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Abstract 

This paper estimates the shadow price of CO2 from burning crop residue in the Chinese agricultural sector 

and explores the policy implications for decision makers. Using a parametric translog directional distance 

function, we evaluate the technical efficiency and shadow prices of CO2 reduction for 7 major maize 

provinces in China from 1996-2013. Our results show that crop yield, cost of total inputs, and percentage 

of burnt crop residue account for 30%, 10% and 20% of the inefficiency, respectively. The shadow price of 

CO2 from burning crop residue is estimated to range from 0-1.368 yuan/ha (or US$210.5/t) with an 

average of 0.496yuan/kg (or US$76/t). Further analysis indicates that the average efficiency will increase 

by 9% if conservation practices are adopted by assuming 10% decrease in yield and 50% decrease in burnt 

crop residue under conservation practices compared to conventional practices. The shadow prices in 

these two cases imply that the whole society will benefit if the government spends less than 201 yuan/ha 

to promote adoption of conservation practices. This government offset would compensate farmers for 

yield reductions in favor of implementing conservation practices that would substantially reduce CO2 

emissions. 
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Abatement costs of Emissions from Crop Residue Burning in major crop producing regions 

of China: Balancing food security with the environment 

Lingling Hou1, Dana Hoag2, Catherine Keske3 

 

1. Introduction 

Agriculture is a major contributor to global emissions of the greenhouse gases (GHGs) that 

drive climate change. World agriculture accounted for an estimated direct emission of 5.1-6.1 

Pg CO2-equivalents year−1, contributing 10-12%to the total global anthropogenic emissions of 

GHGs in 2005 (Smith et al., 2007). The direct and indirect (including producing agricultural 

inputs) account for about 40% of total global GHGs. That makes the agricultural sector the 

world’s second-largest emitter, after the energy sector (which includes emissions from power 

generation and transport). China, which is predominantly rural and agricultural, is one of the 

largest producers of agricultural emissions in the world. Greenhouse gas (GHG) emissions in 

China reached approximately 820 MtCO2e. 

 

The practice of burning crop residues in China is a major source of CO2 emissions in agricultural 

sector. Sun et al. (2016) estimates that about 2.7 billion tons of CO2 had been emitted by 

farmers’ burning crop residues in farm fields in China from 1996-2013, which was about 45% 

of the total residential coal consumption over the same period. In Northeast China, more than 

80% of crop residues each year are burned in field, of which over 2/3 is from maize straw. After 

the harvest reason, burning crop residues not only harms human respiratory system, but also 

often results in low visibility that delays air flights and impedes ground transportation. 

Ostensibly, a change in agricultural management practices might lower the social costs of air 

pollution.    

 

It is promised that by 2030 China will reduce 60-65% of CO2 intensity (tons per dollar of GDP) 

compacted to 2005. Although scholars predict that China’s agricultural sector has the potential 

to reduce GHGs by 20%, how to allocate abatement missions among sectors are still a critical 

question to policy makers. Theoretically, the optimal abatement scheme is to maximize the 
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total GDP given the constraint of abatement mission. This will result to an abatement level 

where marginal cost of each sector is equal. Therefore, it is important to estimate the 

abatement cost for each sector. Crop production is the  top agricultural land use. We will 

focus on maize production in this preliminary draft manuscript. Later we will extend our 

analysis to wheat and rice production. 

 

Crop management practices-such as conservation tillage offer the greatest reduction potential. 

Conservation tillage is a range of cultivation techniques (including minimum till, strip till and 

no-till) designed to minimize soil disturbance for seed placement, by allowing crop residue to 

remain on soil after planting. Conservation tillage has other co-benefits as well, such as 

protecting soil from wind and water erosion. Several provinces in China, with the support from 

the Ministry of Finance (MOF) and the Ministry of Agriculture (MOA) recently piloted on 

Compensation for Soil Conservation Program (CSCP). The government wonders how much 

investment is appropriate to promote such programs. However, national and international 

markets do not exist for GHGs in most cases. Furthermore, measuring GHG emissions from 

individual farms can be elusive, making cost-benefit analysis challenging.  Crop production is 

an important component of food security, and simulation can be a useful tool for providing the 

government with information about potential impacts of management changes on crop yields. 

This paper provides the government with a reference to make an informed decisions about 

CSCP.  

 

In the literature, many studies exist on estimating abatement cost of undesirable outputs, such 

as CO2, with the concept of shadow prices. However, there is little literature to estimate the 

shadow prices in of agricultural emissions in China. Zhou et al. (2014) conducted a systematic 

review of the studies on estimating shadow prices of undesirable outputs with efficiency 

models. These studies were primarily focused on energy generation. The shadow price of 

undesirable output can be interpreted as the opportunity cost of abating one additional unit 

of undesirable output in terms of the loss of one unit of desirable output. A prevalent practice 

is to use the Shephard or directional distance function to derive the shadow price, which can 

be further calculated by parametric or nonparametric efficiency models. In application, the 
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earlier studies have estimated shadow prices of GHGs at the plant, sector and even regional 

economic levels. Wei et al. (2013) estimates the shadow price of CO2 and explores its 

determinants for thermal power enterprises in China. The mean value of the CO2 shadow price 

is $249 in 2004 using linear programming approach. They also found that the shadow price is 

a negative function of firm size, age, and coal share, and is positively correlated with the 

technology level. Du et al. (2015) investigated the technical inefficiency, shadow price and 

substitution elasticity of CO2 emissions of China based on a provincial panel data from 2001-

2010. They show that China’s technical inefficiency increases over the period implying further 

scope for CO2 emissions reduction in the medium and longer term at best by 4.5% and 4.9% 

respectively. The shadow price of CO2 abatement increases from 1000 yuan/t in 2001 to 2100 

yuan/t in 2010.  

 

The paper is the first to estimate the CO2 shadow price associated with the practice of burning 

crop residue in China. The directional distance function in translog form is used to quantify the 

efficiency and CO2 shadow price for 7 major maize production provinces from 1996-2013. The 

paper also simulates the efficiency and abatement cost of CO2 under a scenario of adopting 

soil conservation practices.  

 

From a policy perspective, the results of our research are expected to be of great interest and 

use to decision makers as a decision support tool, since they provide the first CO2 shadow 

price estimates in the framework of burning crop residues. This paper also contributes to the 

literature about abatement costs of agricultural emissions.  Being able to assess the marginal 

abatement costs is an important first step in environmental policy issues, since these costs can 

be used when fixing carbon tax rates and ascertaining an initial market price for a trading 

system(Fare et al, 1993; Wei et al., 2013). Furthermore, by comparing the two cases, this paper 

provide how much the government should invest to promote soil conservation practices.  

2. Theoretical model and empirical specifications 

We follow Färe et al. (2005) and Hou et al (2015) to present the shadow pricing model based 

on a directional output distance function. In the first step of this approach, the directional 
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distance function, which underlies production technology, is constructed through an output 

possibility set. Then shadow prices of undesirable outputs are derived by setting the marginal 

rate of transformation between desirable and undesirable outputs equal to their price ratio. 

Finally, the estimation process of this model is presented. 

2.1. Directional Output Distance Functions 

Before deriving the shadow prices by a distance function approach, it is necessary to first 

describe the directional output distance function. A directional distance function corresponds 

precisely to one production possibility set. The technologies for different cropping systems 

that produce desirable outputs and undesirable outputs jointly are represented by a 

production possibility set 

 

 P(x) = {(y, b): x can produce (y, b)},         (1) 

 

where  x = (x1, … , xN) ∈ ℜ+ 
N  is a vector of N inputs, y = (y1, … , yM) ∈ ℜ+

M  is a 

vector of M desirable outputs and b = (b1, … , bJ) ∈ ℜ+
J  is a vector of J undesirable 

outputs.  

 

The production possibility set P(x) underlies all feasible input-output combinations. 

It also illustrates the trade-offs between desirable and undesirable outputs. The 

production possibility set has the following properties:  

1. P(x) is compact and closed, with P(0) = {0,0}.  

2. Strong disposability of desirable outputs and inputs, i.e. if (y, b) ∈ P(x), then for 

y′ ≤ y, (y′, b) ∈ P(x), and if x′ ≥ x, then P(x) ⊆ P(x′).  

3. Weak disposability of desirable and undesirable outputs, i.e. if (y, b) ∈ P(x) 

and 0 ≤ θ ≤ 1, then (θy, θb) ∈ P(x).  

4. Null-jointness: if  (y, b) ∈ P(x) and b = 0, then y = 0. 

 

The first two properties are standard assumptions in production theory by Shephard (1970). 

The first assumption implies “no free lunch;” finite inputs produce finite outputs. The second 
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assumption of strong disposability means that inputs and desirable outputs can be disposed 

of at no costs. Specifically, it implies that fewer outputs can be produced by the same amount 

of input, and if inputs are increased, outputs will not shrink. Two nonstandard assumptions on 

desirable and undesirable outputs are also imposed. Weak disposability of desirable and 

undesirable outputs means that proportional reductions of desirable and undesirable outputs 

are feasible. It allows for undesirable outputs to be deposed of at the same reduction cost as 

desirable outputs. Null-jointness of desirable and undesirable outputs implies that undesirable 

outputs are inescapable if desirable outputs are produced.  

 

Given the production possibility set P(x), a directional output distance function for the ith 

observation (xi, yi, bi) is defined as the simultaneous maximum reduction in undesirable 

outputs and expansion in desirable outputs along a direction g = (gy, gb). Its mathematical 

form is:  

 

Di(xi, yi, bi; gy, gb) = max{φi > 0: (yi + φigy, bi + φigb) ∈ P(xi)},      (2) 

 

where Di  is the distance function value for the ith observation (xi, yi, bi)  given the 

directional vector (gy, gb), and φi is the simultaneous change of desirable and undesirable 

outputs satisfying (yi + φigy, bi + φigb) ∈ P(xi).  

 

The directional distance function is a measure of efficiency for the ith cropping system, 

representing the “distance” of the produced output bundle from the technically efficient 

production frontier along the directional vector  (gy, gb) . The production frontier is 

constructed by a set of cropping systems, whose distance function equals zero, 

i.e.  Di(xi, yi, bi; gy, gb) = 0.  This means that there is no possibility for these systems to 

reduce undesirable outputs and expand desirable outputs; therefore they are called efficient 

technologies.  

 



8 

 

An input-output combination belonging to a production possibility set P(x)  can be 

represented by a directional output distance function equivalently, i.e.(yi, bi) ∈ P(x) if and 

only if Di(xi, yi, bi; gy, gb) ≥ 0. As shown in Figure 1, the dots represent a sample of all the 

observations that construct the production possibility set P(x). The production possibility set 

is encompassed by the Pareto efficient frontier (i.e. the curve in Figure 1) and the horizontal 

axis. The observations beneath the frontier are inefficient and their distance functions are 

greater than zero (for example, the observation denoted by (b, y). The observations on the 

frontier are efficient and their corresponding distance functions equal zero. The arrows denote 

the directional vector  (gb, gy) , along which an inefficient observation can improve its 

efficiency by increasing desirable output and reducing undesirable output. For example, the 

efficiency of the observation (b, y) can be improved by moving from (b, y) to point E along 

the directional vector. The coordinate of point E is  (b + φgb, y + φgy) . The relationship 

between the distance functions for point E and point (b, y) can be illustrated by 

D(x, y + φgy, b + φgb; gy, gb) = D(x, y, b; gy, gb) − φ , which is also called translation 

property by Färe et al. (2005).  

 

Figure 1. The Directional Output Distance Function 

 

Corresponding to the assumptions imposed on the production possibility set, the directional 

output distance function has the following properties, which will be imposed as constraints 

when estimating the distance function.  
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1.  Di(𝐱i, 𝐲i, 𝐛i; 𝐠𝐲, 𝐠𝐛) ≥ 0 if and only if (𝐲i, 𝐛i) is an element of P(𝐱).  

2.  Di(𝐱i, 𝐲′i, 𝐛i; 𝐠𝐲, 𝐠𝐛) ≥ Di(𝐱i, 𝐲i, 𝐛i; 𝐠𝐲, 𝐠𝐛) for  (𝐲′i, 𝐛i) ≤ (𝐲i, 𝐛i).  

3. Di(𝐱i, 𝐲i, 𝐛′𝐢; 𝐠𝐲, 𝐠𝐛) ≥ Di(𝐱i, 𝐲i, 𝐛i; 𝐠𝐲, 𝐠𝐛) for (𝐲𝐢, 𝐛′𝐢) ≥ (𝐲𝐢, 𝐛𝐢).  

4. Di(𝐱i, θ𝐲i, θ𝐛i; 𝐠𝐲, 𝐠𝐛) ≥ 0 for (𝐲𝐢, 𝐛𝐢) ∈ P(𝐱) and 0 ≤ θ ≤ 1.  

5.  D(𝐱, 𝐲, 𝐛; 𝐠𝐲, 𝐠𝐛) is concave if (𝐲, 𝐛) ∈ P(𝐱).  

6.  Di(𝐱𝐢, 𝐲𝐢 + φi𝐠𝐲, 𝐛𝐢 + φi𝐠𝐛; 𝐠𝐲, 𝐠𝐛) = Di(𝐱𝐢, 𝐲𝐢, 𝐛𝐢; 𝐠𝐲, 𝐠𝐛) − φi. 

 

2.2 Derivation of Shadow Prices  

In order to derive the shadow prices, it is necessary to examine the relationship between the 

maximum revenue function and the directional distance function (Färe et al., 2006). Let 𝐩𝐲 =

(py1, … pyM) ∈ ℜ+
M  represent desirable output prices and let 𝐩𝐛 = (pb1, … , pbJ) ∈ ℜ−

J  

represent the negative undesirable output prices. The revenue function, which considers the 

negative effect generated by the undesirable outputs, is defined as:  

Ri(𝐱𝐢, 𝐩𝐲, 𝐩𝐛) = max
𝐲,𝐛

{ 𝐩𝐲𝐲𝐢 + 𝐩𝐛𝐛𝐢:  (𝐲, 𝐛) ∈ P(𝐱)}.                 (3) 

The revenue function gives the maximal revenue that can be generated from inputs x under 

the technology constraint  (𝐲, 𝐛) ∈ P(𝐱) , when desirable output prices are 𝐩𝐲  and 

undesirable output prices are 𝐩𝐛 . Since (𝐲, 𝐛) ∈ P(𝐱) implies  Di(𝐱i, 𝐲i, 𝐛i; 𝐠𝐲, 𝐠𝐛) ≥ 0, the 

maximal revenue function can be equivalently written asi:  

Ri(𝐱𝐢, 𝐩𝐲, 𝐩𝐛) = max
𝐲,𝐛

{ 𝐩𝐲𝐲𝐢 + 𝐩𝐛𝐛𝐢:  𝐃𝐢(𝐱𝐢, 𝐲𝐢, 𝐛𝐢; 𝐠𝐲, 𝐠𝐛) ≥ 0}.         (4) 

To solve this equation, it is written as:  

Ri(𝐱𝐢, 𝐩𝐲, 𝐩𝐛) ≥ (𝐩𝐲, 𝐩𝐛)(𝐲 + Di(𝐱𝐢, 𝐲𝐢, 𝐛𝐢; 𝐠𝐲, 𝐠𝐛)𝐠𝐲, 𝐛 + Di(𝐱𝐢, 𝐲𝐢, 𝐛𝐢; 𝐠𝐲, 𝐠𝐛)𝐠𝐛) 

= (𝐩𝐲𝐲 + 𝐩𝐛𝐛) + (𝐩𝐲Di(𝐱, 𝐲, 𝐛; 𝐠)𝐠𝐲 + 𝐩𝐛Di(𝐱, 𝐲, 𝐛; 𝐠)𝐠𝐛).               (5) 

Rearranging the above inequality, the directional distance function can be written as:     

Di(𝐱𝐢, 𝐲𝐢, 𝐛𝐢; 𝐠) ≤
Ri(𝐱𝐢,𝐩𝐲,𝐩𝐛)−(𝐩𝐲𝐲𝐢+𝐩𝐛𝐛𝐢)

pygy+pbgb
,                      (6) 

which yields:  
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Di(𝐱𝐢, 𝐲𝐢, 𝐛𝐢; 𝐠) = min
𝐩

{
Ri(𝐱𝐢,𝐩𝐲,𝐩𝐛)−(𝐩𝐲𝐲𝐢+𝐩𝐛𝐛𝐢)

𝐩𝐲𝐠𝐲+𝐩𝐛𝐠𝐛
} .

    
                (7) 

 

Applying the envelope theorem to equation (7) yielding:       (8) 

              ∇bDi(𝐱𝐢, 𝐲𝐢, 𝐛𝐢; 𝐠) =
−pb

pygy + pbgb
≥ 0 

and                   (9) 

∇yDi(𝐱𝐢, 𝐲𝐢, 𝐛𝐢; 𝐠) =
−py

pbgy + pbgb
≤ 0. 

Thus, given the mth desirable output price, say  pym , the shadow price of the jth 

undesirable output can be recovered by taking the ratio of Eq. (8) and Eq. (9):  

(10) 

pbj

pym
=

∂Di(𝐱𝐢, 𝐲𝐢, 𝐛𝐢; 𝐠)/ ∂bj

∂Di(𝐱𝐢, 𝐲𝐢, 𝐛𝐢; 𝐠)/ ∂ym
 

or                    (11) 

pbj = pym(
∂Di(𝐱𝐢, 𝐲𝐢, 𝐛𝐢; 𝐠)/ ∂bj

∂Di(𝐱𝐢, 𝐲𝐢, 𝐛𝐢; 𝐠)/ ∂ym
). 

     

The previous equations depict a derivation of the shadow prices for the undesirable outputs. 

Equation (10) implies that revenue is maximized where the marginal rate of transformation 

between an undesirable output and a desirable output equals the price ratio of the two. The 

negative shadow prices of undesirable outputs, derived by a directional distance function, are 

interpreted as marginal opportunity costs in terms of foregone desirable outputs (Färe et al., 

2006). The equations also provide an estimate of marginal abatement costs of agricultural 

pollutants to farmers.  

 

2.3 Estimation of Distance Function  

The previous section provides a conceptual way to estimate shadow prices of the undesirable 

outputs. Parameterizing the distance function is a necessary step in the model, since the 

derivatives of the distance function are utilized in equation 11. A linear programming 

technique is employed to calibrate the unknown parameters in the distance function. A regular 
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regression technique is not appropriate in this situation, because the values of the distance 

function would not be known until after the regression is estimated.  

 

Among the flexible functional forms, a deterministic quadratic function is chosen to 

parameterize the directional distance function. A quadratic functional form can be restricted 

to satisfy the translation property (Färe et al., 2005) while a translog functional form, for 

example, cannot. Criterion for choosing the directional vector depends upon the technologies. 

The example in this paper uses  g =  (1, −1)  as a direction vector, where the first M 

components equal 1 and the next J components equal -1. This means that the same proportion 

of reduction in undesirable outputs and expansion in desirable outputs will bring the 

inefficient observation to the efficient frontier. Assuming i =  1, … , I cropping systems, the 

quadratic directional distance function for the ith cropping system is:      

    

Di(xi, yi, bi; 1, −1) = α0 + ∑ αnxi,n

N

n=1

+ ∑ βmyi,m

M

m=1

+ ∑ γjbi,j

J

j=1

 

        +
1

2
∑ ∑ αnn′

N
n′=1

N
n=1 xi,nxi,n′ +

1

2
∑ ∑ βmm′

M
m′=1

M
m=1 yi,myi,m′ +

1

2
∑ ∑ γjj′

J
j′=1

J
j=1 bi,jbi,j′  +

∑ ∑ δnm
M
m=1

N
n=1 xi,nyi,m + ∑ ∑ ηnj

J
j=1

N
n=1 xi,nbi,j + ∑ ∑ μmj

J
j=1

M
m=1 yi,mbi,j(12) 

where Di(xi, yi, bi; 1, −1) is the value of distance function for the ith cropping system which 

use inputs xi to produce outputs (yi, bi) given the directional vector (1, −1); xi,n is the nth 

input of the ith cropping system, n = 1, … , N; yi,m  is the mth desirable output of the ith 

cropping system, m = 1, … , M; bi,j is the jth undesirable output of the ith cropping system, 

j = 1, … , J ; Γ = (α0, αn, βm, γj, αnn′ , βmm′ , γjj′ , δnm, ηnj, μmj)  is a vector of unknown 

parameters. Constraints on the parameters should be imposed to satisfy the properties of the 

distance function when estimating this quadratic function. Symmetry of the cross-output and 

cross-input effects is also assumed, and requires αnn′ = αn′n for n ≠ n′;  βmm′ =

βm′m for m ≠ m′; γjj′ ≠ γj′j for j ≠ j′.  

A linear programming technique is used to estimate the unknown parameters in the quadratic 

distance function following the work of Aigner and Chu (1968), which is also used by Färe et 
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al.(2005) and Färe et al., (2006). Specifically, the parameters in equation 12 are estimated by 

minimizing the sum of the distances between the frontier technology and each individual 

observation, subject to the constraints implied by the distance function properties. This can 

be written into a linear programming form as follows:  

min
Γ

∑[Di(𝐱𝐢, 𝐲𝐢, 𝐛𝐢; 1, −1) − 0]           

I

i=1

 

subject to: 

Di(𝐱𝐢, 𝐲𝐢, 𝐛𝐢; 1, −1) ≥ 0, i = 1, … , I                                                                           (13a) 

Di(𝐱𝐢, 𝐲𝐢, 𝐛𝐢; 1, −1)

∂bj
≥ 0, i = 1, … , I, j = 1, … , J                                                       (13b) 

∂Di(𝐱𝐢, 𝐲𝐢, 𝐛𝐢; 1, −1)

∂ym
≤ 0, i = 1, … , I, m = 1, … , M                                                (13c) 

∂Di(𝐱𝐢, 𝐲𝐢, 𝐛𝐢; 1, −1)

∂xn
≥ 0, i = 1, … , I, n = 1, … , N                                                 (13d) 

∑ βm − ∑ γj = −1

J

j=1

M

m=1

, ∑ βmm′ − ∑ μmj

J

j=1

= 0, m = 1, … , M

M

m′=1

                       (13e) 

∑ γjj′

J

j′=1

− ∑ μmj

M

m=1

= 0, j = 1, … , J                                                                              (13f) 

∑ δnm

M

m=1

− ∑ ηnj = 0, n = 1, … , N

J

j=1

                                                                         (13g) 

αnn′ = αn′n for n ≠ n′;  βmm′ = βm′m for m ≠ m′; γjj′ ≠ γj′j for j ≠ j′.        (13h) 

where Γ is a vector of the unknown parameters in equation 12. 

3. Data 

We consider the case of one desirable output, maize yield, one undesirable output, CO2 

emissions from burning maize straw, and one input, total cost, which summarizes labor, 

machinery and materials costs. Our data is provincial level yearly panel data that covers seven 

major maize provinces in China, including Anhui, Hebei, Henan and Shandong in North China 

Plain and Heilongjiang, Jilin and Liaoning in Northeast China from 1996 to 2013.  

 

To eliminate the influence of inflation, we deflate grain price and total cost to the 2010 price. 
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Price index is from China Statistical Yearbook. Maize yield in measured in kg/ha. Total cost is 

measured in yuan/ha. Both Maize yield and total costs are from The Compiled Materials of 

Costs and Profits of Agricultural Products of China, 1996-2013, published by the State 

Development and Planning Commission. CO2 emissions is measured in kg/ha and calculated 

by the following formula:  

CO2=Y*R*B*CF*EF,  

Where the variables are described in Table 1.  

 

Maize straw is estimated by multiplying crop yield (Y) and residue to crop ratio (R). We assign 

the median of R (1.25) from several literatures. The percentage of burnt biomass is key to 

calculating CO2 emissions from burning crop residues. We surveyed 7-14 village leaders 

randomly in each province to estimate the utilization of maize straw in percentage in their 

villages in 2015, 5 years ago (2010), 10 years ago (2005) and 15 years ago (2000). Then we 

expand the survey data to other years from 1996 to 2013 by assuming the change rate is the 

same between years during every 5 years. The amount of burnt biomass is calculated by 

multiplying the amount of biomass with the burnt percentage. We also multiply a combustion 

factor, which is the fraction of the mass combusted during the course of a fire. Finally, an 

emission factor (g/kg), estimated by Streets et al., (2003); Turn (2007), is used to calculate CO2 

emissions. The emission factor (g/kg), is the amount of CO2 in g emitted by burning 1 kg maize 

straw.  

 

The utilization of maize straw differs largely across provinces (Figure 2). Three major utilization 

types include open field burning, livestock feed and biomass residue. Livestock production has 

been specialized and separated from grain production over the past decade, so the crop 

residue used to feed animals has been replaced by other materials such as maize. Nearly 1/3 

of maize straw were used to feed animals in the seven provinces in 1996, while it decreased 

to 7% in 2013. As soil conservation technology, including returning residue to field, has been 

promoted by the government, increasingly more crop residue has been returned to field to 

keep nutrients in the soil. However, the practice of returning crop residue to the field is less 

common in Northeast China than North China Plain, since crop residue is hard to decay due to 
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the cold weather in Northeast China. In North China Plain, the practice of returning maize 

straw to the field increased from less than 2% in 1996 to around 37% in 2013. In contrast, 

Northeast China started returning maize straw to field beginning in 2006, but the practice did 

not expand at the same rate. On average, only less than 1% of maize straw was returned in 

2006, though in 2013, only around 7% was returned to field. Burning crop residue is a labor 

saving method to clear up the field for next crop season. A likely explanation for the difference 

is that youth have migrated to cities, which has affected the labor force, and hence, agricultural 

production practices.  In many rural areas the labor tends to be older, so farmers tend to be 

more inclined to burn crop residues in open field, especially in Northeast China. Around 60% 

of crop residues were burnt from 1996 to 2013 in North China Plain, while nearly 85% of maize 

straw were burnt over the same period in Northeast China.  

 

Table1. Description of key variables in the estimation of CO2 emissions 

Variable Description  
Data 

range 
Source 

Y Maize yield (kg/ha) 
1890-

8211 

The Compiled Materials of Costs and Profits 

of Agricultural Products of China, 1996-2013, 

published by the State Development and 

Planning Commission 

R Residue to crop ratio 1.25 

Median from the following literature: 

Yukihiko Tsumura et al. (2005); Liu et al. 

(2008); Kim and Dale (2004); Zeng et al. 

(2007); Lal (2005); Shen et al. (2010); Cui et 

al. (2008); Song (2010); Jia (2006); Bi (2010); 

Ministry of Science and Technology (1999); 

Renewable Energy Project (2008) 

B 
Percentage of burnt 

crop residue (%) 
39-89 Surveys on village leaders by the authors 

CF 

Combustion factor, 

which is the fraction 

of the mass 

combusted during the 

course of a fire  

0.92 Streets et al., (2003); Turn (2007)-WLL 

EF 

Emission factor (g/kg), 

which is the amount 

of CO2 in g emitted by 

burning 1 kg maize 

straw 

1350 Streets et al., (2003); Turn (2007)-WLL 
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Figure 2. Utilization of crop residue by province, 1996-2013 (%) 

 

The summary statistics of the key variables are presented in Table2. The trends of the three 

key variables are presented in Figure 3.  

Table 2. Summary statistics for inputs and outputs in maize production, 1996-2013 (price in 
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2010 year) 

  Input: total cost 

(yuan/ha) 

 Desirable Output: 

maize yield (kg/ha) 

 Undesirable CO2 

emission (kg/ha) 

Region   Mean Std. 

Dev. 

 Mean Std. Dev.  Mean Std. Dev. 

All seven 

provinces 

 
5328 1683  6141 1041  6517 2039 

  Anhui  4834 1707  5272 1270  5653 1722 

  Hebei  5241 1513  6133 851  4757 407 

  Heilongjiang  4235 1044  6069 727  8381 986 

  Henan  5064 1694  5761 868  5035 499 

  Jilin   6197 1656  6930 1098  9377 1420 

  Liaoning  5717 1661  6346 874  7376 1223 

  Shandong  6005 1767  6477 781  5041 937 
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Figure 3. Yield, input and CO2 emission by province, 1996-2013 

4. Results 

To avoid the convergence problem, we normalized the data by dividing each output and each 

input by their respective mean values (Färe et al. 2005).  

 

The parameters estimated for the translog functional form of the directional distance function 

(12) are obtained by solving the linear programming (13) using MATLAB. The estimated 

parameters are reported in Appendix Table 1. Once the parameters are obtained, we are able 

to calculate the directional output distance functions for each province in each year by 

inserting the estimated parameters back into Eq. (12). The directional output distance function 

serves as a measure of technical inefficiency. It gives the maximum unit expansion of the good 

output and contraction of the bad output. If the directional distance function equals zero, then 

we say that the production is fully efficient. A positive score means the presence of inefficiency 

in the production process. A higher score of the directional distance function means a higher 

technical inefficiency.  
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We calculate the technical efficiency by using one minus the distance function value. Efficiency 

score for North China Plain and Northeast China are plotted in Figure 4 and 5. It shows a 

decreasing trend in Anhui and Shandong province, while it increases in Hebei and Henan. One 

reason is that open field burning in Hebei and Henan decreases substantiallydue to increased 

amount returned to field. There are some fluctuations with no clear trend in the provinces of 

Northeast China.  

 

We further analyze the factors that contribute to the efficiency score by regressing input, 

desirable output, and undesirable output on the efficiency score. We use the natural log form 

of each variable. The results are shown in Table 3. It shows that an increase in maize yield by 

1% will lead to an increase in efficiency by 0.3%. A decrease in total cost by 1% will lead to 

increase in efficiency by 0.1%. A decrease in burnt maize straw by 1% will lead to an increase 

in efficiency by 0.2%. The fluctuations of efficiency scores over time result from the mixed 

changes of input, desirable output and undesirable output.  

 

Figure 4. Efficiency Score in North China Plain, 1996-2013 
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Figure 5. Efficiency Score in Northeast China, 1996-2013 

 

 

Table 3. Regression results on the factors affecting efficiency score 

  

VARIABLES Coefficients 

Ln(yield) 0.335*** 

 (0.028) 

Ln(total cost) -0.133*** 

 (0.019) 

Ln(burnt percent) -0.232*** 

 (0.034) 

Constant -0.943*** 

 (0.257) 

Observations 126 

Number of provinces 7 

Within R-sq 0.636 

Between R-sq 0.929 

Overall R-sq 0.740 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Figure 6 plots the kernel densities of the shadow prices for Northeast China and North China 
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Plain. On average, the shadow price of CO2 in Northeast China is 0.342 yuan/kg, which is 

cheaper than that in North China Plain (0.611). It implies that if policy makers better to start 

the abatement of CO2 emissions from Northeast China until the shadow prices of CO2 is equal 

or larger than that in North China Plain. The summary of descriptive statistics of CO2 shadow 

price by province is shown in Table 4. Figure 7 shows that the shadow price of CO2 at national 

level is decreasing over time. It implies that as emissions increase, marginal cost of abating 

CO2 is lower.  

 

Table 4. Summary of descriptive statistics of CO2 shadow price by province, 1996-2013 

(yuan/kg)   

 Mean Std. Dev. Min Max 

Nation 0.496 0.112 0.259 0.699 

Northeast China 0.342 0.145 0 0.686 

    Heilongjiang 0.398 0.087 0.285 0.555 

    Jilin 0.228 0.130 0.000 0.529 

    Liaoning 0.399 0.143 0.138 0.686 

  North China Plain 0.611 0.178 0.240 1.368 

    Anhui 0.664 0.275 0.257 1.368 

    Hebei 0.618 0.101 0.466 0.816 

    Henan 0.635 0.122 0.399 0.911 

    Shandong 0.529 0.143 0.240 0.824 
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Figure 6. Kernel density estimate of CO2 shadow price in Northeast China and North China 

Plain 

 

Figure 7. Shadow price of CO2 at national level from 1996 to 2013.  
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Figure 8. Shadow price of CO2 vs. CO2 emissions  

 

Figure 8 shows that the larger amount of CO2 emissions, the lower shadow prices. It implies 

that given current technology, CO2 abatement should start from the place where CO2 are 

higher. By regression natural log of shadow price on the amount of CO2 emissions, we obtained 

the elasticity is -1.33. It implies that an increase in CO2 emissions by 1% will lead to a decrease 

of CO2 emission by 1.33%.  

 

We further assumes that maize yield decreases by 10% and maize straw decreases by 50% 

under conservation practices (scenario1). We want to compare the efficiency impact from the 

conservation practices as well as the differences in the abatement costs between conventional 

practices and conservation practices. Figure 9 shows that the average efficiency increases by 

9% from 0.812 under baseline to 0.886 under scenario 1. Under baseline, if CO2 emissions are 

abated by 50% by reducing maize production, the abatement cost is 1032 yuan/ha (Figure 10). 

Under scenario 1, the abatement cost of reducing CO2 emission by 50% is equal to 10% of the 

maize revenue (831 yuan/ha). The difference of abatement cost (201 yuan/ha) provides a 

reference for policy makers to subsidize farmers to adopt conservation practices. The whole 
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society will benefit if the government spend less than 201 yuan/ha to promote adoption of 

conservation practices. The does not take other negative effects of CO2 emissions into account, 

such as delays of airlines, trouble in ground transportation, and human health, etc. Du et al. 

(2015) estimates the marginal abatement cost curve of CO2 emissions in China based on a 

provincial panel for the period of 2001-2010. Their estimates show that China would incur 559-

623 yuan/t (roughly 51-57%) increase in marginal abatement cost to achieve a corresponding 

40-45% reduction in carbon intensity compared to its 2005 level.  

 

 

Figure 9. Kernel density estimate of efficiency under current practices vs. conservation 

practices  
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Figure 10. Kernel density estimate of abatement cost under current practices vs. conservation 

practices  

5. Discussion and conclusions  

The reduction of CO2 emissions in agricultural sector is a key step to cope with the social costs 

of climate change. As the largest agricultural GHGs emitter, China’s agricultural sector has been 

attracting increasing attention, although this study also contributes to the emerging literature 

on abatement costs of agricultural emissions. In order to estimate the cost-effectiveness of 

allocating carbon reduction among different sectors or different sub-sectors within agriculture, 

a necessary first step is to analyze the marginal abatement cost of CO2.  

 

This paper estimated CO2 shadow prices from burning crop residue as well as the production 

efficiency with consideration of CO2 emissions as undesirable outputs. The environmental 

production efficiency varies in different provinces and years. Regression analysis shows that 

an increase in maize yield by 1% will lead to an increase in efficiency by 0.3%. A decrease in 

total cost by 1% will lead to increase in efficiency by 0.1%. A decrease in burnt maize straw by 

1% will lead to an increase in efficiency by 0.2%. The fluctuations of efficiency scores over time 

result from the mixed changes of input, desirable output and undesirable output. 
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The shadow price of CO2 from burning crop residue is estimated to range from 0-1.368 yuan/ha 

(or US$210.5/t) with an average of 0.496yuan/kg (or US$76/t). Table 5 compares our results 

with other studies. There is a wide range of shadow prices of CO2 depending on the study 

period, sector, sample and model.  

 

Table 5. Comparison with previous studies1 

Study Period  Sector Sample  Model2 

Mean 

value 

($/t) 3 

Wang et al. 

(2011) 
2007 Economy 

30 Provinces in 

China 
DEA 62.5 

Wei et al. 

(2012) 

1995-

2007 
Economy 

30 Provinces in 

China 
DEA 13.9 

Du et al. 

(2015) 

2001-

2010 
Economy  

30 Provinces in 

China 
DDF+LP 120-310 

Wei et al. 

(2013) 
2004 Energy 

124 Power plants 

in China 

DDF+LP, 

DDF+ML 

248.2, 

73.8 

Tang et al. 

(2016) 

1998-

2005 
Agriculture 

29 farms in 

Australia 
DF+LP 29.3 

Thamo et al. 

(2013) 

Simulation 

data 
Agriculture 

Farms in Western 

Australia 
MIDAS4 50 

Flugge and 

Abadi (2006) 

Simulation 

data 
Agriculture 

Two regions in 

Western Australia 
MIDAS 55 

This study  
1996-

2013 
Agriculture 

7 provinces in 

China 
DDF+LP 76 

1Adapted from Du et al.(2005) 
2SDF, DDF, LP, ML, DEA denote Shephard Distance Function, Directional Distance Function, 

Linear Pro-ta Envelopment Analysis, respectively 
3All the shadow prices are transformed into US dollars according to the corresponding 

exchange rate for the convenience of comparison 
4 A steady-state optimization farm model 

 

The shadow price of CO2 has an inverse relationship with the amount of emissions. The 

elasticity is 1.33, which means an increase in CO2 emissions by 1% will lead to a decrease of 

CO2 emission by 1.33%.  

 

The average efficiency increases by 9% from 0.812 under baseline to 0.886 under scenario 1 

(adoption conservation practices with 10% decrease in yield and 50% decrease in burnt crop 
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residue). The shadow prices in these two cases imply that the whole society will benefit if the 

government spend less than 201 yuan/ha to promote adoption of conservation practices. 

 

Several parametric issues are available for discussion. The first matter involves how to choose 

directional vector. In this paper, we use g=(1,1), which means desirable output decreases by 1 

unit, undesirable output also decreases by 1 unit. In many of the studies presented in Table 5, 

g=(1,1) is assumed. It is important to reflect upon whether  we use empirical relationship to 

inform the choice of directional vector, and how whether the directional vector affects the 

result. In order to explore this, further sensitivity analysis is required. A second parametric 

issue is that when we include other crops, should we analyze all crops together or analyze it 

by crop? Analyzing all crops together assumes that there is substitutability between crops., 

while analyzing these separately assumes that there is an impossibility of changing from 

planting one crop to another. Another line of inquiry would explore why the results are so 

sensitive as indicated by the literature.  

 

There are several practical policy implications arising from this study.  One area that merits 

additional exploration is the trade-off between reduced yields and practices that substantially 

decrease CO2 emissions.  Decreasing CO2 emissions provides marginal social benefits that 

may conflict with societal food security goals and individual farmer production.  Clearly, the 

results from this model show that there are not incentives for farmers to implement 

production practices that decrease yield and presumably, profits.  Thus, it would be 

paramount for the government’s willingness to compensate farmers to implement 

conservation practices that will reduce CO2 emissions.  However, the implications of reduced 

agricultural yields may be juxtaposed with other dietary and nutritional goals that otherwise 

enhance food security.  Furthermore, there may be differences between the regions that 

warrant additional consideration, and as a result, the regions might not be managed uniformly.  

In summary, this preliminary analysis provides guidance about environmental and agricultural 

targets that require more extensive research, and that may have implications at many tiers, 

extending from the level of the farm to the international scale.     
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Appendix  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i The maximal revenue must be associated with the cropping systems after their inefficiencies are eliminated.  

 

                                                             

Appendix Table 1.  Estimated Coefficients in the Quadratic Distance Function 

Coefficient Variable Value 

α0 Intercept -0.129 

α1 x: total cost (yuan/ha) 0.543 

β1 y: crop yield (kg/ha) -0.339 

γ1 b: CO2 emissions (kg/ha) 0.661 

α11 1/2x2: half of squared total cost -0.083 

β11 1/2y2: half of squared crop yield  -0.140 

γ11 1/2b2: half of squared CO2 emissions -0.140 

δ xy: cross term of total cost and crop yield -0.131 

 𝜂  xb: cross term of total cost and CO2 emissions -0.131 

μ yb: cross term of crop yield and CO2 emissions -0.140 


