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Flexible-fuel automobiles and CO2 emissions in Brazil: a semiparametric analysis using 

panel data 

 

Abstract 

The objective of this paper is to investigate the relationship between the fleet of flex-

fuels vehicles and CO2 emissions in Brazil. We analyzed the robustness of parametric 

and semiparametric analyses using a panel data set at the state level from 1998 to 2013. 

In both analyses, we find that there is a strong negative correlation between CO2 

emissions and flex-fuels vehicles. Moreover, our results also suggest that there are: 1) 

there is evidence of an Environment Kuznets Curve for flex-fuel vehicles; 2) a negative 

relationship between sugar cane cropped area (due to carbon sequestration) and CO2 

emissions and; 3) a positive relationship between livestock and CO2 emissions. 

Key words: flex-fuels vehicles, CO2 emissions, semiparametric models, Brazil 

JEL: C14; O13; Q53 
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Flexible-fuel automobiles and CO2 emissions in Brazil: a semiparametric analysis using 

panel data 
 

1. Introduction  

In a context of emerging low-carbon economy and global efforts to reduce dependence 

on fossil fuels in the energy matrix, Brazil stands out in the technological and productive leading 

position with regard to the use of biofuels. The country has a long and unique experience in the 

production of ethanol fuels on large scale as an alternative to gasoline. The production of 

ethanol started in the 1930s, but its production sharply increased with the creation of Proálcool 

(Brazilian National Program for Ethanol) in 1975 (Moraes and Zilberman, 2014). Moreover, 

since 1975, a federal law has mandated that between 20% and 27% of gasoline fuels must be 

mixed with ethanol from sugar cane (Wills and La Rovere, 2010). 

More recently, Brazil has been also a leader in the production of “Flex-Fuel” cars 

(Moraes and Zilberman, 2014). These vehicles, which started to be manufactured in 2004, are 

highly cost effective because they engines are capable of running on any arbitrary combination 

of gasoline and ethanol from sugarcane.1 In 2014, flexible-fuel light vehicles (including SUVs) 

composed over 50% of the national vehicle fleet and accounted for more than 90% of actual 

total car sales (Anfavea, 2015).  

 Although in Brazil the net CO2 emissions resulting from the burning of ethanol in car 

engines are not significantly lower than the emissions due to burning fossil fuels, the use of 

ethanol as alternative to gasoline is contributing with a reduction around 13% of the GHG 

(Greenhouse Gas) emissions of whole energy sector (Macedo, 2005). This is because all 

sources of emissions are reabsorbed by carbon sequestration during the growth of the 

sugarcane crop in the next season (Macedo, 2005; Goldemberg et al., 2008). Notwithstanding, 

                                                           
1 Nowadays, the rational choice by the consumer in favor of ethanol is when the price ratio between both fuels is 

of 70%.  
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the use of ethanol in place of gasoline appears to be also effective in mitigating hazardous 

toxic pollutants from lead, carbon monoxide and Sulphur (Macedo, 2005).  

Therefore, more economic incentives to encourage not only the production of sustainable 

biofuels but to keep up the production of flex-fuel automobiles will help Brazil to meet the 

goals of the intended Nationally Determined Contribution (INDC) for the U. N. Framework 

Convention on Climate Change (UNFCCC) held in Paris, last year in December. Whether or 

not the increase of flex-fuel vehicles would indeed contribute to decrease CO2 emissions is the 

main research question of this work.  

That being said, based on the well-known empirical hypothesis of the Environmental 

Kuznets Curve (EKC)—that at higher levels of income, higher and more stringent 

environmental regulations are needed (Grossman and Krueger, 1991, 1995; Dinda, 2004)—

we run first a standard parametric analysis using a panel data set at the state level in Brazil, 

and found that from 2004 there is a strong negative correlation between CO2 emissions and 

flex-fuels vehicles, corroborating the EKC hypothesis. However, it is also well-known that 

economic theory and empirical work do not provide much guidance regarding the choice of 

functional form for estimation purposes (Schmalensee and Stoker, 1999; Yatchew, 2003). 

Besides, most empirical research in economics seems to ignore the benefits of nonparametric 

methods (Henderson and Parmeter, 2015). The major rationale for using the nonparametric or 

semiparametric methods is to avoid the restrictions or misspecifications that can stem from 

specific functional forms, which can produce biased estimates (Yatchew, 2003). To address 

this problem, in this paper a semiparametric method designed specifically for panel data is 

utilized to analyze the potential relationship between flex-fuel vehicles and CO2 emissions. 

To our best knowledge, the literature of economic studies that investigated the relation 

between flex-fuel vehicles and GHG emissions is still scarce. This study aims to fill this gap 
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analyzing the relationship of the fleet of flex-fuel cars and CO2 emissions in Brazil using a well-

behaved panel data set at a state level in Brazil for the period 1998-2013.  

In addition to this introduction, this paper has more six sections. The second presents a 

(very) brief literature review on the topic, while the third section details the identification 

strategy used. The data used in the research are presented in the fourth section. The results are 

presented and discussed in the fifth section, followed by a robustness check section and the 

final remarks.  

2. The Environmental Kuznets Curve (EKC) and ethanol fuel in Brazil 

The issue of CO2 (carbon dioxide) emissions and its main determinants have been 

widely discussed in the literature given the growing importance related to environmental 

policies on a global scale, more specifically related to the possible effects and causes of global 

warming. The major determinants covers a wide set of economic subjects such as: 1) the Gross 

Domestic Product (GDP) and trade liberalization; 2) the energy consumption; 3) population 

growth and urbanization; 4) number of vehicles with new technologies in the industry; 5) 

alternative energy sources, among others (Bertinelli and Strobl, 2005; Azomahou et al., 2006; 

Ang, 2007; Martínez-Zarzoso et al., 2007; Jalil and Mahmud, 2009; Chang, 2010; Lee and 

Mukherjee, 2014; Kang et al., 2016).  

In economics prospect, it is well known that the Environmental Kuznets Curve (EKC) 

proposes the existence of an inverted U-shaped relationship between environmental 

degradation indicators and per capita income (Dinda, 2004). According to Stern (1998), the 

EKC suggests that economic growth can mitigate the environmental impacts driven by the 

initial period of economic development, and consequently to a more stringent regulations and 

environmental improvements in countries that are traditionally major polluters. 

The first empirical analysis of the EKC, according to Stern (1998) and Dinda (2004), 

refers to the work of Grossmann and Krueger in 1991, published in 1993, which pointed out to 
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an inverted-U relationship between SO2 (sulfur dioxide) emissions and GDP per capita in 

different countries. However, the term Environmental Kuznets Curve (EKC) started to be used 

from Panayotou (1993) (Stern, 1998; Dinda, 2004).  

Currently, there are a number of studies that confirm the EKC for various environmental 

degradation factors, but, when CO2 emissions considered separately, mixed results are found in 

the literature (Galeotti and Lanza 1999; Taskin and Zaim, 2000; Harbaugh et al., 2002; Friedl 

and Getzner,2003; Lantz and Feng, 2006; Apergis and Payne 2009; Jahlil and Mahmud, 2009; 

Fodha and Zaghdoud, 2010; Iwata et al., 2011;  Ahmed and Long, 2012; Farhani and Ozturk, 

2015, Kang et al., 2016).  

The methodological approaches are also diverse. Usually, much of the research is made 

using time-series approaches and linear panel data analysis (Stern, 1998; Millimett et al., 2003). 

However, recently, studies has shown that this type of estimation for some cases might be 

inadequate due the linearity imposed on the parameters. Therefore, semiparametric and 

nonparametric approaches for the estimation of EKC is coming up as alternatives (Millimett et 

al., 2003; Zhu et al., 2012). 

That being said, the use of this recent approaches for the study of CO2 emissions and 

economic indicators does not seem support the hypothesis of EKC for relationship.  Azomahou 

et al. (2006) estimates a nonparametric panel data for 100 countries from 1960 to 1996 and 

found a positive relationship between the variables, and was not able to corroborate the EKC 

hypothesis. Similar results are also found in Bertinelli and Strobl (2005) using semiparametric 

estimation for panel data in different countries in the period from 1950 to 1990. Zhu et al., 

(2012) using a dynamic semiparametric model for the relationship between urbanization and 

CO2 emissions for 20 emerging countries, and found out that there is little evidence that support 

the inverted-U curve.  
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Kang et al. (2016), using a spatial model of panel data for Chinese cities from 1997 to 

2012, identified a relationship in the form of N inverted; therefore, not validating the traditional 

form of inverted U of EKC. In addition, Kang et al. identified that the level of urbanization 

increases, the CO2 emissions increases due to the massive burning of coal. On the other hand, 

trade liberalization tends to reduce the emission of gas, probably because of the pollution 

heaven effect for some goods and weaker environmental regulations in other countries.  

Ang (2007) who ran a time series analysis and error correction models for France with 

data from 1960 to 2000, was able to corroborate the EKC. Apergis and Payne (2009) also 

verified the relationship in the form of inverted U using an error correction model applied to 

panel data to the Central American countries between 1971 and 2004.  

Jalil and Mahmud (2009), using time series analysis to China in the 1929-1994 period, 

identified a weak relationship of foreign trade with CO2 emissions. Using non-linear estimation 

techniques, with distributions gamma and weibull for panel data from various countries 

between 1971 and 1996, Galeotti and Lanza (1999) demonstrated the validity of EKC for the 

relationship between CO2 and GDP. The EKC is also verified when they tested other air 

pollution indicators such as emissions of sulfur dioxide (SO2) and nitrogen oxide (NOx). Lee 

and Murkerjee (2014) using nonparametric estimations of panel data models using local linear 

least squares when fixed effects present for U.S data, also corroborate the EKC for NOx 

pollutants.   

To our best knowledge, the number of studies using parametric and nonparametric 

estimation in the context of CO2 emissions is still limited (Gallet (1999), Millimet et al. (2003) 

and Lee and Mukherjee (2014) are exceptions).  In addition, there almost none studies on the 

determinants of CO2 emissions as well as about the EKC for Brazil (Pao and Tsai (2011) and 

Pao and Tsai (2011a) are exceptions). More specifically, using time series analysis for Brazilian 
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data the years 1980-2007, Pao and Tsai (2011) validated the hypothesis of EKC for CO2 

emissions.  

Ethanol fuel in Brazil  

In Brazil, the fleet of vehicles is quite substantial, and these vehicles are mainly ran by 

fossil fuels that have high power of emission of pollutant gases (MMA, 2013). However, the 

country shows a unique situation in the world when analyzed the growth of the flex vehicle 

fleet that is able to run on any arbitrary combination of gasoline and ethanol, since the 

introduction of this technology in 2003. According to statistics from the National Association 

of Automobile Manufacturers (ANFAVEA), by June 2005 flex-fuel vehicles already accounted 

for over half of all light commercial vehicles of the “Otto cycle”2 licensed in Brazil. This ratio 

in 2014 is about 90%, representing more than 50% of the national vehicle fleet. 

There are also in other countries a number of agreements for the promotion of biofuels, 

such as ethanol and biodiesel (REN, 2012). In 2012, for at least 46 countries, public policies 

was implementing encouraging the use of biofuels. Production subsidies and tax fuel transport 

are some of examples of these policies (REN, 2012).  However, such projects are incipient 

compared to the Brazilian case. 

In 2012, the national fleet of flex vehicles accounted for the consumption of9.5 billion 

liters of hydrous ethanol (MMA, 2013). Figure 1 shows the evolution of domestic ethanol 

consumption in road transport by vehicle category since 1980. Clearly, the consumption of 

sugar cane ethanol by flex-fuel vehicles has sharply increased since 2003.   

INSERT FIGURE 1 HERE 

 

                                                           
2The Otto cycle is a set of processes used by sparking ignition internal combustion engines (2-stroke or 4-stroke 

cycles). Engines based on this cycle are present in most passenger cars. With the Otto cycle engines can be built 

to four times more efficient and cleaner compared to two-stroke engines. 
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3. Identification strategy  

To examine the impact of flex-fuel vehicles on CO2 emissions among other 

determinants, the following full parametric model is estimated under the Environmental 

Kuznets Curve (EKC) hypothesis framework, and is given by:   

𝐶𝑂2𝑖𝑡 =  𝛼𝑖 +  𝛽1(𝑉𝑒ℎ𝑖𝑐𝑖𝑡) + 𝛽2(𝑂𝑡ℎ𝑒𝑟_𝑉𝑒ℎ𝑖𝑐𝑖𝑡) + 𝛽3(𝑉𝑒ℎ𝑖𝑐_𝐹𝑙𝑒𝑥𝑖𝑡) + 𝛽4(𝑣𝑒ℎ𝑖𝑐_𝑓𝑙𝑒𝑥𝑖𝑡
2 ) +

 𝛽5(𝐶𝑎𝑡𝑡𝑙𝑒𝑖𝑡) +  𝛽6(𝑆𝑢𝑔𝑎𝑟 𝐶𝑎𝑛𝑒𝑖𝑡) +  𝛽7(𝐺𝐷𝑃𝑖𝑡) +  𝛽8(𝐺𝐷𝑃𝑖𝑡
2) + 𝜀𝑖𝑡     (1)                   

where CO2 are the total amount (GWP-Tons) of all emission pollutants in CO2 equivalents3; 

Vehic is the number of Passenger Cars and SUVs; Other_Vehic is the number of other vehicles 

converted into Passenger Car units4; 𝑉𝑒ℎ𝑖𝑐_𝐹𝑙𝑒𝑥 is the number of Passenger Cars times a binary 

variable (𝐷 = 1 𝑖𝑓 𝑦𝑒𝑎𝑟 ≥  2004 𝑎𝑛𝑑 𝐷 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒); 𝑉𝑒ℎ𝑖𝑐_𝐹𝑙𝑒𝑥2 is the square of 

𝑉𝑒ℎ𝑖𝑐_𝐹𝑙𝑒𝑥; Cattle denotes the number of livestock (in heads); Sugar Cane is the area of sugar 

cane (in hectares); GDP is GDP per capita (in 2000 constant prices); GDP2 is the square of 

GDP, and 𝛼𝑖 is the state fixed effect. The Livestock is introduced as a predictor is because its 

current production accounts for between 15% and 24% of current worldwide GHG emissions 

(Fiala, 2008). Balancing that, sugarcane production accounts for carbon sequestration 

(Goldemberg et al., 2008).  

 As an alternative to a full parametric specification, we propose the estimation of a 

semiparametric regression along with panel data to account for heterogeneity of entities while 

also relaxing the functional form developed by Henderson et al. (2008). This relationship can 

be described by the following model: 

𝐶𝑂2𝑖𝑡 =  𝛼𝑖 +  𝛽1(𝑉𝑒ℎ𝑖𝑐𝑖𝑡) + 𝛽2(𝑂𝑡ℎ𝑒𝑟_𝑉𝑒ℎ𝑖𝑐𝑖𝑡) + 𝜑(𝑉𝑒ℎ𝑖𝑐_𝐹𝑙𝑒𝑥𝑖𝑡) +  𝛽3(𝐶𝑎𝑡𝑡𝑙𝑒𝑖𝑡) +

 𝛽4(𝑆𝑢𝑔𝑎𝑟 𝐶𝑎𝑛𝑒𝑖𝑡) +  𝛽5(𝐺𝐷𝑃𝑖𝑡) +  𝛽6(𝐺𝐷𝑃𝑡
2) +  𝜀𝑖𝑡,                                                                 (2)   

                                                           
3CO2 emissions from land use change (coming mostly from deforestation in Amazon) are not included in the 

sample.  
4 For more details about this conversion, see DNIT (2006),  page 56, table 9.  
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where the function form 𝜑(∙) is unspecified. To get consistent estimates, the parameters  𝛽′𝑠 

are estimated using OLS procedures, and 𝜑(⋅) is estimated interactively based on a 

nonparametric kernel approach. Henderson et al. (2008) outline the steps to get consistent and 

efficient estimates for (2) which are followed here. All variables are firstly standardized and 

then transformed using the first difference to wipe out the unobserved heterogeneity effect 𝛼𝑖. 

4. Data 

This study employed annual data for all 27 Brazilian states from 1998 to 2013 period, 

totalizing 432 observations. The values of greenhouse emissions (GHG) - the dependent 

variable - are obtained from the Estimate System of Greenhouse Gases in Brazil (SEEG)5. The 

study of the Global approach Warming Potential (GWP) is used as reference for determinate 

the equivalent carbon emission. It is possible to obtain estimates of the amount of GHGs emitted 

by the 27 federative units of Brazil.  

Figure 2 and Figure 3 show the density estimated of emissions for three selected years 

of the sample, and the share (%) by state of all pollutants in 1998 and 2003, respectively.  Figure 

2 shows that when emissions from land use are discounted, as we did, the amount of total 

emissions in CO2 has increased from 1998 to 2013. Moreover, Figure 3 show that most of 

emissions have been concentrated in the most industrialized state units such as São Paulo, 

Minas Gerais in the Southeast region, and Paraná and Rio Grande de Sul in the South. It is 

important highlight that Mato Grosso, which now become one of the most producers of 

soybeans and cattle of the country and shows an agricultural sector highly capital intensive has 

overcome state such as Rio de Janeiro where has been one of the most oil producers in the 

country.  

INSERT FIGURE 2 HERE 

                                                           
5 http://seeg.eco.br/en/ 
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INSERT FIGURE 3 HERE 

The number (units) of vehicles obtained from the National Traffic Department 

(DENATRAN), while the annual data regarding to agricultural areas occupied by sugarcane 

crop and the annual herd cattle are coming from on the Municipality Agricultural Survey (PAM-

IBGE) and the Municipality Cattle Survey (PPM-IBGE) 6. The GDP per capita is from IBGE, 

the government agency responsible for all official statistics in Brazil. 

The variable of interest is the amount of flex-fuel vehicles. However, we were not able 

to get this particular data, therefore, as presented in the previous section a dummy variable is 

constructed to capture the importance of the flex-fuel fleet in Brazil introduced in 2004. 

Box 1 summarizes the variables considered in this study, the expected regression signals 

as well as the relevant references. 

Box 1- Variables considered in this study, expected regression signals and references. 

Variable Expected sign References 

𝑮𝑫𝑷 +/- 
Jalil and Mahmud (2009); Ang (2007); Apergis and 

Payne (2009); 

𝑮𝑫𝑷² -/+ 
Jalil and Mahmud (2009); Ang (2007); Apergis and 

Payne (2009); 

𝑽𝒆𝒉𝒊𝒄𝒍𝒆𝒔 + Yang, Li and Cao (2015) 

𝑶𝒕𝒉𝒆𝒓_𝑽𝒆𝒉𝒊𝒄𝒍𝒆𝒔 + Yang, Li and Cao (2015) 

𝑽𝒆𝒉𝒊𝒄_𝑭𝒍𝒆𝒙 -  

𝑽𝒆𝒉𝒊𝒄_𝑭𝒍𝒆𝒙𝟐 -  

𝑪𝒂𝒕𝒕𝒍𝒆  + FAO (2006) 

𝑺𝒖𝒈𝒂𝒓 𝑪𝒂𝒏𝒆 - Macedo (2005) 

Source: authors. 

                                                           
6 http://www.ibge.gov.br/english/ 
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5. Results 

Table 1 presents the descriptive statistics of the variables considered in this study. The 

balanced panel data set consists of repeated cross-sections of observations covering the period 

1998 to 2013 for 27 states in Brazil.  

The parametric and semiparametric results are reported in Table 2. A comparison of the 

Hausman specification test of the full parametric OLS fixed effects model versus the full 

parametric OLS random effects model strongly favored the former at the 1% level. The two 

semiparametric fixed effects estimates are based on the estimator developed by Henderson et 

al. (2008) as we mentioned in the previous sections.7  

The results indicate that the majority of variables in all models are statistically 

significant at 1%, 5% or 10% levels and show the expected signs. It is important to highlight 

that no control for endogeneity has been made at this point (an issue to be address in the future).  

More specifically, the first point to make is about the main coefficients of interest. The 

results in all fully parametric models and in the parametric part of the semiparametric model II 

initially suggest that the fleet of 𝑣𝑒ℎ𝑖𝑐_𝑓𝑙𝑒𝑥 is negatively contributing to a reduction on CO2 

emissions, as theoretically expected. This result is capturing the effect of flex-fuel vehicles 

introduced in the Brazilian automobile market in 2004. In addition, the negative sign of the 

coefficient of 𝑣𝑒ℎ𝑖𝑐_𝑓𝑙𝑒𝑥2 in all parametric models and in the semiparametric model I confirms 

the EKC hypothesis, which drives a preliminary conclusion that the flex-fuel fleet is indeed 

able to reduce CO2 emissions.  

It is now important to verify if this linear relationship is sustained nonlinearly as we 

proposed. Thus, we now turn to the nonparametric estimations of 𝜑(𝑉𝑒ℎ𝑖𝑐_𝑓𝑙𝑒𝑥) and 

                                                           
7A Hausman test comparing the full parametric versus semiparametric version is still an ongoing research in this 

study.  
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𝜑(𝑉𝑒ℎ𝑖𝑐_𝑓𝑙𝑒𝑥2) of the semiparametric fixed effects model from expression (2) displayed in 

the Figures 4 and 5, respectively. The colored lines correspond to 95% confidence intervals 

(with 500 replicates using the (wild) bootstrap method).8 The bandwidths are estimated via 

Least-Square Cross Validation (Li and Racine, 2007).  

As we observe, the nonparametric impact of one additional flex-fuel vehicle on CO2 

emissions (Figure 4) is not always linear and always decreasing, as suggested from the fully 

fixed effects parametric specification. The CO2 emissions start increasing at lower units levels 

of flex fuel vehicles, and then decreased at higher units of flex fuel vehicles. The estimate of 

𝜑(𝐴𝑢𝑡𝑜_𝑓𝑙𝑒𝑥2) in Figure 5 is supporting more favorably our hypothesis that flex-fuel vehicles 

(assuming that more environmental technology for engines is also changing) can indeed 

contribute to mitigate the effects of CO2 emissions from 2004.  This nonparametric result is 

clearly corroborating the EKC inverted-U hypothesis. A robustness checking about these 

estimates will be conducted in the following section.  

Back to Table 2, it is also of particular interest here to observe in both parametric and 

semiparametric results that as long as cropped sugarcane areas expand (assuming that no more 

forest is been deforested), and holding everything else constant, the result is less CO2 emissions. 

This result brings evidence that the carbon sequestration hypothesis is corroborated as 

suggested by Macedo (2005) and Goldemberg et al. (2008). To add up our conclusions, on the 

other hand, the impact of livestock herd (cattle) is positive and statistically significant, and 

should be a concern for the future policy with respect to sustainability and emission reductions 

for this kind of economic activity. We also find that the GDP increases, CO2 emissions also 

increases while the square of GDP is contributing to reduce CO2 emissions. Such result that is 

                                                           
8 To get standard errors that are robust to heteroscedasticity a wild bootstrap with 500 replications is used (Cameron 

and Trivedi, 2005; Henderson and Parmeter, 2015).  
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also corroborating the EKC hypothesis for the growth (and technological change) of economy 

as a whole and a subject that has been widely studied in the literature.      

As stated before, the application of nonparametric models is still limited; but has been 

increasing in many fields of research (Henderson and Parmeter, 2015). Henderson and Parmeter 

also suggest that for policy analysis purposes, a full parametric model is always preferable to a 

nonparametric one, because it is easier to interpret. However, nonparametric models can help 

identifying the true underlying structure of the data. In our case, we are interested in 

investigating how robust of the EKC hypothesis is related to the flex-fuel vehicles and CO2. 

Moreover, if our EKC is satisfied, what would be the actual turning point that CO2 emissions 

start reducing as long as the fleet of flex-fuel vehicles increases. We will try to check all this 

issues in the next section by considering all predictors estimated nonparametrically.  

6. Robustness checks  

In this section, a battery of robustness checking using different nonparametric estimators 

is executed.9 We start with the analysis, which all predictors enter in the regression functions 

nonparametrically. We present two sets of estimations. The first, the nonparametric estimator 

Local Linear Least Squares (LLLS) is executed in more naïve way, that is, the estimation is 

obtained by pooling cross-sections to obtain large samples size and ignoring that these cross-

sections are measured repeatedly (Henderson and Parmeter, 2015). For this type of dataset, the 

authors highlight that one of the main theoretical advantages of the LLLS estimator is to provide 

more an accurate measurement of the conditional mean, while at the same time it provides an 

estimator of the first derivative of the conditional mean. Thus, consider a full nonparametric 

model for cross-section as follow:  

                                                           
9This section is entirely based on Henderson and Parmeter (2015). The authors also provide in their website R-

codes to replicate all examples of the book, and the programing codes can be easily adapted by the users. Their 

programming codes can be accessed at: http://www.the-smooth-operators.com/.  

http://www.the-smooth-operators.com/
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𝐶𝑂2𝑖
=  𝜑(𝑥𝑖) +  𝜀𝑖                     (3) 

where for each i, CO2i is the dependent variable, xi is a vector of exogenous variables, 𝜑(∙) is 

an unknown smooth function, and 𝜀𝑖 the error term.  

 The second set of estimations, which consider that our cross-section data is measured 

repeatedly over time, a full version of a nonparametric panel data model can be specified as 

such:   

𝐶𝑂2𝑖𝑡 =  𝜑(𝑥𝑖𝑡) +  𝜀𝑖𝑡                 (4) 

where the error term 𝜀𝑖𝑡 follows the specification  

𝜀𝑖𝑡 =  𝜇𝑖 + 𝜐𝑖𝑡     (5) 

where 𝜇𝑖and 𝜐𝑖𝑡 are (un)correlated for all i and j, and for all j=1,2,…,n.  

 The object of interest is to estimate 𝜑(𝑥𝑖𝑡)  at a point 𝑥𝑖𝑡 and the slope of 𝜑(𝑥𝑖𝑡), i.e., 

𝛽(𝑥𝑖𝑡) =  𝜕𝜑(𝑥𝑖𝑡)/𝜕𝑥𝑖𝑡 (Henderson and Parmeter, 2015). We consider two estimators 

developed specifically for panel data structure. The first is called by the Local Linear Weighted 

Least-Squares (LLWLS) estimator and departs from the assumption that individual effect and 

the regressors are uncorrelated, therefore a Random Effects model (Lin and Carrol, 2000; 

Henderson and Ullah, 2005; Henderson and Parmeter, 2015). The second estimator (HCL) is 

based on the work of Henderson et al. (2008), a fixed effects in nature, that assumes that 

individual effects are correlated with the regressores.10 This estimator is the same as the one 

used in the previous section, but now a full nonparametric version of their estimator is presented 

here. 

To make more interesting the analysis, Table 3 and Table 4 present the elasticities for 

each quartile (25th, 50th, 75th percentiles) from Local Linear Least-Squares (LLLS) estimator 

                                                           
10 Henderson et al., (2008) developed a Hausman-style test for the presence of fixed versus random effects; and 

similar to the test of the full parametric versus the semiparametric specifications, is still an ongoing research on 

this study.  
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considering the pooled data and two of nonparametric panel data estimators (LLWLS, HCL), 

respectively. In all of them, under each estimated partial effects is the (wild) bootstrapped 

standard errors. The bandwidths are estimated via Least-Squares Cross-Validation (LSCV). 

The elasticity is calculated as follows:  

𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦(𝑥𝑖𝑡) =
�̂�(𝑥𝑖𝑡)𝑥𝑖𝑡

�̂�𝑖𝑡
,  (3) 

for each it, where �̂�(∙)is the gradient of the conditional mean with respect to xit, and �̂�𝑖𝑡 is the 

fitted value (Henderson and Parmeter, 2015).  

 Starting with the pooled full nonparametric model (LLLS), Table 3 shows interesting 

results. First, the R2 of 0.99 is capable of explaining considerably the variation in the CO2 

emissions.  Second, the impact of flex fuel vehicles on CO2 emissions is the lowest at the 

elasticity of 25th percentile (-0.0743), but starts increasing up to 0.1342 in the 75th percentile. 

However, these results are not statistically significant. On the other hand, all nonparametric 

elasticities of 𝑣𝑒ℎ𝑖𝑐_𝑓𝑙𝑒𝑥2 are statistically significant and the magnitude of these results goes 

from the lower percentile to the higher (-1.1035 to 0.0012), being all statistically significant. 

Such results bring evidence that pollution emissions would go up under a large flex-fuel fleet, 

and therefore, would not completely corroborate the EKC hypothesis as we observed in the 

pooled full parametric specification.  

In addition, when the sign of the full parametric model is compared to the nonparametric 

elasticities of Sugar Cane cropped area, we find evidence that as long as sugar cane is 

expanding; the impact of this expansion on CO2 is significantly lower. As we mentioned, carbon 

sequestration can really play a role during the cultivation of crop. The results show elasticities 

ranging from -0.23 at 25th percentile to a much higher elasticity of -0.02 at 50th percentile.  

In addition, as expected, the nonparametric elasticities of cattle on CO2 emissions is 

significantly higher mainly at the 50th (0.48) and the 75th (0.64) percentiles, corroborating the 

pooled full parametric results.  
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The impact of GDP and GDP2 on CO2 show mixed results and go to a different direction 

of the fully parametric specification. If the GDP increases, the result is less CO2 emissions with 

elasticities ranging from -0.88 to -0.46, if we consider only the estimates that are statically 

significant. On the other hand, CO2 emissions seem to increase for higher levels of GDP, that 

is, the impact of GDP2 is substantially higher at the last two percentiles (0.68 to 1.29). 

Therefore, this result does not corroborate the EKC hypothesis for economic growth as is 

observed in the full parametric models. An issue that is probably related to some endogeneity 

among the predictors, or because the period of our dataset is too short and do not capture, as it 

should be, significant technological changes in the Brazilian economy.  

  We now turn to the full nonparametric panel data results presented in the Table 4. The 

sign of results are again mixed, and some of them go to different directions as well, and produce 

estimates unexpected of those that are observed in the previous estimations.  

In summary, we see that when unobserved effect is controlled and uncorrelated with the 

observed factors (LLWLS random effects), one of the nonparametric elasticities of interest, the 

vehic_flex, is showing results that are aligned with the pooled full nonparametric model, but 

not with the full parametric random effects model. That is, we find that the contribution of flex-

fuels vehicles to reduce emissions is substantially higher at the 25th and 50th percentiles, but 

not at the 75th percentile. This result is implying in the same conclusion that: when the fleet of 

flex-fuel vehicles is substantially higher, there is no alleviation on CO2 emissions, holding 

everything constant. In addition, when the signs of these results are compared with the signs of 

the coefficients of full parametric random effects models, clearly, we can see that the latter 

estimates are not fully able to capture the real impact of flex-fuel vehicles, which highlights as 

one of the biggest advantages of nonparametric estimations.   

The nonparametric elasticities of 𝑣𝑒ℎ𝑖𝑐_𝐹𝑙𝑒𝑥2 are negative and statistically significant 

but at only the 50th (median) percentile in the LLWLS random effects model. Therefore, we 
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could see that our results is partially corroborated the EKC as it is observed in the random 

effects parametric estimates.  

The signs of the nonparametric elasticities for cattle herd and sugar cane cropped area 

show reverse results compared to the full parametric random effects. The size of cattle herd 

turns out be negative and sugar cane is positive. One possible explanation for the latter result is 

that in many parts of country; sugarcane is harvested by unskilled workers, mostly manually 

and this traditional harvest method involves burning the planting area to facilitate access to the 

canes, therefore not contributing to a reduction on CO2 levels (Chagas et al., 2016).  Another 

possible explanation is that nonparametric techniques are robust to any function form 

specification; however, they are not robust to omitted variable bias and it would bring some 

issue here (Delgado et al., 2014).  

We also observe that the elasticities for GDP is converging with the results of the full 

parametric random effect specification, however 𝐺𝐷𝑃2 are not. Notice that the direction of this 

latter result is different from the ones obtained in the full parametric, leading to some evidence 

that the EKC hypothesis should be rejected for the relationship between GDP and CO2.  

 We now look that the nonparametric fixed effects model (HCL). First, the 

nonparametric estimations of 𝑉𝑒ℎ𝑖𝑐_𝐹𝑙𝑒𝑥2 and 𝐺𝐷𝑃2 were omitted due to failing in convergence 

of the model. Specifically, the nonparametric estimate of vehic_flex is significant at only the 

25th and is corroborating the hypothesis that there would not be a reduction in CO2 emissions 

as long as the fleet of flex fuels increase. The other two percentiles of the nonparametric 

elasticities are showing a negative signs which are aligned with the other full and semi fixed 

effects estimates, however they turned out to be not statistically significant.  

 The nonparametric elasticities for cattle and sugar cane show signs that are similar to 

the ones of the LLWLS model, however they also present results that are not expected with the 

theory that guided our work.     
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Finally, as already mentioned, one of the main advantages of nonparametric modeling 

is “to let the data speak for itself” (Eubank, 1999), however, nonparametric regressions face 

substantial challenges during the estimation process. A major one is that if the number of 

covariates increases, then the rate of convergence of the estimator to its true value decreases, a 

phenomenon also known as the “curse of dimensionality” (Li and Racine, 2007). Therefore, the 

use of less predictors--even aware of the omitted bias problem—could cause a substantial 

difference in the final results.  

Not only that, during the use of nonparametric techniques the choice of bandwidth really 

matters. For any nonparametric estimation, the choice of the bandwidth regulates the trade-off 

between variance and bias in the estimates (Li and Racine, 2007).  For that, and as is 

recommended, we ran our regressions using optimal bandwidths generated by the Least-

Squares Cross Validation method (Henderson and Parmeter, 2015). However, different 

bandwidths generated from cross-validation based on Akaike information criteria, for instance, 

would lead to alternative conclusions (Hurvich et al., 1998; Henderson and Parmeter, 2015).  

7. Concluding Remarks 

This study aimed at verifying the nature of the relationship that exists between the 

implementation and the increase of fleet of flex-fuel vehicles from 2004 and CO2 emissions in 

Brazil. We were also interested in checking if there would be an EKC hypothesis for the use of 

flex-fuel vehicles. To achieve that goal, we departed with a full panel data parametric model, 

followed by a fixed-effects semiparametric estimator recently developed by Henderson et al., 

(2008). We are unware of any application of their estimator in the literature so far.  

Among our main results, we found some evidence of a negative relationship between 

the flex-fleet and CO2 emissions in the Brazilian States. Based on the parametric e 

nonparametric estimates we also corroborated the EKC hypothesis. Our results converges with 

scientific literature studies that highlight the potential for mitigation of greenhouse gas (GHG) 
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emissions with the use of this as a biofuel.  However, one particular concern is that even if the 

number of vehicles adapted for the flex-fuels has substantially increased, so it has also increased 

the area of sugar cane crops. As we already mentioned in the introduction, the net CO2 emissions 

resulting from the burning of ethanol in flex fuel car engines are not significantly lower than 

the emissions due to burning fossil fuels (Macedo, 2005). However, there is strong evidence 

that  GHG emissions of whole energy sector are reabsorbed by carbon sequestration during the 

growth of the sugarcane crop in the next season (Macedo, 2005; Goldemberg et al., 2008). 

Perhaps, the causality between flex-fuel vehicles and sugar cane crop is stronger than we expect. 

This is an important empirical issue to be address in the future.  

We are also aware that our proposal is far from exhausting the subject, and therefore, 

we expect that our research will offer subsides for the development of new studies under 

different benchmarks and approaches in helping understanding the substantial impacts of CO2 

emissions and indicators of economic growth. 
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Table 1: Sample statistics: variable definitions, means, standard deviations, max and min.

Description Mean SD Max Min
CO2 Amount (GWP-Tons) of all pollutants in CO2 equivalent‡ 26,519,945 27,357,478 129,611,109 11,063.98
Vehic Passenger Cars and SUVs (units) 1,073,724,930 2,153,746,682 15,643,415,552 2,059,000
Other Vehic Other vehicles converted into Passenger Car units 451,951,986 755,370,240 6,057,620,992 647,500
Vehic Flex Passenger Cars (units) x (D=1 if year ≥ 2004 and ≤ 2013) 788,668,961 2,016,872,311 15,643,415,552 0
Catle Livestock (in heads) 7,234,403 7,796,707 29,265,718 74,508
Sugar Cane Sugar cane (in hectares) 257,531 733,790 5,415,013 68,000
GDP GDP per capita (in 2000 constant prices) 15,000 10,000 60,000 5,000
Year 2006 5 2013 1998

‡ CO2 emissions from land use change (coming mostly from deforestation in Amazon) are not included in the sample.
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Table 2: Parametric and semiparametric panel data regressions. Dependent Variable: Total amount (GWP-Tons) of all emissions in
CO2 equivalents.

Pooled Fixed Effects Random Effects Semiparametric I Semiparametric II
Vehic 1.2574 0.4455 0.9912 1.138 1.3034

(0.0294) (0.0758) (0.0395) (0.032) (0.0333)
Other Vehic -0.0169 0.1272 -0.1226 0.019 0.0123

(0.0274) (0.0418) (0.0242) (0.0362) (0.033)
Vehic Flex -0.0661 -0.0605 -0.0376 - -0.212

(0.0269) (0.0152) (0.0167) - (0.017)
Vehic Flex2 -0.1804 -0.0360 -0.1289 -0.1716 -

(0.0233) (0.0197) (0.0173) (0.022) -
Cattle 0.5322 0.3991 0.5082 0.5347 0.5472

(0.0074) (0.0233) (0.0167) (0.0009) (0.010)
Sugar Cane -0.3585 -0.2351 -0.1426 -0.330 -0.4751

(0.0234) (0.0320) (0.0287) (0.0009) (0.0207)
GDP -0.0623 0.1451 0.1517 -0.0208 -0.0411

(0.0264) (0.0381) (0.0346) (0.0379) (0.0369)
GDP2 -0.0042 -0.0784 -0.1464 -0.009 -0.0010

(0.0246) (0.0322) (0.0312) (0.032) (0.036)
cons 0.0788 0.0802 0.0793 -0.0001 -0.000002

(0.0061) (0.0031) (0.0209) (0.008) (0.008)
N 432 432 432 432 432
Hausman 122.90
r2 0.98 0.83 0.97 0.97
F 3249 242 2803 2952

Notes: Standard errors in parentheses.

Notes: Coefficients in bold are equal to p-value ≤ 0.10 or lower.
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Table 3: Summary of elasticities from the Local Linear Least Squares (LLLS) regression with bandwidths estimated via Least-Squares
Cross Validation (LSCV). Dependent Variable: Total amount (GWP-Tons) of all emissions in CO2 equivalents.

Q1 Q2 Q3
Vehic 0.2606 0.6909 1.2783

(0.1581) (0.0346) (0.0712)
Other Vehic -0.1584 -0.0092 0.0480

(0.0627 (0.0152) (0.0126)
Vehic Flex -0.0743 -0.0172 0.1342

(0.0605) (0.0312) (0.0890)
Vehic Flex2 -1.1035 -0.4849 0.0012

(0.1013) (0.1044) (0.0001)
Cattle 0.1112 0.4826 0.6444

(0.1601) (0.0204) (0.0394)
Sugar Cane -0.2350 -0.0224 0.0084

(0.0674) (0.0025) (0.0022)
GDP -0.8833 -0.4681 -0.0563

(0.0654) (0.0572) (0.4374)
GDP2 -0.2851 0.6839 1.2958

(0.4458) (0.0821) (0.2841)
Dummy
Year yes
Observations 432
r2 0.999

Notes: Bootstrapped standard errors in parentheses.

Notes: Coefficients in bold are equal to p-value ≤ 0.10 or lower.
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Table 4: Summary of elasticities for several panel data estimators with bandwidths estimated via Least-Squares Cross Validation (LSCV).
Dependent Variable: Total amount (GWP-Tons) of all emissions in CO2 equivalents.

Vehic Other Vehic Vehic Flex Vehic Flex2

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

LLWLS 0.1461 -0.2272 -0.2527 -0.9630 0.1159 -0.4299 -1.0666 -0.2824 0.6459 0.0110 -0.0931 -0.1794
(0.0002) (0.0572) (0.0780) (0.1454) (0.0432) (0.0008) (0.1225) (0.1188) (0.0406) (0.0249) (0.0330) (0.2633)

HCL 0.4027 -0.2602 -0.2438 0.3210 -0.1863 -0.2462 0.9777 -0.0813 -0.0868
(0.0839) (0.8771) (9.2122) (0.0717) (0.1170) (0.1334) (0.3930) (0.1363) (0.4940)

Notes: Table reports elasticities at the mean, 25th, 50th(median), and 75th percentiles along with bootstrapped standard errors in parenthesis.

Notes: Coefficients in bold are equal to p-value ≤ 0.10 or lower.

Table 4 (Cont’d): Summary of elasticities for several panel data estimators with bandwidths estimated via Least-Squares Cross Validation
(LSCV). Dependent Variable: Total amount (GWP-Tons) of all emissions in CO2 equivalents.

Cattle Sugar Cane GDP GDP2

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

LLWLS 0.4930 -0.0234 -0.3091 0.4096 1.4674 0.0800 0.0833 0.7316 0.7291 0.0096 0.0885 1.4133
(0.0307) (0.0172) (0.1218) (0.1147) (1.0892) (0.1644) (0.0259) (0.3415) (0.0437) (0.0016) (0.0422) (0.1473)

HCL 0.4524 -0.1248 -0.0889 1.5869 0.0819 0.0305 0.6742 0.0554 0.0181
(0.0632) (0.0789) (0.0368) (1.5937) (1.9919) (0.2276) (0.1379) (0.0429) (0.1587)

Notes: Table reports elasticities at the mean, 25th, 50th(median), and 75th percentiles along with bootstrapped standard errors in parenthesis.

Notes: Coefficients in bold are equal to p-value ≤ 0.10 or lower.
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Figure 1: Evolution of the national ethanol consumption in road transport by vehicle category.

Source: Brazilian Ministry of the Environment - MMA (2013).
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Figure 2: Density estimates of CO2 in 1998, 2005 and 2013.
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(a) 1998 (b) 2013

Figure 3: Share (%) of all pollutants in CO2 equivalent in 1998 and 2013.
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Figure 4: Partial fits of the relationship between flex-
fuel vehicles and CO2 emissions.

Figure 5: Partial fits of the relationship between flex-
fuel2 vehicles and CO2 emissions.
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