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Introduction 

Rivers and streams are vital assets for human societies because of the range of goods and 

services they deliver, e.g., drinking water, food and energy production, but also recreational 

opportunities etc. In many countries, the natural course of rivers and streams has been modified 

to provide flood protection, to facilitate the production of electricity or agricultural products, and 

in many instances these modifications have impaired the functioning of ecosystems thus reduced 

the availability of goods and services.  

 Restorations have been undertaken in many countries such as Australia, Canada, China, 

Europe, the U.S., etc. (Jenkinson et al., 2006; Palmer et al., 2014). In the U.S., for example, 

thousands of restoration projects are undertaken annually costing over $1 billion per year to 

return rivers and streams to a more natural state (Bernhardt et al., 2005 and 2007). Common 

restoration goals are undertaken to improve in-stream habitat conditions, river morphology, 

lateral or longitudinal connectivity and water quality so that to enhance the ecological, 

recreational and aesthetic potential of streams. However, despite the considerable efforts devoted 

to restorations, there is still no substantial empirical evidence that they increase the availability 

of ecosystem services (Pretty et al., 2003; Lepori et al., 2005; Palmer and Filoso, 2009; Palmer et 

al., 2010). Furthermore, it is not clear which types of interventions are most likely to lead to a 

restoration of ecosystem services. 

This lack of empirical evidence in the face of such consistent monetary investments raises 

the need to investigate quantitatively a) whether, and in what dimensions, restoration efforts are 

successful and b) which are the most important contributors for the success. Our main focus is on 

a) in this paper. 
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There are several metrics that can be used in ecology to evaluate restoration effectiveness 

(Woolsey et al., 2007; Palmer et al., 2014). However, many of them require information that is 

based on indicators that are not easy to measure or that do not have a direct link to human 

welfare. Another way to address the success of restoration efforts is by investigating empirically 

the effects on ecosystem services that are objectively measurable such as commercially or 

recreationally important fish species like salmons or brown trout (Palmer, 2008; Roni et al., 

2008; Palmer and Filoso, 2009). Because fish can be considered as proxies of the environmental 

status of an aquatic ecosystem, observing the status of fish communities may provide an 

indication of the health of the ecosystem. Also, fish are related to several ecosystem services 

such as regulating services, cultural (recreational), and food provision (Holmlund and Hammer, 

1999).  

In this paper, we propose a rigorous assessment of the impact of rehabilitations and 

restorations of rivers and streams on recreational fishing, which is a well-known ecosystem 

service. This question is addressed by investigating whether there is any statistical evidence that 

river restorations led to significant effects on outcomes related to recreational fishing, 

specifically, whether restorations had any effect on catch and the number of fishing trips in 

streams and rivers.  

Our analysis is based on an empirical application to recreational fishing on the streams in the 

canton of Graubünden, Switzerland. One of the most difficult aspects for evaluation of these 

projects is the data requirements are quite demanding including the need for historical stream 

characteristics and a measure of stream ecosystem change. For this region, we have historical 

data on river restorations, eco-morphology and connectivity, individual fishing trips including 

catch by species, and stocking all at the stream section level, along with demographics for the 
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anglers and regulations of recreational fishing over time in the period 2002-2012. Detailed 

documentation on the restorations, e.g., length of the restoration and the exact details of what 

was done, allows us to observe restorations of river sections over time and across space and to 

perform a refined investigation of the temporal and spatial heterogeneity of rivers and 

recreational fishing in the region. We utilize the stream data to first establish the relationship 

between restoration events and trip-level catch totals by species and size. Through both 

traditional panel models and an alternative panel evaluation utilizing matching to preprocess the 

data controlling for potential selection effects based on pre-treatment stream attributes we find 

rather consistent evidence that the catch rates increase downstream from restoration events and, 

in fact, the caught fish are larger on average than their counterfactuals. 

In a future step of the analysis we will able to utilize an actual shift in demand produced 

by the catch to measure the welfare effects of stream restorations giving a novel measure for a 

human induced environmental improvement. Further with recently compiled information at the 

restoration level we expect to be able to classify and assess which “types” of restoration are most 

productive in regards in catch rates. This paper provides initial empirical evidence of the effects 

of restorations of streams in the literature. It is also, arguably “one of the’ if not “the” only 

documented short run increases in catch from a human made attempt to restore ecosystem 

function outside of simply removing the human presence altogether.   

 

 

Empirical application 

Our aim is to determine the effects of rivers and streams restorations on a measurable ecosystem 

service, i.e., recreational fishing. To do so, we exploit a unique and rich compilation of data that 
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include  observable historical stream characteristics, detailed information on stream restorations, 

and anglers’ characteristics that include repeated pre-and post-treatment outcomes. We estimate 

a series of panel estimators some of which combine panel data and matching methods to pre-

process the data and make more similar the treated and untreated stream sections pre-treatment 

average outcome and the distributions of their baseline (time-invariant) covariates. The pre-

processing also serves tomitigate concerns about potential heterogeneity of the treatment effect. 

In other words, because the treatment, the restoration, is not randomly assigned to the stream 

sections, we want to make sure that the treatment and the comparison groups are observationally 

similar in the period prior to treatment and thus increase the confidence in the underlying 

assumptions of the fixed effect panel estimators (Miranda and Ferraro, 2014).  

 Our data come from mainly two sources: 1) geocoded data on eco-morphological 

characteristics of rivers and streams and 2) a virtual census of recreational fishers, anglers, in one 

of the largest cantons in Switzerland.1 

Recreational fishing is an important activity in Switzerland. About 240,000 persons 

practice angling at least once a year, and in total spend around 150 million EURO per year 

(Burkhardt-Holm et al., 2002). Despite stocking efforts, trout catches from Swiss rivers and 

streams have declined by as much as 50% since the 1980s possibly due to a combination of 

causes such as water temperature, inadequate management of fisheries, altered hydrological 

regime, and poor morphological quality of rivers and streams (Burkhardt-Holm et al., 2002, 

2005). In Switzerland, about 50% of streams and rivers below an altitude of less than 600 m 

above sea level are considered to have poor habitat quality and 22% of the Swiss rivers are in a 

bad eco-morphological state (Zeh Weissmann et al., 2009) and it is suggested that about 80,000 

                                                 
1 A canton in Switzerland can be interpreted as a state in the U.S..  
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artificial structures should be removed to improve fish migration (Notter et al., 2007; Peter et al., 

2008).  

This analysis focuses on the Swiss canton of Graubünden (about twice the size of Rhode 

Island) that is primarily mountainous and rural in character and is a destination for recreational 

fishing. It contains 11,000 km of streams and over 600 lakes and ponds.2 Within this 

geographical region we have a large amount of data for both the water infrastructure (streams 

and lakes) and anglers. For the streams we have a unique and broad set of ecosystem data 

including eco-morphology that is classified by an index for the degree of naturalness at the 

stream section level covering both the in-stream and stream banks. We also have detailed data on 

the degree of developed infrastructure near and in the stream that may limit the connectivity of 

stream segments; we have weather data, restoration data, and fish stocking data.3 We also have a 

vast amount of angler data such as fishing locations, angler origination, species caught, size, and 

restoration data in time and space for the region. These data comprise ~1.2 million trips from 

~25,000 fisherman fishing ~1.45 million specific locations. These anglers catch ~100,000 fish 

annually and trout is overwhelmingly the target fish accounting for over 70% of the catch. Trout 

is the overwhelming target species in the area especially in streams. The data covers the period 

2002-2012.   

 

Econometric strategy  

We are primarily interested in determining the impact of stream restorations on fish populations 

as measured from the catch of the census of anglers from canton Graubünden. Restorations affect 

catch through their effect on fish stock. In the long run, returning the habitat to a more natural 

                                                 
2http://www.gr.ch/IT/cantone/panoramica/Seiten/JagdundFischerei.aspx last accessed 1/14/15. 
3 Weather and restoration specific data are not included in this paper as the German translation is in process. 

http://www.gr.ch/IT/cantone/panoramica/Seiten/JagdundFischerei.aspx
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state should restore the ecological processes that favor the growth and survival of fish and thus 

increase fish stock. All else equal, higher fish stock should yield higher catch. In the short run, 

restorations may affect fish movement between stream sections, thus changing the stock density, 

or biomass, in the section, and so increasing catch rates. 

We are also concerned with possible site selection issues related to these restorations. 

Restorations may alter the choice of fishing site, the section, by anglers through their effect on 

the appearance of the fishing site or the effect on water quality. To break this direct link between 

restorations and the site choice we define as treated sections the fishing sections that are 

immediately downstream from a restored fishing section. In this way, restorations affect the 

anglers’ choice of fishing site, and thus the number of fishing trips to each site, only via catch 

rate for the given section.  

Another issue related to site selection regards the choice about which section gets to be 

restored. From 2011, by law, Swiss cantons are required to rank planned restorations based on 

the eco-morphological status, ecological and landscaping relevance, risk of flooding, with 

precedence given to restorations yielding benefits from ecological and landscape improvements 

potentially higher than costs.. Before this law was passed, the selection of the restoration sites 

was not based on any fixed criteria, but rather on the bases of a more political and economic 

feasibility. At any rate, the ranking on the planned restorations is not directly related to 

recreational fishing. Nevertheless, it is plausible to think that in the time before (and after) the 

law was implemented, some of the determinants of the choice of the restoration site may have 

been correlated with the fish stock in the section itself. Hence, by simply comparing catch rates 

in restored and unrestored sections would not avoid the bias due to the factors affecting both the 

likelihood to restore the section and the fish stock in the section. If notoriously poor habitat is 
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selected for restoration then the proper comparison groups are those with equal compromised 

habitat but void of restoration.  

Upstream restoration activity is linked with downstream fish population invalidating any 

strategy using characteristics of upstream streams as instruments. On the other hand, the 

propensity score matching method relies on the existence of the relationship between upstream 

stream health (and subsequent restorations) and downstream fish populations but non-

identifiably of an instrument that directly is related to restoration but not catch. Our rich data on 

streams combined with the ability to difference our outcome variable of interest make the 

propensity score matching method a useful standalone for examining outcomes aggregated to the 

stream section. However, one drawback of the propensity score method is the cross-sectional 

nature of the estimator when one has panel data. In our case we have extremely detailed angler 

data for the decade from 2002-2012.  

The traditional approach with this type of panel data is to assume that the fixed portion of 

the panel addresses the selection issues inherent with restoration site selection. That is, after 

controlling for the time variant characteristics (e.g., lagged aggregate catch, stocking data, 

weather, etc.), and having comparison streams from the same local environment (economic and 

socio-demographic) any systematic differences between treated and untreated units are thus 

assumed to be captured by time-invariant characteristics whether these characteristics be 

observed or not. The fixed effect model assumes the expected trajectories of the treatment and 

control groups are the same in the absence of the treatment, an assumption of homogeneous 

treatment effects. However as suggested by Ferraro and Miranda (2014a,b) if treated and 

untreated stream sections are exposed to cotemporaneous, post-treatment shocks, the assumption 

of homogenous average responses among treated and untreated units is questionable. In our data 
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we have a precipitous decline in angler activity during the study period unattributed to any 

particular observable data. If this or any other “shock” impacts the treated streams 

disproportionately then the homogeneity assumption of the treatment effect is in question. By 

combining the advantages of the propensity score estimator to construct observationally 

equivalent comparison groups and then the sample isexposed to a post-treatment shock, the 

assumption of homogenous average responses among treated and untreated units is more 

plausible (e.g., if stream attributes are correlated with exposure and responses to stimuli that are 

causing declining angler interest). Moreover, if the important sources of treatment heterogeneity 

are functions of observable characteristics, matching and reweighting the sample can render the 

homogenous treatment effect assumption less problematic. 

To estimate a model with a stricter interpretation of the homogeneous treatment we use 

matching algorithms to pre-process the data and make the treatment and comparison groups 

observationally similar prior to treatment assignment (Miranda and Ferraro, 2014a, 2014b). We 

refer to the occurrence of an upstream restoration as the treatment and we present two 

comparable panel data econometric approaches in this paper. The first, using a fixed effect panel 

approach, has obvious tractability advantages in this context and the second approach estimates 

the same models having reweighted the sample based on the propensity score analysis. 

In all time periods of the analysis, anglers choose among fishing sites and complete a 

report documenting where they fish and the number of catch in multiple size categories by 

species (figure 1).4 The panel models are based on the combination of angler / fishing location. 

So one angler’s inherent skill is effectively allowed to vary by location. There is no clear 

guidance on the modeling if time variation in these types of models so we choose a highly 

                                                 
4 Importantly, they also report zero catch. 
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flexible year by quarter time dummy.. These models incorporate non-parametrically the impact 

of unobserved time-varying covariates that account for the dynamics of angler activity.  

To formalize the model we estimate the following equation: 

(1) isdisdisdqisd DC   W  ,  

where C is the catch by angler i in stream section s on day d, q denotes a sequential 

quarterfixed effect isdW  is a vector of time variant controls (weather, stocking data, aggregate 

past catch, and isdD  is the treatment dummy equal to 1 if a stream restoration occurred in the 

most direct upstream section at any time in the past.  We are most interested in estimating , the 

average treatment effect on the treated (ATT). 

The quarter fixed effects are one approach to capturing the shocks represented by 

changing attitudes toward recreational fishing and the spatial location or locale desirability is 

absorbed by the angler/spatial fixed effect. The effect of the treatment is identified by variation 

within the stream-quarter (year) section cell. We estimate 3 panel models – a logit model for 

catching any fish, a count model for catch number, and an interval regression to discern the 

impact of D on the size (length) of the average caught fish.  

 As anticipated, there exist that plausible circumstances that may induce heterogeneity in 

the treatment effect. To account for this, we also preprocess the data using propensity score 

matching in an attempt to restore balance on observables and near or plausible homogeneity of 

the treatment effect. In this framework, we wish address selection issues, measure the macro 

effect where the observation of interest is the stream section and to further utilize the resulting 

estimation weights to preprocess a second set of panel models. The treatment, D, is again the 

presence of a stream restoration upstream (in the nearest upstream section) to the observation, 

𝐷 ∈ {0,1}. The outcome of interest, Y, is the aggregate yearly catch in the stream section.  



 11 

The main advantages of the matching procedure includes removing sensitivity to 

functional form in constructing the counterfactual,i exposing violations of the common support 

(cases where treated observations are substantially different from untreated observations), and, as 

pointed out by Rubin (1997), in cases with many confounding variables, making clear that “small 

differences in many covariates can accumulate into a substantial overall difference” such that 

groups of stream sections may differ in a multivariate direction to an extent that cannot be 

discerned from comparisons of means or histograms between groups. The use of the matching 

weights to preprocess our panel data will most obviously benefit from the identification and 

exclusion of stream sections without comparable counterfactuals (violation of the common 

support). 

Here we draw on a class of estimators called propensity score matching (PSM) 

estimators, first suggested by Rosenbaum and Rubin (1985). Applications of propensity score 

matching are now quite prevalent in the literature, especially in labor economics where the 

evaluation of job-training programs represents a significant econometric challenge (e.g., Smith 

and Todd, 2005; Dehejia and Wahba, 2003). Before explaining the specifics of our own 

application, we lay out the general form of the matching estimation procedure following such 

standard references as Heckman, Ichimura, and Todd (1997); Heckman, Ichimura, Smith, and 

Todd (1998); and Smith and Todd (2005). 

In general, let N be the number of stream sections at the beginning of the time period, the 

year 2002/2003 in our data. Over the next 7 years we observe restoration activity in the 

landscape. Those stream sections downstream from the restoration activity are the treated 

sections. In any period, T, any number of these stream sections, ND  are treated. Outcomes 

emerge in some period subsequent to T discussed in detail below. Stream sections can experience 
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treatments prior to the sample period and we are careful not to contaminate in the analysis by 

removing any sections treated in the past, from both the treated and control sections (Holland, 

1986).  

Following common notation, we define Y1
c as the fish catch outcome under treatment and 

Y0
c as the catch outcome with no treatment. For any stream section, only one of these outcomes 

can be observed, D = 1 indicating that a section has been treated and D = 0 indicating the 

untreated state. Z is a vector of K conditioning variables comprised of the ecomorphology of the 

upstream streambed, stream banks, instream infrastructure, and stream bank infrastructure, as 

listed in table 1. These are variables that we expect will affect the probability of treatment and 

variables that can be expected to affect the outcome (the catch totals). To further address the 

actual stream characteristics of the section we difference the outcome variable such that Y is the 

difference in catch in 2012 and the average of the 2002 and 2003 years. Since the precise 

location of fishing within a section is indeterminable the actual own stream section data is not 

useful, however, given there are no changes in own section exogenous characteristics the 

differencing effectively mitigates this source of bias. 

The usual task set out by propensity score matching procedures is to estimate the mean 

“treatment effect on the treated.” For our problem, this is the effect on the catch rate averaged 

over all sections that were treated. Specifically, we want an estimate of 

                  ATT = E(Y1
c – Y0

c | Z, D = 1) = E(Y1
c | Z, D = 1) – E(Y0

c | Z, D = 1)         (2) 

where ATT is the average treatment effect on the treated. This equals the expected value of the 

difference between the treated outcome and the non-treated outcome, conditional on exogenous 

explanatory factors, Z, for the group of sections that are actually treated. The first term in the last 

expression in (2) is easily obtained, as it is the average actual outcome for the treated 
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observations—in our case, the catch totals in the treated sections. However, the second term, 

representing the counterfactual or potential outcome, is never observed. It is the expected 

outcome for the treated observations had they not been treated. The task is to define an estimator 

for E(Y0
c | Z, D = 1). 

Matching estimators’ pair each treated observation with one or more observationally 

similar non-treated observation(s), using the conditioning variables, Z, to identify the similarity. 

This procedure is justified if it can be argued that conditional on these Z’s, outcomes are 

independent of the selection process. That is, if those observations found in the set D = 0 were 

actually treated, the expected value of their outcomes, once conditioned on the Z’s, would not 

differ from the expected value of outcomes in the treated group. 

More precisely, conditional mean independence is required, such that 

                                         E(Y0
c | Z, D = 1) = E(Y0

c | Z, D = 0)           (3) 

Direct implementation of the above equation would be difficult for a large number of 

conditioning variables, yet ensuring that (3) holds would typically require a rich set of these 

variables. Rosenbaum and Rubin defined the propensity score matching estimator by showing 

that instead of conditioning on all K elements of the Z vector, one can equivalently condition on 

a one-dimensional function of that vector. They show that if outcome Y0
c is independent of 

selection when conditioned on the Z’s, then it is also independent of selection when conditioned 

on the “propensity score,” which is defined as the probability of selection conditioned on the Z’s. 

Defining 

                                                      P(Z) = Pr(p = 1 | Z)            (4) 

the treatment effect in equation (2) combined with equation (3) can now be rewritten as: 
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         ATT = E(Y1
c – Y0

c  | P(Z), D = 1) = E(Y1
c  | P(Z), D = 1) – E(Y0

c | P(Z), D = 0)         

(5) 

Equation (4) is estimated as a binary probit, with treatment, strRest, as the dependent variable.  

Having established the grounds for matching, we need to define the form of the matching 

estimator for the treatment effect in equation (5). We use nearest neighbor matching, which is a 

pairwise matching scheme that selects the counterfactual from the untreated set on the basis of 

the most similar propensity score. For simplicity we implement 1 nearest neighbor which 

facilitates the reweighting of the panel estimators. 

Once having obtained the propensity scores shown in table 2, the common support 

condition can be examined. As shown in Table 3 in the row labeled “On Support/Off Support”, 

we find several instances where the common support is violated, and all treated effects are 

reported excluding these violators. Additionally, before calculating any of the average treatment 

effects on the treated, ATT, the outcome must be shown to be mean independent of the treatment, 

conditional on the propensity score. Given the conditional independence assumption set out in 

equation (3) above, this requires ensuring that the covariates in Z meet this condition, which is 

equivalent to achieving “balance” between treatments and their controls. In more general terms, 

balancing ensures that covariates in Z cannot be used to predict membership in the treatment or 

control group—that is, the ideal situation of a random assignment has been recreated. We 

implement the balancing tests using mean independence, and all specifications balance on all 

covariates and interaction terms (when necessary) at a significance of 5% where interactions are 

included following Dehejia and Wahba (2003) table 4 displays these results and show that 9 of 

the conditioning variables go from mean statistical difference to zero statistical difference.  
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Results  

Utilizing the full panel results we see an increase in the probability of catching any fish, an 

increase in the number of fish caught, and a slight decrease in the size of the caught fish. Table 5 

shows these results and marginal effects. Further a comparison between the total catch in Figure 

2 panels 1 and 3 (reading from left to right) suggest the potential baseline “unobserved” 

differences in catch across the treated and untreated sections. If the assumption of homogeneity 

in treatment holds then the area by angler fixed effect is adequately capturing this variation and 

one can be satisfied that restorations seem to have small but measureable impacts. However, if 

there is any reason to believe that heterogeneity exists in the treatment effect due in part to 

unobserved time variant shocks that impact fishing areas heterogeneously then one should be 

concerned with preexisting observable differences in these areas that when controlled for the 

homogeneity assumptions become more econometrically palatable.  

The propensity score results are useful for two aspects – first they provide an overarching 

aggregate impact measure of interest in general and secondly the resulting weights from the 

matching algorithm allow the panel to be preprocessed such that homogeneity assumptions more 

plausibly hold.  Table 2 shows the estimation of the treatment based on upstream stream 

attributes. While interpretation is minimally important it is positive that the pre-period stream 

data are suggestive of location of the restoration activity. We utilize a differenced dependent 

variable equal to the 2012 total catch minus the average of the 2002-03 total catch. 

𝐴𝑇𝑇 = [𝑌1,2012
𝑐 − (𝑌1,2002

𝑐 + 𝑌1,2003
𝑐 )/2] − [𝑌0,2012

𝑐 − (𝑌0,2002
𝑐 + 𝑌0,2003

𝑐 )/2] . 

Table 3 out shows the single nearest neighbor results for balanced specifications with 

bootstrapped standard errors. In the aggregate the restorations seem to increase the total catch, by 

277 (significant at 95%), and the total trout catch by 242 with a large portion of this average 
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impact coming from larger fish (> 34cm), 191 and 158 for total and trout catch respectively both 

significant at 95%. While the design of the treatment is intended to minimize the “attraction” to 

restorations by anglers we do see slight evidence of an increase in trips of 140 per year 

significant at 90%, but this increase in trips is more than offset by an increase in catch per trip by 

almost 0.30 significant at 95%. These aggregate numbers are suggestive of positive treatment 

impacts but assume perhaps implausible restrictions on angler behavior that we address by using 

the full panel preprocessed with the propensity score weights.  

The panel is defined on angler location so any angler “skill” is differentiated by site. The 

results presented in Table 6 from the fixed effects logit suggest an increase in the odds of a catch 

post treatment of 4 to 5%, the count models suggest an insignificant increase in the expected 

number caught and a statistically significant slight decrease in trout caught, and the interval 

regression suggests an increase of .22 cm for all catch and .26 cm for trout both significant. 

These panel results contrast rather dramatically with the preliminary panel analysis in both 

number and size, reversing, in several cases, these results.  

 

Concluding remarks 

Little evidence of direct links between human ecosystem restoration and measurable species 

recovery exist yet human reversing poor past decisions regarding ecosystem in general and 

streams specifically has recently been a focus of scientists and policy makers. This paper utilizes 

a unique set of data essentially a fishing census in an area of active stream restoration activity to 

demonstrate small but important impacts on fish catch and size that are at worst suggestive that 

these interventions are experiencing meaningful short term success. 
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Figure 1. Fishing report card that each angler has to fill out and submit to the local authority. 
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Figure 2 Catch totals by sample – treated, PSM weighted controls, controls  
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Table 1 Variables used in the construction of the propensity score 

Variable  Definition Mean SD Min Max 

pctUp_oeko_4 

Percentage of upstream 

geomorphology non-natural 
0.0621 0.2208 0 1 

pctUp_oeko_2 

Percentage of upstream 

geomorphology slightly impaired 
0.1395 0.3019 0 1 

pctUp_oeko_3 

Percentage of upstream 

geomorphology severely 

impaired 

0.1448 0.3087 0 1 

pctUp_FUSS_DCH 

Percentage of streambank 

permeable (connected) 
0.3995 0.4235 0 1 

pctUp_FUSS_BAU 

Percentage of streambank 

impervious 

20.147

5 

30.983

5 
0 100 

pctUp_UFER_BR 

Percentage of streambank 

sufficient width 
0.3645 0.4231 0 1 

pctUp_UFER_BE_

1 

Percentage of shore area 

impervious 
0.0603 0.1990 0 1 

pctUp_UFER_BE_

2 

Percentage of shore area 

connecting streams 
0.4223 0.4518 0 1 

pctUp_UFER_BE_

3 

Percentage with no shore area  
0.0196 0.1054 0 0.931 

pctUp_UFER_BE_

4 

Percentage of shore area artificial 
0.0792 0.2293 0 1 

pctUp_SOHLE_PR

OZ 

Percentage of streambed 

containing construction (weirs, 

dams, bridges) 

1.3353 7.5326 0 85.88 

pctUp_WSPIEGLB

_V_1 

Percentage of stream width with 

no restrictions 
0.2850 0.4095 0 1 

pctUp_WSPIEGLB

_V_2 

Percentage of stream width with 

partial restriction 
0.1911 0.3406 0 1 

pctUp_WSPIEGLB

_V_3 

Percentage of stream width with 

full restriction 
0.1053 0.2622 0 1 

anyUpSohle 

Dummy for upstream 

construction 
0.4760 0.8279 0 5 
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Table 2.  

Variable  Coefficient 

Robust 

SE T-Stat pval 

pctUp_oeko_4 -4.278 1.945 -2.200 0.028 

pctUp_oeko_2 -0.992 0.927 -1.070 0.284 

pctUp_oeko_3 -0.793 1.443 -0.550 0.583 

pctUp_FUSS_DCH -0.361 0.515 -0.700 0.483 

pctUp_FUSS_BAU -0.001 0.008 -0.130 0.893 

pctUp_UFER_BR -0.691 0.639 -1.080 0.280 

pctUp_UFER_BE_1 5.394 1.955 2.760 0.006 

pctUp_UFER_BE_2 5.539 1.605 3.450 0.001 

pctUp_UFER_BE_3 4.730 2.024 2.340 0.019 

pctUp_UFER_BE_4 4.964 1.735 2.860 0.004 

pctUp_SOHLE_PROZ -0.015 0.030 -0.490 0.624 

pctUp_WSPIEGLB_V_1 -3.671 1.257 -2.920 0.004 

pctUp_WSPIEGLB_V_2 -2.730 1.019 -2.680 0.007 

anyUpSohle 0.260 0.159 1.630 0.103 

_cons -1.894 0.279 -6.800 0.000 

Observations  208       

Psuedo-R2 0.270       

LogL -70.35       

 

  



 22 

Table 3 – Nearest neighbor matching results 

    

95% 

Confidence 

Int^     

Support 

Treated   

Outcome ATT Lower CI Upper CI   Off  On 

Total Catch 277.8** 75.74 778.71   5 34 

Total Large Catch 191.1** 66.02 456.77       

Total Trout Catch 242.1** 75.37 569.16   
Support 

Controls   

Total Large Trout 

Catch 158.3** 85.34 321.04   Off  On 

Total Trips 140.6 * -20.79 413.77   0 169 

Total Catch Per Trip 0.296** 0.16 0.61       

^ Confidence intervals constructed using bootstrapped bias corrected standard errors from 

1000 replications. 

** - significant at 5%, * - significant at 10%   

 

 

 

 

 

 

 

 

  



 23 

Table 4: PSM covariate balancing results. 

    Mean   T tests   

Variable Sample Treated Control t pr>|t| 

pctUp_oeko_4 Unmatched 0.0490 0.0651 -0.41 0.682 

  Matched 0.0504 0.0452 0.13 0.897 

pctUp_oeko_2 Unmatched 0.1469 0.1378 0.17 0.865 

  Matched 0.1686 0.2317 -0.79 0.435 

pctUp_oeko_3 Unmatched 0.4232 0.0805 6.92 0 

  Matched 0.3442 0.2599 1.03 0.305 

pctUp_FUSS_DCH Unmatched 0.5422 0.3666 2.36 0.019 

  Matched 0.5900 0.7228 -1.75 0.084 

pctUp_FUSS_BAU Unmatched 37.6330 16.1120 4.05 0 

  Matched 31.7870 25.4910 0.98 0.33 

pctUp_UFER_BR Unmatched 0.4535 0.3440 1.46 0.146 

  Matched 0.5067 0.6566 -1.88 0.065 

pctUp_UFER_BE_1 Unmatched 0.1252 0.0453 2.28 0.023 

  Matched 0.1266 0.0486 1.56 0.124 

pctUp_UFER_BE_2 Unmatched 0.5967 0.3821 2.72 0.007 

  Matched 0.6342 0.7773 -1.85 0.069 

pctUp_UFER_BE_3 Unmatched 0.0297 0.0172 0.67 0.507 

  Matched 0.0274 0.0430 -0.5 0.622 

pctUp_UFER_BE_4 Unmatched 0.1498 0.0629 2.15 0.032 

  Matched 0.0987 0.0966 0.04 0.965 

pctUp_SOHLE_PROZ Unmatched 1.2737 1.3495 -0.06 0.955 

  Matched 1.4168 0.8932 0.75 0.459 

pctUp_WSPIEGLB_V_1 Unmatched 0.3211 0.2767 0.61 0.543 

  Matched 0.3683 0.4748 -1.14 0.26 

pctUp_WSPIEGLB_V_2 Unmatched 0.3436 0.1559 3.17 0.002 

  Matched 0.3762 0.3783 -0.02 0.982 

pctUp_WSPIEGLB_V_3 Unmatched 0.2368 0.0749 3.57 0 

  Matched 0.1424 0.1124 0.66 0.514 

anyUpSohle Unmatched 0.9487 0.3669 4.1 0 

  Matched 0.9118 1.2353 -1.21 0.232 
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Table 5.  

 

  FE Logit                 

  Outcome Catch             

Model   Coeff.   

Std 

Error   

Odds 

Ratio   Obs Groups 

(1) Catch 0.0393 *** 0.0111   1.0407   1430254 188889 

                    

(1') Trout Catch 0.1551 *** 0.0119   1.1677   1175956 172158 

                    

  

Negative Binomial 

Model on fish catch 

counts                 

  Outcome Catch           

Number 

of   

    Coeff.   

Std 

Error       Obs Groups 

(2) Catch 0.0567 *** 0.0058       1256084 73722 

                    

(2') Trout Catch 0.0312 *** 0.0059       1016882 66202 

                    

  
Interval Regression 

on fish catch size                 

  Outcome Catch           

Number 

of   

    Coeff.   

Std 

Error       Obs Groups 

(3) Catch -0.0974 * 0.0570       883468 121215 

                    

(3') Trout Catch -1.8436 *** 0.0598       954181 138876 

                    

  

*** - signif at 1%, ** - significant at 5%, * - significant at 

10%    
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Table 6.  

 

  FE Logit Posttreat             

  Outcome Catch           

Model   Coeff.   

Std 

Error 

Odds 

Ratio   Obs Groups 

(1) Catch 0.0470 *** 0.0147 1.0481   444953 40427 

                  

(1') Trout Catch 0.0556 *** 0.0159 1.0572  386826 37554 

                  

  

Negative Binomial 

Model on fish 

catch counts               

  Outcome Catch            

    Coeff.   

Std 

Error     Obs Groups 

(2) Catch 0.0065   0.0067     399245 17488 

                  

(2') Trout Catch -0.0354 *** 0.0072     346840 16594 

                  

  

Interval 

Regression on fish 

catch size               

  Outcome Catch            

    Coeff.   

Std 

Error     Obs Groups 

(3) Catch 0.2156 *** 0.0702     444962 40428 

                  

(3') Trout Catch 0.2587 *** 0.0725     386836 37556 

                  

                  

*** - signif at 1%, ** - significant at 5%, * - significant 

at 10%     

Note: all models include angler by fishing site fixed effects and time by quarter fixed effects 
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