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1. Introduction 

 The water quality of the Great Lakes is of interest to policy makers and the public. 

Legislative efforts and government regulation, such as Clean Water Act (CWA, 1970, 1972) and 

Great Lakes Water Quality Agreement (GLWQA, 1972, 1978, 1987, 2012), aim to restore and 

enhance Great Lakes water quality. Public policies toward water quality can benefit from 

information about the economic benefits of improvement or protection of water quality. Although 

valuing water quality changes is particularly challenging when compared to other environmental 

services (Keeler et al. 2012), we can estimate some of the monetary value of water quality 

improvements by measuring the recreational benefit of water quality improvement, as one of the 

major benefits from improving water quality accrues to recreational use (Bockstael, Hanemann, & 

Kling, 1987).  

 Two primary approaches have been applied to the measurement of recreational benefits: 

revealed preference (RP) approaches and stated preference (SP) approaches. RP approaches, such 

as the “travel cost method”, rely on observed behaviors to indirectly derive values of 

environmental services. By contrast, SP approaches, such as “choice experiments” or the 

“contingent valuation method”, ask the individual to make hypothetical choices to directly elicit 

values. Both RP and SP approaches have advantages and disadvantages, and each approach faces 

challenges in valuing water quality changes. For RP approaches, three key challenges for valuing 

water quality changes include measurement, comprehension and data issues. First, unlike air 

quality, which has a comparatively small number of accepted measures of quality, water quality 

can be measured by a large number of chemical and biophysical variables. Evaluating overall water 

quality status from a large number of variables is often difficult (Kannel et al. 2007). Second, 

understanding the link between the biophysical characteristics and the recreational attributes of 
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water quality has long been, and continues to be a challenge for selecting the appropriate variables 

to describe water quality (Kneese & Bower, 1968; Keeler et. al, 2012).  Third, among the few 

studies conducted on valuing water quality by using biophysical attributes, they either require a 

considerably rich dataset (Egan et al. 2009), or they often suffer from problems of multicollinearity 

(see Bockstael, Hanemann, & Kling, 1987 for a discussion) or missing attribute levels, as 

suggested by Adamowicz et al. (1997). On the other hand, although SP approaches can readily 

address subjective measures of water quality changes, SP approaches have been criticized for 

being hypothetical because their estimates are based on respondents’ ex ante choices. 

 Noting that some of the strengths of RP approaches can be weaknesses of SP approaches, 

and vice versa (see Whitehead et al. 2008 for a detailed review), a combination of the two methods 

to jointly estimate RP and SP data has been proposed (Cameron, 1992; Adamowicz, Louviere & 

Williams, 1994). Based on the underlying theoretical framework, the RP and SP literature in 

environmental economics can be classified into two strands: those based in random utility theory 

(RUM), and others. When RP and SP studies are structured as RUM models, the combined 

approach also follows RUM. A typical example is combining RUM travel cost models with the 

choice experiments (Adamowicz et al., 1994, 1997; Von Haefen and Phaneuf, 2008). The other 

strand of literature has different theoretical foundations of RP and SP data, in which at least one 

model does not follow the RUM theory, such as combinations of contingent valuation and travel 

cost methods (Cameron, 1992; Loomis, 1997; Huang, Haab, & Whitehead, 1997). 

 Despite its merits, some argue that combining RP and SP data should be subjected to a 

consistency test (Morikawa, 1989; Swait and Louviere, 1993; Adamowicz et al., 1994; Von Haefen 

and Phaneuf, 2008), which is a statistical test of the equality of common parameters in RP and SP 
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models. Empirical evidence about combining RP and SP data in environmental economics, 

however, is mixed. Some applications have passed the test and concluded that the RP and SP data 

contain similar preference structure and thus can be combined (Adamowicz et al. 1994, 1997; 

Carson et al. 1996; Huang et al. 1997; Whitehead et al. 2010). However, many applications have 

rejected the test (Earnhart, 2001; Haener, Boxall, & Adamowicz, 2001; Azevedo, Herriges & 

Kling, 2003; Von Haefen & Phaneuf, 2008; Hoyos & Riera, 2013; Jeon, 2014). For instance, even 

though Adamowicz et al. (1994) found the common parameter equality existed in RP and SP data, 

Von Haefen and Phaneuf (2008) and Jeon (2014), using the same datasets, rejected consistency 

between the RP and SP data respectively by using different methods, but still within the RUM 

framework. 

 The purpose of this study is to estimate the values of water quality changes for beach 

recreation in the Great Lakes. We use web survey data that consists of two types of data: one is 

revealed preference data, which is collected by asking about respondents’ trips to public beaches 

at the Great Lakes in Michigan; and the other is stated preference data, which involves asking 

respondents in a choice experiment to choose from hypothetical choice sets in which the beaches 

were constructed with different environmental quality attributes. In Cheng (2016), we employed 

all trip data to estimate the use value of Great Lakes beaches. Weicksel (2012) used the choice 

experiment data to estimate preferences for water quality attributes at Great Lakes beaches. 

However, each data set alone would not be sufficient to value the water quality changes. Therefore, 

this paper extends the two proceeding studies by combining the two datasets to jointly estimate 

the values of water quality changes. 
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 In this study, we combine trip data (RP) and choice experiment data (SP) to offer four 

advantages. First, the combined method makes use of water quality measures from choice 

experiment data, which avoids potential multicollinearity problems and missing attribute levels 

from using observed physical measures and reduces the data collection burden. More importantly, 

the water quality attributes from the SP data are designed to be policy-relevant since they match 

those that the EPA collects through its occasional beach sanitation surveys (EPA, 2008). Second, 

the constructed physical indices from choice experiments are easy to understand, match what 

people can see at beaches, and are likely more relevant to beach recreation than water chemistry 

and related physical measures. Third, combining data can ground the stated choices from choice 

experiments within actual trip choices from the travel cost model. Finally, the RP data includes a 

large number of beach sites (451 alternatives) which enables us to better capture a rich array of 

substitution effects of trip demand in response to water quality changes. 

 Furthermore, few environment valuation studies have focused on water quality of the Great 

Lakes. Huang, Poor and Zhao (2007) combined travel cost method and contingent valuation 

method to measure the impact of erosion and erosion control programs at eight ocean beaches in 

New Hampshire and southern Maine. Parsons, Helm, and Bondelid (2003) applied travel cost 

methods and set up three scenarios for water quality improvements in six northeastern states, and 

estimated annual benefits in the region due to CWA to be near $100 million per year. Egan et al. 

(2009) used a mixed logit model and collected extensive physical water quality attributes of 129 

lakes in Iowa to value water quality changes. Still, little is known about the value of water quality 

changes in the Great Lakes. Knowing some of the values of water quality changes, specifically for 

the Great Lakes, could help fill the gap in the literature and help policy makers better allocate 

funds and evaluate water quality restoration or improvement programs. 
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 The remainder of the paper proceeds as follows. Section 2 first provides a brief review of 

the underlying theoretical framework (i.e. Random Utility Model). Within the RUM framework, 

we further present the revealed preference approach, the stated preference approach, and combined 

RP and SP approach. Section 3 describes the Great Lakes beaches survey and datasets, which is 

followed by the empirical specifications of the models in section 4. Estimation results and 

hypothesis testing are then presented in section 5. Section 6 describes the method to calculate 

welfare measures and presents the welfare results, and the final section provides conclusion and 

discussion.  

2. Models 

2.1 The Random Utility Model (RUM) 

 The random utility model is widely used in recreation demand studies where an individual 

chooses among a set of sites to visit. On a single choice occasion, the RUM considers the choice 

of one site from many mutually exclusive recreational sites to be a function of attributes of the 

sites. Based on individual’s choice, the model implicitly measures the trade-off between site 

attributes. If we include travel cost into the site attributes, we can get the implicit value of site 

attributes in dollar terms.  

 More formally, following Train (2009), we assume a sample of N travelers with the choice 

set C, and the utility that individual n derives from choosing alternative j from the set C is denoted 

by 

𝑈𝑗𝑛 = 𝑉𝑗𝑛 + 𝜀𝑗𝑛. 

The systematic component,  𝑉𝑗𝑛 , is observable to researchers and usually is a function of the 

attributes of alternative j and the individual’s socio-demographic characteristics, while the random 
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term 𝜀𝑗𝑛 captures all the factors unobservable to researchers. Individuals choose the alternative 

which generates the highest utility, so the probability that individual n chooses alternative i rather 

than alternative j is equal to the probability that the utility of choosing i is higher than the utility 

of choosing j: 

𝑃𝑖𝑛 = 𝑃(𝑈𝑖𝑛 > 𝑈𝑗𝑛, ∀ 𝑗 ∈ 𝐶 ) = 𝑃(𝜀𝑖𝑛 − 𝜀𝑗𝑛 > 𝑉𝑗𝑛 − 𝑉𝑖𝑛, ∀ 𝑗 ∈ 𝐶 )  

 This probability has a cumulative distribution that depends on the density 𝑓(𝜀𝑗𝑛). Different 

assumptions about the distribution of the unobserved parts of utility (i.e., the random term), will 

yield different random utility models. When each random term is distributed as generalized 

extreme value (GEV), it is a nested logit model, which is described further with the application in 

section 2.2. When the random term is iid with extreme value distribution, it is a conditional logit 

model, which will be applied in the choice experiment data in section 2.3. 

2.2 Repeated Nested Logit Model for Trip Data (RP) 

 Following Cheng (2016), a repeated three-level nested logit model is applied to all trip data, 

which explains the site choice and recreation demand of trips to Great Lakes beaches in a summer 

season. The season is divided into choice occasions in which beachgoers decide whether or not to 

visit a beach. The trips can be a day trip or multiple-days trip.  

 Generally, in a three-level nested logit model, the alternatives in choice set C are grouped 

in M nests. Our nesting process can be visualized as groupings of the M nests, M= {Trip, No trip}, 

the L lakes in the nest Trip, L = {Lake Erie, Lake St. Clair, Lake Huron, Lake Michigan}, and the 

J beaches at one of the lakes l. The nesting tree is illustrated in the figure below: 
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Figure 1. Repeated three level decision tree of beach recreation trip 

 Formally, the utility of a three-level nested logit is given as (individual subscript n is 

omitted to simplify the notation):  

𝑈𝑗𝑙𝑚 = 𝑉𝑗𝑙𝑚 + 𝜀𝑗𝑙𝑚,   ∀ (𝑗𝑙𝑚) ∈ 𝐶 

Assume that the joint density function of the random term is given by the first type of generalized 

extreme value (GEV) distribution with three nests (McFadden, 1978):  

𝐹(𝜀𝑗𝑙𝑚) = 𝑒𝑥𝑝

{
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 Beach alternatives J= {1, 2, …, 451}; 

 Lake alternatives L= {Lake Erie, Lake St. Clair, Lake Huron, Lake Michigan}; 

 Trip alternatives M= {G, No}; (G is short for Trip, No is short for No Trip) 

The probability of beach j being chosen is given by  

𝑃𝑗𝑙𝐺 = 𝑃(𝑗|𝑙𝐺) ∗ 𝑃(𝑙|𝐺) ∗ 𝑃𝐺  

where 𝑃(𝑗|𝑙𝐺)  is the conditional probability of choosing beach j given that lake l and trip 

alternative G is chosen. 𝑃(𝑙|𝐺)  is the conditional probability of choosing lake l given a trip 

alternative G is made 𝑃𝐺  is the probability of taking a trip. Then, the indirect utility of not taking 

a trip can be denoted as 𝑉𝑁𝑜. 

 The conditional and marginal probabilities are given by:  

𝑃𝐺 =
exp(𝜌𝐼𝑉𝐺)

exp(𝜌𝐼𝑉𝐺) + exp (𝑉𝑁𝑜)
 

𝑃(𝑙|𝐺)  =
exp (

𝜆
𝜌 𝐼𝑉𝑙𝐺)

∑ [exp (
𝜆
𝜌 𝐼𝑉𝑘𝐺)]𝑘∈𝐿𝑚

 

𝑃(𝑗|𝑙𝐺) =
exp (

1
𝜆
𝑉𝑗𝑙𝐺)

∑ [exp (
1
𝜆
𝑉𝑖𝑙𝐺)]𝑖∈𝐽𝑙𝑚

 

The expected utility that each beachgoer receives from the choice of alternatives within each nest 

is called an inclusive value. 𝐼𝑉𝐺 and 𝐼𝑉𝑙𝐺 are the inclusive values of Trip nest G and Lake nest 

respectively, where 
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𝐼𝑉𝐺 = ln [ ∑ [exp (
𝜆

𝜌
𝐼𝑉𝑘𝐺)]

𝑘∈𝐿𝑚

] 

𝐼𝑉𝑙𝐺 = 𝑙𝑛 [ ∑ [exp (
1

𝜆
𝑉𝑖𝑙𝐺)]

𝑖∈𝐽𝑙𝑚

] 

Finally, the unconditional probability of taking a trip to beach j is: 

𝑃𝑗𝑙𝐺 =

exp ((
1
𝜆
𝑉𝑖𝑙𝐺) ∗ [∑ [∑ 𝑒𝑥𝑝 (

1
𝜆
𝑉𝑗𝑙𝐺)𝑗∈𝐽𝑙𝑚 ]

𝜆
𝜌

𝑙∈𝐿𝑚 ]

𝜌−1

∗ [∑ 𝑒𝑥𝑝 (
1
𝜆
𝑉𝑗𝑙𝐺)𝑗∈𝐽𝑙𝑚 ]

𝜆
𝜌
−1

[∑ [∑ 𝑒𝑥𝑝𝑖∈𝐽𝑘𝐺 (
1
𝜆
𝑉𝑖𝑘𝐺)]

𝜆
𝜌

𝑘∈𝐿𝐺 ]

𝜌

+ exp (𝑉𝑁𝑜)

 

The unconditional probability of not taking a trip to any beach is: 

𝑃𝑁𝑜 =
exp (𝑉𝑁)

[∑ [∑ 𝑒𝑥𝑝𝑖∈𝐽𝑘𝐺 (
1
𝜆
𝑉𝑖𝑘𝐺)]

𝜆
𝜌

𝑘∈𝐿𝐺 ]

𝜌

+ exp (𝑉𝑁𝑜)

 

Then, the expected maximum utility for each choice occasion, or the inclusive value of each 

individual n, can be obtained as: 

𝐼𝑉 = 𝑙𝑛

{
 
 

 
 

[
 
 
 
 

∑ [∑ 𝑒𝑥𝑝

𝑖∈𝐽𝑘𝐺

(
1

𝜆
𝑉𝑖𝑘𝐺)]

𝜆
𝜌

𝑘∈𝐿𝐺
]
 
 
 
 
𝜌

+ exp (𝑉𝑁𝑜)

}
 
 

 
 

 

 Let T denote the total number of choice occasions, called the beach season, and T=126. 

Let 𝑦𝑗𝑙𝐺,𝑛𝑡 = 1, if person n visited beach j at Lake l on occasion t, and y𝑗𝑙𝐺,nt = 0, otherwise. As 

long as the beachgoer takes the trip to the  beach j,  𝑦𝑗𝑙𝐺,𝑛𝑡 always equals 1, irrespective of the type 
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of trip. To simplify the notation for probability expressions, individual n at time t will be noted 

after the comma in the subscript of the probability. 

 The log-likelihood function for this sample is: 

𝐿𝐿𝑏𝑒𝑎𝑐ℎ
𝑅𝑃 =∑∑[∑ ∑ 𝑤𝑛 ∗ 𝑦𝑗𝑙𝐺,𝑛𝑡 ∗ ln(𝑃𝑗𝑙𝐺,𝑛𝑡)

𝑗∈𝐽𝑘𝐺𝑙∈𝐿𝐺

+ 𝑤𝑛 ∗ (1 − 𝑦𝑗𝑙𝐺,𝑛𝑡) ∗ ln (𝑃𝑁𝑜,𝑛𝑡)]

𝑇

𝑡=1

𝑁

𝑛=1

 

where 𝑤𝑛 is the weight of person n. There are three purposes of the weight (See Cheng 2016, 

Appendix A). The first is to correct for sampling strata and possible non-representativeness of the 

sample. The second use is to down-weight number of overnight trips due to the multiple purposes 

for overnight trips. The third to account for self-reported corrections to trip counts.   

 As in Cheng (2016), there is a type of trip data called “grouped beaches”, which has only 

partial information on the alternatives chosen. The reason is that some people only reported the 

nearest town or city to the beach, so we don’t know the exact beach name but only an aggregated 

area. We applied the same approach as Cheng (2016) to handle trips with partial information. 

Denoting the grouped area as a, the log-likelihood function for this sample of “grouped beaches” 

is: 

𝐿𝐿𝑔𝑟𝑜𝑢𝑝
𝑅𝑃 = ∑∑[∑∑𝑤𝑛 ∗ 𝑦𝑗;𝐺,𝑛𝑡 ∗ ln(𝑃𝑗𝑙𝐺,𝑛𝑡)

𝑗∈𝑎𝑙∈𝐿𝐺

+ 𝑤𝑛 ∗ (1 − 𝑦𝑗𝑙𝐺,𝑛𝑡) ∗ ln (𝑃𝑁𝑜,𝑛𝑡)]

𝑇

𝑡=1

𝑁

𝑛=1

 

That is, the log-likelihood function is the sum of the probabilities of visiting the individual sites 

within area a.  



11 

 

 Finally, we have some reported beaches which were unknown to researchers because the 

way they were reported did not allow researchers to either locate the exact beach or aggregate the 

beach into groups. However, we do know that the respondent has taken the trip, so the 

unconditional probability 𝑃𝐺  was applied to the unknown-beach samples yielding  

𝐿𝐿𝑢𝑛𝑘𝑛𝑜𝑤𝑛
𝑅𝑃 = ∑∑[𝑤𝑛 ∗ 𝑦𝐺,𝑛𝑡 ∗ ln(𝑃𝐺,𝑛𝑡) + 𝑤𝑛 ∗ (1 − 𝑦𝐺,𝑛𝑡) ∗ ln (𝑃𝑁𝑜,𝑛𝑡)]

𝑇

𝑡=1

𝑁

𝑛=1

. 

The resulting log-likelihood function for all the samples in the trip data is: 

𝐿𝐿𝑅𝑃 = 𝐿𝐿𝑏𝑒𝑎𝑐ℎ
𝑅𝑃 + 𝐿𝐿𝑔𝑟𝑜𝑢𝑝

𝑅𝑃 + 𝐿𝐿𝑢𝑛𝑘𝑛𝑜𝑤𝑛
𝑅𝑃  

As we have observations with exact, grouped and unknown sites, conventional syntax in common 

statistical software can no longer accommodate our needs. Thus, we have to program the log-

likelihood function in order to include all the information provided in the data. 

2.3 Conditional Logit Model for Choice Experiment Data (SP) 

 When the correlations of random terms of the utility are zero, the nested logit model 

reduces to the conditional logit model. As a simple case of nested logit model, the conditional logit 

model is the easiest and most widely used random utility model (Train, 2009). In the present 

application, the choice experiment data is estimated using conditional logit model. In the choice 

experiments, beachgoers were asked to choose between two alternative beaches which vary in their 

distances and water quality attributes. The conditional logit model gives the probability that 

individual n chooses beach i as a function of travel cost and water quality attributes. Based on the 

individual’s choice, the model implicitly captures the trade-off between travel costs and water 

quality attributes. 
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 More formally, if the random terms of the utility are assumed to be independently and 

identically distributed with type 1 extreme value distribution, then the choice probability of 

choosing alternative i for individual n is: 

𝑃𝑖𝑛 =
e𝑉𝑖𝑛

∑ 𝑒𝑉𝑗𝑛𝑗∈𝐶

 

Correspondingly, the log-likelihood function is: 

𝐿𝐿𝑆𝑃 =∑∑𝑤𝑛𝑠 ∗ 𝑦𝑖𝑛 ∗ ln(𝑃𝑖𝑛)

𝑖𝜖𝐶

𝑁

𝑛=1

 

Where 𝑦𝑖𝑛 = 1 if person n chooses alternative i, and 𝑦𝑖𝑛 = 0, otherwise. 𝑤𝑛𝑠  is the survey weight 

of person n to correct for sampling strata and possible non-representativeness of the sample.  

2.4 Combination of RP and SP Data 

 Since both the preceding RP and SP approaches are random utility models, it is possible to 

combine both datasets. When combining different types of data, one needs to account for possible 

differences in residual variance in each dataset to avoid potential bias. Even under the same random 

utility framework, data from different data sets could have different variance for the unobserved 

portion of utility. Morikawa (1989) was one of the first to propose a scaling approach to address 

this problem by allowing RP and SP data to have different variances within a single model. The 

idea is to scale the variance of the unobserved factors of the SP data so that RP and SP display 

identical unobserved effects in a pooled model (see also Ben-Akiva & Morikawa, 1990; Ben-

Akiva et al., 1994). Through proper scaling, RP and SP data can be pooled to jointly estimate the 

parameters of attributes in both datasets. The scaling approach has been applied to value 
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environmental quality changes within the random utility framework (e.g., Adamowicz et al., 1994; 

1997; Earnhart, 2001; Von Haefen & Phaneuf, 2008).  

 Formally, the utility functions for individual n for site i are defined as: 

𝑈𝑖𝑛
𝑅𝑃 = 𝛽𝑅𝑃𝑋𝑖𝑛

𝑅𝑃 + 𝜔𝑍𝑖𝑛 + 𝜀𝑖𝑛
𝑅𝑃, ∀ 𝑖 ∈ 𝐶𝑅𝑃 

𝑈𝑖𝑛
𝑆𝑃 = 𝛽𝑆𝑃𝑋𝑖𝑛

𝑆𝑃 + 𝛿𝑊𝑖𝑛 + 𝜀𝑖𝑛
𝑆𝑃, ∀ 𝑖 ∈ 𝐶𝑆𝑃 

where 𝑋𝑖𝑛
𝑅𝑃, 𝑋𝑖𝑛

𝑆𝑃 is a vector of observed variables common to both the RP and SP data sets, such 

as travel cost and beach length. 𝑍𝑖𝑛 and 𝑊𝑖𝑛 are vectors of observed variables specific to each data 

set. 𝛽𝑅𝑃, 𝛽𝑆𝑃,  𝜔 , 𝛿  are unknown parameters to be estimated. 𝜀𝑖𝑛
𝑅𝑃  and 𝜀𝑖𝑛

𝑆𝑃  are random terms 

unobserved by researchers. 

 The perquisite for the joint estimation is that RP and SP data are derived from “the same 

underlying preference structure” (Hensher & Bradley, 1993; Adamowicz et al., 1994; Louviere et 

al., 1999). In other words, combing the two data sources involves imposing the restriction that the 

common attributes have the same parameters in both data sources, i.e. 𝛽𝑅𝑃 = 𝛽𝑆𝑃 = 𝛽 . This 

condition cannot be satisfied when different unobserved error variances are present in each data. 

However, the scaling approach introduces a scaling parameter 𝜃:   

𝜃2 = 𝑣𝑎𝑟(𝜀𝑖
𝑅𝑃)/𝑣𝑎𝑟(𝜀𝑖

𝑆𝑃) 

which enables 𝛽𝑅𝑃 = 𝜃𝛽𝑆𝑃 = 𝛽, and thus the joint estimation of two data sets becomes possible. 

𝜃 can be interpreted as the relative scale of SP data with respect to the RP data. (Swait & Louviere, 

1993; Bradley & Daly, 1997; Hensher, Louviere, & Swait, 1998; Louviere, Hensher, & Swait, 

2000, p.253) 
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 The final parameter vector to be jointly estimated is 𝜓 = ( 𝛽, 𝜔, 𝛿, 𝜃). Assuming the two 

data sources come from independent samples, the log likelihood of the pooled data is simply the 

sum of the log likelihoods of the RP and SP data: 

𝐿𝐿𝑗𝑜𝑖𝑛𝑡(𝜓) = 𝐿𝐿𝑅𝑃(𝑋𝑖𝑛
𝑅𝑃, 𝑍𝑖𝑛| 𝛽, 𝜔) + 𝐿𝐿

𝑆𝑃(𝑋𝑖𝑛
𝑆𝑃 ,𝑊𝑖𝑛| 𝛽, 𝛿, 𝜃) 

 If the random terms of the RP and SP data for the same individual are not correlated, 

maximizing the joint log likelihood function yields consistent and efficient estimates. If the 

random terms are correlated between RP and SP data, the estimates are consistent but not efficient 

(Wooldridge, 2010). 

3. Survey and Data 

3.1  Survey 

 The data used for this study are drawn from the Great Lakes Beaches Survey2, which was 

conducted by Lupi, Kaplowitz, Chen and Weicksel in 2011 and 2012. First, in order to recruit 

beachgoers, a mail survey on leisure activities was conducted with the general population of 

Michigan residents. A random sample of 32,230 was drawn from the Michigan driver’s license 

list. To reduce potential self-selection bias that might over-select for those that visit the Great 

Lakes, the mail survey has numerous questions on a broad range of indoor and outdoor leisure 

activities, among which there was only one screening question for Great Lakes beach recreation 

during two summers in 2010 and 2011. Respondents who answered they had participated in beach 

recreation were counted as beachgoers and were subsequently invited to take a follow-up web 

survey.  

                                                        
2 See Chen (2013) and Weicksel (2012) for additional details regarding the survey sampling and implementation. 
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 There are three sections in the follow-up web survey: a travel cost section, which collected 

trip information about respondents’ trips to public Great Lakes beaches in one summer season 

from Memorial Day weekend to September 30, 2011; a choice experiment section, which gathered 

respondents’ preferred beach in each of three different choice sets with experimentally designed 

attributes; and finally, a section of demographic questions.  

3.2 Data 

 In the mail survey dataset of 9,591 observations, 5,737 respondents indicated they had 

visited a Great lakes beach in 2010 or 2011, so they were invited to the web survey. There were 

3,196 people who responded to the web survey resulting in a response rate for the web survey of 

about 59%.  Cheng (2016) made use of all trip data to estimate the value of trips to Great Lakes 

beaches by applying a nested logit model. Among the 2,573 observations, 1,894 individuals took 

at least one trip to Great Lakes beaches during the beach season. The trip data consists of self-

reported trips to Great Lakes beaches from Memorial Day weekend to September 30, 2011. After 

matching the reported beaches to the Michigan DEQ beach database, the choice set for each 

individual is comprised of 451 beaches. There are 643 people who had taken trips to Great Lakes 

beaches before but didn’t take any trip during the indicated season, they are treated as potential 

users and also included in this study.  

 In the choice experiment data, each respondent was presented with three choice scenarios, 

with each choice set including 2 beaches. One attribute of beach alternatives is called “label”, 

which provided the name of the Great Lake where the beach was located (sometimes referred to 

as a “labeled” or “branded” choice experiment). The web survey had three types of labeling design 

for the choice experiment: one used “labeled” alternatives with the different Great Lakes; another 
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with “same-labeled” alternatives where each lake in a choice set was for the same Great Lake but 

the lakes varied across choice sets; the third used “unlabeled” alternatives that did not give names 

of the Great Lakes.  
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Table 1 Sample size for each types of choice experiment data 

Data types of choice experiment Number of respondents Number of choice sets 

All  2494 7300 

Labeled  946 2785 

Same-labeled 581 1948 

Unlabeled 967 3190 

 

In this study, we only use “labeled” data. There are two reasons: first, according to Weicksel (2012), 

labeling does have a significant effect on people’s choice decision; second, we tested for a common 

preference across the three designs and, like Weicksel, we reject pooling of the three types of 

labeling data. Therefore, the effective sample size of respondents for SP data is 946 in this study, 

while for RP data, the effective sample of respondents is 2,537. 

4. Econometric Model Specification 

4.1 RP Data 

 For trip data, following Cheng (2016), in occasion t, the indirect utility for individual n 

obtained from visiting beach j at Lake l is:  

𝑉𝑗𝑙𝑡 = 𝛽𝑡𝑐 ∗ 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡𝑗𝑙 + 𝛽𝑙 ∗ log(𝑏𝑒𝑎𝑐ℎ 𝑙𝑒𝑛𝑔𝑡ℎ𝑗𝑙) + 𝜔𝑡 ∗ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑗𝑙𝑡 + 𝜔𝑐𝑑

∗ 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑑𝑎𝑦𝑠 𝑜𝑓 2010𝑗𝑙 + 𝜔𝑟 ∗ 𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑑𝑢𝑚𝑚𝑖𝑒𝑠𝑗𝑙 

Similarly, the indirect utility for individual n who chose not to take a trip is: 

𝑉𝑁 = 𝛾𝑚𝑎𝑙𝑒 ∗ 𝑚𝑎𝑙𝑒 + 𝛾𝑎𝑔𝑒 ∗ 𝑎𝑔𝑒 + 𝛾𝑤ℎ𝑖𝑡𝑒 ∗ 𝑤ℎ𝑖𝑡𝑒 + 𝛾𝑒𝑑𝑢 ∗ 𝑒𝑑𝑢 + 𝛾𝑓𝑢𝑙𝑙𝑡𝑖𝑚𝑒 ∗ 𝐹𝑢𝑙𝑙𝑡𝑖𝑚𝑒

+ 𝛾𝑟𝑒𝑡𝑖𝑟𝑒 ∗ 𝑅𝑒𝑡𝑖𝑟𝑒 + 𝛾𝑢𝑛𝑑𝑒𝑟17 ∗ 𝑢𝑛𝑑𝑒𝑟17 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
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The computation of travel cost also follows Chen (2013):  

𝑇𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡 = 𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑖𝑝 𝑡𝑟𝑎𝑣𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ $0.2422 𝑝𝑒𝑟 𝑚𝑖𝑙𝑒 + 𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑖𝑝 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒

∗ (𝑎𝑛𝑛𝑢𝑎𝑙 𝑖𝑛𝑐𝑜𝑚𝑒 2,000⁄ ) ∗ (1 3⁄ )  

 The trip data as described in section 2.2 consists of the regular beach data, grouped beach 

data and unknown beach data. The resulting structure for the probabilities for this irregular data 

set cannot be accommodated using standard software packages for nested logit model. Therefore, 

the log likelihood function was programmed in matrix language in MATLAB to perform full 

information maximum likelihood procedure. Estimation usually takes around one to two hours.  
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Table 2 reports descriptive statistics for both individual characteristics and site attributes in the RP 

data. 

Table 2: Descriptive Statistics 

Variables Definition Mean Std. Dev Min Max 

Socioeconomic characteristics (sample size=2537) 

male Dummy: 1=yes, 0=no 0.40 0.49 0 1 

age age 49.64 15.13 18 94 

white Dummy: 1=yes, 0=no 0.93 0.25 0 1 

edu Years of education 15.09 2.46 10 19 

Fulltime Full time employed, Dummy 0.50 0.50 0 1 

Retire Dummy 0.25 0.44 0 1 

under17 Dummy for Children under 17 0.30 0.46 0 1 

Site Attributes (sites=451 ) 

Beach length Miles 0.76  1.40 0.01 13.11 

Temperature June Temperature 55.50 4.24 48.87 72.57 

 July Temperature 67.20 4.385 58.05 81.34 

 Aug Temperature 67.76 4.59 58.49 78.93 

 Sep Temperature 62.28 3.35 55.75 70.40 

Closure days Beach closure days of 2010 1.17 7.56 0 112 

Regional dummy LP northeast 0.20 0.40 0 1 

 LP Mideast 0.09 0.29 0 1 

 LP southeast 0.04 0.20 0 1 

 LP northwest 0.33 0.47 0 1 

 LP Midwest 0.06 0.24 0 1 

 LP southwest 0.07 0.25 0 1 
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4.2 SP Data 

 For the choice experiment data, each respondent has three choice sets, and each choice set 

consists of two beach alternatives. The indirect utility function for individual n to choose beach i 

is: 

𝑉𝑖𝑛 = 𝛽𝑡𝑐
′ ∗ 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡𝑖𝑛 + 𝛽𝑙

′ ∗ log(𝑏𝑒𝑎𝑐ℎ 𝑙𝑒𝑛𝑔𝑡ℎ𝑖𝑛) + 𝜹𝑾𝒊𝒏 

where 𝑾 is the attributes levels of water quality (see Table 3), and 𝜹 is a vector of unknown 

parameters. Travel cost and the logarithm of beach length are variables that are included in both 

the RP and SP models. Although Weicksel (2012) used one-way distance as an explanatory 

variable, we transformed the one-way distance to a round-way travel cost following the approach 

outlined above for the RP data.  

Finally, the unit of beach length in the SP data is yard. In order to make the variable compatible 

with the RP data, we transform yards to miles and take the logarithm of the beach length. Table 3 

lists the other water quality attributes and attribute levels for the SP model (travel costs and beach 

length are not show in the table).  
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Table 3: Explanations of Attributes and Attribute Levels (𝑾) in SP data 

Attributes Attribute Levels 

Label: Great Lakes name 

Lake Michigan 

Lake Huron 

Lake St. Clair 

Lake Erie 

Algae in the water 

None 

Low (rarely come in contact with algae) 

Moderate (sometimes come in contact with algae) 

High (constantly come in contact with algae) 

Algae on the shore 

None 

Low (1-20% of the shore has algae) 

Moderate (21-50% of the shore has algae) 

High (more than 50% of the shore has algae) 

Testing water for bacteria 

Never 

Monthly 

Weekly 

Daily 
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4.3 Pooled Data 

 When pooling RP and SP data together, according to the scaling approach, we get the 

indirect utility for joint estimation as:3  

𝑉𝑗𝑙𝑡
𝑗𝑜𝑖𝑛𝑡 = 𝛽𝑡𝑐 ∗ 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡𝑗𝑙 + 𝛽𝑙 ∗ log(𝑏𝑒𝑎𝑐ℎ 𝑙𝑒𝑛𝑔𝑡ℎ𝑗𝑙) + 𝜔𝑡 ∗ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑗𝑙𝑡 + 𝜔𝑐𝑑

∗ 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑑𝑎𝑦𝑠 𝑜𝑓 2010𝑗𝑙 + 𝜔𝑟 ∗ 𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑑𝑢𝑚𝑚𝑖𝑒𝑠𝑗𝑙 + 𝜃 ∗ 𝜹𝑾𝒊𝒏 

where 𝜃  is the RP/SP scaling parameter, which is imposed on the SP data to allow the 𝛽 

coefficients to be the same for the common variables of both SP and RP data, up to the scale 

difference. However, since the indirect utility function for the pooled data is no longer linear in all 

the parameters, the joint log likelihood function is programmed in the MATLAB to perform full 

information maximum likelihood procedure. Estimation usually takes around three hours with 

starting values obtained from sequential estimation. 

5. Estimation Results 

5.1 Conditional Logit Model for Choice Experiment Data (SP) 

 The results of the conditional logit model for the stated preference data are presented in 

Table 4, and all the estimates have signs consistent with expectations. The results indicate that 

Michigan beachgoers prefer less algae in the water and less algae on the shore. Furthermore, 

magnitudes of estimated parameters of algae levels in the water are higher than those of algae 

levels on the shore, which reveals that beachgoers have a stronger dislike of algae in the water than 

on the shore. Regarding the frequency of testing water for bacteria, beachgoers prefer water tested 

daily to water tested weekly or never tested at all. All else equal, beachgoers favor Lake Michigan 

                                                        
3 If the observation was from the SP data, then there would be a 𝜃𝛽𝑡𝑐  and 𝜃𝛽𝑙  instead of just the 𝛽

′𝑠.   
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the most, followed by Lake Huron. All the above results are similar to those found in Weicksel 

(2012).  

Table 4: SP estimation result 

Variables Attribute levels Estimates 
Robust 

Standard Errors 
t statistic 

Travel Cost -0.007*** 0.001 -10.320 

Log(length of beach) 0.164*** 0.026 6.440 

Algae in the water None 1.554*** 0.143 10.850 

(base:high) Low 1.382*** 0.136 10.180 

  Moderate 1.127*** 0.131 8.590 

Algae on the shore None 1.326*** 0.124 10.730 

(base:high) Low 1.048*** 0.120 8.700 

  Moderate 0.658*** 0.112 5.890 

Testing water for bacteria Never -1.449*** 0.121 -12.020 

(base:Daily) Monthly  -0.226** 0.107 -2.110 

  Weekly -0.344*** 0.109 -3.140 

Label of Great Lakes  

(base: Lake Erie) 

Lake Michigan 1.127*** 0.127 8.850 

Lake Huron 0.490*** 0.108 4.550 

Lake St. Clair -0.013 0.102 -0.120 

Note: *10% significance level; **5% significance level; *** 1% significance level 
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5.2 Repeated Nested Logit Model for Trip data (RP) 

 The results of the repeated nested logit model for the revealed preference data are presented 

in Table 5. Since there are correlations that could arise from repeat observations from the same 

individual across the season, bootstrapping was used to correct for clustering on repeated trips. We 

bootstrapped 120 draws of the sample to get the bootstrapped standard errors in MATLAB.   

 Based on the sign and magnitude of the estimated parameters, the results indicate that travel 

cost has a negative effect on the probability of choosing a site, which is consistent with our 

expectation that higher price leads to lower demand. An increase in beach length increases the 

probability of choosing the beach as does an increase in water temperature. That is to say, an 

increase in beach length and water temperature will increase demand. The number of closure days 

in the previous year negatively affects the probability of visiting the beach. Regional dummies 

reveal that Lake Michigan attracts the most beachgoers, while Lake St. Clair and Lake Erie are 

less popular, all else equal.  

 The nesting parameters measure the degree of independence in nests of each level. More 

intuitively, one minus the nesting parameter is an indicator of the correlation among alternatives 

within a nest. Therefore, the error terms for beaches are more correlated within each lake than 

across lakes. When nesting parameters are equal to 1, the nested logit reduces to the conditional 

logit model. In that sense, nesting parameters are significantly different from 1 which means that 

in the RP data the nested logit model provides a significant improvement over conditional logit by 

relaxing the property of independence from irrelevant alternatives (IIA) in logit model.  
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 Regarding the demographic variables, the parameters for being male significantly and 

negatively affect the decision of not taking a trip in a choice occasion at a statistical significance 

level of 95%. That is to say, male beachgoers take more trips.  
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Table 5: RP estimation result 

Nested Levels Variable Estimates Bootstrapped 

Standard Errors 

t statistic 

Beach Level Travel Cost -0.0115*** 0.0011 -10.8485 

 Log(Length) 0.0643*** 0.0089 7.2600 

 Temperature 0.0216*** 0.0036 6.0716 

 Closure Days of 2010 -0.0083*** 0.0021 -3.9628 

 LP Northeast -0.0457 0.0997 -0.4587 

 LP Mid-East -0.5189*** 0.0956 -5.4288 

 LP Southeast -0.5545*** 0.1103 -5.0279 

 LP Northwest 0.3880*** 0.0714 5.4306 

 LP Mid-West 0.2920*** 0.0780 3.7433 

 LP Southwest 0.0239 0.0723 0.3301 

Lake Level Nesting Parameter 0.2959*** 0.0230 12.8708 

Trip Level Nesting Parameter 0.4527*** 0.0418 10.8342 

No Trip Male -0.1860** 0.0901 -2.0638 

 Age -0.0040 0.0031 -1.2779 

 White 0.1532 0.2003 0.7652 

 Education Years -0.0278 0.0179 -1.5507 

 Full-Time Employed 0.1195 0.0950 1.2585 

 Retired 0.1470 0.1487 0.9886 

 Children under 17 0.1225 0.0810 1.5129 

 Constant 5.2328*** 0.4412 11.8606 

Note: *10% significance level; **5% significance level; *** 1% significance level 
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5.3 Joint Estimation of RP and SP Data 

 The results of the FIML joint estimation of RP and SP data are presented in Table 6. Similar 

to the situation with the RP method, bootstrapping was used to account for clustering on repeated 

trips in RP data and repeated choices in SP data. The procedures for bootstrapping the standard 

errors for 120 draws were coded using matrix language in MATLAB. Since each model estimation 

takes about 3 hours and hence a total bootstrapping time of about 15 days, the task was divided 

into smaller jobs to simultaneously implement on multiple remote servers. 

 The scaling parameter represents the relative scale of SP model to RP model. When the 

scale is between 0 and 1, the SP model contains more variation in the errors than the RP model 

(Ben-Akiva & Morikawa, 1990). The estimated scaling parameter is 0.622, which indicates the 

variance of the random term in SP model is 2.58 times of that in RP model. Other studies have 

also found SP model contains more variation (Ben-Akiva & Morikawa, 1990; Von Haefen & 

Phaneuf, 2008)  

 Compared to the RP-only model results, most of the variables from the RP model maintain 

the same sign and have only a slight change in magnitude in the joint estimation results. For 

instance, travel cost, closure days of 2010, and nesting parameters almost remain the same in joint 

estimation4. All other parameters of statistically significant variables change within a relatively 

small magnitude of 3% or less.  

 Compared to the SP-only results, travel cost in the joint model was forced to increase by 

about 1.6 times, while the logarithm of the beach length decreased from 0.164 to 0.064. Most of 

                                                        
4 The RP and SP data we weighted so that each RP and SP choice was given equal weight (Von Haefen & Phaneuf, 

2008 pp.29 footnote 10). We also followed Adamowicz et al. (1997) to give each RP and SP individual equal weight. 

The result is robust to alternative weighting schemes for the RP versus SP data within the likelihood ratio test. 
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the water quality variables from SP-only model increased by roughly 1.6 times, the same amount 

that travel cost increased because the pooled results will maintain the underlying marginal rates of 

substitution implicit in the choice experiment data. The signs of the SP variables never change, 

mainly because almost all water quality attributes are statistically significant in SP-only model.   

 If one compares the estimated coefficient of travel cost in the above RP-only and SP-only 

models, the parameter of travel cost in SP-only method (-0.007) is only around two-thirds of the 

value in RP method (-0.0115). Meanwhile, the coefficient of the logarithm of beach length in the 

SP-only method (0.165) is 2.6 times higher than the value in RP-only model (0.0643). Given that 

there are only two common variables, the opposite direction of changes in each coefficient between 

these two methods suggests the pooled model may face difficulties with the hypothesis of common 

parameters. We can further use a likelihood ratio test to formally test the hypothesis. 
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Table 6: FIML Joint Estimation Result 

Model 

Levels 

Nest Levels/ 

Variables 

Variable/ 

Attribute Levels 

Estimates Bootstrapped 

s.e. 

t statistic 

RP Beach Level Travel Cost -0.0115*** 0.0010 -11.3729 

  Log(Length) 0.0660*** 0.0088 7.5099 

  Temperature 0.0215*** 0.0038 5.7158 

  Closure Days of 2010 -0.0083*** 0.0020 -4.1165 

  LP Northeast -0.0494 0.0942 -0.5243 

  LP Mid-East -0.5239*** 0.0915 -5.7291 

  LP Southeast -0.5581*** 0.1059 -5.2685 

  LP Northwest 0.3827*** 0.0672 5.6948 

  LP Mid-West 0.2863*** 0.0735 3.8961 

  LP Southwest 0.0191 0.0696 0.2749 

 Lake Level Nesting Parameter 0.2957*** 0.0219 13.4937 

 Trip Level Nesting Parameter 0.4522*** 0.0396 11.4307 

 No Trip Male -0.1858*** 0.0902 -2.0593 

  Age -0.0040 0.0031 -1.2813 

  White 0.1537 0.2041 0.7532 

  Education Years -0.0277 0.0178 -1.5575 

  Full-Time Employed 0.1195 0.0900 1.3269 

  Retired 0.1471 0.1429 1.0292 

  Children under 17 0.1225 0.0799 1.5338 

  Constant 5.2207*** 0.4608 11.3301 

Scale  Scaling Parameter 0.6223*** 0.0822 7.5680 

SP Algae in the 

water 

(base:high) 

None 2.4362*** 0.2257 10.7925 

 Low 2.1953*** 0.2007 10.9399 

 Moderate 1.8232*** 0.1774 10.2802 

 Algae on the 

shore 

(base:high) 

None 2.1071*** 0.2324 9.0667 

 Low 1.6102*** 0.2210 7.2847 

 Moderate 0.9439*** 0.1731 5.4526 

 Testing water for 

bacteria 

(base:Daily) 

Never -2.2813*** 0.2832 -8.0560 

 Monthly  -0.3788** 0.1715 -2.2082 

 Weekly -0.5331*** 0.1508 -3.5348 

 Great Lake  

(base: Lake Erie) 

Lake Michigan 1.8342*** 0.2089 8.7820 

 Lake Huron 0.7274*** 0.1469 4.9534 

 Lake St. Clair -0.0329 0.1427 -0.2304 

Note: *10% significance level; **5% significance level; *** 1% significance level  
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 More formally, according to Swait and Louviere (1993), to accept the hypothesis of 

common parameter equality between RP and SP method, we have to pass the following likelihood 

ratio test: 

-2(𝐿𝐿𝑗𝑜𝑖𝑛𝑡 − (𝐿𝐿𝑅𝑃 + 𝐿𝐿𝑆𝑃))~𝜒(𝑘 − 1) 

where k is the number of common variables. 

 In its present form, our pooled model rejects the test of common preference parameters 

(see Table 7, Model 1). Given only 1 degrees of freedom, this test significantly rejects the 

hypothesis of equal parameters with scaling. This finding indicates that the variances from the 

error term in one preference method are different from those in the other one, and the scaling 

approach does not eliminate preference parameter differences in the current model specification. 

To increase the number of common variables that can explain the difference of the variances in 

the two data sets, we further decompose the beach length into 6 categorized variables in the RP 

model and 5 categorized variables in the SP model, with 4 categories being the same for both RP 

and SP data. Thus, including the travel cost variable, we have 5 common variables in Model 2. 

Still, Model 2 strongly rejects the common parameter test. In Model 3, we incorporate lake 

dummies into the RP model, and change the 7 regional dummies into North and South dummies. 

In this way, we have the 3 lake dummies, the logarithm of beach length, and the travel cost in both 

RP and SP data yielding 5 common variables. This test similarly significantly rejects the 

hypothesis of equal parameters.  

 Following Earnhart (2001), we examine whether certain subsets of parameters might be 

compatible in two data sets, although not all common parameters are compatible. Therefore, we 
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separate travel cost of RP data and SP data in Models 5 to 7. However, all models strongly reject 

the test that the RP and SP data contain equal scaled common parameters.  

Table 7: Different Model Specifications for Combining RP and SP data  

Model Common variables Number of 

common variables 

likelihood ratio test 

1 Travel Cost 2 -2*(-117773.3-(-115617.1- 

2126.0))=60.3, Reject 
Log(beach length) 

2 Travel Cost 5 -2*(-105128.2-(-102968.3- 

2112.6))=94.5, Reject 
Beach length dummies 

3 Travel Cost 5 -2*(-106340.3-(-104106.5- 

2126.0))= 215.7, Reject 
Log(beach length), 

Lake dummies 

4 Travel Cost 8 -2*(-105432.2-(-103196.6- 

2112.6))= 245.9, Reject 
Beach length dummies 

Lake dummies 

5 Beach length dummies 4 -2*(-105121.1-(-102968.3- 

2112.6))= 80.3, Reject 

6 Log(beach length) 4 -2*(-106273.3-(-104106.5- 

2126.0))= 81.7, Reject 
Lake dummies 

7 Beach length dummies  7 -2*(-105435.0-(-103196.6- 

2112.6))= 251.6, Reject 
Lake dummies 
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 Current model specifications have rejected the scaling approach outlined above for 

combining the RP and SP data. An alternative strategy for combining RP and SP data is the 

calibration of SP to RP approach (Von Haefen & Phaneuf, 2008). This approach mainly relies on 

RP data, and uses the SP data to fill in the parameter estimates of interest that are missing in RP 

data, which in our case are the water quality attributes. Some reasons to use the calibration of SP 

to RP approach are that the RP data has much less variance than SP data and the SP data might 

suffer hypothetical bias. 

 In the approach of Von Haefen and Phaneuf (2008), in response to a rejection of the 

common parameter test, the scaling parameter was not estimated from the joint log likelihood 

function, but instead was calibrated as the ratio of parameters in the separate RP and SP models. 

In our case, the scaling parameter is calibrated as the ratio of beach length parameters in the RP 

and SP models.  

𝜃𝑐 = 𝛽𝑙
𝑅𝑃 𝛽𝑙

𝑆𝑃⁄  

In our study, the ratio is 0.064 divided by 0.164, which means the scaling parameter is 0.39. Using 

the calibrated scaling parameter to rescale the SP estimates of water quality attributes provides the 

parameters of the calibrated joint model.  

6. Welfare Measures 

6.1 Welfare Calculation Method 

 Once we get the calibrated scaling parameters from the calibration approach, we can use 

the calibrated joint model to measure the change in consumer surplus in response to a particular 

policy. Specifically, the indirect utility for calibrated joint model is:  
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𝑉𝑗𝑙𝑡
𝑐 = 𝛽𝑡𝑐

𝑅𝑃 ∙ 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡𝑗𝑙 + 𝛽𝑙
𝑅𝑃 ∙ log(𝑏𝑒𝑎𝑐ℎ 𝑙𝑒𝑛𝑔𝑡ℎ𝑗𝑙) + 𝜔𝑡

𝑅𝑃 ∙ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑗𝑙𝑡 + 𝜔𝑐𝑑
𝑅𝑃

∙ 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑑𝑎𝑦𝑠 𝑜𝑓 2010𝑗𝑙 + 𝜔𝑟
𝑅𝑃 ∙ 𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑑𝑢𝑚𝑚𝑖𝑒𝑠𝑗𝑙 + 𝜃

𝑐(𝛿𝑎𝑤
𝑆𝑃

∙ 𝑎𝑙𝑔𝑎𝑒 𝑤𝑎𝑡𝑒𝑟 𝑑𝑢𝑚𝑚𝑖𝑒𝑠𝑗𝑡 + 𝛿𝑎𝑠
𝑆𝑃 ∙ 𝑎𝑙𝑔𝑎𝑒 𝑠ℎ𝑜𝑟𝑒 𝑑𝑢𝑚𝑚𝑖𝑒𝑠𝑗𝑡 + 𝛿𝑏𝑡

𝑆𝑃

∙ 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑑𝑢𝑚𝑚𝑖𝑒𝑠𝑗𝑡) 

for beach alternative  𝑗 ∈ {1, 2, … , 451} , choice occasion  𝑡 ∈ {1, 2, … , 126} . To simplify the 

notation for welfare calculation, we use the abbreviations for dummy variables listed in Table 8.  

Table 8: Abbreviations for Dummy Variables 

Variable name Abbreviation Variable Definition Attribute Levels 

regional dummies RD The region of the beach 

located 

LP Northeast 

  LP Mid-East 

  (base: Upper Peninsula) LP Southeast 

  LP Northwest 

  LP Mid-West 

   LP Southwest 

algae water dummies AW Algae in the water None 

  (base: high) Low 

    Moderate 

algae shore dummies AS Algae on the shore None 

  (base: high) Low 

    Moderate 

bacteria testing 

dummies 

BT Testing water for bacteria Never 

 (base: Daily) Monthly  

    Weekly 
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 To construct the status quo of the water quality for the Great Lakes beaches, we rely on the 

RP data. Under the status quo situation, assume the indirect utility for individual n who takes a trip 

to beach j at Lake l at the choice occasion t is:  

𝑉̂𝑗𝑙,𝑛𝑡
0
= 𝛽̂𝑡𝑐

𝑅𝑃
∙ 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡𝑗𝑙,𝑛

0 + 𝛽̂𝑙
𝑅𝑃
∙ log(𝑏𝑒𝑎𝑐ℎ 𝑙𝑒𝑛𝑔𝑡ℎ𝑗𝑙,𝑛

0) + 𝜔̂𝑡
𝑅𝑃 ∙ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑗𝑙,𝑛𝑡

0

+ 𝜔̂𝑐𝑑
𝑅𝑃 ∙ 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑑𝑎𝑦𝑠 𝑜𝑓 2010𝑗𝑙,𝑛

0 + 𝜔̂𝑟
𝑅𝑃 ∙ 𝑅𝐷𝑗𝑙,𝑛

0 

Specifically, the regional dummies RD are the regional average effects that account for all 

unidentified factors, which include water quality attributes. To separate the regional dummies, we 

further define the indirect utility as  

𝑉̂𝑗𝑙,𝑛𝑡
0
= 𝑉̃𝑗𝑙,𝑛𝑡

0
+ 𝜔̂𝑟

𝑅𝑃 ∙ 𝑅𝐷𝑗𝑙,𝑛
0                   (1) 

where 

 𝑉̃𝑗𝑙,𝑛𝑡
0
= 𝛽̂𝑡𝑐

𝑅𝑃
∙ 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡𝑗𝑙,𝑛

0 + 𝛽̂𝑙
𝑅𝑃
∙ log(𝑏𝑒𝑎𝑐ℎ 𝑙𝑒𝑛𝑔𝑡ℎ𝑗𝑙,𝑛

0) + 𝜔̂𝑡
𝑅𝑃 ∙

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑗𝑙,𝑛𝑡
0 + 𝜔̂𝑐𝑑

𝑅𝑃 ∙ 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑑𝑎𝑦𝑠 𝑜𝑓 2010𝑗𝑙,𝑛
0
. 

 When we take the water quality attributes into the calibrated indirect utility, the baseline 

effects of the water quality attributes from SP data need to be netted out of the regional dummies. 

More formally, at region r, the original regional average effects are the sum of the regional water 

quality effects and the other regional effects:  

𝜔̂𝑟
𝑅𝑃 ∙ 𝑅𝐷𝑗𝑙,𝑛

0
⏟        =

regional average effects

 

𝜔𝑟
𝑟𝑒𝑚𝑎𝑖𝑛 ∙ 𝑅𝐷𝑗𝑙,𝑛

0
⏟          

the remainder

+ 𝜃𝑐  (𝛿𝑎𝑤
𝑆𝑃
∙ 𝐴𝑊𝑟,𝑛

0 + 𝛿𝑎𝑠
𝑆𝑃
∙ 𝐴𝑆𝑟,𝑛

0 + 𝛿𝑏𝑡
𝑆𝑃
∙ 𝐵𝑇𝑟,𝑛

0)⏟                                  
regional water quality effects

              (2) 
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By inserting equation (2) into equation (1), we get the indirect utility with water quality attributes 

at the status quo point as 

𝑉̂𝑗𝑙,𝑛𝑡
0
= 𝑉̃𝑗𝑙,𝑛𝑡

0
+ 𝜔̂𝑟

𝑅𝑃 ∙ 𝑅𝐷𝑗𝑙,𝑛
0 

= 𝑉̃𝑗𝑙,𝑛𝑡
0
+ 𝜔𝑟

𝑟𝑒𝑚𝑎𝑖𝑛 ∙ 𝑅𝐷𝑗𝑙,𝑛
0 + 𝜃𝑐 (𝛿𝑎𝑤

𝑆𝑃
∙ 𝐴𝑊𝑟,𝑛

0 + 𝛿𝑎𝑠
𝑆𝑃
∙ 𝐴𝑆𝑟,𝑛

0 + 𝛿𝑏𝑡
𝑆𝑃
∙ 𝐵𝑇𝑟,𝑛

0)       (3) 

The indirect utility for an individual who does not take a trip is: 

𝑉̂𝑁𝑜 = 𝛾𝑚𝑎𝑙𝑒 ∙ 𝑚𝑎𝑙𝑒 + 𝛾𝑎𝑔𝑒 ∙ 𝑎𝑔𝑒 + 𝛾𝑤ℎ𝑖𝑡𝑒 ∙ 𝑤ℎ𝑖𝑡𝑒 + 𝛾𝑒𝑑𝑢 ∙ 𝑒𝑑𝑢 + 𝛾𝑓𝑢𝑙𝑙𝑡𝑖𝑚𝑒 ∙ 𝐹𝑢𝑙𝑙𝑡𝑖𝑚𝑒 + 𝛾𝑟𝑒𝑡𝑖𝑟𝑒

∙ 𝑅𝑒𝑡𝑖𝑟𝑒 + 𝛾𝑢𝑛𝑑𝑒𝑟17 ∙ 𝑢𝑛𝑑𝑒𝑟17 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Then, the expected maximum utility for each choice occasion t, or the inclusive value each 

individual n can obtain, is: 

𝐼𝑉̂𝑗𝑙,𝑛𝑡
0
(𝑠𝑡𝑎𝑡𝑢𝑠 𝑞𝑢𝑜) =  𝑙𝑛

{
 
 

 
 

[
 
 
 
 

∑ [∑ 𝑒𝑥𝑝

𝑖∈𝐽𝑘𝐺

(
1

𝜆
𝑉̂𝑗𝑙,𝑛𝑡

0
)]

𝜆
𝜌

𝑘∈𝐿𝐺
]
 
 
 
 
𝜌

+ exp (𝑉̂𝑁𝑜)

}
 
 

 
 

 

 Now consider a change of water quality at one or more regions, for instance, change the 

algae level in the water. Assume that 𝐴𝑊𝑟,𝑛
0 represents the algae level in the water at region r for 

person n without an improvement and assume that 𝐴𝑊𝑟,𝑛
∗
 represents algae level in the water with 

an improvement. All other site characteristics remain the same, only the algae level in the water at 

region r has changed between the two states of the world. With the change in the water quality, 

the indirect utility for individual n for a trip to beach j at Lake l at choice occasion t is: 

𝑉̂𝑗𝑙,𝑛𝑡
∗
= 𝑉̃𝑗𝑙,𝑛𝑡

0
+ 𝜔𝑟

𝑟𝑒𝑚𝑎𝑖𝑛 ∙ 𝑅𝐷𝑗𝑙,𝑛
0 + 𝜃𝑐 (𝛿𝑎𝑤

𝑆𝑃
∙ 𝐴𝑊𝑟,𝑛

∗ + 𝛿𝑎𝑠
𝑆𝑃
∙ 𝐴𝑆𝑟,𝑛

0 + 𝛿𝑏𝑡
𝑆𝑃
∙ 𝐵𝑇𝑟,𝑛

0) 
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= 𝑉̃𝑗𝑙,𝑛𝑡
0
+ 𝜔𝑟

𝑟𝑒𝑚𝑎𝑖𝑛 ∙ 𝑅𝐷𝑗𝑙,𝑛
0

+ 𝜃𝑐 (𝛿𝑎𝑤
𝑆𝑃
∙ 𝐴𝑊𝑟,𝑛

0 + 𝛿𝑎𝑠
𝑆𝑃
∙ 𝐴𝑆𝑟,𝑛

0 + 𝛿𝑏𝑡
𝑆𝑃
∙ 𝐵𝑇𝑟,𝑛

0 − 𝛿𝑎𝑤
𝑆𝑃
∙ 𝐴𝑊𝑟,𝑛

0

+ 𝛿𝑎𝑤
𝑆𝑃
∙ 𝐴𝑊𝑟,𝑛

∗) 

= 𝑉̃𝑗𝑙,𝑛𝑡
0
+ 𝜔̂𝑟

𝑅𝑃 ∙ 𝑅𝐷𝑗𝑙,𝑛
0 + 𝜃𝑐 (𝛿𝑎𝑤

𝑆𝑃
∙ (𝐴𝑊𝑟,𝑛

∗ − 𝐴𝑊𝑟,𝑛
0)) 

= 𝑉̂𝑗𝑙,𝑛𝑡
0
+ 𝜃𝑐 (𝛿𝑎𝑤

𝑆𝑃
∙ (𝐴𝑊𝑟,𝑛

∗ − 𝐴𝑊𝑟,𝑛
0)) 

= 𝑉̂𝑗𝑙,𝑛𝑡
0
+ 𝜃𝑐 (𝛿𝑎𝑤

𝑆𝑃
∙ ∆𝐴𝑊𝑟,𝑛) 

With the change in the water quality, the expected maximum utility for each choice occasion t for 

each individual n is: 

𝐼𝑉̂𝑗𝑙,𝑛𝑡
∗
(𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜) =  𝑙𝑛

{
 
 

 
 

[
 
 
 
 

∑ [∑ 𝑒𝑥𝑝

𝑖∈𝐽𝑘𝐺

(
1

𝜆
𝑉̂𝑗𝑙,𝑛𝑡

∗
)]

𝜆
𝜌

𝑘∈𝐿𝐺
]
 
 
 
 
𝜌

+ exp (𝑉𝑁𝑜̂)

}
 
 

 
 

 

As in Cheng (2016), the welfare change can be calculated as the change of expected maximum 

utility, i.e. the change of inclusive value, divided by the marginal utility of income.  

𝑐𝑠𝑛𝑡 =
𝐼𝑉̂𝑗𝑙,𝑛𝑡

∗
(𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜) − 𝐼𝑉̂𝑗𝑙,𝑛𝑡

0
(𝑠𝑡𝑎𝑡𝑢𝑠 𝑞𝑢𝑜)

−𝛽̂𝑡𝑐
 

For individual n, the seasonal welfare change will be the sum of all consumer surplus changes in 

each choice occasion t: 

𝐶𝑆𝑛 =∑𝑐𝑠𝑛𝑡

𝑇

𝑡=1

 

The weighted average seasonal value per person is: 
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𝐶𝑆̅̅̅̅ =  
∑ 𝑤𝑛 ∗ 𝐶𝑆𝑛
𝑁
𝑛=1

∑ 𝑤𝑛
𝑁
𝑛=1

 

For individual n at choice occasion t, the predicted total number of trips is: 

𝑌̂𝐺,𝑛 =∑𝑃̂𝐺,𝑛𝑡
0

𝑇

𝑡=1

 

For individual n at choice occasion t, the predicted total number of taking trips to beach j at lake l 

is:  

𝑌̂𝑗𝑙𝐺,𝑛 =∑𝑃̂𝑗𝑙𝐺,𝑛𝑡
0

𝑇

𝑡=1

 

If the water quality attributes changed, the change in predicted total number of trips is: 

∆𝑌̂𝐺,𝑛 =∑𝑃̂𝐺,𝑛𝑡
∗
(𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)

𝑇

𝑡=1

−∑𝑃̂𝐺,𝑛𝑡
0
(𝑠𝑡𝑎𝑡𝑢𝑠 𝑞𝑢𝑜)

𝑇

𝑡=1

 

Similarly, the change in predicted total number of trips to beach j at Lake l is: 

∆𝑌̂𝑗𝑙𝐺,𝑛 =∑𝑃̂𝑗𝑙𝐺,𝑛𝑡
∗

𝑇

𝑡=1

(𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜) −∑𝑃̂𝑗𝑙𝐺,𝑛𝑡
0
(𝑠𝑡𝑎𝑡𝑢𝑠 𝑞𝑢𝑜)

𝑇

𝑡=1

 

 It is sometimes convenient to compare the seasonal value to other literature by normalizing 

the value to the change in trips. There are two ways to normalize the weighted average seasonal 

value per person to per trip units. One is to divide the value by the weighted average total trip 

change  

𝐶𝑆̿̿̿̿ 𝐺 =
𝐶𝑆̅̅̅̅

∆𝑌̅𝐺
=
(∑ 𝑤𝑛 ∗ 𝐶𝑆𝑛)

𝑁
𝑛=1

∑ 𝑤𝑛
𝑁
𝑛=1 ∗ ∆𝑌̂𝐺,𝑛

 

and another is to divide the value by the weighted average trip change to beach j on lake l. 
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𝐶𝑆̿̿̿̿ 𝑗𝑙𝐺 =
𝐶𝑆̅̅̅̅

∆𝑌̅𝑗𝑙𝐺
=

∑ 𝑤𝑛 ∗ 𝐶𝑆𝑛
𝑁
𝑛=1

∑ 𝑤𝑛
𝑁
𝑛=1 ∗ ∆𝑌̂𝑗𝑙𝐺,𝑛

  

 

6.2 Welfare Results 

 As described above, for welfare measurement the status quo water quality level is partly 

captured by the regional effects from the RP part of our model and these status quo effects should 

be accounted for in any policy scenario. The status quo information for the water quality in each 

region was obtained from the 2011 Great Lakes Beach Sanitary Survey (EPA, 2011), which 

provided incomplete water quality information for 191 Great Lakes beaches. The surveyors went 

to sites and categorized the algae level in the water and on the shore to three levels: low, medium 

and high.  There are 1,955 observations from Great Lakes Beach Sanitary Survey for 128 beaches 

in our choice set, of which 74 beaches have the information for algae levels in the water and 66 

beaches have the information for algae levels on the shore. When we aggregated the water quality 

information at the regional level, information for the Northeast region is missing, so we assume 

the water quality in the Northeast is same as the Northwest. In the sanitary survey data testing for 

bacteria rarely happened since it is reported elsewhere. Therefore, the attribute of testing for 

bacteria is no longer included in water quality scenarios we examine here. Water quality is thus 

defined by algae level in the water and algae level on the shore as low, medium, or high. In our 

policy scenarios, when we refer to water quality change, we mean the algae level in the water and 

the algae level on the shore are simultaneously changed in the same direction.  

 Table 8 and Table 9 provide the baseline distribution of water quality across regions. The 

tables show that water quality in the LP Mid-East region and LP Southeast region is much lower 
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than the water quality of the other regions based on the amounts of algae present. It reinforces our 

impression that, because of the algae problems, water quality of the Saginaw Bay, Lake Erie, and 

Lake St. Clair is worse than Lake Michigan.  

Table 9: The Baseline Distribution of Algae Level in the Water across Region in 2011 

 Low Medium High 

LP Northeast 81.18% 18.04% 0.78% 

LP Mid-East 52.43% 20.39% 27.18% 

LP Southeast 57.79% 18.85% 23.36% 

LP Northwest 81.18% 18.04% 0.78% 

LP Mid-West 95.65% 2.17% 2.17% 

LP Southwest 100.00% 0.00% 0.00% 

Upper Peninsula 91.30% 6.52% 2.17% 

 

Table 10: The Baseline Distribution of Algae Level on the Shore across Region in 2011 

 Low Medium High 

LP Northeast 86.99% 12.20% 0.81% 

LP Mid-East 59.48% 20.69% 19.83% 

LP Southeast 75.33% 22.91% 23.79% 

LP Northwest 86.99% 12.20% 0.81% 

LP Mid-West 100.00% 0.00% 0.00% 

LP Southwest 100.00% 0.00% 0.00% 

Upper Peninsula 94.05% 4.76% 1.19% 

 

 We consider two types of welfare scenarios using our calibrated joint model. The first 

scenario assumes that water quality at half of the sites in a region is improved up by one level. 

Simply put, half of Great Lakes beaches in a region with the high algae level are improved to the 
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medium level and half of beaches in a region with the medium algae level are improved to the low 

level. Take Northeast region as an example, under the first scenario, high algae level in the 

water/on the shore becomes half of the baseline value of the low level, which means that 0.39% of 

Great Lakes beaches in the Northeast maintain a high algae level in the water and 0.4% of beaches 

maintain a high algae level on the shore. Medium algae level in the water/on the shore turns out to 

be half of the sum of baseline values of the low level and the medium level, which means 9.41% 

of beaches in the Northeast attain a medium algae level in the water and 6.51% of beaches attain 

a medium algae level on the shore. Finally, 90.2% of Great Lakes beaches in the Northeast attain 

a low algae level in the water and 93.09% of beaches attain a low algae level on the shore. The 

same procedures are applied to the water quality of the other five regions under the first scenario. 

 The second scenario assumes that water quality is deteriorated by shifting half of the sites’ 

water quality in a region down by one level. This is a significant change in water quality, because 

half of beaches with the low algae level are degraded to the medium level and half of beaches with 

the medium algae level are degraded to the high level. The distribution of algae levels moves in 

the opposite direction to the algae levels in the first scenario.  In both types of scenarios the algae 

changes are made only within one region at a time, resulting in twelve total welfare scenarios (an 

improvement and decrement to quality in each of six regions). 

 Table 11 displays the predicted trips and welfare estimates from the first scenario of water 

quality improvement. If we improve half of Great Lakes beaches’ water quality in a region up by 

one level, compared to the trips taken at status quo, the trips increases by 33.62% for Middle-East 

region (Huron South) and 20.49% for Southeast region (St. Clair and Erie).5 Trips increase slightly 

                                                        
5 Again, bear in mind that the 12 policy scenarios were run separately, so here we are comparing separate scenarios 

and are not referring to site substitution patterns within a scenario.  
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for Huron North and Lake Michigan. The intuition behind this is that the baseline algae levels in 

Huron South, St. Clair, and Erie are higher than those in Huron North and Lake Michigan. Once 

we increase the water quality, the utility of a person is increasing as the algae level decreases. 

Therefore, improving water quality leads to more utility increase for beaches with initially higher 

algae level in Huron South, St. Clair, and Erie than beaches with initially lower algae level in 

Huron North and Lake Michigan. In particular, trips to Southwest region never change, because 

the baseline water quality in the Southwest region was already at the highest level.  

 Under the water quality improvement scenario, the seasonal welfare benefits to beachgoers 

are larger for Huron South, St. Clair, and Erie as well. St. Clair and Erie generate the largest 

seasonal welfare gains, with $9.92 in seasonal value obtained for an average Michigan beachgoer. 

When normalized by the site trip change, the seasonal value per person per trip is $50.73. Although 

Huron South has the second highest seasonal value per person at $4.9, it has a relatively small 

number of trips, so the seasonal value per person per trip turns out to be the second lowest at $33.36 

when normalizing by the site trip change. South Lake Michigan has zero seasonal value since the 

water quality improvement does not affect this region at all.  

 To calculate the population level welfare, we follow the approach of in Cheng (2016) to 

aggregate the weighted average seasonal value at the individual level to the entire population of 

beachgoers living in the Lower Peninsula. The population number of beachgoers is derived from 

the participation rate of beach recreation, which is 58.01%, multiplied by 7,289,085 Michigan 

adults living in the Lower Peninsula. When aggregated at the population level, 0.83 million more 

trips were taken to Lake Erie and Lake St. Clair due to improving half of Great Lakes beaches’ 

water quality in a region up by one level. Improvements at Lake St. Clair and Lake Erie result in 

$41.94 million in welfare gains by all Michigan beachgoers living in the Lower Peninsula. Again, 
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welfare gains from South Michigan were zero because it had the highest water quality at status 

quo. 

 By contrast, if we degrade half of Great Lakes beaches’ water quality in a region down one 

level, trips decrease dramatically and welfare loss turns out to be significant. Table 12 displays the 

predicted trips and welfare estimates from the second scenario of the water quality deterioration. 

Compared to the trips taken at status quo, all regions lose trips and the magnitude of decreased 

trips ranges from 24.09% to 32.66% across the six regions. When aggregated at the state level, 

1.76 million trips are lost in the Northwest region due to degrading half of Great Lakes beaches’ 

water quality down by one level. Mid-west region loses 1.75 million trips, followed by Southwest 

region losing 1.04 million trips. Mid-East region loses 0.6 million trips, which is the least trip loss 

among the six regions. The range of trip loss indicates that the water quality degradation impacts 

Lake Michigan most and Huron south least.  

 Under the water quality deterioration scenario, Michigan North has the largest seasonal 

welfare losses to beachgoers, with welfare losses from the Northwest region at $18.86 per person 

and from the Middle-west region at $16.81 per person. When normalized by the site trip change, 

St. Clair and Erie incur the highest seasonal welfare losses, with the seasonal value per person per 

trip at $48.41, followed by Lake Michigan ranging from $37.58 to $45.23 per person per trip. 

When aggregated at the state level, North Michigan loses $79.77 million by all Michigan 

beachgoers living in the Lower Peninsula from the water quality degradation. South Huron incurs 

the least welfare losses at $18.96 million. Finally, Lake St. Clair and Lake Erie incur $48.02 million 

welfare losses.  
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Table 11: Estimated Trips and Welfare Measures of Shifting Half of Sites' Water Quality up by One Level in a Region in 2011  Dollars 

Per Person 

    Number of 

Trips 

Number of Site 

Trips Change 

% Changes in 

Trips  

Seasonal 

Value 

Season/Total 

Trip Change 

Season/Site 

Trip Change 

Take Half of 

Sites' Algae in 

the Water & 

Algae on the 

Shore up by one  

Level 

LP Northeast 0.68 0.03 4.96% 1.21 92.34 37.77 

LP Mid-East 0.58 0.15 33.62% 4.90 90.79 33.36 

LP Southeast 1.15 0.20 20.49% 9.92 89.98 50.73 

LP Northwest 1.62 0.06 4.05% 2.91 94.54 46.07 

LP Mid-West 1.74 0.02 1.21% 0.88 92.74 42.40 

LP Southwest 0.97 0.00 0.00% 0.00 0.00 0.00 

State level  

   Number of Trips 

(Million) 

Number of Site Trips 

Change (Million) 

% Changes in Trips 

(Million) 

Seasonal Value 

(Million) 

Take Half of 

Sites'  Algae  in 

the Water & 

Algae on the 

Shore up by one  

Level 

LP Northeast 2.872 0.136 4.96% 5.122 

LP Mid-East 2.468 0.621 33.62% 20.717 

LP Southeast 4.862 0.827 20.49% 41.937 

LP Northwest 6.857 0.267 4.05% 12.283 

LP Mid-West 7.357 0.088 1.21% 3.719 

LP Southwest 4.111 0.000 0.00% 0.000 

Note: The table rows are for the 12 regional scenarios each run separately. Only changes within a region are shown and site substitution 

patterns for each scenario are omitted for brevity. 
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Table 12: Estimated Trips and Welfare Measures of Shifting Half of Sites' Water Quality down by One Level in a Region in 2011  

 Dollars 

Per Person 

    Number of 

Trips 

Number of Site 

Trips Change 

% Changes in 

Trips  

Seasonal 

Value 

Season/Total 

Trip Change 

Season/Site 

Trip Change 

Take Half of 

Sites' Algae in 

the Water & 

Algae on the 

Shore down by 

one  Level 

LP Northeast 0.44 -0.21 -32.14% -7.57 92.25 36.37 

LP Mid-East 0.29 -0.14 -32.66% -4.49 90.68 31.44 

LP Southeast 0.72 -0.24 -24.58% -11.36 89.74 48.41 

LP Northwest 1.14 -0.42 -26.74% -18.86 94.26 45.26 

LP Mid-West 1.31 -0.41 -24.09% -16.81 92.56 40.58 

LP Southwest 0.73 -0.25 -25.28% -9.24 92.02 37.58 

State level  

   Number of Trips 

(Million) 

Number of Site Trips 

Change (Million) 

% Changes in Trips 

(Million) 

Seasonal Value 

(Million) 

Take Half of 

Sites'  Algae  in 

the Water & 

Algae on the 

Shore down by 

one  Level 

LP Northeast 1.857 -0.880 -32.14% -31.986 

LP Mid-East 1.244 -0.603 -32.66% -18.963 

LP Southeast 3.044 -0.992 -24.58% -48.015 

LP Northwest 4.828 -1.763 -26.74% -79.766 

LP Mid-West 5.518 -1.751 -24.09% -71.076 

LP Southwest 3.071 -1.039 -25.28% -39.050 

Note: The table rows are for the 12 regional scenarios each run separately. Only changes within a region are shown and site 

substitution patterns for each scenario are omitted for brevity.
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7. Conclusion and Discussion 

 This paper investigated combining revealed and stated preference data to jointly estimate 

the monetary value of water quality attributes and their economic benefits to recreational 

beachgoers. To combine the trip data and choice experiment data from a 2011 Great Lakes Beach 

Survey, we first applied a scaling approach to jointly estimate the parameters of attributes in both 

RP and SP datasets under a unified RUM framework. Different model specifications for common 

preferences across the data types were tested. Common preference tests between the RP and SP 

data were consistently rejected. Our results provide empirical evidence that passing the hypothesis 

of equal common parameters is difficult when combining both RP and SP. 

 With some caveats, we then applied the calibration of SP to RP approach to measure the 

change in consumer surplus in response to two types of water quality scenarios. If we improve half 

of Great Lakes beaches’ water quality in a region up by one level, compared to the trips taken at 

status quo, trips increase by 33.62% for Middle-East region (Huron South) and 20.49% for 

Northeast region (St. Clair and Erie). Trips increase slightly for Huron North and Lake Michigan. 

At the state level, we found 0.83 million more trips were taken to Lake Erie and Lake St. Clair. 

Improvements at Lake St. Clair and Lake Erie result in $41.94 million in welfare gains by all 

Michigan beachgoers living in the Lower Peninsula. By contrast, trip changes and welfare gains 

from South Michigan were zero because it had the highest water quality at status quo.  

 If we degrade half of Great Lakes beaches’ water quality in a region down one level, 

compared to the trips taken at status quo, each region loses trips so dramatically that the magnitude 

of decreased trips ranging from 24.09% to 32.66% across the six regions. Northwest region lost 

most trips at 1.76 million. It also resulted in the lowest seasonal welfare losses at $79.77 million 
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to all Michigan beachgoers living in the Lower Peninsula. The South Huron scenario incurs the 

largest welfare losses at $518.96 million. Distributions of trip losses and welfare losses across the 

six regions indicate that the water quality degradation impacts Lake Michigan most, Huron south 

least. 

 We note that even if one rejects the consistency test and thus the data sets cannot be jointly 

estimated, a simple calibration approach still provides a way to combine the data sets. However, 

the estimated changes in consumer surplus could still be biased, even if they intuitively make sense. 

Finally, this paper provided the empirical evidence that the scaling approach is not sufficient to 

account for differences in the amount of unexplained variance when using RP and SP data together 

in some applications. Therefore, more empirical strategies should be proposed and implemented 

in the future.  
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