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Abstract 

 Rating of insurance premiums depends on the probability of events in the tail of the distribution. 

Extreme value theory provides a promising way to assess tail risk. We assume that crop yield 

follows a Generalized Pareto Distribution (GPD), which is a family of extreme value 

distributions that has advantages for modeling rare events. GPD parameters are fitted using 

county-level historical winter wheat yield (1970-2014). Spatial smoothing with Kriging 

parameters is used within a Bayesian hierarchical framework that helps overcome a lack of data 

due to the rarity of extreme events. We assume that the spatial correlation of crop yield is 

embedded in the parameters of the GPD. To obtain the posterior distribution, we use Metropolis-

Hastings (MH) steps within a Gibbs sampler. Maximum likelihood estimates of the GPD 

parameters are used for candidate density in the MH step. In the process, MCMC chains are run 

for 100,000 iterations and burn-in for the first 20,000 observations. We use Deviance 

Information Criterion (DIC) and out of sample performance to evaluate the quality of the model. 

From the estimated results, we verify spatial correlation in crop yield, which substantially affects 

estimates of posterior distributions of GPD parameters. We further simulate spatial random 

effect based on posterior values of Kriging parameters (range and sill) to visualize and verify the 

form of spatial correlation. Estimated premiums from an existing method from which current 

premiums are based, tend to underestimate premium rates compared to our new proposed method. 

Key words: Rating crop insurance contract, Bayesian spatial smoothing, Spatial correlation, 

Bayesian hierarchical model, Extreme value theory. 

 



 

 

Introduction 

Agricultural producers purchase crop yield insurance to protect against the loss of crops from 

unexpected events. Area-yield insurance can avoid the problems of moral hazard and 

transactions cost arising from individual crop insurance policies since the indemnity payment is 

based on average yields of the county rather than the actual yields of the individual insured. A 

poorly rated product, however, does not protect against adverse selection and regional inequities 

since a producer who has sufficient information about the county’s crop yield distribution could 

avoid overpriced area-yield insurance. Federally managed area-yield insurance has been offered 

by Risk Management Agency (RMA) for major crops in the United States. The Group Risk Plan 

(GRP), which was established in 1993, currently provides area-yield insurance based on the 

county level yield data from National Agricultural Statistics Service (NASS).  

Several studies have developed methods to calculate premium rates for area yield crop 

insurance. Skees, Black, and Barnett (1997) proposed a premium rating method that is used as a 

base model in current U.S. design for area crop insurance. They employed a two-knot, linear 

spline to fit historical yield data and then calculate premium rates using residuals of the 

regression. Goodwin and Ker (1998), Ker and Goodwin (2000), and Ker and Coble (2003) 

proposed alternative methods. These proposed methods regress deterministic trend using 

historical yield and then adjust assumptions of heteroscedasticity from the estimated residuals to 

determine premium rates and expected indemnities. Current policies are rated following a 

method similar to Harri, et al. (2011). They use a hybrid approach where some parameters are 

estimated at the state or district level and some use only the data for each county. Crop yield 

distribution has been modeled with many different approaches in past studies. Some studies 



 

 

model crop yield with parametric distributions, such as the beta distribution (Nelson and Preckel; 

Tirupattur, Hauser, and Chaherli) or the log-normal distribution (Tirupattur, Hauser, and 

Chaherli; Jung and Ramezani; Stokes). Others have suggested a nonparametric framework (Ker 

and Goodwin). Although a wide range of crop yield models have been used in previous studies, 

it is generally agreed that crop yields are not normally distributed. 

Crop yield of a given county tends to be spatially dependent with that of nearby counties 

because weather, geological features, and other hidden features that could potentially affect crop 

yields in one county are likely to be similar in neighboring counties (Annan, Tack, and Harri 

2014; Du et al. 2015). Therefore, considering this spatial correlation can potentially lead to 

obtaining more precise yield distribution and thus more accurately rated premium rates. Several 

studies have proposed various distributions and dealt with heteroskedasticity, yet assumptions 

about the spatial correlation of the distribution are not fully adjusted. For instance, although the 

method suggested by Harri, et al. (2011) estimates some parameters at the state or district level 

and gives weight for county level estimation, when estimating the density in one county, only the 

historical yield data from the county is used. There is considerable interest in using spatial 

autocorrelation to improve crop insurance rating as reflected in Ker, Tolhurst, and Liu (2015) 

suggesting Bayesian Model Averaging (BMA) across space. They first estimate a posterior 

density for each county using its own data. Then they impose weights to posterior densities of 

other counties based on the fit of these densities to the observations of the target county. The 

posterior density of the target county is then a weighted average of its own posterior density and 

densities from other counties. This method does not require any knowledge in density similarity, 

and can be applied with both parametric and non-parametric estimators. What Ker, Tolhurst, and 



 

 

Liu do is very different
1
 than what we do, but their work does indicate that others are working 

toward the same goal. 

A typical difficulty in the analysis of crop yield distribution is that the number of time-series 

observations is very limited. Particularly, estimating the probability of rare events is difficult 

since rare events usually have limited observations. Thus, we choose to face the challenge of 

directly considering spatial correlation as part of the estimation method. We address the problem 

by using a Bayesian hierarchical model. Unlike BMA method, the Bayesian hierarchical model 

directly incorporates the spatial correlation into the model using a spatial random effect. 

Therefore, posterior densities are estimated jointly using data for all counties being considered. 

We estimate parameters of the yield distribution for each region with a specified functional form 

of the spatial covariance matrix in the process layer of the hierarchical model. From this 

approach, spatial correlation of parameters is used to get more precise crop yield distributions 

and therefore more accurate premium rates.  

The objective of the study is to develop a method for determining more accurate area yield 

insurance rates based on extreme value theory and Bayesian spatial smoothing. Crop yields are 

assumed to follow a Generalized Pareto Distribution (GPD), which is a member of the extreme 

value distribution family. GPD suggests that the focus should be on estimating the tail of the 

                                                 

1
 While we of course like our approach better, there may be instances where their approach could be preferred. Our 

approach has an explicit functional form for spatial correlation. Our approach yields estimates of the spatial 

correlation not provided by Bayesian Model Averaging. We use Bayesian methods because it lets us estimate the 

GPD distribution with more precision. The Ker, Tolhurst, and Liu (2015) approach is more like a nonparametric 

approach to spatial smoothing. Their approach is less restrictive than ours, but also less precise if our restrictions are 

at least close to being true. We would also argue that our approach may be more intuitive and easier to explain to 

RMA and to producers. 



 

 

distribution that generates indemnity payments. The county-level historical wheat yields (1970-

2014) from NASS are used for the estimation. GPD and Kriging parameters (sill and range) for 

the spatial smoothing are estimated under the Bayesian hierarchical framework. We assume that 

GPD parameters of the counties are spatially dependent and assumed to follow a multivariate 

normal distribution with non-zero spatial covariance across the counties. We employ Metropolis-

Hastings (MH) steps within a Gibbs sampler to update posterior densities. Maximum likelihood 

estimates are used for candidates for the MH step so as to increase acceptance rate in the Markov 

Chain Monte Carlo (MCMC) procedure. We verify spatial correlation in crop yield distributions 

from the posterior density, and simulate spatial random process using the Kriging parameters to 

visualize and verify the form of spatial correlation across counties. We find that the estimated 

premiums from the RMA model
2
 tend to underestimate premium rates compared to our proposed 

method. We compare out of sample performance of two approaches by assuming a representative 

insurance company that chooses whether to retain or cede polices under the Standard 

Reinsurance Agreement (SRA). We verify statistical significance of performance through 

bootstrapping. Our results show that the new model outperforms the RMA model. 

The remainder of the paper is structured as follows. In the following section, we introduce an 

overview of the Generalized Pareto Distribution (GPD). We then describe the Bayesian 

hierarchical approach for spatial smoothing, which is used to obtain the posterior distribution of 

the spatially adjusted GPD parameters. Next, we briefly explain about MCMC structure of the 

                                                 

2
 We refer to the Harri et al. (2011) model as the RMA model. The exact RMA model is proprietary and not known. 

We compare our model to the Harri et al. (2011) model on which the RMA model is based. The RMA is believed to 

do some heuristic adjustments including some spatial smoothing.  



 

 

study. The subsequent section describes the testing out of sample performance of the new 

proposed method and RMA method. The final section provides the results and conclusions. 

 

Generalized Pareto Distribution 

 Extreme value theory is used for analysis of low probability events. The theory states that the 

tail of a loss distribution can be approximated by a Generalized Pareto Distribution (GPD), 

which is a member of the extreme value family. The extreme value family can be written in a 

simple form involving three parameters: location (𝜆), scale (𝜎 > 0), and shape (𝜉). Positive 

shape parameter ( 𝜉 > 0, Fréchet type) implies a heavy tail distribution and a negative shape 

parameter (𝜉 < 0,Weibull type) implies a bounded upper tail, and zero-value shape parameter 

(𝜉 < 0, Gumbel type) implies a light tail distribution. Suppose 𝑋 is a random variable. Now 

consider the conditional distribution of 𝑋 given that it exceeds 𝑢. If 𝐹 is a cumulative density 

function (CDF) for 𝑋, the probability of 𝑋  exceeding 𝑥 given 𝑋 is greater than the threshold 𝑢 

can be given as  

(1) P(𝑋 > 𝑥| 𝑋 > 𝑢) =  
1 − 𝐹(𝑥)

1 − 𝐹(𝑢)
= {

(1 +
𝜉(𝑥 − 𝜆)

𝜎𝑢
)−1/𝜉                   𝜉 ≠ 0

exp−(𝑥−𝑢)/𝜎                               𝜉 = 0

 

where scale parameter 𝜎 > 0, and shape parameter −∞ < 𝜉 < ∞. 

One advantage of using a GPD model for the tail of the distribution is that the quantiles have 

closed form. Using equation (1) above, the quantiles can be defined as 𝑋𝑞 = 𝐹
−1(𝑞), 



 

 

(2) 𝑋𝑞 =  

{
 

 𝑢 +
𝜎

𝜉
[(𝜁𝑢/𝑞)

𝜉 − 1]                 𝜉 ≠ 0

𝑢 + 𝜎ln (
𝜁𝑢
𝑞
)                                𝜉 = 0

  

where 𝜁𝑢 = 1 − 𝐹(𝑢) denotes the probability of exceeding the threshold 𝑢. Therefore, once we 

obtain the parameters of the distribution, a probability that a variable exceeds some specific 

threshold can be directly computed. 

 Suppose crop yields of the counties are spatially correlated. Then the parameters for the 

distribution should also be spatially correlated. Our focus in the paper is on how the distribution 

of crop yield spatially varies across counties and obtains the crop yield distribution of each 

county while considering the spatial correlation. Although the statistical tool for modeling 

univariate extremes are well-defined, extending these tools to model spatial data (i.e. crop yield 

data) with multivariate specification requires a more complex and advanced approach. We use a 

Bayesian hierarchical model to reflect spatial correlation via parameter random effects. 

Metropolis-Hastings(MH) steps within a Gibbs sampler are used to update the parameters of the 

model. Similar to Cooley, Nychka, and Naveau (2007)
3
, we use maximum likelihood estimators 

of the GPD parameters as candidate densities for the posterior distribution.  

 The conceptual steps for the estimation are as follows. Given the GPD for crop yield, we add a 

spatial process considering 𝜎𝑖 and 𝜉𝑖 to be functions of characteristics of each location 𝑖 such as 

                                                 

3
 They use Bayesian hierarchical model with spatial smoothing to fit precipitation extremes for flood planning 

purpose. Our basic MCMC procedure (Metropolis-Hasting within Gibbs sampler) is identical to their work. 

However, they assume uniform prior distribution both for Kriging parameters (sill and range), whereas we assume 

inverse gamma prior for Kriging parameters to get more stable posterior distributions. 



 

 

average yield, longitude, or latitude. In a Bayesian setting, the functions 𝜎𝑖 and 𝜉𝑖 are the latent 

processes (in the process layer) of the hierarchical framework under the assumption of Gaussian 

spatial random processes
4
. We must choose a threshold level 𝑢 in order to fit the GPD. The 

threshold selection is one difficulty in fitting the GPD data and thus finding an optimal approach 

to select the threshold is still an active research area. One may think that it is natural to obtain the 

threshold 𝑢 by maximum likelihood along with the other parameters. However, this approach 

will not be stable because the number of observations is changed as 𝑢 is changed. This fact will 

lead to a discontinuous or unbounded likelihood function. We focus on the estimation of each 

county’s expected indemnity and premium rates under the predicted yield 𝑦̂𝑖 and coverage rate 𝜆. 

We set the average of historical yield 𝑢𝑖 =  𝑦̅𝑖 as the threshold to estimate the premium rates 

along with different coverage level. Therefore, observations of each county that are below the 

average of historical yields of the county are included to fit the GPD parameters. 

 

Bayesian Hierarchical Model for Spatial Smoothing 

The general Bayesian model assumes that the observations are independent. For example, basic 

Bayesian estimation for estimating crop yield distribution regards all observations in each county 

as independent of each other. In reality, however, there are many situations in which the 

assumption of independence does not hold. A Bayesian hierarchical model is a popular method 

                                                 

4
 A random vector consists of random variables, 𝑿 = (𝑋1, … 𝑋𝑁)

𝑇, is said to be Gaussian random process if the 

random variables 𝑋1, … 𝑋𝑁 are jointly normal. In our case, we regard GPD parameters as random variables, and they 

are jointly normally distributed. The covariance between two counties in the process can be specified as a function 

of the distance between these two counties. 



 

 

to take the spatial correlation into consideration by adding one more prior layer (process layer) 

between the likelihood density and the prior density from the basic Bayesian model. Therefore, a 

Bayesian hierarchical model can be defined when a prior distribution of the general Bayesian 

model is also assigned to the additional prior parameters, say hyper priors, associated with the 

likelihood density parameters (GPD parameters). Recent statistical literature (Cooley, Nychka, 

and Naveau 2007, Gelman et al. 2004, Woodworth 2004, Nozoufras 2011) provide various 

adjustments of Bayesian hierarchical models for spatial modeling, such as spatial effects in 

extreme weather events, disease incidence, and mortality rates prediction. 

 The model has three layers. First, in the likelihood layer, we assume that each county’s yield 

distribution follows a GPD. Therefore, this layer fits the crop yields at each county with GPD. 

Second, the process layer models the spatial process for the GPD parameters. This second layer 

determines the level and form of the spatial correlation across the counties and then the GPD 

parameters of each county in the layer are spatially correlated. Hence, the GPD parameters of 

each county are determined by a set of covariates that reflect the spatial characteristics of the 

county and the parameters are spatially correlated. The third layer consists of the prior 

distributions, called hyper priors, for the covariates of the process layer and Kriging parameters 

(sill and range). The Bayesian hierarchical model is structured as  

(3) 

Likelihood layer: 𝒀|𝛀𝟏, 𝛀𝟐 ~ 𝑝1(𝒀|𝛀𝟏, 𝛀𝟐) 

                                  Process layer: 𝛀𝟏|𝛀𝟐 ~ 𝑝2(𝛀𝟏|𝛀𝟐) 

                                    Prior layer ∶  𝛀𝟐 ~ 𝑝3(𝛀𝟐) 



 

 

where 𝑝𝑗 is the density associated with each layer of the hierarchical model, 𝒀 is a matrix of 

yearly crop yields that spans all counties (𝑖 = 1,… , 𝐾) and years (𝑡 = 1,… , 𝑇), 𝛀𝟏 is a matrix 

of the GPD parameters that spans all counties (𝑖 = 1,… , 𝐾) so that 𝛀𝟏 = [𝝈, 𝝃] , and 𝛀𝟐 is a 

matrix of hyper parameters (coefficients for covariates and Kriging parameters) 𝛀2 =

 [𝜷0, 𝜷ℎ, 𝝆, 𝜽, 𝜹] that spans all counties (𝑖 = 1,… , 𝐾). Note that each county has different values 

for the coefficients (𝛽0, 𝛽ℎ), but has identical Kriging parameters of sill and range (𝜌, 𝜃). 

When we factorize the conditional density of the likelihood layer 𝑝1(𝒀|𝛀𝟏, 𝛀𝟐) using Bayes’ 

theorem, the prior distribution for the likelihood layer density, say 𝑝(𝛀𝟏, 𝛀𝟐), can be separated 

into two components from 

(4) 𝑝(𝛀𝟏, 𝛀𝟐) =  𝑝2(𝛀𝟏|𝛀𝟐)𝑝3(𝛀𝟐) 

with the conditional distribution of GPD parameters given hyper parameters  𝑝2(𝛀𝟏|𝛀𝟐) and 

prior distribution of hyper parameters 𝑝3(𝛀𝟐). 

 Therefore, the posterior distribution of the Bayesian hierarchical model can be expressed as,  

(5) 

𝑝(𝛀𝟏, 𝛀𝟐| 𝒀) =
𝑝(𝛀𝟏, 𝛀𝟐, 𝒀)

𝑝(𝒀)
=

𝑝1(𝒀|𝛀𝟏, 𝛀𝟐)𝑝(𝛀𝟏, 𝛀𝟐)

∫ ∫ 𝑝1(𝒀|𝛀𝟏, 𝛀𝟐)𝑝(𝛀𝟏, 𝛀𝟐)𝑑𝛀𝟐𝑑𝛀𝟏𝛀𝟐𝛀𝟏

 

𝑝(𝛀𝟏, 𝛀𝟐| 𝒀) ∝  𝑝1(𝒀|𝛀𝟏, 𝛀𝟐)𝑝(𝛀𝟏, 𝛀𝟐). 

 Next, we plug equation (4) into the right-hand side of equation (5), and then we have 

(6) 𝑝(𝛀𝟏, 𝛀𝟐| 𝒀)  ∝  𝑝1(𝒀|𝛀𝟏, 𝛀𝟐)𝑝2(𝛀𝟏|𝛀𝟐)𝑝3(𝛀𝟐). 



 

 

 Therefore, the posterior density of the Bayesian hierarchical model 𝑝(𝛀𝟏, 𝛀𝟐| 𝒀) is proportional 

to the multiplication of three layers. As mentioned, the core difference between a general 

Bayesian model and a Bayesian hierarchical model is that the prior of the general Bayesian 

model can also be structured as additional priors (hyper priors). In a standard Bayesian model 

there would only be a prior for the distribution of the data, but in a hierarchical model, there is 

also a prior for the parameters. The spatial correlation of crop yield is captured in the “process 

layer” density 𝑝2(𝛀𝟏|𝛀𝟐), so it is the parameters of the GPD density that are spatially 

autocorrelated. 

 

Likelihood layer 

 A GPD likelihood function forms the likelihood layer of our hierarchical model. Let 𝑧𝑖𝑡 denote 

the yearly crop yield at county 𝑖 = 1, … , 𝐼 at year 𝑡 = 1,… , 𝑇, and is assumed to follow a GPD. 

Since our interest is in minima of crop yield rather than maxima, we transform the likelihood 

using the fact that 𝑚in{𝑧𝑖1, … , 𝑧𝑖𝑇} =  −max{−𝑧𝑖1, … , −𝑧𝑖𝑇} = −max{𝑦𝑖1, … , 𝑦𝑖𝑇}, where 

𝑦𝑖𝑡 = −𝑧𝑖𝑡 for any 𝑖 and 𝑡. We denote 𝜙 = log 𝜎, which allows the parameter 𝜙 to take on both 

positive and negative values. Given that 𝑦𝑖𝑡 exceeds the threshold 𝑢𝑖 for county 𝑖, we assume that 

the yield of each county can be fitted by a GPD whose parameters depend on the location of the 

county. 

 Let 𝜙𝑖 and 𝜉𝑖 represent the log-transformed scale and shape parameters of county 𝑖. By 

differentiating the cumulative distribution function (1) and replace the data, we get the 

probability density function (or likelihood) of the likelihood layer, 



 

 

(7) 𝑝1(𝒀|𝛀𝟏, 𝛀𝟐) =  ∏∏
1

exp𝜙𝑖
[1 +

𝜉𝑖𝑦𝑖𝑘
exp𝜙𝑖

]
−
1

𝜉𝑖
−1𝐾

𝑘=1

𝐼

𝑖=1

 

where subscript 𝑘 represents the yield data of county 𝑖 that exceeds the threshold 𝑢𝑖, and 

𝛀1 = [𝝓, 𝝃] and 𝛀2 = [𝜷0, 𝜷ℎ, 𝜽𝝓, 𝝆𝝓, 𝜽𝝃, 𝝆𝝃], which are matrices for GPD parameters and 

hyper-parameters, respectively. 

 

Process layer 

 The primary interest of the hierarchical model is the process layer since it determines the 

parameters of the likelihood density (GPD parameters) from a certain model structure and 

adjusts spatial correlation of these GPD parameters through the spatial random effect. In the 

process layer, we characterize the spatial process for the two GPD parameters (i.e., scale and 

shape) and form the spatial correlation function with Kriging parameters (i.e., sill and range). 

Since we are in the Bayesian framework, we treat the GPD parameters 𝜙𝑖and 𝜉𝑖 as random 

variables and choose a prior distribution which allows us to model the latent spatial process. 

Therefore, we put independent priors on 𝜙𝑖 and 𝜉𝑖. We assume that the log-transformed scale 

parameter, 𝜙𝑖 = log 𝜎𝑖, and shape parameter, 𝜉𝑖, of GPD are spatially sensitive and thus model 

their spatial correlation using a spatial random process. 

 First, we model the process of log-transformed scale parameters 𝜙𝑖 that follows a Gaussian 

spatial process of the form 



 

 

(8) 

𝜙𝑖 =  𝜇𝑖 + 𝜔𝑖 + 𝜀𝑖 

𝜇𝑖 = 𝛽0 +∑𝛽ℎ𝑍ℎ

𝐻

ℎ=1

 

𝜔𝑖~𝑀𝑉𝐺𝑃 (0,  𝜓(𝐷𝑖𝑗; 𝜃𝜙 , 𝜌𝜙 )), 

𝜓(𝐷𝑖𝑗; 𝜃𝜙, 𝜌𝜙 ) = 𝜌𝜙𝑒
−𝐷/𝜃𝜙 , 

𝜀𝑖~𝑀𝑉𝑁(0,  Λ), 

where 𝜇𝑖 is the mean equation of the log-transformed scale parameters 𝜙𝑖 at county 𝑖, 𝑍ℎ is 

covariates of the scale parameters process, 𝜔𝑖 is spatial random effect for location 𝑖 that follows 

multivariate Gaussian process
5
, 𝜓(𝐷𝑖𝑗; 𝜃𝜙, 𝜌𝜙 ) is spatial covariance matrix form with the 

Euclidean distance(𝐷𝑖𝑗) between counties 𝑖 and 𝑗, sill parameters 𝜌, and range parameter 𝜃, and 

𝜀𝑖 is non-spatial error component that follows 𝜀𝑖~𝑀𝑉𝑁(0, Λ) where Λ is a diagonal matrix where 

the diagonal elements are 𝜎2 and all other elements are zero. The spatial smoothing of the GPD 

parameters is due to the 𝜔𝑖. The MCMC process generates spatially correlated values of 𝜔𝑖 and 

thus the GPD parameters are spatially correlated. 

Similarly, the latent process of the shape parameters of GPD, 𝜉𝑖, is assumed to have a form, 

(9) 

𝜉𝑖 =  𝛿𝑖 + 𝜔𝑖 + 𝜖𝑖 

𝜔𝑖~𝑀𝑉𝐺𝑃 (0,  𝜓(𝐷𝑖𝑗; 𝜃𝜉 , 𝜌𝜉  )), 

𝜓(𝐷𝑖𝑗; 𝜃𝜉 , 𝜌𝜉  ) = 𝜌𝜉𝑒
−𝐷/𝜃𝜉 , 

𝜖𝑖~𝑀𝑉𝑁(0,  Ψ),  

                                                 

5 In the Gaussian spatial process, any subset of the field locations has a multivariate normal distribution. The covariance between any two 

locations (i.e., county) is determined by a covariance function (or kernel) of the Gaussian process evaluated at the spatial points of two locations. 

 



 

 

where 𝛿 is the constant term for the spatial process, 𝜔𝑖 is the spatial random effect for location 𝑖 

that follows a multivariate Gaussian process, 𝜓(𝐷𝑖𝑗; 𝜃𝜉 , 𝜌𝜉  ) is spatial covariance matrix form 

with the Euclidean distance(𝐷𝑖𝑗) between counties 𝑖 and 𝑗, sill parameters 𝜌, and range parameter 

𝜃, and 𝜖𝑖 non-spatial error component that follows 𝜖𝑖~𝑀𝑉𝑁(0,  Ψ) where Ψ is a diagonal matrix 

where diagonal elements are 𝜎2 and all other elements are zero. 

 From the specification for GPD parameters, the vector of log-transformed scale parameter 𝝓 and 

shape parameter 𝝃 given the vector of parameters of counties 𝜹, 𝜷𝟎, 𝜷𝒉, 𝝆, and 𝜽 follows 

(10) 

𝝓  |  𝜷𝟎, 𝜷𝒉, 𝝆𝝓, 𝜽𝝓  ~  𝑀𝑉𝑁(𝝁,   Σ𝜙 ) 

𝝃  |  𝜹, 𝝆𝝃, 𝜽𝝃  ~  𝑀𝑉𝑁(𝜹,   Σ𝜉 ) 

where 𝝁 = 𝜷𝟎 + ∑ 𝜷𝒉𝑿𝒉
𝐻
ℎ=1 ,  Σ𝜙 =  𝜓(𝐷𝑖𝑗; 𝜃𝜙, 𝜌𝜙 )⨂ Λ  and Σ𝜉 =  𝜓(𝐷𝑖𝑗; 𝜃𝜉 , 𝜌𝜉 )⨂ Ψ. 

Modeling the GPD parameters 𝜙𝑖 and 𝜉𝑖 as above, data at the county locations provide 

information about the latent spatial process that characterizes these parameters. Therefore, the 

second part of equation (7) is 

(11) 

𝑝2(𝛀𝟏|𝛀𝟐) =  
1

√(2𝜋)𝐾|Σ𝜙|

exp [−
1

2
(𝝓 − E[𝝓])𝑇Σ𝜙

−1(𝝓 − E[𝝓])]

×
1

√(2𝜋)𝐾|Σ𝜉|

exp [−
1

2
(𝝃 − E[𝝃 ])𝑇Σ𝜉

−1(𝝃 − E[𝝃 ])] 



 

 

where Σ is the variance-covariance matrix for the process of GPD parameters 𝜙𝑖 and 𝜉𝑖, and 𝛀2 

is matrix for the hyper parameters  𝛀2 = [𝜷0, 𝜷ℎ, 𝜽𝝓, 𝝆𝝓, 𝜽𝝃, 𝝆𝝃]. 

 To develop a crop insurance rating model for crops with temporal trend (i.e., technological 

progress), we would need to account for a trend variable in the process of the Bayesian 

hierarchical model. However, including a trend variable brings substantial technical challenges 

since we must consider both a spatial and a temporal random process, and correlation between 

two processes. One simple way to avoid the complexity in modeling is to estimate trend of the 

crop yield outside from the Bayesian hierarchical procedure in a manner similar to Harri et al. 

(2011). Since there is no significant trend in the wheat yields, we do not explore the issue of 

trend here. But, if the model were extended to corn or cotton that have strong yield trends, the 

issue of trend would need to be addressed. 

 

Prior layer 

 In the prior layer, we impose a prior (i.e., hyper-prior) to the matrix of hyper-parameters 𝛀2, 

which characterizes the GPD parameters in the process layer. We assume that each parameter in 

the layer is independent of the others. Since we do not have any prior information about a 

relationship between GPD parameters (scale and shape) and covariates (i.e., meanyield, 

longitude, and latitude) in the process layer, we choose uninformative priors (sufficiently large 

ranges) for the covariates parameters 𝛽0 and 𝛽ℎ. For all the models, we choose all covariates 

parameters 𝛽ℎ follow 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−10000, 10000). However, the Kriging parameters of sill (𝜌) 

and range (𝜃), which describe the spatial structure of the scale and shape parameter of the GPD, 



 

 

are more difficult to set priors. Bayesian statistics literature (Berger, DeOivelira, and Sanso; 

Banerjee, Carlin, and Gelfand; Cooley, Nychka, and Naveau) points out that improper priors for 

the Kriging parameters may result in improper posterior distributions. Banerjee, Carlin, and 

Gelfand(2004) suggested that choosing informative priors for Kriging parameters can be the 

safest way to avoid improper posteriors. Therefore, we use empirical information to construct 

proper priors for the Kriging parameters as well from the maximum likelihood estimation. We 

start with prior distributions of sill parameter. We first estimate scale and shape parameters for 

each county independently using maximum likelihood. A histogram of obtained scale (𝜙𝑖,𝑀𝐿𝐸) 

and shape (𝜉𝑖,𝑀𝐿𝐸) parameters for each county is illustrated in Figure 1. We then fit an empirical 

variogram
6
, 𝛾(ℎ), suggested by Cressie (1993) using the obtained MLE parameters for each 

county to find the proper range of prior distribution of the sill parameter. We finally impose a 

prior of 𝐼𝐺(0.01, 5) for the sill parameter and 𝐼𝐺(0.01, 2) for the shape parameter. In order to 

find the prior distributions for range parameter 𝜃, we use prior geographical knowledge of 

empirical data. Since spatial effect is measured using Euclidean distance based on longitude / 

latitude coordinate space, the nearest and farthest distance between the pair of locations in the 

empirical dataset are used for the prior distribution of the range parameter. Therefore, we impose 

prior of 𝑔𝑎𝑚𝑚𝑎(0.23, 7,71) for the range parameters both in scale and shape parameters (𝜃𝜙 

and 𝜃𝜉). With the priors as above, the third layer in equation (6) can be expressed as 

                                                 

6 For observation 𝑍𝑖 in location 𝑖 = 1,… , 𝐼,  empirical variogram can be defined as  

𝛾(ℎ) ≔  
1

2|𝑁(ℎ)|
∑ (𝑍𝑖 − 𝑍𝑗)

2

(𝑖,𝑗)∈𝑁(ℎ)

 

where 𝑁(ℎ) is number of possible pairs of observation 𝑖 and j, ℎ is geographical distance between two observations. 



 

 

(12) 𝑝3(𝛀𝟐) =  𝑝(𝜷𝟎)𝑝(𝜷𝒉)𝑝(𝜽𝝓)𝑝(𝜽𝝃)𝑝(𝝆𝝓)𝑝(𝝆𝝃). 

Since 𝑝1(𝒀|𝛀𝟏, 𝛀𝟐), 𝑝2(𝛀𝟏|𝛀𝟐), and 𝑝3(𝛀𝟐) in equation (6) are obtained from the three layers, 

we now have posterior distributions for the parameters by multiplying these three layers. 

 

Markov Chain Monte Carlo Procedure 

 We employ Metropolis-Hastings (MH) steps within a Gibbs sampler to update each parameter 

of the model. In the MH algorithm, we draw random values under a candidate density, then 

accept or reject each draw and the accepted values are included in the posterior density. Similar 

to Cooley, Nychka, and Naveau (2007), we use maximum likelihood estimates of the GPD 

parameters as the candidate density for the posterior distribution. Let 𝝓̂ be MLE estimates for the 

set of GPD scale parameters 𝝓 and let 𝝁 be a vector of expectations for 𝝓. From the asymptotic 

property of MLE’s, we have 

(13) √𝑵(𝝓̂ − 𝝓)
𝒅
→   𝑀𝑉𝑁 (0, lim

𝑁→∞
[
1

𝑁
𝐼(𝝓)]

−1

) 

where 𝐼(𝝓) is the information matrix. Given the process layer density 𝝓~𝑀𝑉𝑁(𝝁, Σ ) in 

equation (11), where 𝝁 = 𝜷𝟎 +∑ 𝜷𝒉𝑿𝒉
𝐻
ℎ=1  and Σ =  𝜓(𝐷𝑖𝑗; 𝜃, 𝜌 )⨂ Λ, we obtain the joint 

distribution of 𝝓̂ and 𝝓 as, 



 

 

(14) (
𝝓̂

𝝓
) =  𝑀𝑉𝑁((

𝝁

𝝁
),   [

 Σ + 𝐼(𝝓)−1    Σ

 Σ                        Σ

] ) 

We then construct the conditional distribution  

(15) 𝝓 | 𝝓̂  ~ 𝑀𝑉𝑁(𝝁 + Σ(𝐼(𝝓)−1 + Σ)−1(𝝓̂ − 𝝁),    Σ − Σ(𝐼(𝝓)−1 + Σ)−1 Σ ), 

that is used as the candidate density in the MH step. By the central limit theorem, the MLE 

estimates will be close to the Bayesian posterior, and thus the sampling distribution for the MLE 

should provide a good candidate distribution for this part of the posterior. According to Cooley, 

Nychka, and Naveau (2007), this approach has a significant advantage to improve the acceptance 

rate of MH steps. After updating the GPD parameters, we repeat the process of Gibbs sampling 

to update the other covariates parameters and spatial Kriging parameters. Currently, a variety of 

R-packages provide MCMC updating algorithms for Bayesian hierarchical models. We mainly 

employ SpatialExtremes,extRemes, and spBayes packages to construct MCMC procedure. Since 

these packages do not provide a function that exactly matched with our model estimation, we 

combine these packages and re-modified these packages to estimate our model.  

 

Model selection  

 We model to county-level winter wheat yield data from National Agricultural Statistics Service 

(NASS). The data contain 1970-2014 yearly yields (bushels per acre) for 77 counties in 

Oklahoma. Counties with missing observations are discarded from the dataset. Therefore, 39 



 

 

counties’ yields are included in the final dataset. A single state is considered because RMA has 

generally wanted to tell producers that no data from another state affects their premium. Also, 

the algorithm is sufficiently slow enough that estimating the model for the whole United States at 

once is impractical with current computer resources. Since the RMA would estimate separate 

models for each state, it would be practical for the RMA to use the method proposed here. The 

description of the dataset is presented in Tables 4 and 5 in the appendix.  

 In the previous section, we have assumed that the parameters in the process layer (𝛽0, 𝛽𝑖, 𝛾0, and 

𝛾1) determine the mean and covariance structure of the Gaussian process for 𝜙𝑖. Therefore, we 

can draw from the conditional distribution for 𝜙𝑖 given the current value of 𝜙 in each iteration 

using the MCMC process. Deviance Information Criterion (DIC) suggested by Spiegelhalter et al. 

(2002) is used to evaluate the goodness of fit of each model. However, we do not only rely on 

the DIC to choose the most appropriate model but also evaluate the models using out of sample 

performance. DIC has substantial advantages for Gaussian likelihoods and is particularly 

convenient to compute from posterior samples (Finley, Banerjee, and Carlin 2007). This criterion 

is the sum of the Bayesian deviance and the effective number of parameters (a penalty for model 

complexity). The deviance is the negative of twice the log-likelihood, 

(16) 𝐷(𝛀𝟏, 𝛀𝟐) =  −2log𝑝1(𝒀|𝛀𝟏, 𝛀𝟐) 

where the 𝑝1(𝒀|𝛀𝟏, 𝛀𝟐) is likelihood function from the likelihood layer. The Bayesian deviance 

is the posterior mean, 𝐷̅ = 𝐸[𝐷(𝛀𝟏, 𝛀𝟐)], and an effective number of parameters is given by 

𝑃𝐷 = 𝐷̅(𝛀𝟏, 𝛀𝟐) − 𝐷(𝛀̅𝟏, 𝛀̅𝟐) where 𝛀̅𝟏 and 𝛀𝟐 are the posterior means of the model parameters. 

Note that lower DIC values indicate preferred models. 



 

 

 The quality of several types of model specifications with two different spatial covariance 

function forms, Model 0 to Model 9, are tested. In the process, we draw 100,000 iterations for 

MCMC chains and burn-in the first 20,000 observations to get the posterior distribution of each 

parameter. Table 1 provides the models tested and their corresponding DIC values. We start with 

a model with no spatial covariance function (Model 0), and expand the model with several 

covariates in the scale parameter equation, including average yield (𝑦̅𝑖), longitude (𝑙𝑜𝑛𝑖), and 

latitude (𝑙𝑎𝑡𝑖) of the county. We find that the model 5 with a constant term and powered 

exponential covariance dominates other models with covariates. Therefore, adding other 

covariates does not improve the quality of the model. We select model 5 as the main model. 

 To measure and illustrate the degree of spatial correlation of the GPD parameters, we further 

obtain F-Madogram (Cooley, Naveau, and Poncet, 2006) and simulate spatial random process for 

scale and shape parameters, 𝜔𝑖, on the longitude-latitude space. Generally, when observations 𝑦𝑖 

follow a stationary Gaussian random process with  correlation function 𝜓, variogram (𝛾) 

suggested by Cressi (1993) is commonly used to illustrate the degree of spatial correlation, 

which is structured as 𝛾𝑖𝑗 = 
1

2
𝑣𝑎𝑟(𝑦𝑖 − 𝑦𝑗) =  𝜎

2{1 − 𝜓(𝐷𝑖𝑗  )}, where 𝛾𝑖𝑗 is variogram 

between two region 𝑖 and 𝑗, 𝑦𝑖and 𝑦𝑗 are observations in region 𝑖 and 𝑗, 𝜎2 is variance, and 𝐷𝑖𝑗 is 

Euclidean distance between two regions. However, if our interest is in extreme values, the 

variogram cannot be a useful tool. Cooley, Naveau, and Poncet (2006) propose a modified 

madogram called the F-madogram 𝑣𝐹(ℎ), which is a useful quantity to evaluate the degree of 

spatial correlation in a spatial random process with an extreme value distribution. Figure 2 

illustrates the F-Madogram for the scale and shape parameters. It presents a measure of how 

distance between two locations will affect the value of parameters between two locations. X-axis 



 

 

ℎ is Euclidean distance between two locations (km), and Y-axis 𝑣𝐹(ℎ) represents F-madogram, 

which is the degree of spatial correlation. Therefore, an effect of spatial correlation on the two 

parameters (scale and shape) remains approximately 200km distance, and the maximum degree 

of the spatial effect is approximately 0.17 degree of F-Madogram. 

 We also simulate the spatial random process 𝜔𝑖 of the main model (model 5) to visualize the 

form of spatial correlation on the longitude-latitude space. This simulation is conducted using the 

posterior values for Kriging parameters. These obtained Kriging parameters determine the form 

and the degree of spatial correlation on the space. R-package ‘SpatialExtremes’ provides 

computational tools to obtain both F-Madogram and spatial random process simulation. In figure 

3, the western region of Oklahoma has a relatively higher value of scale parameters compared to 

the eastern region, and northwestern region of Oklahoma shows a higher value of shape 

parameters than southeastern region. These spatial correlations of GPD parameters make higher 

premium rates of the western region of Oklahoma and mitigate regional inequalities of loss ratio 

in Oklahoma.    

 

Out of sample comparison 

 The next step is calculating premium rates using the selected model and evaluating out of 

sample performance. We evaluate an out of sample performance of our model compared to the 

model suggested by Harri et al. (2011) from 2000 to 2014. To do that, we first calculate the 

premium rates of each county. The selected model provides different parameter values for each 



 

 

county and therefore premium rates differ by county. The break-even premium rate for county 𝑖, 

𝑝𝑟𝑒𝑚𝑖, for the area yield insurance contract that guarantees the expected yield, say 𝜆𝑦̂𝑖, which is 

suggested by Barnett and Black (1997) and Ker and Coble (2003) is 

(17) 𝑝𝑟𝑒𝑚𝑖 =  
𝑃(𝑦𝑖, < 𝜆𝑦̂𝑖)(𝜆𝑦̂𝑖 − 𝐸[(𝑦𝑖|𝑦𝑖 < 𝜆𝑦̂𝑖)])

𝜆𝑦̂𝑖
, 

where 𝜆 is coverage rate, 𝑦̂𝑖 is expected yield level in county 𝑖, and the expectation values and 

probability measure are taken from the posterior distribution of GPD parameters.  

 We calculate the 90% premium rates of our model and compare it with the current rating 

method that is suggested by Harri et al. (2011). As mentioned earlier, we refer to the Harri et al. 

(2011) model as the RMA model. Figure 4 illustrates interpolation of 90% premium rates from 

each model onto longitude-latitude space. The left figure has premium rates from the proposed 

model, and the right figure has premium rates from RMA model. The figure demonstrates that 

the shape of premium rates from the new model shows a smoother surface than that of the rates 

from RMA method. The crop yield distributions for each county capture spatial correlation due 

to the spatially correlated parameters. Therefore, the premium rates of the new model have a 

smoother surface than the Harri, et al. (2011) model. 

 We calculate the loss ratio of each model to measure the performance of the model. Given the 

historical yields from 2000 to 2014, we obtain the loss ratio for each model and compare the 

relative performance of the two models. The loss ratio can be given by 



 

 

(18) 𝑙𝑜𝑠𝑠𝑟𝑎𝑡𝑖𝑜𝑖 = 
∑ max[𝜆𝑦̂𝑖𝑡 − 𝑦𝑖𝑡, 0]
𝑇
𝑡=1

∑ 𝑝𝑟𝑒𝑚𝑖𝑡𝑦̂𝑖𝑡
𝑇
𝑡=1

, 

where 𝜆 is coverage level, 𝑦̂𝑖𝑡 is predicted yield of county 𝑖 at year 𝑡, 𝑦𝑖𝑡 is actual yield for 

county 𝑖 at year 𝑡, and 𝑝𝑟𝑒𝑚𝑖𝑡 is premium rate of county 𝑖 at year 𝑡, which is obtained from 

equation (15). 

The premium gains (denominator) and indemnity losses (numerator) of equation (18), under the 

proposed and RMA (Harri et al, 2011) model, are obtained using actual yields of each county. 

Average, variance, maximum, and minimum loss ratio across counties of each model are 

presented in Table 2. The loss ratio of the new model is 1.19 and is closer to one than the RMA 

model (1.43). Since the loss ratio of fairly rated premium should equal one, a loss ratio closer to 

one implies the higher quality of out of sample performance. The last two columns in Table 5 

show that the new model has a smaller variation of loss ratio across counties and therefore has 

less regional inequalities compared to the RMA model. Specifically, counties with high loss ratio 

under the RMA model, such as Alfalfa and Pottawatomie counties, become closer to one. Figure 

5 illustrates 2D and 3D interpolation of loss ratio from the new model and the RMA model onto 

longitude and latitude space. The last column of Table 5 in appendix presents county level loss 

ratio in Oklahoma. In Figure 5, once again, we verify that the range of loss ratio across the 

counties of the new model is smaller than RMA model. RMA model shows significantly large 

loss ratio in the east central region in the Oklahoma, whereas the new model presents relatively 

equally distributed loss ratio. 



 

 

Next, Similar to Harri et al. (2011), we assume a representative insurance company that can 

choose whether to retain or cede risks to Federal Crop Insurance Corporation (FCIC) under the 

Standard Reinsurance Agreement (Coble, Dismukes, and Glauber 2007). Then the premium rates 

of the company are assumed to be estimated using the proposed model and compared with RMA 

rates
7
. If the rates are higher than the RMA, then we cede risks to the FCIC since we consider 

that the RMA rates are underestimated, and therefore we expect a loss. Whereas, if the rates are 

smaller than the RMA, we retain risks since we believe that the RMA rates are overestimated, 

and therefore, we can expect a profit by retaining the policy. We repeat the procedure over the 

fifteen years from 2000 to 2014 and calculate the loss ratio of the retained and ceded policies. 

We then take a statistical test under the null hypothesis that the loss ratios of the two policies are 

equal. The non-parametric bootstrapping method is used to calculate the statistical significance 

of the hypothesis test. Under the null hypothesis of the test, the ratio of loss ratio between two 

policies should equal one unless the RMA rates are not fairly rated. The “loss ratio of ceded 

policy” in Table 3 is loss ratio of RMA rates when the representative insurance company chooses 

to cede a risk in the repeated comparison with the new model’s rates. The “loss ratio of retained 

policy” is the loss ratio of RMA rates when the company chooses to retain a risk when one 

believes RMA rates are overpriced. The “cede to retained ratio” is calculated by dividing the loss 

ratio of ceded and the loss ratio of retained. The “percent of retained policy” is the percentage to 

choose retained policy over fifteen years with 39 counties. The “p-value” in Table 3 is the type 1 

error (probability of rejecting the null hypothesis that the loss ratios of ceded and retained policy 

                                                 

7 We assume that RMA calculates the premium rates using the method (empirical rates) suggested by Harri et al. (2011) 



 

 

are indifferent when the null hypothesis is true) estimated from the bootstrapping method under 

the null hypothesis. 

The results in Table 3 corroborate that the incorrect premium rate calculation may have a 

significant economic loss under the Standard Reinsurance Agreement (SRA). The ceded to 

retained ratio is greater than one meaning that the loss ratio of ceded policy is much higher than 

that of retained policy. The p-value of the test confirms the statistical significance of the test. The 

“percent of retained policy” is less than 50%. Therefore RMA model from which current 

premiums are based, tends to underestimate premiums compared to the suggested new model. 

 

  Conclusion 

 In this article, we suggest a new approach for the area-yield crop insurance rating based on 

extreme value theory and Bayesian spatial smoothing. Several studies have contributed to apply 

Bayesian models in various topics related to agricultural economics. However, there are few 

examples of Bayesian hierarchical models in the agricultural economics literature, and to our 

knowledge, this study is the first study that uses such a model to develop a crop insurance rating 

model. The main contributions of the study are a method to adjust spatial correlation into the 

crop insurance rating model and using a density function that focuses on the tail of the 

distribution that matters in pricing crop insurance. Our process differs substantially from the 

BMA method suggested by Ker, Tolhurst, and Liu (2015). We use a Bayesian hierarchical model 

to combine observations from all counties rather than using pre-obtained posterior distributions 

for each county using observations only in the county to develop a model that reflects all the 



 

 

information from the different counties. The weight of other counties’ spatial influence is 

measured by the Euclidean distance between two counties. 

 Our results show spatial correlation of the crop yield distribution and show the form of spatial 

correlation across regions. Further, we measure the degree and the effective distance of the 

spatial correlation using F-madogram. Several model specifications are examined to identify the 

quality of the candidate models, and compare the performance between selected new model and 

RMA model. The empirical estimation results show that premium rates without considering the 

spatial correlation of the yield distribution may have a significant economic loss under the SRA. 

Our work suggests that considering spatial correlation in premium rating could lead to more 

precise risk measurement and therefore reduce inequalities in loss ratio across counties.  

 An important extension of our study is to make a comprehensive model for all kinds of crops, 

including crops with a temporal trend (i.e., technical changes). Adjusting trend variable into the 

procedure of Bayesian hierarchical model brings a substantial increase in the scope of our work 

since we should consider both spatial correlation and temporal correlation, and how these two 

correlations interact in our observations. Of course, this extensive modeling will lead to a 

significant increase in computational complexity. Therefore, Bayesian hierarchical modeling 

regarding both spatial and temporal correlation has received substantially increased attention in 

the current statistics literature. While our model does not directly include the temporal trend in 

our model structure, we can adjust the trend of crop yield outside of the model procedure using 

several types of trend estimation methods. However, for more technically sound modeling, future 

research should consider both spatial and temporal correlation in the procedure of the Bayesian 

hierarchical model. The model we proposed is the first model that directly considers the spatial 



 

 

correlation in the procedure of crop insurance rating. In the sense, this model might be a 

cornerstone to constructing an appropriate model for calculating crop insurance premium rates 

based on Bayesian spatial smoothing approach.  



 

 

Table 1. Deviance Information Criterion (DIC) For Models Of Oklahoma County Wheat Yield 

Spatial Effect Model Specification 𝐷̅ 𝑝𝐷 DIC 

No spatial 

effect 
Model 0 𝜙𝑖𝑡 =  𝛽0 + 𝜀𝑖𝑡 11441 57 11498 

Matern Model 1 𝜙𝑖𝑡 =  𝛽0 +𝜔𝑖 + 𝜀𝑖𝑡 11440 41 11481 

 Model 2 𝜙𝑖𝑡 =  𝛽0 + 𝛽1𝑦̅𝑖 + 𝜔𝑖 + 𝜀𝑖𝑡 11440 43 11483 

 Model 3 𝜙𝑖𝑡 = 𝛽0 + 𝛽1𝑙𝑜𝑛𝑖 + 𝛽2𝑙𝑎𝑡𝑖 + 𝜔𝑖 + 𝜀𝑖𝑡 11441 45 11486 

 Model 4 𝜙𝑖𝑡 = 𝛽0 + 𝛽1𝑦̅𝑖 + 𝛽2𝑙𝑜𝑛𝑖 + 𝛽3𝑙𝑎𝑡𝑖 + 𝜔𝑖 + 𝜀𝑖𝑡 11439 48 11487 

Powered 

exponential 
Model 5 𝜙𝑖𝑡 =  𝛽0 +𝜔𝑖 + 𝜀𝑖𝑡 11441 40 11481 

 Model 6 𝜙𝑖𝑡 =  𝛽0 + 𝛽1𝑦̅𝑖 + 𝜔𝑖 + 𝜀𝑖𝑡 11439 44 11483 

 Model 7 𝜙𝑖𝑡 = 𝛽0 + 𝛽1𝑙𝑜𝑛𝑖 + 𝛽2𝑙𝑎𝑡𝑖 + 𝜔𝑖 + 𝜀𝑖𝑡 11438 45 11483 

 Model 8 𝜙𝑖𝑡 = 𝛽0 + 𝛽1𝑦̅𝑖 + 𝛽2𝑙𝑜𝑛𝑖 + 𝛽3𝑙𝑎𝑡𝑖 + 𝜔𝑖 + 𝜀𝑖𝑡 11439 48 11487 

 

 

  Table 2. Loss Ratio Of New Model And RMA (Harri Et Al, 2011) Model  

Model Mean loss ratio Variance of loss ratio Max loss ratio Min loss ratio 

RMA 1.43 0.36 3.07 0.47 

New model 1.19 0.21 2.21 0.35 

 

 

  Table 3. Loss Ratio Under Ceded And Retained Policy 

Loss ratio 

of Ceded Policy 

Loss ratio 

of Retained Policy 

Ceded to Retained 

Ratio 

Percent of 

Retained policy 
P-value 

2.44 1.12 2.18 0.26 0.046 

  



 

 

   Table 4. County Level Wheat Yield In Oklahoma (1970 – 2014) 

County name 
Average Yield 

(acre/bushel) 
S.D 

Minimum 

Yield 

Maximum 

Yield 

Alfalfa 32.1 8.0 14.4 52.0 

Beaver 22.7 7.7 9.3 38.5 

Blaine 28.4 5.6 16.7 40.6 

Caddo 32.0 6.6 12.8 45.3 

Canadian 30.8 5.6 20.0 43.5 

Cimarron 25.2 7.6 9.3 41.1 

Cleveland 28.9 5.7 16.5 45.0 

Comanche 25.9 6.6 8.6 39.8 

Cotton 27.5 7.0 10.0 40.9 

Craig 32.4 9.0 15.0 54.7 

Custer 30.3 7.2 13.2 46.9 

Dewey 28.2 7.0 10.6 40.1 

Garfield 31.7 7.1 15.1 45.0 

Garvin 30.7 7.1 16.8 47.5 

Grady 30.8 6.0 18.1 41.5 

Grant 31.1 7.2 12.7 43.0 

Greer 24.6 6.0 10.9 35.0 

Harper 23.3 7.5 9.0 37.9 

Kay 31.8 6.8 16.0 47.0 

Kingfisher 28.7 6.2 17.5 44.5 

Kiowa 26.9 7.2 10.1 41.9 

Logan 29.2 7.0 13.1 43.5 

Major 28.2 6.1 15.0 42.0 

Mayes 30.8 6.6 20.0 47.3 

Mcclain 30.9 6.3 17.5 48.8 

Noble 31.2 6.9 15.0 42.5 

Oklahoma 28.8 6.0 18.0 42.9 

Osage 29.9 6.4 16.6 43.5 

Ottawa 32.7 8.4 14.5 53.0 

Pawnee 31.2 9.1 16.0 57.5 

Payne 29.7 7.3 15.0 55.8 

Pottawatomie 29.4 5.7 19.5 43.0 

Roger Mills 25.6 7.6 12.2 43.2 

Stephens 27.6 7.0 15.0 57.5 

Tillman 27.1 6.8 10.4 40.7 

Wagoner 29.4 7.5 12.3 42.5 

Washita 28.7 6.6 14.1 41.8 

Woods 29.4 8.5 13.7 53.1 

Woodward 26.1 8.1 10.5 42.9 

   Data Source: www.nass.usda.gov/ok 

http://www.nass.usda.gov/ok


 

 

    Table 5. Premium Rates And Loss Ratio Of Oklahoma (2014) 

County name 
90% Premium rates 

(New model) 

90% Premium rate 

(RMA model) 

Loss ratio 

(New model) 

Loss ratio 

(RMA model) 

Alfalfa 4.97% 4.31% 1.25 2.47 

Beaver 7.94% 7.68% 0.68 0.90 

Blaine 4.28% 3.78% 1.29 1.48 

Caddo 5.31% 4.74% 0.83 0.75 

Canadian 4.10% 2.87% 1.08 1.67 

Cimarron 7.63% 5.79% 0.82 2.39 

Cleveland 4.12% 3.34% 1.34 2.07 

Comanche 5.72% 7.18% 1.65 1.03 

Cotton 6.18% 7.88% 1.90 1.27 

Craig 5.36% 3.55% 0.35 0.71 

Custer 5.37% 4.25% 1.22 1.45 

Dewey 5.33% 5.34% 1.75 1.84 

Garfield 4.40% 4.42% 1.48 1.41 

Garvin 4.42% 3.66% 0.56 0.87 

Grady 4.43% 4.55% 1.43 1.21 

Grant 4.87% 5.38% 1.44 1.07 

Greer 5.76% 5.49% 1.00 1.16 

Harper 7.07% 7.91% 1.27 1.02 

Kay 5.07% 4.50% 1.84 1.77 

Kingfisher 4.02% 2.55% 0.88 1.76 

Kiowa 5.67% 5.62% 1.08 1.06 

Logan 4.82% 4.47% 1.71 1.65 

Major 4.67% 4.14% 0.84 0.69 

Mayes 4.99% 4.35% 0.52 1.10 

McClain 4.07% 3.88% 0.61 0.48 

Noble 4.79% 4.73% 2.21 1.94 

Oklahoma 4.02% 2.83% 0.67 1.77 

Osage 5.35% 4.30% 1.04 1.21 

Ottawa 5.58% 6.17% 1.18 1.77 

Pawnee 5.25% 6.81% 1.77 0.74 

Payne 4.86% 4.20% 1.66 2.13 

Pottawatomie 4.18% 4.07% 0.94 3.08 

Roger Mills 6.04% 3.53% 0.80 1.84 

Stephens 4.95% 4.44% 0.72 0.62 

Tillman 6.08% 6.33% 1.64 1.42 

Wagoner 5.75% 7.16% 1.82 2.56 

Washita 5.12% 2.93% 0.66 1.25 

Woods 5.82% 6.11% 1.54 1.49 

Woodward 6.35% 5.56% 0.81 0.78 

 



 

 

 

  
Figure 1. Histogram Of MLE Estimator For Each County 



 

 

 

 

 

    
Figure 2. F-Madogram Of Scale(Left) And Shape Parameters(Right) 

 

 

 

 

 

 

 

 

 

 

Figure 3. Spatial Random Field Simulation For Scale And Shape Parameters  

 

 

 

 

 

 



 

 

 

 

      

   

              

    Figure 4. 90% Premium Rates From New Model (Left) And RMA (Harri Et Al, 2011) Model (Right) 
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      Figure 5. Loss Ratio Of New Model (Left) And RMA(Harri Et Al, 2011)  Model (Right). 
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Figure 6. Posterior Density Of Yield, Scale, And Shape Parameter 

Figure 7. Posterior Density Of Kriging Parameters 
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