
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 

Days Suitable for Fieldwork in the US Corn Belt: 

Climate, Soils and Spatial Heterogeneity 

 

 

Benjamin M. Gramig 

Associate Professor, Purdue University | bgramig@purdue.edu  

Seong Do Yun 

Postdoctoral Research Associate, Yale University | seongdo.yun@yale.edu  

 

 

 

Selected paper prepared for presentation at the 2016 Agricultural & Applied Economics 

Association Annual Meeting, Boston, Massachusetts, July 31-Auguest 2, 2016. 

 

 

 

 

 

 

 

Copyright 2016 by Benjamin M. Gramig and Seong Do Yun. All rights reserved. Readers 

may make verbatim copies of this document for non-commercial purposes by any means, 

provided that this copyright notice appears on all such copies.  

mailto:bgramig@purdue.edu
mailto:seongdo.yun@yale.edu


 

- 1 - 
 

Days Suitable for Fieldwork in the US Corn Belt: 

Climate, Soils and Spatial Heterogeneity 

 

Benjamin M. Gramig and Seong Do Yun 

 

Abstract 

Days suitable for field work (DSFW) is an important piece of data for production 

agriculture and agricultural extension focused on practical decision making about investment in 

farm machinery and cropping systems management. It is, however, noteworthy that there has 

been limited attention paid to DSFW. To fill this gap, this study tries to answer two research 

questions: (1) what is the trend in DSFW during the planting and harvest period from 1980-2010? 

(2) what is the accuracy of a predictive econometric model of DSFW based on agro-

environmental data? To tackle the economic dimensions of DSFW, we model DSFW consistent 

with two major approaches in climate change impacts on agriculture: the Ricardian approach and 

the panel estimation approach. We first specify the regression model of DSFW in panel model 

from two conceptual approaches: the response function and the factor demand function of cost 

minimization. Both approaches provide consistent regression specification of fixed and random 

effects models. We construct an unbalanced panel of weekly DSFW observations, historic 

weather data, and soil data in five Corn Belt States for 1980-2010 at the Crop Reporting District 

(CRD) level to implement out-of-sample and in-sample prediction analysis. The results show 

that the random effects model is the most suitable model to perform climate change response 

analysis for our data. This paper contributes to the literature in three ways. First, the analytical 

derivation of two econometric interpretations of DSFW and link them to econometric model 

specification strategies are easily extended to other agro-environmental analysis. Second, the 

estimation results for panel models empirically demonstrate that random effects model could be 

proper model specification taking into account soil effects. Lastly, we discuss that DSFW could 

be an important constraints for policy corresponding to climate change and its adaptation. 
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Introduction 

Days suitable for fieldwork (DSFW) is defined as the number of days in a week that soil 

moisture conditions allow farmers to perform work (e.g. tillage, planting, side-dressing fertilizer, 

harvest) in agricultural fields. The USDA National Agricultural Statistics Service (NASS) 

collects this data weekly during the annual agricultural growing season from spring through the 

time when harvest is completed each autumn, with the exact weeks varying across states due to 

differences in climatology and annual weather experience that may affect planting dates or 

harvest.
1
 The DSFW in a given week are determined by weather, soil characteristics and 

drainage, and antecedent soil moisture conditions. This is a particularly important piece of 

information for production agriculture and agricultural extension focused on practical decision-

making about farm machinery investment and different facets of cropping systems management. 

Days suitable are also an important agro-environmental measure because they influence 

decisions about tillage practices, tile drainage installation and fertilizer application timing that 

influence water quality, are influenced by extreme rainfall events, and are relevant to adapting 

farm management to climate change.  

Days suitable for fieldwork are a constraint on timely field operations that directly 

influence farm profits in years when planting is delayed to the point where potential yield is 

reduced, the cost of grain drying increases because field dry down periods before harvest are 

shortened, or physiological maturity of a crop is delayed preventing harvest that maximizes crop 

quality. There has been limited attention paid to DSFW in the peer-reviewed literature with most 

research focused on a basic understanding of the usefulness of these data for farm management 

                                                           
1
 By the NASS, a suitable day is defined as "one where weather and field conditions allow producers to work in 

fields a major portion of that day." A number from 0-7 should be entered for the number of days suitable for field 

work for the past week (Monday through Sunday). 
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and planning (Griffin, 2009), or the applied use of historical DSFW data to support farm 

machinery sizing (Rotz, Muhtar, & Black, 1983; Rotz & Harrigan, 2005) and more general farm 

management optimization (Doster et al., 1983; Dillon, Mjelde, and McCarl, 1989; Etyang et al, 

1998) in different production systems and locations. The practical importance of DSFW is 

evidenced by extension publications (e.g. Parsons and Doster, 1980; Massey, Carpenter, and 

Gerit, 2007; Edwards, 2015), and regional (Griffin, 2016) and national (USDA-NASS, 2016) 

online data resources devoted to farm management decision support.  

This research compiles a novel data set using historical data on DSFW and weekly 

weather conditions at the geographic scale of a single crop reporting district (CRD) that takes 

key soil characteristics into account to estimate a predictive econometric model of this important 

farm management variable. Most states only report DSFW data at the state level, but, given the 

large spatial variation in precipitation, this scale of aggregation is of limited usefulness for a 

farmer in a single location that may not be very correlated with the statewide mean DSFW. The 

objective is to quantify the relationship between key agro-climatic variables and the suitability of 

field conditions for farm work. A statistical approach is developed and subjected to predictive 

performance tests with the aim of understanding the relationship between DSFW and widely 

available weather variables and soil characteristics. This is distinct from prior research that takes 

a soil-water balance or process-based modeling approach to simulate soil moisture conditions in 

an individual location to estimate whether fields are too saturated to perform fieldwork. The 

advantages of the proposed approach are that it requires much less data than a detailed 

simulation model and that the necessary inputs to estimate DSFW are easily understood and 

obtained by researchers and practitioners alike.  
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 The paper proceeds by describing the data and econometric methods, estimating an 

empirical model, and then performing an out-of-sample prediction performance analysis using 

the disaggregated data available from five states in the US Corn Belt region. The observed trends 

in DSFW over the period from 1980-2010 are reported for the states with CRD-level days 

suitable data. The estimated model parameters are combined with CRD-level variable data in the 

seven Corn Belt states that only report state level data to generate a historical data set containing 

fitted values based on the parameter estimates from the states with observed CRD-level days 

suitable data. An illustration of the use of the data to evaluate the economics and risk of split-

Nitrogen fertilizer application follows. 

 

Economic and Econometric Framework 

We follow two parallel conceptual frameworks in the empirical climate change 

economics literature today to develop an econometric model of DSFW. We model DSFW as a 

response function (Schlenker and Roberts 2009) consistent with the panel estimation approach of 

Deschênes and Greenstone (2007, hereafter DG).
2
 The fixed effects and random effects model 

specification strategies followed in the later sections are based on both approaches that have been 

well developed in a panel structure. 

 The response function approach has been followed in agricultural economics and has the 

benefit of clear intuition along the lines of a biological production function. The most familiar 

type of response function measures crop yield response (Boyer et al. 2013; Dixon et al. 1994; 

Schlenker and Roberts 2009; Tack et al. 2015) and assumes a direct relationship between crop 

                                                           
2
 This study adopts the model specification approach in DG (2007). We begin our discussion in the context of cost 

minimization rather than profit maximization behavior, and, thus, our approach is based on the duality of the 

derivations in DG (2007). 
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growth and agro-environmental factors like temperature, water availability, and soil fertility 

conditions. From an economic viewpoint, yield response is an output from a (not necessarily 

explicit) combination of management and inputs together with agro-environmental conditions. 

For example, Motamed et al. (2016) adopt a corn acreage response function as a measure of 

ethanol biorefining capacity. To model DSFW as a response function, it is helpful to keep in 

mind the USDA-NASS definition of a suitable day
3
: “One where weather and field conditions 

allow producers to work in fields a major portion of day.”  This definition can be written as a 

function y = f (agro-environmental factors), where y is a suitable day and the agro-environmental 

factors are temperature, precipitation, and soil conditions. This conceptual model of DSFW does 

not model the agricultural output yield itself, but does have explanatory variables in common 

with yield response.  

Following the specification strategy suggested in Schlenker and Roberts (2009), we can 

specify a DSFW response function as a fixed effects panel model: 

(1) 𝑦𝑖𝑡 =  𝑿𝑖𝑡𝜷 + 𝒁𝑖𝑡𝜹 + 𝑐𝑖 + 𝜀𝑖𝑡, 

where 𝑦𝑖𝑡 is DSFW of 𝑖-th region at time 𝑡, 𝑿𝑖𝑡 is a vector of agro-environmental factors, 𝒁𝑖𝑡 is a 

vector of other factors including time trend and seasonal dummies to capture intra-seasonal 

variation, 𝑐𝑖  is region-specific variation, 𝜷 and 𝜹 are response parameters, and 𝜀𝑖𝑡  is a random 

disturbance term with 𝜀𝑖𝑡~𝑁(0, 𝜎2). Region-specific fixed effects in equation (1) are assumed to 

capture soil conditions in Schlenker and Roberts (2009), such that equation (1) does not include 

any soil variables in their model. Though soil is a fixed factor, soils in different locations are in 

fact similar and may be correlated. It is important to note that in applying this model to DSFW, 

the time-step t between each observation at location i is one week, such that the time trend would 

                                                           
3
 The definition comes from the survey instructions of USDA NASS: 

https://cpcsweb.nass.usda.gov/html/cpcs.instruction.html [Accessed on Jan. 19. 2016]. 

https://cpcsweb.nass.usda.gov/html/cpcs.instruction.html
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capture weekly human-contributed factors that influence day suitable rather than the standard 

interpretation of a trend as reflecting technological progress that occurs over a longer time scale; 

the time trend then should be annual to capture any trend over the 30 year timespan of the 

weekly DSFW data so that the seasonality and any long term trend are taken into account. 

 The second alternative following DG (2007) would adopt a panel estimation approach 

and start by addressing issues of possible identification and specification in the fixed effects 

model of Equation (1) above. The fixed effects panel model of Equation (1) is based upon the 

assumptions of exogenous agro-environmental factors and independent effects of human-

contributed factors on them. It is, however, well known that human contributions, e.g. irrigation 

and tillage, influence the input-output relationship inherent in agricultural production. This 

means that, by assuming the independence of human-contributed factors and agro-environmental 

factors, Equation (1) could be improperly specified. If DSFW is possibly determined by human 

economic behavior y with cost 𝑝, then we can write a farmer’s cost minimization problem as: 

min
𝐿,𝐾,𝑦

𝑤𝐿 + 𝑟𝐾 + 𝑝𝑦 

         s.t. 𝑄 = 𝑓(𝐿, 𝐾, 𝑦, 𝐴), 

where 𝐿 is labor input and 𝐾 is capital input with region-specific prices 𝑤 and 𝑟. 𝐴 denotes a 

vector of exogenous agro-environmental factors. If we know the proper production function, 𝑓, 

then we can find the optimized cost function 𝐶∗(𝑤, 𝑟, 𝑝, 𝑄, 𝑦, 𝐴)  and DSFW become a 

conditional factor demand. Following Shephard’s Lemma, we can derive 𝑦∗ =
𝜕𝐶∗

𝜕𝑝
=

𝑦∗(𝑤, 𝑟, 𝑝, 𝑄, 𝐴). 

 To specify an econometric model of 𝑦∗ = 𝑦∗(𝑤, 𝑟, 𝑝, 𝑄, 𝐴), we note that the factor prices 

(𝑤, 𝑟, and 𝑝) and agricultural output (𝑄) vary across regions and are possibly correlated through 

factor markets. This leads us to introduce random effects terms in a panel model specification. 
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As previously mentioned, it is necessary to model soil properties as being fixed because they are 

exogenously given regional conditions. Taking all of this into account, we specify a random 

effects (RE) panel model based on the structure of Equation (1) as: 

(2) 𝑦𝑖𝑡 =  𝑿𝑖𝑡𝜷 + 𝒁𝑖𝑡𝜹 + 𝑠𝑖 + 𝑢𝑖 + 𝜀𝑖𝑡, 

where all variables are the same as the FE panel model except for  region-specific soil conditions 

𝑠𝑖 and.the 𝑖-th region-specific random heterogeneity component 𝑢𝑖. In the standard RE model, 

the variance-covariance of 𝜏𝑖𝑡 = 𝑢𝑖 + 𝜀𝑖𝑡  becomes 𝑣𝑎𝑟(𝜏𝑖𝑡) = 𝜎𝜀
2 + 𝜎𝑢

2 , 𝑐𝑜𝑣(𝜏𝑖𝑡, 𝜏𝑖𝑠) for 𝑡 ≠ 𝑠 , 

and 𝑐𝑜𝑣(𝜏𝑖𝑡, 𝜏𝑗𝑠) = 0 for all 𝑡 and 𝑠 if 𝑖 ≠ 𝑗. Because it is rarely possible to control for region-

specific agro-environmental factors with fixed effect terms alone, this study argues that the RE 

specification of Equation (2) is more reasonable to deal with (possibly correlated) unobserved 

spatial heterogeneity caused by region-specific factors.  

 The two model specifications in equations (1) and (2) assume a known functional form. 

However, the true data generating process of DSFW is unknown and there has not been much 

attention paid to this issue in the literature. From this standpoint, it is noteworthy that these two 

specifications have so consistently been the econometric base models used to analyze climate 

change impacts on agriculture and tend to be referred to as the Ricardian (or hedonic) approach 

following Medelsohn, et al. (1994) and the panel estimation approach (DG, 2007). Therefore, the 

suggested model is arguably free from the debate about specification issues following the 

aforementioned approached but not from identification issues (Dell et al. 2014). Since the 

purpose of this study is to describe the trend of DSFW and predictive performances, we focus on 

the model fit and prediction capability of the suggested models by implementing in-sample and 

out-of-sample simulations. 
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Data 

To implement the empirical analysis, we construct an unbalanced panel of weekly DSFW 

observations and historic weather data in twelve Corn Belt States for 1980-2010 at the Crop 

Reporting District level. In these data, DSFW is only measured during the crop growing season, 

i.e. mainly from March to November. We use DSFW observations from the USDA-NASS, 

weather data developed by the Midwestern Regional Climate Center (MRCC), and the USDA-

NRCS gridded Soil Survey Geographic (gSSURGO) database. Table 1 summarizes geographical 

ranges and availability of data. 

-- Table 1 about here -- 

First of all, we have no geographical mismatch issue to use CRD-level weather and soil variables. 

Since the provided MRCC data is all matched up with the original DSFW, we had no problem to 

have CRD-level weather variable over all twelve states. The gSSURGO soil data has no 

temporal variation and it is originally 10m X 10m resolution rater data. So, only gSSURGO cells 

over agricultural areas are aggregated up to the CRD-level with area-weighted averages. To 

check state-level data validity, we calculate area-weighted averages of both weather and soil 

variables as well. 

Unlike weather or soil variables, the original DSFW data has messy structure in 

geographical level as shown in Table 1. The group G1 is five states having CRD-level DSFW 

whereas the group G2 is seven states only providing state-level DSFW. If we use area weighted 

averages over the group G1, we can calculate state-level DSFW. However, the other direction to 

have CRD-level from the state-level for the group G2 is rarely figured out. Since state-level is 

generally too large to depict spatial heterogeneity of weather and soil variables, we fit the G2 
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data into the CRD-level by using the standard econometric methods and demonstrate its validity. 

To this end, we follow the three steps below. 

First, we adjust DSFW data in Indiana for 4/1/1980 – 11/10/1994 as weekly numbers. 

During that period, Indiana collected DSFW with 10-day intervals. By the formula, 

(DSFW/10)×7, we construct the expected weekly DSFW. The rest of period in Indiana and other 

states is weekly measure. Second, we merge weekly historic weather data obtained from the 

MRCC with the constructed DSFW data. Since the DSFW data has two types of interval 

schemes, Sunday to Monday and Monday to Sunday, we merge the MRCC data with the exactly 

matched days-interval for each observations. ). Lastly, we combine the area-weighted mean soil 

variables from the gSSURGO database into the final dataset used for estimation. All weighted 

area includes 30m resolution agricultural lands only.  

Considering the model specifications in Equation (1) and (2), we summarize the 

descriptive statistics of the data used in estimation in Table 2. 

-- Table 2 about here -- 

As described, 10-days interval DSFW in Indiana is adjusted to the expected weekly DSFW and 

thus, all DSFW in the group 1 is distributed between zero and seven. Since the geographical 

levels (G1: CRD vs. G2: state) between two groups are different, we cannot directly compare 

statistics in Table 2 across groups. It is, however, obvious that there exists variations within and 

between groups in all variables. 

  To construct CRD-level DSFW observations across all twelve Corn Belt states, we first 

estimate two specifications of Equation (1) and Equation (2) with unbalanced panel of the group 

G1. To select a better fit model between two specifications, we implement 1,000 out-of-sample 

prediction simulations to evaluate out-of-sample model performance. Comparing the root means 
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squared errors (RMSE) of in-sample and out-of-sample simulation, we choose the random 

effects model of Equation (2) as the most suitable model to generate CRD-level DSFW values 

(fitted values, 𝑦𝑖𝑡̂) using less spatially aggregated agro-climatic variables for the historic period 

in the seven additional states that only report state-level DSFW. 

 

Results 

 With the five states DSFW observation data in the group G1, we plot the 95% confidence 

intervals round the means across CRDs and times as shown in Figure 1. 

-- Figure 1 about here -- 

The left panel of Figure 1 provides the changes of DSFW across CRD in the G1 group states. As 

expected, the trend of means and confidence intervals fluctuate greatly. This means there exists 

serious spatial CRD-level heterogeneity in the DSFW. In an empirical analysis, these results 

supports the fact that the aggregated averages, e.g., area weighted average, up to state-level can 

lose spatial heterogeneity due to the disappeared spatial variation in DSFW. The right panel of 

Figure 1 describes the changes of DSFW across time sequences. This graph also shows large 

time heterogeneity across time. These two, therefore, figures heterogeneity in space and time to 

be considered in our estimation process. 

 Table 3 shows the estimation results of Equation (1) and (2). The estimation results of 

pooled regression are also presented as a reference. 

-- Table 3 about here -- 

From the spatial and temporal heterogeneity described in Figure 1, two-way fixed and random 

panel estimation is appropriate for the analysis. In the second column of fixed effect model 
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(Equation (1)), however, the space-specific one-way estimation is implemented to avoid the 

dummy variable trap. If we consider this is 45 CRDs by 1,173 weeks unbalanced panel model, 

including time-specific heterogeneity produces bad condition number in the demeaned 

estimation. In the last column of random effects model of Equation (2), two-way Wansbeek and 

Kapteyn variance components estimation is applied. Therefore, it contains both space and time 

heterogeneities. All estimates of three models show statistically significant and expected signs. 

The last two rows of R-squared and the RMSE show that the random effects specification is the 

best fit in in-sample prediction performances. 

  To select a better prediction model, we additionally implement out-of-sample prediction 

simulations. Since this model includes spatial heterogeneity affected by geographical locations 

and every year can have different lengths of weeks of growing seasons, we randomly select our 

samples as yearly base rather than complete random sampling. Among total 31 years, we sample 

25 random years as base years of estimation and 6 (19.35%) years for prediction. We replicate 

this simulation 1,000 times and Figure 2 shows the boxplots of the RMSEs. 

-- Figure 2 about here -- 

From Figure 2, we can conclude that the random effects model specification of Equation (2) has 

the better fit than the fixed effects model specification of Equation (1). This result is consistent 

with the in-sample prediction performance as well. Therefore, we select the Equation (2) as our 

base model to generate CRD-level DSFW in the seven states of G2 that report state-level DSFW 

only. 

 Using the estimation results of the random effects model in Table 3, we generate the 

predicted CRD-level DSFW for the group G2. To test robustness of the results, we calculate the 

sensitivity of state and CRD-level DSFWs for each G1 and G2 as shown in Figure 3. 
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-- Figure 3 about here -- 

For the group G1, the horizontal axis is the observed CRD-level DSFW and the vertical axis is 

area weighted state-level DSFW. In the group G2, the horizontal axis is the predicted CRD-level 

DSFW derived from the estimates of random effects model and the vertical axis is the observed 

state-level DSFW. The linear regression results of these two figures have the similar magnitudes 

on both intercept and slope. Therefore, we can infer that the predicted CRD-level DSFW in G2 is 

robust if G2 has the similar agro-environmental factor sensitivity with G1. 

 To analyze agro-environmental factor sensitivity in CRD-level DSFW, we draw boxplots 

of DSFW across different variable levels in Figure 4. 

-- Figure 4 about here -- 

It is noteworthy that 25%-75% quantiles in G2 has shorter length as expected in predicted values. 

Importantly, the trend of the median in both G1 and G2 show reasonable patterns: DSFW 

increases as maximum or minimum temperature increases while it decreases as precipitation 

increase. In addition, their patterns in G1 and G2 are synchronized and we can conclude that the 

DSFW are reasonable prediction supported by the similarity of agro-environmental factor 

sensitivity. In case of drainage class, it varies very shorter ranges and reflects location-specific 

variation, we can only suppose G2 has lower drainage producing the lower median DSFW 

compared to the G1’s. In the standpoint of out-bounds values of the predicted DSFW (great than 

7 or less than 0 days) in G2, we can see that our predictions produce underestimation always and 

they are not serious because only a few number of out-bounding values are generated. 

 Figure 5 presents the averaged RMSE of G1 and G2 across each geographical levels. In 

the figure, the RMSE greater than 1 is assigned as 1 for a better legibility. 
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-- Figure 5 about here -- 

Overall, the RMSE levels are relatively small values between zero and one in both G1 and G2. 

 Figure 6 shows the CRD-level (averaged) observed predicted DSFW over all twelve Corn 

Belt states. 

-- Figure 6 about here -- 

The western CRDs have longer DSFW than the eastern CRDs. We note that almost of Indiana 

observations are the expected weekly DSFW and thus, the presented DSFW is smoothed rather 

than other states. In addition, we find a statistically significant decrease [increase] in DSFW 

during the planting period in Illinois, Indiana and Iowa [Kansas], and a significant increase in 

DSFW during the harvest period in Illinois, Indiana, Iowa and Missouri.
4
 

 

Conclusion 

Despite of its importance, relatively less attention is paid to analyze DSFW in agro-

climate and economics literature. To fill this gap, this paper derives a panel regression models 

consistent to the Ricardian approach and the panel estimation approach. Based on the response 

function framework, we specify a fixed effects model comparable to Schlenker and Roberts 

(2009). From the cost minimization context, we derive a random effects model that includes a 

different modeling rule on soil characteristics from the fixed effects model. Since both models 

are consistent with general agro-climatic models, the suggested model is arguably free from the 

debate about specification issues. With constructed DSFW dataset, we implement out-of-sample 

                                                           
4
The same conclusion can be found from a blog post: Gramig, B.M. 2014. Days Suitable for Field Work in the Corn 

Belt. AgriClimate Connection, http://sustainablecorn.org/blog/?p=477  [Accessed on 22 May 2016]. 

 

http://sustainablecorn.org/blog/?p=477
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and in-sample prediction analysis and conclude that the random effects models have better 

explanation for our data. 

This research contributes to the literature in three ways. First, the analytical derivation of 

two econometric interpretations of DSFW and link them to econometric model specification 

strategies are easily extended to other agro-environmental analysis. Second, the estimation 

results for panel models empirically demonstrate that random effects model could be proper 

model specification taking into account soil effects. Lastly, we discuss that DSFW could be an 

important constraints for policy corresponding to climate change and its adaptation. 

In the next step of research, we will develop more abundant analysis and policy 

implications on climate change and its adaptation. This could include change of historical 

patterns in DSFW and future expectations. For this purpose, adopting various regional climate 

model (RCM) is under consideration. 
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Table 1. Data Availability 

 

   
DSFW 

Weather variables Soil  

   (tmax, tmin, prec) drainage class 

Group FIPS State CRD State CRD State CRD State 

G1 

17 Illinois O ◌ O ◌ ◌ ◌ 

18 Indiana O ◌ O ◌ ◌ ◌ 

19 Iowa O ◌ O ◌ ◌ ◌ 

20 Kansas O ◌ O ◌ ◌ ◌ 

29 Missouri O ◌ O ◌ ◌ ◌ 

G2 

26 Michigan X O O ◌ ◌ ◌ 

27 Minnesota X O O ◌ ◌ ◌ 

31 Nebraska X O O ◌ ◌ ◌ 

38 North Dakota X O O ◌ ◌ ◌ 

39 Ohio X O O ◌ ◌ ◌ 

46 South Dakota X O O ◌ ◌ ◌ 

55 Wisconsin X O O ◌ ◌ ◌ 

G1: States having both crop reporting district(CRD)-level and State-level DSFW data 

G2: State having only State-level DSFW data 

O: observed / X: unobserved / ◌: area-weighted average 
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Table 2. Summary Statistics of Dataset for DSFW Analyses 

Group 1: 44,888 CRD-level weekly observations of five states 

Variables Mean S.D. Min. Max. 

DSFW (days) 4.6567 1.8467 0.0000 7.0000 

Maximum temperature (ºF) 74.5595 13.0504 11.9000 107.6000 

Minimum temperature (ºF) 51.5682 12.5845 -1.8000 77.6000 

Total precipitation (in) 0.8667 0.8857 0.0000 11.6300 

A week lag of maximum temperature (ºF) 74.7176 12.7628 21.8000 107.6000 

A week lag of minimum temperature (ºF) 51.6411 12.4402 2.4000 77.6000 

A week lag of total precipitation (in) 0.8681 0.8811 0.0000 11.6300 

(A week lag of total precipitation) x  

(minimum temperature) 
45.9765 49.4556 -0.0180 785.4500 

Yearly trend 16.6672 8.9870 1.0000 31.0000 

Spring dummy 0.3410 0.4740 0.0000 1.0000 

Fall dummy 0.2729 0.4454 0.0000 1.0000 

Winter dummy 0.0122 0.1099 0.0000 1.0000 

Drainage class 3.9149 0.5869 2.8235 5.1487 

Group 2: 5,086 State-level weekly observations of seven states 

Variables Mean S.D. Min. Max. 

DSFW (days) 4.8717 1.5023 0.0000 7.0000 

Maximum temperature (ºF) 70.1027 13.9322 5.0078 99.5789 

Minimum temperature (ºF) 46.1448 12.2751 -8.2493 70.3078 

Total precipitation (in) 0.6549 0.5594 0.0000 4.6885 

A week lag of maximum temperature (ºF) 70.3839 13.4250 11.0534 99.5789 

A week lag of minimum temperature (ºF) 46.2854 11.9950 -4.3691 70.3078 

A week lag of total precipitation (in) 0.6571 0.5572 0.0000 4.6885 

(A week lag of total precipitation) x  

(minimum temperature) 
31.8278 29.3684 -3.5960 269.3912 

Yearly trend 19.6966 8.0392 1.0000 31.0000 

Spring dummy 0.3266 0.4690 0.0000 1.0000 

Fall dummy 0.2774 0.4478 0.0000 1.0000 

Winter dummy 0.0012 0.0343 0.0000 1.0000 

Drainage class 4.3360 0.5887 3.5159 5.0278 
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Table 3. Estimation Results 

Variables 
 

Pooled 

(1)  

Fixed Eff. 

(2)  

Random Eff. 

(3) 

Intercept 

 

-1.3838 *** 

 

-0.5719 *** 

 

-5.5629 ** 

 
 

(0.1423) 
 

 

(0.1412) 
 

 

(2.6180) 

 Maximum temperature 

 

0.2592 *** 

 

0.1862 *** 

 

0.2103 *** 

 
 

(0.0084) 
 

 

(0.0081) 
 

 

(0.0087) 

 Maximum temperature squared 

 

-0.0037 *** 

 

-0.0021 *** 

 

-0.0024 *** 

 
 

(0.0002) 
 

 

(0.0002) 
 

 

(0.0002) 

 Minimum temperature 

 

-0.2275 *** 

 

-0.2088 *** 

 

-0.2337 *** 

 
 

(0.0086) 
 

 

(0.0083) 
 

 

(0.0089) 

 Minimum temperature squared 

 

-0.0040 *** 

 

-0.0024 *** 

 

-0.0025 *** 

 
 

(0.0002) 
 

 

(0.0002) 
 

 

(0.0002) 

 (Maximum x Minimum) temperature 

 

0.0076 *** 

 

0.0048 *** 

 

0.0052 *** 

 
 

(0.0003) 
 

 

(0.0003) 
 

 

(0.0003) 

 Total precipitation 

 

-1.2362 *** 

 

-1.2241 *** 

 

-1.1255 *** 

 
 

(0.0139) 
 

 

(0.0132) 
 

 

(0.0129) 

 Total precipitation squared 

 

0.1298 *** 

 

0.1305 *** 

 

0.1139 *** 

 
 

(0.0033) 
 

 

(0.0031) 
 

 

(0.0030) 

 A week lag of maximum temperature 

 

0.0313 *** 

 

0.0551 *** 

 

0.0550 *** 

 
 

(0.0014) 
 

 

(0.0014) 
 

 

(0.0015) 

 A week lag of minimum temperature 

 

-0.0093 *** 

 

-0.0283 *** 

 

-0.0359 *** 

 
 

(0.0016) 
 

 

(0.0015) 
 

 

(0.0017) 

 A week lag of total precipitation 

 

-1.1131 *** 

 

-1.1460 *** 

 

-1.0135 *** 

 
 

(0.0291) 
 

 

(0.0276) 
 

 

(0.0281) 

 A week lag of total precipitation 

 

0.0093 *** 

 

0.0105 *** 

 

0.0087 *** 

x minimum temperature 

 

(0.0005) 
 

 

(0.0005) 
 

 

(0.0005) 

 Yearly trend 

 

0.0174 *** 

 

0.0261 *** 

 

0.0215 *** 

 
 

(0.0024) 
 

 

(0.0023) 
 

 

(0.0082) 

 Yearly trend squared 

 

-0.0001 ** 

 

-0.0004 *** 

 

-0.0003 

 
 

 

(0.0001) 
 

 

(0.0001) 
 

 

(0.0002) 

 Spring  

 

-0.7126 *** 

 

-0.6163 *** 

 

-0.4537 *** 

 
 

(0.0175) 
 

 

(0.0170) 
 

 

(0.0252) 

 Fall  

 

0.4499 *** 

 

0.5314 *** 

 

0.3748 *** 

 
 

(0.0199) 
 

 

(0.0195) 
 

 

(0.0266) 

 Winter  

 

-1.2195 *** 

 

-0.8406 *** 

 

-0.4251 *** 

 
 

(0.0534) 
 

 

(0.0515) 
 

 

(0.0547) 

 Drainage  class 

       

3.0652 ** 

 
       

(1.3190) 

 Drainage  class squared 

       

-0.4332 *** 

 
       

(0.1640) 

 
 

         CRD Fixed Effects 

 

NO 
  

YES 
  

NO 

 # of Observations 

 

44,888 
  

44,888 
  

44,888 

 R-squared 

 

0.6604 
  

0.6958 
  

0.5663 

 Root mean squared error (RMSE)     1.0193   0.9989  
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Figure 1. Heterogeneity Diagram 
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Figure 2. Mean Squared Error (MSE) of 1,000 Out-of-Sample Predictions
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(a) Group1 (b) Group 2 

 

Figure 3: Aggregation Sensitivity Analysis: CRD-level vs. State-level 
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(a) Maximum Temperature (b) Minimum Temperature 

  
(c) Total Precipitation  (d) Drainage Class 

 

Figure 4. CRD-level Comparisons between Observed DSFW (Group 1) and Predicted DSFW 

(Group 2) across Variables 
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(a) Root Mean Squared Errors (RMSE) of Group 1: CRD-level 

 

 

(b) Root Mean Squared Errors (RMSE) of Group 2: State-level 

 

Figure 5. Prediction Errors by Groups: Averaged RMSE by Geographical Level 
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Figure 6. Predicted (Group1) and Estimated (Group2) DSFW: Averaged DSFW by CRD 

 


