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Can Crop Productivity Indices Improve Crop Insurance Rates? 

 

Abstract 

This study explores whether the soil information contributes additional explanatory power 

beyond the base premium rate to crop insurance loss.  By examining a panel of 697 counties 

from the Corn Belt states in the U.S. over the period of 2005−2015, we find the loss costs are 

systematically associated with the National Commodity Crop Productivity Index (NCCPI) 

conditioning on the county base premium rates, weather conditions, and year fixed effects.  The 

loss cost rises first with NCCPI in lower NCCPI quartiles and then decreases in higher NCCPI 

quartile.  In general, counties with medium NCCPI values are expected to have higher relative 

loss cost comparing with low and high NCCPI counties.  The pattern of NCCPI’s effects is 

robust to different model specifications, heteroskedasticity and spatial correlation of data, as well 

as subsamples by insured acreage thresholds.  The finding of this study presents empirical 

evidence that there is additional information embodied in soil and spatial variables not captured 

by the current base premium rates that is correlated with loss experiences.  It suggests the 

potential to incorporate soil and spatial information to improve the crop insurance ratemaking. 

 

Keywords: Crop insurance, loss cost, base premium rate, soil productivity index (NCCPI), risk 

JEL Codes: Q18, Q14 

  



2 

 

Introduction 

As a Federal agency the USDA/RMA has objectives defined by legislative language found in the 

Federal Crop Insurance Act which contains the following provisions pertinent to rate making: 

 

Sec. 508(d) (2) states “the amount of the premium shall be 

sufficient to cover anticipated losses and a reasonable reserve.” 

 

Thus, RMA is expected to set rates that are actuarially sound.  Interestingly, the legislation does 

not specify at what level the actuarial soundness should be evaluated.  Several aspects of Sec 508 

merit note.  First, this legislation is understood to exclude the cost of sales, loss adjustment, 

underwriting, and other activities that a private insurance firm would have to cover.  Second, the 

operating cost of the USDA/RMA is not included in premium rates, nor is the administrative and 

overhead expense to the approved insurance providers (AIP) that deliver the insurance program 

to producers.  

 

The RMA actuarial process used to generate Approved Production History (APH) rates primarily 

uses historical loss experience for a crop in a county to derive the rates for an insured unit within 

that county.  The process begins by collecting the observed insurance and loss data for that 

county/crop combination and using it to derive a base county rate.  Extreme loss experience is 

smoothed by a regional catastrophic pool.  The remaining experience is averaged to derive the 

base county rate using weather-weights derived as described in Rejesus et al. (2015).  Crop 

insurance like other lines of property and casualty insurance uses various observable attributes to 

group insureds within a county into risk pools of similar risk levels.  There are several factors 



3 

 

used to tailor the rate to an individual producer, depending on utilization of certain farming 

practices, coverage choices, and  the ratio of APH yield history relative to a county reference 

yield.   

 

However, one fundamental factor related to crop yield risk has not yet been directly utilized in 

the RMA rating system: the soil.  Obviously, soil is a most critical factor determining the crop 

growth process, as is well documented by crop science and production practices.  Soil types and 

qualities determine both the mean and variation of crop yield.  It is widely noted in the literature 

that the crop risk displays large spatial disparities both across regions (Glauber, 2004; Babcock, 

2008; Woodard et al., 2012) and within a region (Popp et al., 2005; Lobell et al., 2007; Claassen 

and Just, 2011).  Besides climate conditions, those disparities are to a large extent driven by the 

underlying soil type and quality variability, especially for the intra-regional disparities where 

climate conditions are general homogenous.  

 

Some insurance programs, for example, the Saskatchewan crop insurance uses soil classification 

as a factor in rating.  But historically the US Federal Crop Insurance Program has not included 

soil information in the premium ratemaking.  In recent years, a growing interest has emerged 

about incorporating soil information in rating.  Pilot efforts have been undertaken to explore how 

to incorporate high resolution soil data in rating and the rating error if soil information is not 

considered (Woodard, 2016; Woodard and Verteramo Chiu, 2016).  The efforts of incorporating 

soil information has been made possible by the increasing availability of high quality insurance 

and soil data.  RMA now requires that common land unit (CLU) shape files be submitted with 

insurance submissions (Brady, 2013).  Prior to the addition of CLU data, RMA captured legal 
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descriptions that could typical identify the 640 acre section in which an insured unit was located.  

The CLU data then allows more accurate identification of soils when there is heterogeneity 

within the section.  The national wide high resolution gridded soil data (such as the gSSURGO 

database) are also readily available and being improved with advancing soil survey, remote 

sensing, and GIS technologies. 

 

This study follows this vein of effort to explore the incorporating of soil data in crop insurance 

rating.  We focus on a basic question first: Is the soil information useful for the rating?  If the 

answer is yes, we then proceed to address how to incorporate soil information.  Indeed, the RMA 

may have a good reason not to incorporate soil in rating, because when the sample history is long 

enough the APH yield data have already fully captured the soil information.  However, in 

practice the APH yields are usually calculated based on short-period sample.  For example, at 

individual farm level the APH data are typically available for 4 to 10years.  These short-period 

APH yield data are subject to small sample weather fluctuations and noisy.  Premium rates 

derived based on those noisy APH data is likely to deviate substantially from the actual long 

history risk.  In addition, the RMA follows typical actuarial practices of using various observable 

attributes to adjust  APH rating – cropping practice, unit structure, etc.  This study then empirical 

tests whether the current APH premium rates have fully captured the soil information.  

Following the previous rationales, if APH has truly captured  all soil information, adding the soil 

information per se to the risk model would not provide extra explanation power beyond the 

existing APH rates.  But if there is still some remaining information in the soil, then including 

soil information can add more explanation power for the loss experience.  That way we convert 



5 

 

the question of whether we should consider soil information in insurance rating into a testable 

hypothesis. 

 

The hypothesis test is based on a panel sample of 697 corn production counties in the U.S. over 

the years of 2005−2015.  We regress the observed county level losses on APH rates and soil 

variables, and test for the statistical significance of soil variables conditioning on APH rates.  

The county level loss is measured by the loss cost ratio aggregated at county level, and APH rate 

is measured by county base premium rate.  Soil properties are represented by the 10-meter 

National Commodity Crop Productivity Index (NCCPI) developed from the USDA/NRCS, 

which is averaged to a county level.  If the APH base rates have already embodied all risk-related 

soil information, the effect of soil variable (NCCPI) ought to be insignificant to explain county 

losses.  On the other hand, if NCCPI is found to be systematically related with losses, this 

provides evidence that there exists additional soil information not currently contained in APH 

base rates that are related with losses.   

 

Note that the county level data are not ideal for this test as much variability within a county is 

omitted.  The more appropriate data for this test are individual farms or fields.  However, due to 

data confidential policy those individual data are not available to the public.  Under this data 

restriction, we propose to use county units do conduct a pilot test.  Fortunately, the county level 

variabilities in soil and loss are also rich to support a meaningful statistical test.  If county level 

test is significant, then individual level test will be more significant because of noisier APH and 

heterogeneous soil within county. 
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The results significantly reject that soil information is irrelevant to crop insurance losses.  A 

nonlinear pattern of effect of the soil productivity index (NCCPI) is found.  The county losses 

increase with NCCPI for the counties with low to medium NCCPI values, and decline for 

medium to high NCCPI counties.  The pattern is statistically significant and robust to various 

spatially correlated errors, subsamples, and insurance types.  This finding provides strong 

empirical evidence supporting that the current RMA rate does not fully capture soil information.   

 

The finding that soil information explains extra losses beyond APH premium rates has important 

implications for the crop insurance program.  It suggests potential for rating improvement by 

incorporating soil information as a component of the rating system.  With the availability of high 

resolution soil data, this improved rating can individualize premium rates to farm or even field 

level which is corresponding to the land’s site-specific risk characteristics.  It will greatly reduce 

the adverse selection issue caused by using regional average crop risk rating (Goodwin, 1994; 

and more), which was previously difficult to address due to the lack of adequate APH data in 

individual level.  

 

 

Literature review 

There is an extensive discussion assessing the current RMA ratemaking procedures.  A mostly 

documented source of mis-rating of the RMA APH approach is the adverse selection, where 

higher risk producers are under-charged relative to lower risk producers (Skees and Reed, 1986; 

Makki and Somwaru, 2001; Glauber, 2004).  RMA assumes a simplified constant variability 

structure of the yield, which determines the premium rate only using average yield and induces 
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adverse selection (Goodwin, 1994), particularly because of the use of aggregate (typically 

county) measures to estimate individual yields and rates.  Another major source of rating error 

comes from the trending of yield over time (Skees and Reed, 1986; Coble et al., 2011; Adhikari 

et al., 2012), which makes the historical average yield not indicative of future risk.  Given the 

evolution of agricultural technologies and managements, the yield risk is highly likely to be non-

stationary over time (Harri et al., 2009).  Also, in the rating practice the determination of 

individual farm rates is mostly relied on short period APH yield data that are not long enough to 

fully represent crop yield risk (Skees and Reed, 1986; Rejesus et al., 2015). 

 

Against this background, the improvement of rating is an on-going effort by RMA.  Among 

various improvement strategies, a recommendation is to utilize additional risk-related weather, 

soil and other locational variables in the rating procedure (Coble et al., 2010).  Weather data has 

already been incorporated into the rating system.  For example, Rejesus et al. (2015) develop a 

methodology to weight historical APH loss data based on long period weather frequencies.  As to 

the soil and spatial information, however, fewer studies have been looking at how to incorporate 

it into the rating system.  To our best knowledge, the most relevant work is done by Woodard 

(2016) and Woodard and Verteramo Chiu (2016), who incorporate the high resolution 

gSSURGO soil data into the micro-level (field level) insurance rates for McLean County, 

Illinois.  The general idea of their method is to first use soil information in modeling yield, and 

then use the estimated yield model and CLU level soil information to predict the CLU level 

premium rate.  Their work has demonstrated a significant improvement of the soil induced field 

level rates from the APH rates without considering soil.  Our study explore the same question 

towards the feasibility of utilizing soil in insurance rating, but from a different perspective.  We 
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look at the losses and rates at the county level, and investigate whether soil data can add extra 

information to the losses conditioning on the current RMA rates. 

 

 

Empirical Model 

The empirical model for testing soil’s effect on crop losses is specified as follows: 

2

1 2( )

                                ,

it it i it it

it it it t it
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  (1) 

where LCit is the loss cost for county i at year t, and Rateit is the RMA base premium rate 

calculated based on APH historical yields.  Soili represents the quality of soil in county i, which 

is approximated here by a soil productivity index of NCCPI (National Commodity Crop 

Productivity Index).  The soil quality is assumed to be constant over time.  To allow for more 

flexibility of soil’s effect, the functional form f() takes a splined linear specification.  Prec 

represents annual precipitation during the growing seasons, and GGDlow, GGDmed, and 

GGDhigh are the growing degree days under low, medium, and temperature thresholds 

respectively.  The inclusion of those weather variables is to control for the year-to-year growing 

conditions that substantially influence the yield risks.  Yeart is the year-specific fixed effects 

which controls for the yearly market crop price fluctuations that influence the losses. 

 

The central idea of this regression model is to empirically test whether the NCCPI index 

contributes additional explanatory power to the losses beyond the RMA premium rates.  Note 

that the model is not intended to test for the actuarial soundness of the program, i.e., “E(LC) = 

Rate”.  That differs from many actuarial soundness regression models where the dependent 

variable is the loss ratio (i.e., LC/Rate) or the LC−Rate.  Instead, the dependent variable is the 
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loss cost, and RMA rate is treated as a control variable in the regression whose slope β is allowed 

to deviate from one.  We have mainly two reasons for that specification.  First, the sample period 

(11 years) is not long enough to conduct a solid actuarial soundness test.  The deviations of the 

losses from base rates found in the test is very likely due to the short-period unrepresentative 

weather of the sample years.  However, even if the overall losses deviate from base rates, as long 

as the RMA base rates have really fully captured the soil information, the deviations should be 

systematically uncorrelated with spatial and soil characteristics, which can be tested by the 

model specified.  Second, as will be discussed in the data section shortly, the loss cost variable in 

the model is defined based on only the revenue protection, which is determined not only by 

weather risks but also by price risks.  The associated coverage levels are also diversified which 

differ from the 65% of the RMA base rate.  That makes the LC and Rate not directly comparable 

for the actuarial soundness test.   

 

It is noteworthy to mention that by this model specification, the effect of soil variable in this 

model can be only interpreted in a relative sense.  It can reveal whether there exists additional 

information embedded in soil that has power in explaining in losses and is not currently 

contained in RMA premium rates.  But it cannot be interpreted as whether the RMA premium 

rate is overpriced or underpriced. 

 

The error term (εit) captures the unobserved risk-influencing county characteristics, such as un-

modeled weather variables, pests, diseases, and other shared geographic features.  Those 

characteristics are highly likely to be heteroskedastic and spatially autocorrelated across 

counties.  To account for those types of error terms, we use a non-parametric spatial 
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heteroskedasticity and autocorrelation consistent (spatial HAC) estimator of the variance-

covariance matrix.  Following Kelejian and Prucha (2007), the OLS spatial HAC variance-

covariance matrix is estimated as: 

1ˆˆ ˆ ˆ( ) ( )
ij

i j i j

i j

d
Var X X K

n d
    ,     (2) 

where ̂  is the vector of coefficient estimates,  Xi the i-th row of the matrix of explanatory 

variables, and 
î the OLS residuals.  The index i and j refer to counties, and n refers to the total 

number of sample counties.  K() is a kernel function to assign the inverse-distance weights.  The 

distance dij denotes the great circle distance between centroids of counties i and j.  The cutoff 

distance d is chosen as the distance between the farthest two counties in the sample, as we 

believe the unobserved weather as well as other risk-influencing factors interact in very long 

distance ranges.  Also, considering the sample data we use are panel data, the covariance 

structure of disturbances is actually a stacked block matrix with each year’s covariance matrix on 

the diagonal and zeros on off-diagonals (i.e., assuming spatial correlations only exist in cross 

section data).  

 

 

Data 

The sample data we use in this analysis are from the counties of 9 Corn Belt states (Illinois, 

Iowa, Indiana, Michigan, Minnesota, Wisconsin, Nebraska, Missouri, and Ohio), covering an 11-

year period from 2005 to 2015.  Corn insurance is used as it is the largest insured crop type and 

the insured counties are relatively continuous over space.  To obtain a balanced panel, we 

exclude the counties with missing data in any of the 11 years, and in total we have 697 counties.  
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That way we can avoid over-representing the more recent years since there are more missing 

values in earlier years. 

 

The loss information for corn insurance is obtained from RMA’s Summary of Business database 

(SOB).  Given there are different types of insurance plans, we choose the revenue protection 

(RP) insurance plan to ensure comparability since the RP plan is the dominant crop insurance 

plan during the sample period.  The county level loss cost ratio (LC) is defined as the sum of all 

RP indemnities divided by the sum of all RP liabilities within a county.  It should be noted that 

this loss cost ratio definition is a county level aggregation across various coverage levels (from 

50% to 85% by a 5% increment).  Ideally, this loss cost ratio should be adjusted according to a 

common basis of the 65% coverage level which is comparable with the base rate.  However, 

since the SOB loss data do not provide individual insured data, it is not possible to implement 

this adjustment.  We control for the county average coverage level later on in the modeling for 

robustness check, and find it does not affect the results.  

 

RMA county base premium rates (Rate) are obtained from RMA’s Actuarial Data Master 

database (ADM).  We set the county base premium rates as the sum of Reference Rate and Fixed 

Rate Load.  The Reference Rate is the premium rate corresponding to the established county 

average yield (Reference Yield) at the 65% coverage level.  Specifically, we choose the rates 

under Grain purpose (type code 16) and Non-irrigated land (practice code 3).  The RMA 

calculates the base rates on the basis of historical risk by using the Actual Production History 

(APH) approach and constantly updates them over time, but the amount of change is usually 

small at most of the time.  Note that we use the county base premium rates instead of the county-
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level aggregated individual premium rate (i.e., sum of individual premiums divided by sum of 

individual liabilities).  The county base rates can be regarded as RMA’s predictions for future 

loss in county level based on past loss information, and the individual rates are calculated based 

on county base rates and information of individual producers.  Because this study is conducted 

based on sample of county units, using base rate as explanatory variable is advantageous as it 

allows to directly test RMA’s county level prediction of forward-looking risk.  The base county 

rate for each year is used to reflect RMA’s expectations of yield losses for a common level of 

coverage and insurance plans.  This data is determined prior to the crop insurance enrollment 

period and is not affected by producer choices regarding coverage level, insurance plan, or unit 

structure which are endogenous to the premium or effective premium rate (i.e., 

premium/liability) determined when insurance is purchased.   

 

The soil information is represented by the National Commodity Crop Productivity Index 

(NCCPI) that is developed by the USDA/NRCS.  The index ranges from 0.01 to 1, which is a 

rating for the production capacity of dry-land commodity crops based on inherent soil properties, 

landscape features and climatic characteristics (Dobos, et al., 2012).  Higher value of the index 

represents more desirable traits.  Two points merit notice.  First, the index is a combined measure 

of many agro-climatic conditions (soils, landscapes and climates) to foster crop productivity, and 

for non-irrigated crops only.  Second, the NCCPI productivity index is considered invariant over 

time, while temporary fluctuations in productivity caused by year-to-year weather variations and 

management practices are not addressed.  The NCCPI index data are obtained from the Gridded 

Soil Survey Geographic (gSSURGO) Database, where the index is arranged in 10-meter 

resolution.  We choose the index for corn and soybean production, and aggregate the index to 
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county level.  In particular, we aggregate the NCCPI over only the corn producing lands.  The 

corn land distribution is from the 30-meter resolution Cropland Data Layer (CDL) database 

released by USDA.   

 

Following Schlenker and Roberts (2009), we select annual precipitation and heat to represent 

weather information.  The yearly precipitation is the total rainfall during the corn growing 

season.  Here we choose the corn growing season as the months of April through September, as 

northern regions tend to plant later.  We realize this choice is a little arbitrary, and the actual 

planting dates may vary from year to year depending on weather conditions.  But the slight 

difference in the growing season specification usually does not alter the results very much 

(Schlenker and Roberts, 2009).  The annual heat for crop growth is measured by the growing 

degree days (GGD), which are measures of heat accumulation above certain base temperatures.  

For example, for a 0 degree Celsius base temperature, a day of 15°C contributes 15 degree days, 

while a day of 35°C contributes 35 degree days. At the 10°C base temperature, a day of 15°C 

contributes 5 degree days, while a day of 35°C contributes 25 degree days.  Degree days are then 

summed over the entire growing season.  Furthermore, we adopt a more sophisticated modified 

version definition of growing degree days by Schlenker and Roberts (2009) to get more 

continuous values.  In addition, to allow for the flexibility of the heat effect, we try three 

different base temperatures: 0°C, 10°C, and 30°C.  The three growing degree days then have 

some overlapping part, and we subtract the overlapping by defining: 

0 10C CGGDlow GGD GGD   , 

10 30C CGGDmed GGD GGD   , 

30 CGGDhigh GGD  . 
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The GGDlow, GGDmed, and GGDhigh represent the accumulated heat under the low, medium, 

and high temperature respectively.  The precipitation and temperature information is obtained 

from the Parameter-elevation Regressions on Independent Slopes Model (PRISM) database in 4 

km grids, which is then aggregated into county level. 

 

The summary statistics of variables are shown in table 1.  Figure 1 and 2 show the spatial 

distributions of the soil, loss, and base rate of the sample counties.  Figure 3 shows the statistical 

variations of the variables both cross sectional and cross temporal.  

 

 

Results 

The effect of NCCPI on county level loss cost follows a nonlinear pattern of first positive and 

then negative, controlling for the county base premium rates, weather conditions, and yearly 

dummy variables.  As shown by the estimated splines in table 2, the loss cost rises first with 

NCCPI when NCCPI is low (<0.65), then decreases when NCCPI is high (>0.65).  The 

magnitudes of the NCCPI effect on the extra loss cost are economically significant.  Taking the 

full model (column 4 of table 2) for example, at the first spline (NCCPI<0.38) a county’s loss 

cost is predicted to increase by 0.043 if its NCCPI is 0.1 higher (that is about 10% of the total 

range of NCCPI values; the number is calculated as 0.043=0.43×0.1).  At the second spline 

(0.38<NCCPI<0.65) the loss cost still increases with NCCPI, though the magnitude reduces to 

0.0149 for a 0.1 increase of NCCPI.  At the third spline (NCCPI>0.65), the effect turns into 

negative and an NCCPI value of 0.1 higher will result in decrease of loss cost by 0.0156.  Those 

changes in loss cost are considerable in size given that the sample average loss cost is about 0.09.   
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The four columns in table 2 correspond to four different model specifications.  The column (1) 

only has base rate as the single regressor.  Column (2) adds three linear splines of NCCPI.  

Column (3) also controls for the year fixed effects.  Column (4) further controls for weather 

variations.  The spline knots are selected by trying all possible combinations and pick the one 

combination with the best fit.  The finally chosen knots for the splines are 0.38 and 0.65.  But the 

results are very similar when slightly changing the knots.   

 

OLS is used to estimate the model, while the coefficient standard errors reported in table 2 have 

been corrected for unknown form of spatial heteroskedasticity and autocorrelation.  This 

robustness correction has resulted in larger standard errors comparing to the OLS standard errors 

(which are not reported in the paper), and therefore lowered the significance levels of 

coefficients.  Overall, the effect of NCCPI is highly significant in the first spline, while the 

second and third splines are statistically less insignificant.  The significance levels rise as more 

control variables are added to the models.  In the full model (column 4), all the three splines are 

significant (the second spline is very close to the 10% significance level with a p-value of 

11.6%).  The joint significance test of the three splines also significantly rejects the hypothesis of 

zero-relevance of NCCPI for all model specifications.   

 

To better visualize the nonlinear pattern of NCCPI’s effects, we plot the predicted loss cost in 

response to NCCPI values in figure 4 (red solid line).  This curve only focuses on the change in 

loss cost caused by NCCPI, while all other control variables are fixed.  The loss cost at 

NCCPI=0.9 is set as the zero level, and the heights of the curve only have relative meanings.  
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The graph shows a clear inverse-U shape pattern.  In addition to the linear regression spline 

function whose structure is to some extent preset, we also specify a more flexible step function 

model that fits a separate effect for each 0.05-interval NCCPI range.  The estimation results are 

also shown in figure 4 with the solid blue line, and the dashed blue lines represents the 95% 

confidence intervals (after adjusting for spatial heteroskedasticity and autocorrelation).  The 

lowest three steps (0<NCCPI<0.15) and the highest two steps (0.9<NCCPI<1) are combined as 

one step respectively, due to small number of observations in the two extremes of NCCPI values.  

As can be noticed, the loss cost increases with NCCPI first in the low and medium NCCPI value 

range, and then decreases with NCCPI in the higher NCCPI value range.  That pattern is 

consistent with that of the linear spline function result.  For comparison purpose the highest 

NCCPI value group (0.9<NCCPI<1) is set as the base group where the effect is set as zero.  But 

the choice of base group does not affect the shape of the effect curves.   

 

Besides the significance and magnitude of the soil coefficient, it is also of interest to see whether 

the incorporation of soil variable increases the model predicting power.  This can be done by 

comparing the out-of-sample prediction performance of the models with and without soil 

variable.  Following Schlenker and Roberts (2009), we conduct the cross-validation that leaves 

out 20% of sample observations.  We make a 9999 times simulations, where in each simulation 

20% of observations are randomly dropped out of the sample.  The model is estimated using the 

remaining 80% of the sample, and then the estimated model is used to predict the loss costs for 

the 20% dropped sample.  The mean squared error (MSE) statistics between the predicted and 

actually observed loss costs are calculated as a measure of the closeness of the prediction.  The 
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MSE is 0.0126 for the without-soil model, and 0.0122 for the with-soil model, which is around 

3% decrease. 

 

Beyond the main interest of the soil variable, we also look at the other control variables.  The 

county base premium rate is found to be significantly positively related with loss cost, which is 

consistent with our expectation.  Note that in this model the base rate is set as a control variable, 

which factors out the part of soil information that has already been contained by the APH 

historical information.  Therefore, the estimated effects of NCCPI in the models of this paper 

capture the remaining soil effects conditional on APH rates.  In addition, the coefficient of base 

rate highly deviates from 1 and an intercept term also exists in the regression, because neither the 

definition of base rate (for revenue insurance plan only) nor the short period sample size (only 11 

years data) can grant the actuarial soundness analysis of the base rate, as mentioned earlier.  

 

Precipitation is found to have a quadratic form impact on losses, that too little or too much 

rainfall causes more losses.  But the effect is not statistically significant.  The growing degree 

days under low and medium temperatures contribute to reduce the losses, though the low 

temperature GGD’s effect is much smaller and insignificant.  On the other hand, more growing 

degree days under the high temperature significantly increase losses, which suggests that 

extreme heat damages the crop growth.   

 

Various robustness checks of models are conducted, all showing a similar nonlinear relationship 

between NCCPI and losses, as shown in Appendix tables A1 through A4.   
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First, table A1 reports the estimation results of models with extra control of insurance coverage 

level.  As discussed earlier, it is concerned that the average coverage levels may differ across 

counties.  Counties with higher coverage level are tended to be paid higher indemnities (hence, 

loss cost ratios) under the same loss risk, while the base rates are all set at the same 65% 

coverage level.  Therefore, for some counties the high loss cost may simply be due to the higher 

average coverage levels.  To make remedy to that situation, we add the insured area weighted 

average coverage level to the regression to account for the variation in coverage level.  The 

results find weak significance of the coverage level variable, suggesting that the choice of 

coverages may be uncorrelated with the key explanatory variables in the model.  The coefficients 

estimations for other variables of interest in the model are also not affected, where the pattern of 

the NCCPI effects is unchanged. 

 

Second, to account for the possible outliers existing in the sample caused by small acreage of 

insured land areas, we also estimate the model using subsample of counties with only large 

insured acres.  As shown in table A2, we limit the estimate to counties with larger than 2000 

acres, 5000 acres, and 10000 acres of insured land areas under the revenue protection plan.  The 

corresponding number of counties are 506, 363, and 240 respectively.  Only the full model (with 

a full set of controls) is reported.  The inverse-U shape nonlinear pattern of NCCPI’s effect 

persists for all subsamples, though the significance levels of the coefficients decline as the size of 

subsample decreases.   

 

Finally, we also try loss definitions based on the yield protection insurance plan.  The yield 

protection loss is completely determined by physical yield, and prices do not have influence on 
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it.  As shown in table A3, the results are very similar to the revenue protection plan results.  

However, a drawback is that the yield protection plan’s share in the entire crop insurance market 

decreased substantially in recent years, and the insured acreages are much smaller comparing to 

the more popular revenue protection plan.  For more robustness check we also calculate the loss 

cost by combining the yield and revenue protection plans together.  Again, the estimate results 

are very similar and the inverse-U shape pattern of NCCPI’s effects remain unchanged. 

 

In sum, the empirical data reveal that county loss costs are systematically associated with the soil 

index of NCCPI even after controlling for RMA base rates.  The association is significant and 

robust to various specifications and samples.  This finding presents empirical evidence that there 

is additional information from soil characteristics that is not currently contained in the RMA base 

premium rate, but is correlated with observed loss cost.   

 

 

6. Conclusion 

This study empirically demonstrates that soil information is systematically associated with loss 

costs at county level conditional on the current RMA rating.  Using a panel of 697 counties of 

the Corn Belt states in the U.S. over the period of 2005−2015, we are able to significantly reject 

the hypothesis that the soil productivity index (NCCPI) is uncorrelated with county level loss 

costs.  A nonlinear pattern of the relationship between soil and loss is found for the sample data, 

where the loss cost rises first with NCCPI in lower NCCPI values and then decreases in higher 

NCCPI values.  The pattern of the effects are robust to various model specifications, variable 

definitions, and subsamples.  This finding provides empirical evidence that the current RMA 
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rating does not fully capture soil information.  It suggests there is additional information 

embodied in the soil which may be useful to improve the base premium rate making, even at the 

county level.  

 

This study is a first step exploration on incorporating soil and spatial information into the current 

crop insurance rating system.  The model we use is rather descriptive.  It finds significant 

correlation between soil productivity index and losses, which justifies the necessity to add soil 

information to rating.  But in order to further explain the observed pattern of the effect and 

incorporate soil information in the rating process, more detailed mechanistically explanatory 

models are needed for the next steps.   

 

We also calls for more spatially disaggregated insurance data and more detailed soil data for the 

modeling.  Due to the current restrictions of access to individual farm data we are only able to 

use county level data for the analysis.  Given the strong spatial heterogeneity of soil conditions 

within a county, it is more desirable to refine the analysis based on more spatially disaggregated 

individual insurance data.  Certain strategies need to be developed to best handle the 

confidentiality and privacy issues in using individual farm data.  The NCCPI index is also only a 

highly compacted one-dimension variable, which is easy to use in the modeling but its 

interpretation is also relatively vague.  We suggest collecting more actual soil, landscape and 

climate characteristics, and directly incorporate those variables in the modeling.  Longer time 

series sample is also needed.  The 11 years period is also not long enough to represent historical 

weather distribution.  A potential drawback is that it does not rule out the possibility that the 

significant effect of NCCPI was due to abnormal short-period weather variability that happened 
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to be spatially correlated with soil distribution.  By addressing those issues, the further 

improvement of this study is expected to lie on a solid methodology foundation for utilize soil 

and spatial information in premium rating, and finally to allow the individualizing of premium 

rate to individual farm or even field level.   

 

There are two most relevant policy implications for incorporating soil information in rating.  

First, it provides a method to downscale the premium rating to the field level (or micro-level), 

that each individual piece of land can be precisely rated according to its risk characteristics.  That 

can substantially reduce the adverse selection problem caused by the rating based on average risk 

over large areas.  Second, even at the county level, the soil information is useful for the 

expansion of insurance program into new areas without adequate historical risk data.   
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Table 1 Descriptive statistics  

Variable Mean Std. Dev. Min Max 

Loss cost ratio 0.091 0.141 0 1.208 

Base premium rate 0.075 0.052 0.009 0.395 

NCCPI 0.617 0.154 0.006 0.915 

Precipitation (cm) 608.4 154.7 120.3 1231.8 

Growing Degree Days (0°C) 3394.4 326.2 2405.7 4415.5 

Growing Degree Days (10°C) 1680.3 275.7 904.1 2592.6 

Growing Degree Days (30°C) 19.1 21.3 0 150.8 

Note: The sample is a panel of 697 counties over 11 years (2005−2015), with 

a total of 7,667 observations. The loss cost ratio is calculated based on 

Revenue Protection (RP) insurance plan. 
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Table 2 Estimated correlation of NCCPI to county loss cost (OLS model) 

  (1) (2) (3) (4) 

          

Base rate 0.423*** 0.462*** 0.674*** 0.410*** 

 (0.102) (0.129) (0.123) (0.0965) 

NCCPI [spline 1]  0.162** 0.221*** 0.430*** 

  (0.0794) (0.0820) (0.0834) 

NCCPI [spline 2]  0.0523 0.110 0.149 

  (0.133) (0.139) (0.0951) 

NCCPI [spline 3]  -0.135 -0.0973 -0.156** 

  (0.121) (0.115) (0.0694) 

Precipitation    -0.0000819 

    (0.00491) 

Precipitation squared    0.0000183 

    (0.000034) 

Low GGD    -0.0000792 

    (0.000410) 

Medium GGD    -0.000230** 

    (0.000117) 

High GGD    0.00459*** 

    (0.00171) 

Constant 0.0598** -0.00818 -0.0979** 0.222 

  (0.0238) (0.0389) (0.0401) (0.575) 

Year Fixed Effects No No Yes Yes 

Joint significance of 

3 splines (p-value) 
- 0.011 0.0057 <0.0001 

Observations 7,667 7,667 7,667 7,667 

R-squared 0.315 0.318 0.479 0.567 

Note: Dependent variable is the county-level loss cost ratio (Revenue 

Protection (RP) insurance plan). The knots for the linear splines are 

NCCPI=0.38 and NCCPI=0.65. Spatial heteroscedasticity and 

autocorrelation consistent (HAC) standard errors are in parentheses. *** 

p<0.01, ** p<0.05, * p<0.1. The estimation are based on a panel of 697 

Corn Belt State counties over 11 years (2005−2015).  
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Figure 1 Spatial distribution of NCCPI by county 
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Figure 2 Spatial distribution of county-level base premium rates and loss costs 

(average over 2005−2015) 
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Figure 3 Box plots of variables  
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Figure 4 Nonlinear relation between county loss cost and NCCPI. Everything in 

this graph is in a relative sense. The highest NCCPI group (>0.9) is set as the base 

group (i.e., zero). The loss cost is conditional on base premium rate as well as 

weather variables and year fixed effects.  Histogram on the bottom panel shows the 

frequency distribution of the NCCPI values. 
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Appendix: Tables of Robustness Check Results 

 

Table A1 Estimated correlation of NCCPI to county loss cost, 

controlling for insurance coverage level 

 (1) (2) (3) (4) 

          

Base rate 0.486*** 0.567*** 0.665*** 0.566*** 

 (0.123) (0.124) (0.136) (0.120) 

NCCPI [spline 1]  0.180** 0.220*** 0.464*** 

  (0.0798) (0.0835) (0.0902) 

NCCPI [spline 2]  0.0585 0.110 0.148 

  (0.133) (0.139) (0.0939) 

NCCPI [spline 3]  -0.149 -0.0957 -0.186** 

  (0.123) (0.115) (0.0806) 

Precipitation    -0.000038 

    (0.00488) 

Precipitation squared    0.0000184 

    (0.0000337) 

Low GGD    -0.000132 

    (0.000401) 

Medium GGD    -0.000220** 

    (0.000112) 

High GGD    0.00470*** 

    (0.00174) 

Coverage 0.0904 0.143 -0.0140 0.271* 

 (0.129) (0.132) (0.0700) (0.152) 

Constant -0.0124 -0.130 -0.0867 0.0734 

  (0.101) (0.104) (0.0729) (0.574) 

Year Fixed Effects No No Yes Yes 

Joint significance of 

3 splines (p-value) 
- 0.0081 0.0084 <0.0001 

Observations 7,667 7,667 7,667 7,667 

R-squared 0.315 0.319 0.479 0.570 

Note: Dependent variable is the county-level loss cost ratio (Revenue 

Protection (RP) insurance plan). The knots for the linear splines are 

NCCPI=0.38 and NCCPI=0.65. OLS model estimates with Spatial 

heteroscedasticity and autocorrelation consistent (HAC) standard errors 

in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The estimation are 

based on a panel of 697 Corn Belt State counties over 11 years 

(2005−2015).  

 



31 

 

 

Table A2 Estimated correlation of NCCPI to county loss cost, for subsamples of various 

insured acreage thresholds 

 Full sample >2,000 acres >5,000 acres >10,000 acres 

          

Base rate 0.410*** 0.312*** 0.243** 0.127 

 (0.0965) (0.111) (0.115) (0.137) 

NCCPI [spline 1] 0.430*** 0.532*** 0.509*** 0.313*** 

 (0.0834) (0.123) (0.118) (0.113) 

NCCPI [spline 2] 0.149 0.0702 0.0105 0.0410 

 (0.0951) (0.0803) (0.0728) (0.0924) 

NCCPI [spline 3] -0.156** -0.0933 -0.0540 -0.0439 

 (0.0694) (0.0637) (0.0644) (0.0658) 

Precipitation -0.0000819 0.0000753 0.000837 0.00104 

 (0.00491) (0.00491) (0.00525) (0.00530) 

Precipitation squared 0.0000183 0.0000133 0.00000567 0.0000015 

 -0.0000339 -0.0000331 -0.000035 -0.0000362 

Low GGD -0.0000792 -0.000205 -0.000289 -0.000215 

 (0.000410) (0.000411) (0.000419) (0.000405) 

Medium GGD -0.000230** -0.000160 -0.000123 -0.000145 

 (0.000117) (0.000107) (0.000108) (0.000107) 

High GGD 0.00459*** 0.00391** 0.00343** 0.00317** 

 (0.00171) (0.00165) (0.00172) (0.00154) 

Constant 0.222 0.320 0.422 0.415 

  (0.575) (0.575) (0.588) (0.556) 

Year Fixed Effects Yes Yes Yes Yes 

Joint significance of 3 

splines (p-value) 
<0.0001 <0.0001 <0.0001 0.0007 

Observations 7,667 5,566 3,993 2,640 

R-squared 0.567 0.574 0.564 0.574 

Note: Dependent variable is the county-level loss cost ratio (Revenue Protection (RP) 

insurance plan). The knots for the linear splines are NCCPI=0.38 and NCCPI=0.65. OLS 

model estimates with Spatial heteroscedasticity and autocorrelation consistent (HAC) 

standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The full sample is a 

balanced panel of 697 Corn Belt State counties over 11 years (2005−2015). All subsamples 

are 11-year balanced panels, too, where counties of any year’s RP insured area less than 

the thresholds are excluded from the sample. The 2000 acres, 5000 acres, and 10000 acres 

thresholds are corresponding to 506 counties, 363 counties, and 240 counties respectively. 
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Table A3 Estimated correlation of NCCPI to county loss cost, by insurance 

type 

  RP YP RP+YP 

        

Base rate 0.410*** 0.393*** 0.340*** 

 (0.0965) (0.0628) (0.0902) 

NCCPI [spline 1] 0.430*** 0.208*** 0.376*** 

 (0.0834) (0.0584) (0.0754) 

NCCPI [spline 2] 0.149 0.0904* 0.156* 

 (0.0951) (0.0502) (0.0920) 

NCCPI [spline 3] -0.156** -0.0742* -0.142** 

 (0.0694) (0.0397) (0.0669) 

Precipitation -0.0000819 -0.000979 0.000148 

 (0.00491) (0.00264) (0.00472) 

Precipitation squared 0.0000183 0.0000176 0.0000161 

 (0.0000339) (0.0000182) (0.0000326) 

Low GGD -0.0000792 0.0000142 -0.000130 

 (0.000410) (0.000189) (0.000379) 

Medium GGD -0.000230** -0.000118* -0.000213* 

 (0.000117) (0.0000685) (0.000114) 

High GGD 0.00459*** 0.00241** 0.00442*** 

 (0.00171) (0.000973) (0.00169) 

Constant 0.222 0.0271 0.289 

  (0.575) (0.253) (0.530) 

Year Fixed Effects Yes Yes Yes 

Joint significance of 3 

splines (p-value) 
<0.0001 0.0003 <0.0001 

Observations 7,667 7,655 7,667 

R-squared 0.567 0.434 0.576 

Note: Dependent variable is the county-level loss cost ratio for different 

insurance plans. “RP” is for the Revenue Protection insurance plan (or the 

Crop Revenue Coverage (CRC) plan). “YP” is for the Yield Protection 

insurance plan (or the Actual Production History (APH) plan). “RP+YP” is 

the two plans combined. The knots for the linear splines are NCCPI=0.38 and 

NCCPI=0.65. OLS model estimates with Spatial heteroscedasticity and 

autocorrelation consistent (HAC) standard errors in parentheses. *** p<0.01, 

** p<0.05, * p<0.1. The sample is a balanced panel of 697 Corn Belt State 

counties over 11 years (2005−2015). 

 

 

 


