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Comovements and Volatility Spillover in

Commodity Markets
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Abstract

This paper analyzes comovements and connectedness of commodity futures in

the past two decades. We apply dynamic conditional correlation model (DCC) to

capture time-varying dependence structure of a variety of commodities across differ-

ent sectors. We propose to estimate network connectedness of commodity markets

by the modeling framework of Diebold and Yilmaz (2014) that studies direction and

magnitude of volatility spillover using reduced-form vector autoregression (VAR)

models and generalized forecast error variance decomposition. We find that both

DCC and VAR models present consistent results: while comovements and connect-

edness of commodity markets have dramatically increased during 2007-2009 finan-

cial distress, they have returned to the pre-crisis levels after. We also find that recent

downward movement of commodity prices does not necessarily indicate stronger

connection between commodity markets, which poses challenges on recent studies

in commodity financialization.
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1 Introduction

Commodity markets have attracted much attention in both academia and industry since

early 2000s, but some interesting problems still remain unknown and are little studied so

far. First of all, large inflows into commodity markets, termed “financialization of com-

modity markets”, has dramatically increased the correlation between a large number

of commodity futures (Tang and Xiong, 2012). Though recent research provides some

evidence of structural change in correlation, most of them do not fully account for the

information of higher moments or model the joint distribution of futures returns, partly

due to the paucity of flexible multivariate distributions in the literature. Since many

assets like stocks, bonds and commodities that show low correlation in the history tend

to crash together during the recent financial crisis, understanding time-varying comove-

ments of commodities in a large portfolio is of great importance from the perspective of

risk management.

Secondly, transmission mechanism of volatility between commodities is still not clear.

Adams and Glück (2015) show significant risk spillover from stocks to commodities,

but they only measure spillover using value-at-risk and do not consider how shocks in

one market may affect volatility in another. By modeling volatility spillover we may

quantify the magnitude and direction of volatility shocks of various commodities with

a causal interpretation, which is not readily available by modeling comovements alone.

As a result, measures of markets connectedness based on volatility spillover may shed

light on portfolio construction and diversification. This paper attempts to study the

dynamics of comovements and volatility spillovers in commodity futures by employing

high dimensional dynamic conditional correlation models and develop a variety of new

connectedness measures in recent literature for commodity markets based on intraday

ranged-based volatility.

We make two primary contributions to the current literature in this paper. First, we

explore the joint dynamics of dependence structure of 20 commodities. Tang and Xiong

(2012) find increasing correlation since 2004, but they model dynamics of correlations by

rolling-window for all pairwise combinations of commodities one after another, which

is inefficient as they do not explicitly take all information into account and not neces-

sarily robust to the structural change in correlations. Adams and Glück (2015) consider

structural breaks in correlations but their sample only include 8 commodities and also

do not provide a joint estimation of dependence structure in futures returns. Second,

we investigate volatility spillover in these commodities as measures of markets connect-
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edness. Adams and Glück (2015) study spillover in the left tails of return distributions

(Value-at-Risk or VaR) and regress individual VaR on many other VaR, say, those of

stock market, commodity market and emerging market. Their method directly model

shocks from various markets to individual commodity, but do not consider spillover

between commodity futures. We show that our analysis based on Diebold and Yilmaz

(2014, 2015) is more comprehensive and provide additional information in quantifying

dynamics of volatility spillover in commodity futures. We also discuss how to estimate

a total connectedness in the commodity markets, which can be readily viewed as a ”fear

gauge” of investors, a measure similar to the VIX for stock markets.

The paper proceeds as follows. Section 2 provides a brief outline of DCC model,

VAR model, generalized forecast error variance decomposition and the related network

connectedness in range-based volatility. Section 3 discusses how we construct rolling

future contracts to meet data requirement for DCC and VAR models, and presents the

major findings in our empirical analysis. Section 4 concludes.

2 Modeling framework

In this section we present the basics of our modeling framework for estimation of co-

movements and connectedness of commodity futures markets. We first present the DCC

model that describes time-varying dependence structure of futures returns. We briefly

discuss how DCC model can incorporate recent development of maximum composite

likelihood estimation for high dimensional data, which imposes a great deal of compu-

tational burden on the traditional maximum likelihood estimation. Second, we show

how reduced-form VAR models and generalized variance decomposition can be used to

construct static and dynamic connectedness tables of range-based volatility, which is not

identical to the GARCH-type volatility in the DCC model.

2.1 Dynamic conditional correlation model

We assume Ri,t is the log returns of commodity future i at period t, σi,t follows general-

ized autoregressive conditional heteroscedasticity (GARCH) process, and zi,t is innova-

tion term. The order of ARIMA models is selected by AIC or BIC, and the GARCH(1,1)

model is estimated by QMLE. The univariate models is described as:

Ri,t = µi,t + εi,t = µi,t + σi,tzi,t (1)
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σ2
i,t = ωi + αε2

i,t−1 + βσ2
i,t−1 (2)

Motivated by the seminal paper of Engle (2002) and a recent application by Christof-

fersen et al. (2014a), we propose to estimate the dynamic conditional correlation which

drives dynamics in the multivariate distribution. Since covariance is the product of cor-

relations and standard deviations, we can write:

Σt = DtΓtDt (3)

where Dt has the standard deviations σi,t on the diagonal and 0 elsewhere, and Γi,t has

1 on the diagonal and conditional correlation off the diagonal. The dynamics of Γt is

driven by a GARCH-type process:

Γ̃t = (1− αΓ − βΓ)Γ̃ + αΓ(zt−1z′t−1) + βΓΓ̃t−1 (4)

and we use it to define the conditional correlation by the following normalization to

ensure correlations are all in the [−1, 1] interval:

Γij,t = Γ̃ij,t/
√

Γ̃ii,tΓ̃jj,t (5)

We obtain the estimated ẑi,t from the GARCH models and use them to measure the

”targeting correlation” Γ̃ by 1
T ∑T

t=1 ẑtẑ′t in formula (4). This is a direct modeling of cor-

relation dynamics and has the potential to capture precisely the time-varying nature of

correlations. Engle et al. (2008) propose to estimate this dynamic process with composite

likelihood to avoid computational burden with traditional likelihood. To be specific, the

composite likelihood is defined as:

CL(α, β) =
T

∑
t=1

N

∑
i=1

∑
j>i

ln f (α, β; Ri,t, Rj,t) (6)

where ln f (α, β; Ri,t, Rj,t) is the bivariate distribution of pair i and j with variance de-

fined by formula (3). We can denote f as normal, student or other variants of elliptical

distribution family that explicitly take variance into the likelihood function. We now

maximize composite likelihood by summing over all possible pairs in each period t,

which is numerically fast and efficient, and we will consider both normal and student

distributions in our empirical applications.

2.2 VAR models for network connectedness of volatility

Following the seminal work of Diebold and Yilmaz (2012, 2014, 2015), we estimate

reduced-form VAR approximating models to construct connectedness measures from

4



the H-step ahead generalized forecast error variance decomposition. To be specific, we

consider the following N-dimensional VAR(p) model:

yt =
p

∑
i=1

Φiyt−i + εt (7)

where εt ∼ (0, Ω), and Ω is the stationary covariance of ε. The related moving average

representation is

yt =
∞

∑
i=0

Aiεt−i (8)

where the N × N coefficient matrices Ai is supposed to be Ai = ∑
p
j=1 Φj Ai−j. A0 is an

N×N identity matrix and Ai=0 for i < 0. We transform these moving-average coefficient

matrices to obtain variance decompostion such that we can split H-step-ahead forecast

error variances of each commodity returns and account for the system shocks in the

VAR(p) model.

We avoid to use the popular variance decomposition such as structural VAR or

Cholesky factor since they both requires orthogonalization of VAR shocks, but they as-

sume some other conditions (structural VAR) or depend on the ordering of variables

(Cholesky factor). We propose to use the generalized forecast error variance decompo-

sition of Koop et al. (1996) and Pesaran and Shin (1998), which is robust to the ordering

of variables and does not assume additional conditions, to take correlated shocks into

account. In particular, we define variable j’s contribution to variable i’s H-step-ahead

generalized forecast error variance as:

θ
g
ij(H) =

σ−1
jj ∑H−1

h=0 (e
′
i AhΩej)

2

∑H−1
h=0 (e

′
i AhΩA′hei)

(9)

where ej is the selection vector with j-th element as 1 and 0 elsewhere, and σjj is the stan-

dard deviation of ε for variable j. We proceed to normalize this variance decomposition

matrix such that the row sums are one:

θ̇
g
ij(H) =

θ
g
ij(H)

∑N
j=1 θ

g
ij(H)

(10)

This normalization facilitates interpretation of variance decomposition and provides a

directional measure of pairwise connectedness from j to i with predictive horizon H. To

simplify notation we can write Ci←j(H) = θ̇
g
ij(H). It is natural to define net pairwise

directional connectedness Cij(H) = Ci←j(H)− Cj←i(H). We can also derive aggregate
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”from” and ”to” connectedness measures such that we can investigate the total ”influ-

ence” an arbitrary variable i exerts or receives in the system of VAR(p) model:

Ci←•(H) =
∑N

j=1,j 6=i θ̇
g
ij(H)

N
× 100 (11)

and

C•←i(H) =
∑N

j=1,j 6=i θ̇
g
ji(H)

N
× 100 (12)

and we may calculate the net total directional connectedness for variable i simply as

(6)-(5):

Ci(H) = C•←i(H)− Ci←•(H) (13)

We can eventually aggregate all ”to” or ”from” measures and take their means as a

system-wide measure of total connectedness:

C(H) =
∑N

i=1 C•←i(H)

N
=

∑N
i=1 Ci←•(H)

N
(14)

We are especially interested in these measures and will discuss them with more de-

tails in next section. Following Diebold and Yilmaz (2015) we use Garman and Klass

(1980)’s approach for intraday range-based volatility which we are going to estimate in

the VAR(p) model:

σ̂2 = 0.511(h− l)2 − 0.019[(c− o)(h + l − 2o)− 2(h− o)(l − o)]− 0.383(c− o)2 (15)

where h, l, o and c stand for the log of daily high price, low price, opening price and

close price respectively. Volatility is always treated as ”fear gauge” or sentiment of in-

vestors, and we focus on the interdependence of volatility in various commodity futures

to explore the transmission mechanism of commodity markets sentiments since it is little

studied in the current literature.

3 Empirical results

In this section we present major empirical results using two datasets from different

sources. We first introduce how we construct the rolling commodity prices to handle

futures with various expiry dates. We then discuss the estimation results from dynamic

conditional correlation models with normal and student distributions. Lastly we ana-

lyze the results of network connectedness from both static and dynamic VAR(p) models
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and show that it is critical to consider dynamics in the connectedness measures, which

are extremely sensitive to market sentiment and should be examined carefully across

financial cycles.

3.1 Data

We consider 20 commodities in the Goldman Sachs Commodity Index (GSCI) that serves

as a benchmark for investment in the commodity markets. In particular we have 3 com-

modities in energy sector (WTI crude oil, Brent crude oil and natural gas), 5 commodi-

ties in grains sector (corn, soybean, wheat, soybean oil and rough rice), 6 commodities

in softs sector (coffee, cotton, sugar, cocoa, lumber and orange juice), 3 commodities in

livestocks sector (feeder cattle, lean hogs and live cattle) and 3 commodities in metals

sector (gold, silver and copper).

We obtain the first dataset from Datastream using ticker ”CS04” from 2nd Jan 1995 to

23rd May 2015 for all commodity futures. These are continuous returns which are rolled

when the first-nearest to expire future contracts have reached expiry date. On this date

the second-nearest to expire future contracts returns are used to ensure these returns are

all based on the same contract. As mentioned in subsection 2.2, we need to have daily

high price, low price, opening price as well close price to measure intraday range-based

volatility, which are not provided in the Datastream. We get the second dataset from

Bloomberg from 2nd Jan 1996 to 26th Feb 2016. Following Christoffersen et al. (2014b)

we construct rolling futures by comparing the trading volumes of the first-nearest to

expire contract and the second-nearest to expire contract, and roll to the second contract

if its trading volume is greater.

3.2 Dependence structure of commodities

From section 2.1 we know that the DCC model is actually a two-stage estimation. In the

first stage we use quasi maximum likelihood estimation (QMLE) to model the dynamics

of GARCH volatility for univariate log returns, and in the second stage we use estimated

GARCH volatility and the proposed maximum composite likelihood estimation to obtain

α, β or other parameters that drive the dynamics of high dimensional correlation matrix.

To save space we omit the GARCH results for all twenty commodities below and focus

on the DCC models. We estimate both normal and student distributions and the results

is in Table 1:
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Table 1: Results of dynamic conditional correlation mdoels

α β Degree of freedom Likelihood

Normal 0.0184 0.9841 -3239941

Student 0.0475 0.9574 15.65 -3216431

Table 1 suggests student model is preferred to the normal model in terms of likeli-

hood, and this should not be too surprising since student distribution has one additional

parameter (degree of freedom) to control for tail behavior of returns, which is quite com-

mon in the bear markets. We next present the estimated dynamic conditional correlation

using student model for all commodities. Since there N(N − 1)/2 = 190 correlations in

our sample, we cluster commodities by their groups and present dynamic conditional

correlations at group level, reducing the within-group and cross-group correlation to 15

only. We also average all dynamic correlations at the same period t to have an overall

correlation for these commodities.

[INSERT Figure 1 & Figure 2 ABOUT HERE]

Figure 1 and 2 show the dynamics of correlations in two decades. It is obvious to

see most of them have increased and peaked during the 2007-2009 financial crisis, but

they declined sharply after. Since mid-2014 there have seen dramatic decreases in energy

prices and we can see that these group-correlations have gone up in a not very significant

way.

3.3 Network connectedness of commodities

In this subsection we will present empirical results of static and dynamic estimation of

volatility connectedness using the modeling framework in section 2.2. In section 3.3.1

we first show the static measures of connectedness based on all observations in the

sample, then we discuss in section 3.3.2 how to derive dynamics of these measures and

use them to monitor and describe evolution of volatility connectedness in commodity

markets during the 2007-2009 financial distress and the recent downward movement of

commodity prices since mid-2014.

8



3.3.1 Static (unconditional, full-sample) analysis of connectedness

We estimate a VAR(3)1 model with all observations in the sample from January 1996 to

February 2016. Since there are 20 commodities in our sample, it is not concise to present

a 20× 20 connectedness table below. We again cluster all these futures based on the

commodity sectors they belong to and aggregate their measures of connectedness. We

eventually arrive at a 5× 5 connectedness table below:

Table 2: Full-sample connectedness table

To\From Energy Grains Softs Livstocks Metals Sum of From

Energy 30.11 0.53 0.23 0.49 1.37 32.74

Grains 1.05 16.47 1.13 0.46 2.12 21.23

Softs 0.66 1.3 14.69 0.24 0.91 17.79

Livestocks 2.31 1.16 0.45 26.90 1.30 32.11

Metals 1.90 1.89 0.67 0.51 26.43 31.40

Sum of To 36.04 21.33 17.17 28.59 32.13 27.05

Net 3.30 0.11 -0.62 -3.52 0.73

Note: The sample is from Jan 2, 1996 to Feb 26, 2016, and the predictive horizon is 12 days.

The ij-th entry of this 5×5 matrix represents pairwise directional connectedness from j to

i. The rightmost column is the sum of volatility spillover received by different sector. The

bottom ”Sum of To” row is the sum of volatility spillover from any sectors to the others.

The bottommost ”Net” row is simply the difference between ”Sum of To” and ”Sum of

From”. The intersection of ”Sum of From” and ”Sum of To” is the total connectedness

measure in the VAR model system.

From Table 2 we can find some notable features of connectedness in commodity mar-

kets. For example, the diagonal element is always much higher than the other elements

in the same row, suggesting that most of the volatility shocks come from the commodi-

ties in the same sector. It seems that commodity markets are quite segmented since at

least 80% of the sum gives or received by a sector is from the same sector. Energy sec-

tor has the highest ”Net”, implying that it has the greatest influence on the other four

sectors, while livestocks sector has the lowerst ”Net”, indicating that its influence on the

other commodities is minimal. The total connectedness of the system is 27.05, which is

relatively small compared to the same measure (which is 78.3) in Diebold and Yilmaz

(2014) who consider the stock returns of U.S. financial companies. As a next step we

seek to check these measures in a dynamic framework such that we can examine the

1Robustness check shows that varying orders in the VAR models only has little impact on our results.
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impacts of financial distress or other significant events on connectedness of commodity

markets.

3.3.2 Dynamic (conditional, rolling-window) analysis of connectedness

We still use the same VAR(3) model and 12-day-ahead forecast error for generalized

decomposition, but now estimate with a 252-day2 (all trading days in a year) rolling-

window to model dynamics in the volatility connectedness. The total connectedness

plot is showed in Figure 3 below. We can see dramatic increase in total connectedness

during the 2007-2009 financial crisis but it has decreased since late 2009. The peak of

total connectedness is in the week of Oct 26th, 2008 which is one month later than the

Lehman Brothers’ bankruptcy on Sep 15th, 2008. It appears that during financial crisis

stock markets have led commodity markets since Diebold and Yilmaz (2014, 2015) who

study the stock returns of financial institutions in the U.S. and Europe find this dynamic

connectedness has reached its peak right after the bankruptcy of Lehman Brothers. The

most striking feature in the past two years is the significant decline in crude oil prices,

but our plot shows that this decline does not imply increasing connectedness in all 20

commodity markets in the sample.

Figure 3: Dynamic total connectedness with a 252-day rolling window and 12-day-ahead predictive hori-

zon for variance decomposition.

Recall that the static measure of connectedness in our full-sample unconditional anal-

ysis is only 27.05, which is apparently much smaller than the ranges of dynamic mea-

2We have used 150 days, 200 days and 300 days as alternative rollwing-window and the results are

still similar.
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sures most of the time. This suggests that static analysis may underestimate connected-

ness and it is critical to take dynamics into consideration. Next we explore the dynamic

measures of volatility connectedness at sector level, again due to the fact that we have

20 commodities and cannot present all 380 pairwise directional connectedness in a very

concise way. We omit the diagonal-elements in the dynamic connectedness table to focus

on cross-sector connectedness.

[INSERT Figure 4, Figure 5 & Figure 6 ABOUT HERE]

We can see from figures 4-6 that cross-sector volatility spillover have increased dra-

matically during the 2007-2009 financial crisis, but they returned to the pre-crisis level

after. Recent downward price movements of energy markets have increased livestocks,

softs and metals markets, but these effects are not as significant as those in the finan-

cial distress. These plots show that the directional pairwise volatility spillover are quite

volatile even when the economy is expanding, posing challenge on the recent research

that assert commodity markets are only highly integrated during the crisis period.

4 Concluding remarks

We characterize dependence structure and volatility spillover using a large sample of

daily commodity futures in the past two decades. We show that correlations between

various commodities have increased sharply during financial crisis, but they returned to

the pre-crisis levels after 2011. We also find that volatility spillover has peaked during

financial distress, but these spillovers seem to be much more volatile than the dynamic

correlations. We also find that market connectedness based on volatility spillover has

declined in the past three years, despite the fact that there is a dramatic downward

movements in commodity prices trigger by energy markets. Our results have important

implications for risk management and portfolio construction with commodity futures.

It may prove interesting to investigate and extend the models we use for other top-

ics in the future. Kilian (2009) shows that depending on the driven demand or supply

shocks oil price may have different impacts on macroeconomy and commodity mar-

kets using a structural VAR model. To deepen our understanding in volatility spillover

driven by different mechanisms across financial cycles, we wonder if we may follow

Kilian (2009) and employ the structural VAR model that helps explain the time-varying
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nature of spillover within a macroeconomic framework. Secondly, since we propose to

estimate comovements and volatility spillovers sequentially, one may ask if and how

the empirical results of time-varying high dimensional DCC models and connectednesss

measures could be combined to produce useful insights for risk managment. In what

way can these models guide financial market participants in hedging and risk manag-

ment? Can volatility spillover shed light on interpreting dynamics in comovements in

the near future? Can we identify the sources of systemic risk and price them using

multifactor asset pricing models? Last but not least, the practical value of connected-

ness measure mainly relies on rolling window estimation of VAR model, which is not

necessarily robust to the choice of window length. Although we have verified robust-

ness of dynamic VAR model results using various rolling-window in our analysis, it is

appealing to use a data-driven approach to select the rolling-window such. Therefore,

how to choose an optimal window length is another problem we could consider. A ro-

bust time-varying approach that allows for dynamics in the VAR model is the key to

precise estimates of connectedness across financial cycles. We conclude by raising these

questions and hope they can be extended to a wider range of future studies.
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Figure 1: Dynamic conditional correlations of overall, within and cross-groups
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Figure 2: Dynamic conditional correlations of cross-groups
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(a) Volatility spillover from energy to other sectors

(b) Volatility spillover from grains to other sectors

Figure 4: Volatility spillover from energy and grains markets to other markets
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(a) Volatility spillover from softs to other sectors

(b) Volatility spillover from livestocks to other sectors

Figure 5: Volatility spillover from softs and livestocks markets to other markets
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Figure 6: Volatility spillover from metals to other markets
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