely to be in the excess zero group. Households facing higher vaccination 

costs, on the other hand, are more likely to be in the excess zero group. Both maximum likelihood and 

hurdle models estimate the binary choice of vaccination decision. Results indicate that households who 
are more socially and economically active and have wage earners are more likely decide to vaccinate 

their livestock. Pastoralists are more likely decide to vaccinate their livestock if the vaccination cost is 
low. We also find that higher per capita livestock negatively influences the vaccination decision, 

suggesting that the more livestock a household owns, the lower the probability that the household 

vaccinates their livestock. It seems a little bit surprising but not without plausible explanations. Given 



5 

 

that pastoralists hold most of their wealth in their livestock, this finding may result from diminishing 

marginal utility of wealth or changing risk preferences. Pastoralists with more livestock have more 
options and can either sell or eat the animals at home to cope with the disease occurrence without 

significantly affecting the sustainability of their herd. The number of ill livestock in the past 12 months, 
wage earnings and vaccination cost also influence the number of vaccinated livestock positively. A 

household head older than 30 years of age vaccinated more livestock than their younger counterparts. 

Additionally, socially and economically active households have more vaccinated livestock than those 
who are not. Households who experience more livestock deaths due to illness vaccinate fewer livestock. 

In most cases, we find similar results for separate data specifications in terms of ethnic groups, except 

Barabaig. Results from the hurdle and zero-inflated models sing the pooled data reveal the similar 
pattern and magnitude. 

 

The rest of the paper is as follows: Section 2 explains the conceptual framework of pastoralists’’ 
averting decision, and resulting output in view of livestock diseases experienced in the past twelve 
months. Section 3 explains the sampling and survey design for data collection and the econometric 

estimation strategies. Section 4 discusses the empirical results and discussions with robustness checks. 
In the last section of the paper, we conclude with a few policy suggestions based on the major findings. 

 

  

2 A Simple Framework of Pastoralists’ Livestock Vaccination 
 

In the study area, most of the pastoralists have experienced disease-related livestock losses due to 

different types of diseases, including bovine and caprine pleuropneumonia, brucellosis, and foot and 

mouth disease in the past twelve months. Livestock are an important source of food, wealth, and social 
status (Lybbert et al. 2004). Ouma et al. (2006) and Mdoe and Mnenwa (2007) also indicate that 

larger livestock herds bestow prestige upon households in Tanzania. Given the substantial benefits 

that households derive from livestock, livestock health is important for household wellbeing. In this 
view, vaccination is one way for pastoralists to safeguard their herd so that they can maintain their 

food supply (e.g., meat, milk), wealth, and social prestige. One option for livestock disease control 
involves vaccination to reduce the probability of infection and loss. We further assume that the 

pastoralists’ decision rule is based on maximizing their expected utility by minimizing the expected 

loss through vaccination due to infection (Wolf, 2013). 

 

Maximization of expected utility compares two decisions: vaccinate, , and not vaccinate, . 

Consider a pastoralist who chooses to vaccinate if her expected utility of vaccinating , is higher 

than the expected utility of not vaccinating, , where the utility 

difference, , is a latent variable. As all attributes that affect preferences cannot be observed, we 

consider an observable component of utility,  where . Assume  is linear in the 

parameters . Thus  and , where  is the 

observable component that affects the pastoralists’ averting (vaccination) decision, . Rewriting the 

previous expected utility function as , where  is not 

observed, but we can observe the averting decision. In this case, McFadden (1973) suggested the 

random utility function for separable decision analysis, which models a binary choice variable, where 

 if the pastoralists’ vaccinate their livestock, or  if not. This specification can be estimated 

through the following form: 

 

(1)  

 

As the pastoralists’ vaccination decision is a sequential, two-stage process, after deciding to 

vaccinate or not to vaccinate, they decide how many livestock to vaccinate, . Based on equation (1) 

we can write the following:  
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(2)  

 

Pastoralists who are not concerned about vaccination decide not to vaccinate, with a number 

of vaccinated livestock always equal to zero. This type of pastoralist generates ‘excess’ zeros. Other 

households desire to have positive numbers of vaccinated livestock, but some may have zero due to 

several potential constraints, such as a lack of financial ability to pay for vaccination; these 

observations are known as ‘true’ zeros. In this respect, modeling true and excess zeros is essential to 

explain all potential situations. 

 

 

3 Data and Methodology 
 

3.1 Sampling and Survey Design 
 

The empirical basis of this paper is a pastoralist household survey conducted in 2012 in Pawaga and 
Idodi divisions near Ruaha National Park and community wildlife management areas of Iringa region 

(figure 2), Tanzania as part of a larger, long-term study on pastoralist households (Gustafson et al., 

2015). As the Iringa Rural district has a large population of pastoralists (NBS, 2013) who face a 
considerable disease threat, we selected this area for a field survey to find out the possible influencing 

factors associated with livestock diseases and vaccination decision. A two-stage stratified random 

sampling was employed to select the pastoralist households from Pawaga and Idodi divisions. The 

sampling framework includes ‘village’ as a primary sampling unit, and ‘household’ as the ultimate 

sampling unit. We randomly selected 196 households from 21 villages to collect necessary information. 
 

A structured questionnaire was employed to collect pastoralists’ household information. We 

collected data on herd size, livestock vaccination status, household-level morbidity and mortality data 

collected by disease signs, and variables that influence the vaccination decision, e.g., vaccination cost, 

distance to livestock extension officer, non-livestock sources of income, etc. In addition, information 
related to household size and residents, geographical, and community characteristics were collected to 

assess the vaccination status of the study area. We grouped all the households into three different 

strata based on ethnicity as a post-stratification procedure to capture any potential differences among 
the ethnicities. 

 

3.2 Estimation Strategy 
 

We use a two-stage estimation strategy to examine the factors affecting households’ decision-making 

processes and outcomes. We analyze the effects of socio-economic, behavioral, demographic and group 

variables on pastoralists’ binary averting decision, and the number of livestock vaccinated. Finally, we 

employ various robustness checks to examine the consistency of the estimated results. 
 

According to equation (2), the decision variable is a binary output where  if the  

household vaccinates their livestock, and  if they do not. This binary decision outcome can be 

modeled using various econometric estimations. Variants of maximum likelihood estimators (MLEs), 
such as the probit, are frequently used technique to model binary dependent variables. In addition, 

logistic regression, another variant of MLE is consistent, but only unbiased for large sample sizes; that 
is, estimates can be biased when sample size is small. Pre-estimation descriptive statistics on survey 

data reveals that 21 out of 196 (10.71% of total) respondents reported vaccinating livestock. As our 

binary decision variable consists of very few positive responses, we consider three different logistic 
approaches that account for rare events in the dependent variable. First, we consider an exact logistic 

regression model that is appropriate when the dependent variable is binary and sample size is small. 

As our sample size is around 200, and the number of degrees of freedom of the regression model is 
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high, we don’t report these results. Second, we employ King and Zeng’s (2001) bias correction method 

for logistic estimation, which incorporates the probability of rare events. Finally, we use the penalized 

maximum likelihood procedure proposed by Firth (1993) to reduce small-sample bias in maximum 

likelihood estimation. Firth’s method is an alternative to the exact logistic regression method when 

there are rare events (Heinze and Schemper, 2002). We also estimate the marginal effects of the 

covariate, which is the expected instantaneous rate of change in the outcome variable as a function of 

a marginal change in that covariate, holding all other covariates in the model constant. Then, we 

compare the marginal effects and related model fit statistics (see table 4) of four MLEs of pastoralists’ 
averting decision. We do not consider any variants of zero-truncated techniques because they predict 

zero counts even though there are no zeros in the outcome variable. Most notably, this estimation 
procedure is only recommended for large datasets. 

  

The second part of the econometric estimation examines the impacts of the same set of 

regressors on the number of vaccinated livestock as the second sequence of pastoralist’s averting 

(vaccination) decision making. For this purpose, we consider the proportion of zeros in the outcome 

variable and the distribution of nonzero counts. Since the outcome variable has many zero observations, 

it may be that ‘true’ zeros—pastoralists’ choices not to vaccinate made after weighing the costs and 

benefits of vaccinating—are conflated with ‘excess’ zeros, which reflect households that would never 

consider vaccinating. Preliminary descriptive statistics find a considerable over-dispersion in the 
outcome variable where the variance of the number of vaccinated livestock is quite high relative to its 

mean. Following Cameron and Trivedi (2009), we also test the null hypothesis of equidispersion 

through auxiliary regression, and find some evidence of overdispersion, though it is not statistically 
significant. There is also a considerable gap between observed zeros (89.29%) and predicted zeros that 

is 30% through Poisson analysis. In this case, both Hurdle and zero-inflated models considering with 
or without overdispersion are suitable to explain the high occurrence of zero in the observed outcome 

variable. 

  

The reason behind excessive ‘zero’ observations in count data models is generally explained by 

two separate views. If we consider the averting decision-making process as a two-step, sequential 

process, the ‘hurdle’ model can better explain the decision tree and the outcome data. The hurdle 

model is “a modified count model in which the two processes generating the zeros and the positives 

(count data) are not constrained to be the same” (Cameron and Trivedi, 1998, pp. 137). The hurdle 

model assumes that all zero observations are from one structural source. In this case, we assume that 

only concerned pastoralists (due to disease information) vaccinate livestock, and their counterparts do 
not consider vaccinating their livestock. Hence, the zero observations arise only from the unconcerned 

pastoralist. Symbolically,   

 

(3)    

  

Letting 𝑙𝑠 be the number of vaccinated livestock by the  household where  

presents the probability that  household will exist in the zero-vaccination state, and  

turns into the probability for nonzero (count)-vaccination state. Assume that  and 

), where  is a truncated Poisson distribution. On the other hand, 

standard zero-inflated count data models assume that the zero observations are generated from both 
structural and sampling sources. In this context, separate examinations for true zeros and excess zeros 

are essential for predicting count observations, and to predict membership in the excess zero group.  

 
Zero-inflated models are generally a finite mixture model, first part predicts the excess zeros 

in ‘always zero’ pastoralist group, and second part of which predicts the number of vaccinated livestock 
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in ‘not always zero’ pastoralist group. Across the study area in Tanzania, we find most of the 

households have zero vaccinated livestock, which is due to the presence of both true (generated by ‘not 

always zero’ group of pastoralist) and excess zeros (generated by ‘always zero’ group of pastoralist). 

  

(4)    

 
The plausible reasons for having true zeros due to deciding not to vaccinate, are basically two-

fold: i) either they prefer alternative uses of the infected livestock, e.g., eating the meat in the 
household, or selling the livestock to others; or ii) any other financial and geographical constraints, 

e.g., distance to vaccination services, low availability. In some cases, both reasons may contribute. 

Therefore, we consider variants of the negative binomial model, which includes Poisson, zero-inflated 
Poisson and zero-inflated negative binomial to correct for the excess zeros and over-dispersion problem 

simultaneously (Lambert, 1992). 

 

Though the response variable (figure 1) shows a Poisson distribution with inflated zeros, we 

cannot consider the basic Poisson regression model as this model assumes equality between mean and 
variance. As the data contain significant numbers of households choosing not to vaccinate, comprising 

both true and excess zeros, some variant of the zero-inflated model, such as zero-inflated negative 

binomial (ZINB) or zero-inflated Poisson (ZIP) estimation, are typically employed to correct the excess 
zeros and over-dispersion problem. All zero-inflated models consider two possible data generating 

processes. First process with probability  generates only zero counts, whereas second process with 

probability 1 − 𝜑𝑖 generates positive counts from either a Poisson or negative binomial model. 

Specifically,  where the probability of  is the following: 

 

(5)    

 

Here  is the vector of zero-inflated coefficients to be estimated, and  is the vector of zero-

inflated covariates. Theoretically, the negative binomial (NB) incorporates the general Poisson model, 
whereas the ZINB model incorporates the ZIP model. The ZINB (ZIP) model consists of two separate 

models, a negative binomial (Poisson) model to predict the count data and the logit or probit model 
to predict the excess zeros. Then it combines both models by adjusting the probabilities of count 

information in the Poisson regression for observations that are true zeros. For our purpose, a logit 

model is employed to predict pastoralists’ vaccinated livestock data for true zeros. After that, a 

negative binomial (Poisson) model is generated to predict excess zeros. 
 

Considering the descriptive features of the dataset, we estimate two different models and use 

post-estimation tests to determine which fits the data better. Significant z-test statistics from the 
Vuong (1989) test reveals that either ZINB or ZIP model would be preferred to the standard negative 

binomial model. However, a significant likelihood ratio test between ZINB versus ZIP models proposed 
by Greene (2012) reveals that data are over-dispersed, and that the ZIP model is more appropriate 

than the ZINB model. Finally, we compare all four estimated models, following Long and Freese (2014), 

based on AIC, BIC, and Vuong test statistics to find the preferred model(s). 
 

We consider that the vaccination decision and resulting number of vaccinated livestock is 

associated with socioeconomic variables. According to Raullt and Krebs (2014), a household’s 
vaccination decision depends on prior experiences with relevant outcomes, such as disease occurrence 
and the degree of severity. The expected cost of disease avoidance and preventive expenditure are 

other influencing factors in this analysis (Chilonda and Van Huylenbroeck, 2001). Moreover, the 
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decision is likely influenced by households’ geographical locations. Under this framework, equation (2) 

can be modeled through the following vaccination equation that describes the number of vaccinated 

livestock equation (3), which is influenced by associated factors included in right-hand side: 
 

(6) , 

 

where  is the vector of disease information consisting of livestock illness and death in the past 

twelve months;  is the vector of livestock vaccination and travel costs to access veterinary services; 

 represents the vector of pastoral household's characteristics. The estimated parameters are 

captured by , the vector of coefficients for exogenous variable , whereas the error term,  presents 

the combined effect of the omitted variables of the estimation model (Freedman, 2005). We also include 

a dummy variable as ‘socially and economically active household’ ( ) that has been constructed 

from three other variables-household head at least with primary education, household with at least 

one wage earner, and household with at least one cellphone. Equation (6) is the basis of our empirical 
estimation. Econometric estimation strategies, presented in section 4, are employed to reveal the 

vaccination equation to test and predict how socio-economic and behavioral factors affect pastoralists’ 
vaccination decisions.  
 

 

4 Empirical Results and Discussions 
 

In this section, we present the variables included in the maximum likelihood and mixture models (see 

table 1), and descriptive statistics of vaccination status in terms of livestock’s illness and death. We 

also present and explain the econometric estimations of the vaccination decision model and number of 

vaccinated livestock model with related discussions followed by robustness checks. 

  

4.1 Descriptive Statistics 
 

Descriptive statistics presented in table 2 provide a summary overview of the livestock vaccination 
status of three ethnic groups who faced disease infection and deaths in the past twelve months. Even 

though 49.74% of households have experienced livestock deaths, only 10.71% vaccinated their livestock 

in the study areas. A higher percentage of the households experiencing livestock disease—compared to 

households not experiencing disease—vaccinated their livestock, which is uniform across the ethnic 

groups. The percentage of vaccination is lower, around 11% of studied household, who experienced 
more livestock deaths than their counterparts. We also find that a higher percentage of pastoralists 

did not vaccinate their livestock who experienced livestock deaths. The difference is small, but a slightly 
higher percentage of pastoralists who experienced livestock illness vaccinated their livestock than those 

who experienced livestock deaths. However, a Pearson chi-square test shows that the difference is not 

significant among the ethnic groups. The ratio of vaccinating and not-vaccinating households shows 
the same for the pastoralist who experienced both livestock illness and death simultaneously. 

 

4.2 Econometric Results 
 

We report the results from both maximum likelihood estimations for pastoralists’ averting decision and 

mixture models for the number of vaccinated livestock. All full reported models presented in this 
section include a wage earner dummy, and a socially and economically active household dummy to 

account for the extra monetary income and social heterogeneity in terms of livestock assets. 
 

First, we report the results of maximum likelihood estimations to check the factors affecting 

vaccination decision in table 3. Furthermore, we compute essential model fit indicators to compare the 
relative quality of all estimated models and to reveal a parsimonious and robust model following Long 

and Freese’s (2014) procedure. We find that the results from a penalized logit and bias corrected logit 
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are more appropriate from theoretical and econometric backgrounds, although we also report standard 

logit and probit estimations for comparison. As the coefficients of maximum likelihood estimations are 
not easily explainable, we calculate the marginal effects to measure the instantaneous rate of change 

of continuous variables and discrete change of dummy variables, respectively. Moreover, we also 
compare the results of hurdle mixture models that predict the vaccination decision. In every case, the 

magnitude and level of significance are found to be quite similar. 

 
Table 3 and part 2 of table 4 show that the marginal effect of illness incidence on vaccination 

decision is positive and significant at the 1% level. We also find a statistically significant difference in 

the means of the number of illness incidents between vaccinating (21.112) and not-vaccinating (9.382) 
groups of pastoralist. This result supports our initial conjecture and hypothesis that states that 

experienced livestock illness events influence pastoralists to decide to vaccinate their livestock. 
Additionally, we find the impact of the number of dead livestock is not statistically significant in our 

specified model, and the mean difference, reported in table 1, is also insignificant for both vaccinated 

(15.085) and not-vaccinated (10.113) groups of pastoralist. Therefore, we do not find support for the 

hypothesis that livestock deaths increase the number of livestock vaccinated. 

 

It is sometimes argued that monetary income such as wage earnings from family members 
positively affects the probability that households take measures to avoid risky events. In this study, 

we find that having at least one wage earner has a positive and significant impact on the vaccination 
decision. Moreover, pastoral households who are socially and economically active are more likely to 

vaccinate their livestock, which is significant at the 10% level. Across the study area, pastoralists who 

are educated, financially able and may have better access to information are more likely vaccinate 
their livestock.  

 

On the other hand, we also observe that higher per capita livestock has negative and significant 
impacts on vaccination decision at 1% level. The result simply conveys that pastoralist households 

owning a higher number of livestock per family member are less likely vaccinate their livestock. Though 
it seems counterintuitive, there are a few potential explanations. Pastoralists with higher livestock per 

capita have more options to either sell sick livestock in nearby markets or eat at home to minimize 

disease risk and consequent deaths. Given that livestock represent a store of wealth, it may represent 
a decreasing marginal utility of wealth. Risk attitudes may also change with wealth level (cite). 

Vaccination cost also has a negative impact on averting decisions. When the price of a vaccine is 

higher, households are less likely to vaccinate. We also compute related model fit indicators for all four 
estimations. Finally, the predicted probabilities do not change much across the models. 

  
Table 4 presents the marginal effects of the mixture models in two separate but consecutive 

parts. First we consider the estimations of predicting the vaccination decision for hurdle models, and 

excess zero group of the zero inflated models. Then we consider the results of the model of the number 
of vaccinated livestock. Results reported in part 2 of zero-inflated models determine whether the 

observed count is zero. It indicates that socially and economically active pastoralists are less likely to 

be in the always zero group. Additionally, pastoralists who experienced higher incidences of livestock 
illness and resided comparatively far from the livestock extension offices are less likely than their 

counterparts to be in always zero group. Conversely, the higher the vaccination cost, the more likely 

the household is in excess zero group.  

  

Considering zero inflated models, we know that pastoralists who are not in the excess zero 
group, have decided to vaccinate have at least few vaccinated livestock. So, we compare the findings 

revealed from the two variants of hurdle and zero-inflated models that predicts the number of 

vaccinated livestock (see part 1 of table 4). The number of vaccinated livestock is influenced positively 
by the number of livestock illnesses experienced by the household in the past twelve months. This may 

be because pastoralists feel more risk of losing their livestock asset when they face frequent incidences 
of illness. Moreover, the predicted probability of vaccinated livestock is higher for the pastoralist who 



11 

 

has at least one wage earner. Monetary income, especially from wage earners, increases the financial 

ability to vaccinate more livestock to cope with future disease risks. We further find that higher 
expected vaccination costs increase the number of vaccinated livestock. 

 
We also find that a few variables in the model have significantly negative impacts on the 

predicted number of vaccinated livestock. Both Poisson and negative binomial variants of hurdle and 

zero-inflated model reveal similar predictions. As per part 1 of table 4, household head older than 30 
years have less vaccinated livestock than their counterparts. The estimated coefficient of the dummy 

variable for socially and economically active households is negative and significant at the 10% level. 

More active households would have fewer vaccinated livestock compared to those who are not active. 
The most justified explanation of this finding-they know alternative options to cope or minimize the 

diseases incidences and severity. Moreover, households that experienced more livestock death have a 
significantly lower number of vaccinated livestock. In addition, we only find significant marginal effects 

in case of Poisson estimations for per capita livestock and travel cost dummy. However, negative 

binomial estimations predict statistically insignificant marginal effects that indicate a lower level of 

robustness to generalize the impacts of the variables in determining the number of vaccinated livestock.  

 

4.3 Robustness Check 
 

In both discrete choice and count data models, estimations related to livestock deaths are not 

significant, and vaccination cost contradicts the predictions of conventional theories. Moreover, few 
marginal effects of both components of mixture models show same direction which is opposite in 

general. All these queries require further investigation through several robustness checks. 
 

As a part of post-estimation robustness checks, we estimate both models under different 

specification that includes the set of covariates regarding households’ prior disease experience, 

vaccination and travel cost, and household characteristics successively to check the consistency. 
Following Barslund (2007), we consider disease information as a set of core variables, and others as 

the set of non-core covariates. In every step, we find consistent results with a few exceptions. Further, 

we also estimated other variants of the hurdle model, reported in table 4, including Poisson-bias 
corrected logit, Poisson-penalized logit, negative binomial-bias corrected logit, and the negative 

binomial-penalized logit due to the presence of excessive zeros. We also calculate the predicted 
probabilities of all estimated models that do not meaningfully change. Moreover, we run regressions 

on data that pool data for the three ethnic groups together. In most cases, we find similar results in 

terms of relationship, magnitude and significance level for every alternative data specifications, except 
Barabaig. We, then, perform Hausman (1978) specification test by controlling ex-post disease 

information, cost lines, and household’s characteristics to check the consistency and conditional 

heterogeneity. We additionally compute all models with robust standard errors to reduce any 

heteroskedasticity incidence following Cameron and Trivedi (2009). These estimations confirm the 
robustness of main results in table 2, 3 and 4. The detail results are not reported in the main text, but 

codes are available in respective Stata do-file. 

 
 

5 Conclusions and Policy Implications 
 

Vaccination, a key tool for livestock disease risk management (Keeling et al., 2003), though little is 

known about what factors drive pastoralists’ vaccination choices. This study contributes to the existing 

literature in several ways. We used primary data generated from surveys with pastoralists in the Iringa 
region of Tanzania, and analyzed household-level as well as community-level information to address 

two of our general research questions on the factors influencing the vaccination decision. We employed 

multiple empirical procedures to explore the robustness of pastoralists’ vaccination decisions and 

number of vaccinated livestock given diseases experienced in the last twelve months and other 

economic, social and behavioral variables.  
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We find that pastoralists are more likely to decide to vaccinate their livestock who are socially 
and economically active and has at least one wage earner. Moreover, the occurrence of livestock illness 

also has a significant positive impact on averting decision. We also find consistent results from a few 
variants of mixture models, for example hurdle and zero-inflated models where the same set of variables 

predicts that pastoralists are less likely to be in the excess zero class. We further find that a high 

prevalence of livestock illness, higher vaccination cost, and wage earners in the household are positively 
related to the number of vaccinated livestock. On the contrary, higher numbers of dead livestock, high 

travel cost in terms of distance from extension offices, and households with older heads of household 

have significantly lower number of vaccinated livestock.    
   

Finally, we propose a few lessons relevant to policy based on our findings. First, lowering the 
cost of vaccination would surely increase the number of households vaccinating their livestock. A 

vaccination support program would be helpful for low-income pastoralists. Second, government and 

NGOs can invest in frequent and extensive livestock health education and management, training, and 

infrastructure, which would be beneficial for both pastoralist households and extension officers (Allport 

et al., 2005; Perry et al., 2013). Though pastoralists have traditional knowledge, training on emerging 

diseases and treatments should positively influence vaccination uptake. Third, infrastructure 
development for vaccination support programs and convenient delivery systems are essential to help 

low-income pastoralists (Mazet et al., 2009). Currently there are no commercial veterinarians or 
dispensaries operating in many rural parts of Tanzania, even though the Tanzanian government 

intended to phase out government veterinary services (except in the case of public goods) in favor of 

private practices over a decade ago (Gustafson et al., 2015). Fourth, convenient access to information 
(e.g., veterinary services, market price) through mobile phones would increase the awareness of disease, 

treatment options, and vaccination decisions. In this respect, Wolf (2005) suggests the same. 

 
Our study considers static-type models based on cross-sectional data. We are therefore unable 

to provide dynamic explanations of the decision-making process of pastoralists on livestock assets and 
disease risk management, where an appropriate panel study can reveal time-dependent changes. 

Moreover, this study does not capture spatial elements that may be relevant. Future research can 

address these shortcomings. 
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Figure 1. Distribution of Vaccinated Livestock 

 

 

 

Figure 2. Map of the Study Area
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Table 1. Description of Model Variables 

 
Variable Description Livestock vaccination status 

Vaccinated 

𝑋̅(𝑠𝑑) 

Not vaccinated 

𝑋̅(𝑠𝑑) 

Pooled 

𝑋̅(𝑠𝑑) 
Dependent variable 

Indicator variable of livestock vaccination status (1 if vaccinated, 0 if 

not) 

- - 0.107(0.310) 

Number of vaccinated livestock (in TLU) in the past 12 months 162.933***(437.377) 0.000(0.000) 17.457(148.906) 

     

Ex-post diseases information    

Number of livestock’s ill incidence in the past 12 months 21.111***(44.488) 9.382(9.208) 10.639(17.084) 

Number of died livestock (in TLU) in the past 12 months  15.085(29.669) 10.113(14.440) 10.645(16.695) 

Per capita livestock (in TLU) 14.284***(47.906) 4.251(5.087) 5.326(16.376) 

     

Costs of vaccination    

Expected vaccination cost (in TZS) for infected livestock 3.97e+7(2.02e+7) 1.61e+7(1.2e+6) 1.86e+7(3.46e+7) 

Indicator variable of travel cost of vaccination (1 if distance is medium 

to high, 0 if none to low) 

3.333*(0.967) 2.823(1.138) 2.878(1.130) 

     

Household characteristics    

Indicator variable of household (HH) head’s age (1 if HH head’s age 

more than 30 years, 0 if unknown and less than 30) 

0.810(0.402) 0.777(0.417) 0.781(0.415) 

Indicator variable of household’s wage earners (1 if HH has at least one 

wage earner, 0 if not) 

0.190**(0.402) 0.051(0.222) 0.066(0.249) 

Indicator variable of socially and economically active household (1 if 

primary educated HH head with at least one cellphone has extra 

earnings from different sources like wage labor, remittance, selling 

cultural goods,  0 otherwise) 

0.190**(0.402) 0.057(0.233) 0.071(0.258) 

Notes: ***, ** and * represents the level of significant at 1%, 5% and 10% of the t-test for equality of means of the vaccinated and non-vaccinated pastoralist 

household. 
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Table 2. Ex-post Livestock Diseases and Vaccination Status 

 
Ethnic 

group 
 Livestock’s illness incidence Pearson 

χ2 

(p-value) 

Livestock’s death Pearson 

χ2 

(p-value) 

Experienced Not experienced Experienced Not experienced 

Vaccinate Not 

vaccinated 

Vaccinate Not 

vaccinated 

Vaccinate Not 

vaccinated 

Vaccinate Not 

vaccinated 

Barabaig 6.00 

(18.60) 

35.00 

(81.40) 

0.00 

(0.00) 

1.00 

(100.00) 

0.227 

(0.633) 

5.00 

(23.81) 

16.00 

(76.19) 

3.00 

(13.04) 

20.00 

(86.96) 

0.855 

(0.355) 

Massai 12.00 

(9.92) 

109.00 

(90.08) 

0.00 

(0.00) 

1.00 

(100.00) 

0.110 

(0.740) 

6.00 

(10.00) 

54.00 

(90.00) 

6.00 

(9.68) 

56.00 

(90.32) 

0.004 

(0.952) 

Sukuma 1.00 

(3.33) 

29.00 

(96.67) 

0.00 

(0.00) 

0.00 

(0.00) 

- 0.00 

(0.00) 

17.00 

(100.00) 

1.00 

(7.69) 

12.00 

(92.31) 

1.353 

(0.245) 

Total 21.00 

(10.82) 

173.00 

(89.18) 

0.00 

(0.00) 

2.00 

(100.00) 

0.243 

(0.622) 

11.00 

(10.20) 

87.00 

(88.78) 

10.00 

(10.20) 

88.00 

(89.90) 

0.053 

(0.817) 

Notes: Figures in parentheses are percentage of household. 

 
 

Table 3. Marginal Effects of Maximum Likelihood Estimations for Pastoralists’ Averting Decisions 

  

Notes: ‘dy/dx’ and ‘se’ indicates marginal effect after regression and standard error, respectively. 

*p<0.10, **p<0.05, ***p<0.001. 

Variable Logit Probit Bias Corrected 

Logit 

Penalized 

Logit 

dy/dx (se) dy/dx(se) dy/dx(se) dy/dx(se) 

Illness incidence 0.007**(0.003) 0.007**(0.003) 0.069(0.045) 0.079**(0.035) 

Dead livestock (in TLU) 0.001(0.001) 0.001(0.001) 0.007(0.010) 0.010(0.011) 

Per capita livestock -0.002(0.004) -0.002(0.006) -0.216***(0.039) -0.044*(0.027) 

Expected vaccination cost (in TZS) 0.058* (0.033) -0.066*(0.040) -0.138(0.409) -0.705*(0.397) 

Travel cost dummy 0.080*(0.044) 0.082*(0.047) 0.887(0.635) 0.957(0.631) 

Age group dummy 0.042(0.047) 0.050(0.053) 0.391(0.602) 0.465(0.622) 

Wage earner dummy  0.110**(0.052) 0.129**(0.063) 1.449**(0.643) 1.495**(0.656) 

S&E active HH dummy 0.105**(0.052) 0.127**(0.063) 1.407**(0.637) 1.450**(0.666) 

     

Log likelihood -55.349 -55.363 - -38.972 

LR 𝜒2 22.55 22.52 - - 

Wald 𝜒2 - - - 19.78 (0.011) 

Pseudo 𝑅2(p>𝜒2) 0.169(0.004) 0.169(0.004) - - 

Sample size 195 195 195 195 
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Table 4. Marginal Effects of Mixture Models for No. of Vaccinated Livestock by Pastoralist 
  
Variable Poisson-Logit 

Hurdle 

(PLH) 

Negative Binomial- 

Logit Hurdle 

(NBH) 

Zero-Inflated 

Negative 

Binomial (ZINB) 

Zero-Inflated 

Poisson 

(ZIP) 

dy/dx (se) dy/dx (se) dy/dx (se) dy/dx (se) 

Part 2: Predicting number of vaccinated livestock (count data)  

Illness incidence 0.011**(0.005) 0.014(.011) 0.014(0.011) 0.011**(0.011) 

Dead livestock (in TLU) -0.010***(0.001) -0.009***(0.003) -0.009**(0.003) -0.010***(0.001) 

Per capita livestock -0.002***(0.003) -0.003(0.008) -0.003(0.008) -0.002(0.003) 

Expected vaccination cost (in TZS) 0.711***(0.094) 0.622***(0.159) 0.621***(0.159) 0.711***(0.094) 

Travel cost dummy -0.327***(0.136) -0.285(0.240) -0.285(0.240) -0.327***(0.136) 

Age group dummy -0.923***(0.075) -0.976(0.216) -0.976***(0.216) -0.923***(0.075) 

Wage earner dummy 0.724***(0.080) 0.640***(0.203) 0.639**(0.203) 0.724***(0.080) 

S&E active HH dummy -0.302***(0.109) -0.225***(0.230) -0.224(0.229) -0.301***(0.109) 

   

Part 1: Predicting vaccination decision (for PLH, NBH) and excess zeros (for ZIP, ZINB)  

Illness incidence 0.086**(0.039) 0.085**(0.039) -0.086**(0.039) -0.086**(0.039) 

Dead livestock (in TLU) 0.013(0.012) 0.013(0.013) -0.013(0.013) -0.013(0.012) 

Per capita livestock -0.029(0.058) -0.029(0.058) 0.029(0.058) 0.029(0.058) 

Expected vaccination cost (in TZS) -0.814*(0.445) -0.814*(0.445) 0.814*(0.445) 0.815***(0.445) 

Travel cost dummy 1.131*(0.683) 1.131*(0.683) -1.131*(0.683) -1.131***(0.683) 

Age group dummy 0.591(0.669) 0.591(0.669) -0.591(-0.669) -0.591(0.669) 

Wage earner dummy 1.561**(0.708) 1.561**(0.708) -1.561**(0.708) -1.561**(0.708) 

S&E active HH dummy 1.490**(0.709) 1.490**(0.709) -1.491**(0.709) -1.491**(0.709) 

     

/lnalpha - -2.512***(0.570) -2.513***(0.570) - 

alpha -  0.081(0.046) - 

Nonzero observations 21  21 21 

Log likelihood -142.997 -141.430 -141.437 -143.005 

LR 𝜒2 -  64.760 10038.470(0.000) 

Wald 𝜒2 16.200 (0.0400) 16.200(0.400) - - 

LR Test (𝜒2̅̅ ̅) -  3.140(0.038) - 

𝑧(𝑝 − 𝑣𝑎𝑙) of Voung Test -  3.540(0.000) 4.410(0.000) 

Sample size 195 195 195 195 

Notes: ‘dy/dx’ and ‘se’ indicates marginal effect after regression and standard error, respectively. 

*p<0.10, **p<0.05, ***p<0.001. 


