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Abstract

“Preference point” lotteries—under which the probability an individual is drawn in-

creases with their stock of preference points earned over time by being unsuccessful

in past drawings—are widely used to allocate access to many economically important

natural resources (e.g., big game hunting opportunities). Lotteries form a natural

choice experiment: by observing the opportunities for which an individual applies, the

alternatives not chosen, the associated costs, the probability of winning a permit, etc.,

statistical inferences can be made about how individuals trade off site characteristics

for cost. Knowledge of these trade-offs can then be used to estimate applicants’ will-

ingness to pay for site quality characteristics and site access. Two key features of

recreationalists’ choices under preference point lottery are (i) forward-looking behavior

(since the odds of winning a permit depend on the accumulated stock of preference

points) and (ii) equilibrium sorting (whereby individuals decide where to apply based

on their expectations of others’ choices and vice versa). We develop a novel revealed

preference method for estimating individuals’ willingness to pay for access to recre-

ational opportunities allocated by preference point lottery that accounts for these two

features. We apply our model to the case study of black bear hunting in Michigan. We

estimate total willingness to pay for access to a small site to be nearly $150,000.

Keywords: dynamic discrete choice model; equilibrium sorting; lottery; preference points;

revealed preference; travel cost

JEL Codes: C2, C5, D9, Q26, Q51



1 Introduction

Resource management agencies often use permits to regulate access to recreational opportu-

nities (e.g., big game hunting or river rafting). These permits are typically priced at rates

below those that would arise in the marketplace. This guarantees greater equity of access

for low-income resource users, but also excess demand for permits. Hence, wildlife manage-

ment agencies in many states and provinces throughout North America allocate permits via

lotteries.

Many agencies rely on “dynamic lotteries” (e.g., “preference point” and “weighted” lot-

teries) to allocate permits.1 These lotteries differ from a simple drawing where the probability

an applicant wins a permit is simply the permit quota divided by the number of applicants.

The probability an applicant is drawn in a dynamic lottery changes over time depending

on whether the applicant was successful in past drawings. For example, preference point

lotteries award points to unsuccessful applicants. Each year, applicants for permits to access

a particular site are sorted by the number of preference points they possess. Permits are then

allocated to those with the highest number of preference points until the permit quota is

filled. The successful applicant’s preference point balance is reset to zero upon being issued

a permit. Each unsuccessful applicant earns a single point towards next year’s application,

thereby increasing their odds of future success. Weighted lotteries work similarly, except

that each unsuccessful applicant is given an additional draw for the following year’s lottery.

Lotteries provide an opportunity to estimate individuals’ willingness to pay (WTP) for

access to recreational opportunities and their characteristics. Indeed, lotteries form a nat-

ural choice experiment: by observing the opportunities for which an individual applies, the

alternatives not chosen, the associated costs, the probability of winning a permit, etc., sta-

tistical inferences can be made about how individuals trade off site characteristics for cost.

1For example, dynamic lotteries are commonly used to allocate big game hunting permits, including
those for black bear (Michigan), elk (Colorado, Michigan, Montana), deer (California, Montana), and even
alligators (Louisiana). Dynamic lotteries are also used to allocate river noncommercial rafting permits in
Grand Canyon National Park.
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Knowledge of these trade-offs can then be used to estimate applicants’ WTP (Holms and

Adamowicz, 2003).

Several prior studies have estimated WTP for access to natural resources when permits

are rationed by lottery. Most focus on the case of simple lotteries (e.g., Boxall 1995; Loomis

1982; Nickerson 1990; Scrogin and Berrens 2003; Scrogin et al. 2000), although Akabua et al.

(1999) and Buschena et al. (2001) estimate WTP for site access under preference point

lotteries. Yet, this prior work is of limited use for estimating WTP for dynamic lotteries

because it does not account for (i) the intertemporal trade-off inherent in these lotteries

and/or (ii) equilibrium sorting by applicants.

A defining feature of dynamic lotteries is the intertemporal trade-off between site access

and site quality. Because an applicant’s odds of success vary from year to year with her stock

of preference points or extra draws, and because this stock is reset to zero upon being drawn

for a permit, she has an incentive to manage her stock across time by optimally choosing

where and when to apply for a permit (Buschena et al., 2001). Put differently, a trade-off

exists between the expected utility from winning access to a lower quality site in the current

period versus the discounted expected utility from winning access to a higher quality site in

the future. Ignoring this trade-off can lead to biased WTP estimates whenever applicants

place a positive value on future recreation opportunities.

Buschena et al. (2001) recognize the dynamic nature of the application decision and use

a hedonic approach to estimate hunt values based on the cost of building one’s preference

point stock to the level required to win a permit. Specifically, the authors use a Poisson

model to estimate the number of preference points required to win a permit for a specific

site based on a vector of site quality characteristics. The marginal value of the permit is

the amortized total cost of accumulating enough preference points to guarantee a license.

Though novel, their approach is of limited use in counterfactual analysis because it does

not capture the equilibrium sorting behavior of applicants under changes to site quality or

access. These changes affect the present value of expected indirect utility from applying for
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a given permit, which also depends endogenously on the share of applicants that apply for

the permit (and thus the probability of success) in Nash equilibrium. Changes to expected

utility will affect WTP, so a fully generalizable method for estimating WTP must account

for equilibrium sorting.

Intertemporal trade-offs and equilibrium sorting have each been treated separately in

prior site choice studies. Provencher and Bishop (1997) and Hicks and Schnier (2006) use

Rust’s “nested fixed point” (NFXP) algorithm to estimate a site choice model for fishing

trips. This approach nests a contraction mapping within a maximum likelihood routine;

the contraction mapping calculates the maximized present value net benefits from fishing

over time (thereby accounting for the intertemporal trade-off), and the maximum likelihood

routine estimates the objective function parameters, given the results from the contraction

mapping nest. Congestion plays no role in these analyses, in contrast to our model of ap-

plication choice under a dynamic lottery. Timmins and Murdock (2007) use Berry’s (1994)

equilibrium sorting model to estimate a site choice model of recreational fishing where con-

gestion (caused by large numbers of other fishermen visiting the same site) reduces fisherman

utility directly via a linear disutility term. Berry’s approach also uses a nested algorithm in

which the contraction mapping nest solves for an objective function parameter that ensures

the predicted share of individuals making a given choice matches the observed share (thereby

accounting for equilibrium sorting). The maximum likelihood routine then estimates the re-

maining objective function parameters. In contrast with our problem, the choice of where

to go fishing is static in Timmins and Murdock’s model, and so their approach does not

account for intertemporal trade-offs.

We develop a model of application choice under a dynamic lottery by marrying Rust’s

(1987) NFXP and Berry’s (1994) equilibrium sorting model into a single, three-nest algo-

rithm that simultaneously accounts for both the intertemporal trade-off and equilibrium

sorting by applicants. The inner nest utilizes a contraction mapping to calculate the maxi-

mized present value net benefits from managing one’s stock of preference points over time,
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following Rust (1987). The second nest uses the results from the first to solve for a utility

function parameter that ensures the predicted share of applicants for a given hunt matches

the observed share, following Berry (1994). The final nest uses maximum likelihood to es-

timate the remaining utility function parameters. For concreteness, we derive our model in

the context of black bear hunting in Michigan, permits for which are allocated via preference

point lottery, although the method is generalizable to other contexts.2

We begin our analysis by providing background on black bear hunting in Michigan; this

background provides context for our modeling approach and estimation procedure, discussed

in the following section. We then present estimation results, followed by a discussion and

conclusion.

2 Black Bear Hunting in Michigan

The Michigan Department of Natural Resources (DNR) has allocated permits for black bear

hunting via preference point lottery since 2000. Hunts take place in late summer through

mid-autumn. The black bear range in Michigan is divided into twelve bear management

units (BMUs) (Figure 1). The Lower Peninsula BMUs that are open to hunting each host

a single hunt lasting one week in mid-September. Drummond Island, on the eastern tip of

the Upper Peninsula, hosts a single hunt that lasts six weeks over September and October.

The remaining Upper Peninsula BMUs each host three hunts over the course of the autumn.

There are 22 total hunts each year (Table 1). Hunt quality characteristics vary across each

hunt and BMU; Table 2 summarizes several key characteristics of each BMU, including

population, total forest land open to hunting (the sum of private commercial forest and

state forest and wildlife area acreage), the number of hunts each BMU hosts, the season

duration, and mean success rate (i.e., the proportion of hunters who took a bear). The

mean success rate reported in Table 2 is similar across BMUs, although these figures mask

2For example, similar algorithms have been used to estimate demand for durable and semi-durable goods
like automobiles (Schiraldi, 2011), digital cameras (Carranza, 2010), and video game consoles (Nair, 2007).
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considerable variation within a given BMU over the course of the season (Figure 2).

Figure 1: Michigan bear management units (source: DNR 2015a; 2015b)

Applicants pay an application fee and a license fee up front. The application fee is $4 for

all applicants except Comprehensive Lifetime License holders, for whom the application fee is

waived. License fees are $15 for Michigan residents and $150 for nonresidents. Unsuccessful

applicants are refunded the license fee, but not the application fee. Applicants also have

the option of applying for the “preference point-only” option. Those who take this option

are automatically awarded a preference point for use in future drawings and pay only the

$4 application fee, but cannot hunt in the current season. With the preference-point only

option, an applicant can choose from 23 total hunt choices.3

The number of licenses available for each hunt, or the “permit quota,” ranges from only

3The bear permit drawing in Michigan is actually divided into two rounds; applicants apply for a first
and second choice of hunt before the drawing takes place. If an applicant is not drawn for his first choice,
then he is entered in the drawing for his second choice if any permits for that hunt remain after the first
round. We model only a single round here. Including a second round makes estimation infeasible due to
large number of choice alternatives it implies. (The choice set balloons from 23 alternatives if considering
the first round only to 485 if considering both rounds). However, fewer than half of applicants even entered a
second choice on the 2009 application, and approximately 2 percent of those that did were awarded a permit.
Hence, ignoring the second round is unlikely to have a significant effect on our results.
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Table 1: 2009 Michigan Bear Hunting Seasons and Quotas (Source: DNR 2009)

Hunt Bear management unit Season Quota Applicants

1 Bergland 9/10–10/21 350 1221
2 9/15–10/26 605 693
3 9/25–10/26 625 474
4 Baraga 9/10–10/21 380 2070
5 9/15–10/26 690 1190
6 9/25–10/26 1270 1141
7 Amasa 9/10–10/21 135 1157
8 9/15–10/26 190 555
9 9/25–10/26 355 694
10 Carney 9/10–10/21 205 1256
11 9/15–10/26 435 603
12 9/25–10/26 540 408
13 Gwinn 9/10–10/21 250 1660
14 9/15–10/26 360 831
15 9/25–10/26 860 785
16 Newberry 9/10–10/21 400 4316
17 9/15–10/26 490 1753
18 9/25–10/26 1420 2055
19 Drummond Is. 9/10–10/21 3 227
20 Red Oak 9/18–9/26 1700 12427

(10/2–10/8 archery)
21 Baldwin 9/18–9/26 (all) 60 2684

9/11–9/26 (north area)
22 Gladwin 9/18–9/26 150 909
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Table 2: Bear Management Unit Characteristics and Summary Statistics (Source: DNR
2009; 2015b)
BMU Population Total forest land

open to hunting
(ac)

Hunts
yr–1

Mean
success

rate

Total season
duration
(days)

Bergland 16,452 340,020 3 0.28 47
Amasa 23,636 500,823 3 0.43 47
Baraga 78,327 974,399 3 0.29 47
Gwinn 48,954 574,025 3 0.27 47
Carney 57,362 436,796 3 0.25 47
Newberry 60,591 1,333,215 3 0.31 47
Drummond Island 457 22,550 1 0.36 42
Red Oak 294,981 1,394,083 1 0.26 7
Baldwin 467,081 288,297 1 0.48 7
Gladwin 303,693 231,582 1 0.10 7

Mean 135,153.40 609,579 — 0.30 34.5
Standard deviation 160,231.18 468,865 — 0.10 19.04

Figure 2: Hunt success rates by bear management unit and time of season
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3 per year in the Drummond Island BMU to 1,700 for the Red Oak BMU (Table 1). For

BMUs with multiple hunts, the quota increases for seasons that open later in the year, and

application numbers tend to decrease for these later hunts. This is likely because bears are

less active later in the autumn, and because bears become more easily “spooked,” or more

difficult to hunt, as the season wears on. The license quota for each hunt is made available on

the DNR’s website before the drawing. The DNR also publishes the previous year’s drawing

success rate for each hunt conditional one’s stock of preference points each year before the

drawing.

A total of 56,762 individuals participated in Michigan’s preference point lottery for bear

permits in 2009. Data describing each applicant—including hunt choices, addresses, and

their preference point stock—were provided by the DNR. Figure 3a shows a histogram of

applicants’ preference point stocks; most applicants have fewer than three preference points,

and only two applicants have ten—the maximum possible.

We estimate round-trip travel costs for each applicant using US Census data on median

annual income for each applicant’s ZIP code. We assume the opportunity cost of travel

time to be one third of each applicant’s imputed hourly wage. This opportunity cost was

then multiplied by the travel time to the BMU, which was calculated using PC*Miler (ALK

Technologies, Inc., 2015) assuming an average travel speed of 55 mi hr–1.4 To this cost were

added the application fees and mileage costs calculated for a four-wheel drive truck (American

Automobile Association, 2009). Figure 3b shows a histogram of applicants’ round-trip travel

costs to each BMU. The vast majority are less than $750 trip–1, although the distribution is

skewed by out-of-state hunters whose costs total more than $1,500 trip–1 in some cases.

4Our data are limited in that we do not have information on exactly where each applicant would hunt
within a given BMU. We therefore calculate travel time based on the distance between the applicant’s
address and the centroid of the BMU. Many of the BMUs are very large (e.g., the Red Oak BMU in the
Lower Peninsula; Figure 1), and hence there is likely to be considerable error in our estimates (Ji et al.,
2016). That said, we discretize the travel cost data as part of our estimation procedure (described below).
This should negate some (although likely not all) of this error.
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Figure 3: Histograms of applicants’ a) preference point stocks and b) travel costs in dollars

3 Hunt Application Choice Under a Preference Point

Lottery

We now develop a model of application choice for bear hunting permits in Michigan. Suppose

the set of all bear hunters is N . Suppose also that the maximum number of preference points

is p̄. We can then partition N as N = {N1, ...,Np̄}, where Np is the set of applicants with

p preference points. Let Np and N be the cardinality of Np and N , respectively.

Each applicant makes an application choice j ∈ {1, . . . , J} = J , where J is the set of all

application choices. Let σj = [σj0 · · ·σjp̄] be a vector whose elements describe the observed

share of hunters with p = 0, ..., p̄ preference points that make application choice j.

The probability an applicant for hunt j wins a permit in year t with p preference points

is

φjpt =1

(
p̄∑

p′=p

Np′σjp′ ≤ qj

)

+ 1

(
p̄∑

p′=p

Np′σjp′ > qj,

p̄∑
p′=p+1

Np′σjp′ ≤ qj

)
qj −

∑p̄
p′=p+1Np′σjp′

Npσjp
, (1)

where qj is the permit quota for hunt j and 1(·) is an indicator function that takes a value

of one if the argument is true and zero otherwise. Consider an applicant with p preference
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points. If the number of applicants with p or more preference points, given by
∑p̄

p′=pNp′σjp′ ,

is less than the quota for hunt j, then the first right-hand side term in (1) evaluates to one

and the second indicator function evaluates to zero, so that the applicant receives a hunting

permit with certainty. If the number of applicants with p or more preference points is greater

than the quota, but the number of applicants with more than p preference points is less than

the quota (so that the second right-hand side indicator function evaluates to one and the

first indicator function evaluates to zero), then there is a simple lottery for all permits that

remain after the applicants with more than p points are issued permits. The probability of

winning a permit is then
(
qj −

∑p̄
p′=p+1Np′σjp′

)
/Npσjp. If neither of these conditions hold,

then the probability the applicant wins a permit is zero.

Let the indirect expected utility applicant i receives from hunt j be

vijpt(δjpt, µ) = δjpt + φjptµTCij, (2)

where: δjpt = φjptX
T
j β represents the baseline expected indirect utility from applying to

site combination j ; Xj is a vector of observable characteristics for site j (the superscript

“T” denotes “transpose”), with elements xjk representing individual site characteristic k =

1, . . . , K; β is a vector of marginal utility parameters; µ is the marginal utility of income;

and εijt is an idiosyncratic, conditionally-independent error term (Rust, 1987). We make the

dependence of vijpt on δjpt and µ explicit since these terms play an important role in our

estimation procedure, described below.

Each applicant makes application choices to maximize the present value of his expected

indirect utility from hunting over an infinite time horizon:

Vijpt = vijpt(δjpt, µ) + ρE{Rip′t+1}, (3)

where ρ is an exogenous discount factor and Rip′t+1 is the “conditional value term,” which

measures the maximized value of i ’s future expected indirect utility from hunting, conditional
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on his choice in period t and his updated stock of preference points, p′. The expectation

in (3) is taken with respect to p and εijt. If εijt is independent and identically distributed

over time and p follows a Markovian transition process,5 then we can assume “conditional

independence” (i.e., the Markov transition density is independent of εijt; Rust 1987), which

facilitates taking expectations over future periods and is commonly employed in dynamic

discrete choice modeling (Aguirregabiria and Mira, 2010). Specifically, we can rewrite (3) as

Vijpt = vijpt(δjpt, µ) + ρ
∑
p′

Πjpp′tRip′t+1, (4)

where Πjpp′t is the probability the applicant’s stock of preference points transitions from p

to p′ = 0, . . . , p̄ conditional on choice j. Note that

Πjpp′t =


φjpt for p′ = 0

1− φjpt for p′ = p+ 1

0 otherwise

since an applicant can only (i) lose all her preference points (if she wins a permit) or (ii)

earn one additional preference point (if she is not drawn).

For ease of exposition, we will continue with the notation employed in (3). Assuming

stationarity allows us to drop the time subscript. We further assume εij follows a type-1

extreme value distribution so that we can write the probability hunter i chooses application

5Indeed, an applicant’s preference point stock next period depends only on his current stock and the
decision he or she makes this period, suggesting p follows a Markovian transition process.
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combination j as6

Pijp =
exp

(
vijp(δjp, µ) + ρE{Rip′}

)∑
j′∈J exp

(
vij′p(δj′p, µ) + ρE{Rip′}

) =
exp

(
Vijp
)∑

j′∈J exp
(
Vij′p

) . (5)

Likewise, our distributional assumption allows us to write

E{Rip} = E

{
ln

(∑
j∈J

exp
(
vijp(δjp, µ) + ρE{Rip′}

))}
+ γ,

= E

{
ln

(∑
j∈J

exp
(
Vijp
))}

+ γ (6)

where γ ≈ 0.5772 is Euler’s constant. We can then write the estimated share of applicants

with p preference points that apply to hunt j as

σ̃jp =
1

Np

∑
i∈N

Pijp. (7)

At Nash equilibrium, the estimated shares from (7) will equal the observed shares from the

data: σ̃jp = σjp ∀j, p.

Equations (5)–(7) comprise our model of application choice under a preference point

lottery. We now derive an algorithm for estimating µ and β.

4 Estimation

Estimation of (5)–(7) proceeds by marrying Rust’s (1987) NFXP algorithm—which can be

used to calculate Vijp—with Berry’s (1994) model of equilibrium selection—which can be

used to estimate the δjp that equate σ̃jp and σjp at Nash equilibrium. Specifically, we use

6Our model is essentially a dynamic extension of the canonical conditional logit model. Static versions of
these models are limited by the “independence of irrelevant alternatives” (IIA) assumption, which imposes
unrealistic cross elasticities of substitution between choices (Holms and Adamowicz, 2003); specifically, the
relative probability of choosing any two choice alternatives is unaffected by the characteristics of other
alternatives under IIA. Provencher and Bishop (1997) show that IIA does not hold for dynamic site choice
models since the term E{Rip′} in (5) depends on the attributes of all other sites.
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a two-stage estimation procedure. The first stage comprises an algorithm with three nests:

an “outer” nest that uses maximum likelihood to estimate µ; a “middle” nest that uses a

contraction mapping to calculate the δjp that imply the equilibrium σj; and an “inner” nest

that uses a contraction mapping to calculate Vijp. The second stage estimates the marginal

utility parameters β using Timmins and Murdock’s (2007) instrumental variables approach.

Our model requires some slight modifications to (5)–(7) in order to ensure convergence

of the first-stage algorithm. We begin by discussing these modifications, and then describe

each stage in detail.

4.1 Normalizing the “Preference Point-Only” Option

The middle nest in our estimation procedure utilizes a contraction mapping (see equation

(11) below) to calculate the δjp that imply the equilibrium σj. For technical reasons (see

Berry 1994), δjp must be normalized to some value for a particular j to achieve convergence.

We therefore normalize the preference point-only option to zero. Assuming without loss that

this corresponds to alternative j = 1, then δ̃1p = δ1p− δ1p = 0 ∀p. This normalizes the other

δjp terms to δ̃jp = δjp− δ1p, which can be interpreted as the baseline expected indirect utility

from applying to site combination j 6= 1, relative to the preference-point only option.

The applicant’s expected net present value from applying to hunt j under this normal-

ization is

Ṽijp = vijp(δ̃jp, µ) + ρ
∑
p′

Πjpp′Rip′ . (8)

The choice probability (5) under this normalization is then

P̃ijp =
exp

(
Ṽijp
)∑

j′ exp
(
Ṽij′p

) , (9)

where the We use the choice probability in (9) in lieu of (5) in our nested estimation proce-
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dure. We now describe this procedure, starting with the inner nest.

4.2 Stage 1, Inner Nest

The inner nest is used to calculate Ṽijp. We initialize the model with a “guess” of µO, δ̃OMjp ,

and Ṽ OMI
ijp , where the superscripts O, M, and I denote the iteration of the outer, middle, and

inner nests, respectively. We also calculate φjp from (1) using data describing hunt quotas

and the observed shares of applicants that apply for each hunt with each preference point

level.7

Given this initial guess and the probabilities, we can rewrite (8) as

Ṽ OMI
ijp = vijp(δ̃

OM
jp , µO) + ρ

∑
p′

Πjpp′R
OMI
ip′ , (10)

where ROMI
ip = ln

(∑
j exp

(
Ṽ OMI
ijp

))
+γ. Rust (1987) shows that (10) is a contraction map-

ping that can be solved using a fixed point algorithm for the unique vector
[
Ṽ OM∗
i1p · · · Ṽ OM∗

iJp

]
∀i, p.

4.3 Stage 1, Middle Nest

The middle nest is used to calculate the δ̃jp that equates the observed shares with the

estimated shares. We substitute Ṽ OM∗
ijp and our initial guesses µO and δOMjp into (9) to

calculate the associated choice probabilities. From this, we can then predict the share of

applicants with p preference points who choose hunt j from (7).

7Technically, φjp depends on σj , which we calculate in the middle nest after calculating the fixed point
V OM∗
ijp . Substituting the observed σj here allows us to calculate V OM∗

ijp (which would be impossible otherwise),
and in any case the estimated σ̂j implies the observed φjp upon convergence of our algorithm.
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Berry (1994) shows that the following contraction mapping can be used to calculate the

δ̃O∗jp that equate the predicted shares, σ̃O∗jp , to the observed equilibrium shares, σjp:
8

δ̃OM+1
jp = δ̃OMjp + [ln(σjp)− ln(σ̃OMjp )]. (11)

Note that the inner nest will be rerun for every iteration M of the middle nest since δ̃OMjp

affects the value of Ṽ OMI
ijp . Denote the value of Ṽ OMI

ijp associated with δ̃O∗jp as Ṽ O∗∗
ijp .

4.4 Stage 1, Outer Nest

The outer nest uses the calculated values of Ṽ O∗∗
ijp and δ̃O∗ along with the initial guess µO

to estimate the marginal utility of income, µ, via maximum likelihood. The log-likelihood

function for (9) is

L =
∑
i

∑
j

ln
(
1(di = j)P̃O∗

ijp

)
, (12)

where di represents the application chosen by applicant i. The values Ṽ O∗∗
ijp , δ̃O∗jp , and µO are

substituted into (9), and an optimization routine updates µO until convergence, where L is

maximized at µ∗, δ̃∗∗jp , and Ṽ ∗∗∗ijp . Note again that the middle nest must be rerun for each

iteration of the outer nest.

The gradient for (12) is

∑
i

∑
j

1(di = j)

(
∂Ṽ O∗∗

ijp

∂µ
−
∑
j′

∂Ṽ O∗∗
ij′p

∂µ
P̃O∗
ij′p

)
(13)

where, following Rust (1994), ∂Ṽ O∗∗
ijp /∂µ =

(
1 − ∂Ψijp

∂Ṽ O∗∗
ijp

)−1
∂Ψijp

∂µ
and Ψijp is the contraction

mapping from (3) that satisfies Ṽ O∗∗
ijp = Ψijp

(
Ṽ O∗∗
ijp

)
.

8The shares σjp = 0 for some j,p in our data. The contraction mapping (11) breaks down in this case since
ln(0) is undefined. Timmins and Murdock (2007) suggest a “numerical patch,” i.e., increasing the number
of applications to each site by a small increment ψ (e.g., ψ = 10−12). This allows (11) to be calculated,
and the authors show that small values of ψ have a negligible effect on choice probabilities for sites that are
actually chosen in the data.
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4.5 Stage 2

The final stage of our estimation procedure recovers the remaining marginal utility parame-

ters, β. Recall from (2) that δjp = φjpX
T
j β. After normalizing δ0p, we can estimate the beta

by regressing δ̃∗∗jp on the site quality characteristics interacted with the success probabilities

plus a constant, κ, to account for the arbitrary normalization:

δ̃∗∗jp = φjpX
T
j β + κ+ εjp. (14)

The error term in (14) is correlated with the φjpXj; to see this, note that any omitted

factor that positively contributes to baseline expected utility would decrease φjp, all else

equal.

Timmins and Murdock (2007) suggest an instrumental variables approach for avoiding

this endogeneity problem. The approach is based on the logic underlying the standard

assumptions underlying any revealed preferences exercise. Specifically, we assume the char-

acteristics of sites other than j contribute to the expected utility from site j only by altering

the success probability φjp; indeed, the hunter success rate, say, at BMU j will not affect

the utility from hunting at site j′ except by influencing the number of hunters who apply to

site j and, hence, the probability of winning a permit at a given site. Hence, we can use the

site quality characteristics of sites other than j to form an instrument for the φjpXj terms.

We follow Timmins and Murdock (2007) by first estimating β via (14) using OLS, ignoring

the endogeneity. Denote the estimator as β̂. Next, we use β̂ to calculate σ, using only the

exogenous explanatory variables:

σ̂jp =
1

Np

∑
i∈Np

exp
(
XT
j β̂ + µ∗TCij

)∑
j′ exp

(
XT
j′ β̂ + µ∗TCij′

) . (15)

We use the estimated σ̂jp to calculate the success probability φ̂jp using (1). We then calculate

instruments as the predicted values that result from regressing φjpxjk on the vector φ̂jpXj;
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denote these predicted values as ̂φjpXj.
9 Finally, we regress δ∗∗jp on ̂φjpXj using OLS to arrive

at a consistent estimator of β.10

4.6 Issues in Estimation

The sheer size of our lottery application problem makes the estimation of (9) impractical

without additional modifications. To see this, note that 56,762 hunters with eleven possi-

ble preference point stocks applied for one of 23 combinations of bear hunting permits in

Michigan in 2009. Taken to the extreme, this means that, for every iteration of the middle

nest, we would need to solve for 56, 762 × 23 × 11 = 14, 360, 786 fixed points V OM∗
ijp using

our inner nest. Of course, our algorithm must rerun the middle nest for every iteration O

of the maximum likelihood routine in the outer nest (which in turn reruns the inner nest

at each iteration), so the computational resources needed to estimate µ can quickly become

unreasonable.

We address this issue by discretizing applicants’ travel costs. Specifically, applicants’

travel costs are converted to discrete units of $100 by dividing each TCij by 100 and rounding

the result to the nearest whole number. Hence, each applicant is defined by (i) his or her

stock of preference points, ranging from 0 to 10 and (ii) the costs of traveling to hunt in each

site, ranging from 0 to TCij.
11 This discretization reduces the number of unique applicants

from 56,764 to 194, dramatically reducing the computational resources needed to solve the

inner nest. In addition, each unique applicant’s Bellman equation (3) is independent of other

applicants’ choices in the inner nest (since the success probabilities φ are held fixed at this

9We use ̂φjpXj as instruments instead of simply multiplying φ̂jp by the Xj terms since the latter is
nonlinear in the endogenous variable φjp. Indeed, this latter approach is an example of Hausman’s “forbidden
regression” (Hausman, 2001).

10Timmins and Murdock (2007) use median regression in the second stage. This is because the numerical
patch used to account for zero shares in the data (see footnote 8) results in arbitrarily small values of δ∗∗jp
for those sites. We drop these arbitrarily small δ∗∗jp s and use OLS instead. Doing so generates some selection
bias, but avoids other potential biases arising from the nonlinearity of the GMM estimator used in quantile
regression.

11We let TCij = 5 in our algorithm since the majority of applicants’ round-trip travel costs to each site
are less than $500 in our dataset (see Figure 3b).
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stage of the estimation procedure). Hence, the inner nest can be run in parallel, further

reducing the wall time for estimation.

5 Results

We programmed our first-stage algorithm in MATLAB (Mathworks, Inc., 2015) and ran it in

parallel using twenty processors at Michigan State University’s High Performance Computing

Center.12

Estimating µ∗ requires knowledge of applicants’ discount factor, ρ. This information is

not available a priori, although Brookshire et al. (1983) finds evidence of discount factors

for big game hunting opportunities ranging from ρ ∈ [0.95, 0.99]. We therefore run the first-

stage algorithm over three values of ρ—0.95, 0.975, and 0.99—and compare the resulting

models using the Akaike Information Criterion (AIC), following Hicks and Schnier (2006).

The first-stage estimates are presented in Table 3. The algorithm failed to converge for

ρ = 0.95. The estimated marginal utility of income is highly significant for the remaining

models, and is of the expected sign. The estimate is an order of magnitude smaller than prior

estimates for big-game hunting (although these studies examine different species; Boxall 1995;

Knoche and Lupi 2007), although it is similar in magnitude to estimates found in studies

of general recreation site choice (e.g., Boxall et al. 2001). The log-likelihood for the model

with ρ = 0.975 is slightly greater—and the AIC is slightly smaller—relative to the estimate

with ρ = 0.99. We therefore proceed by assuming ρ = 0.975 so that µ∗ = −0.0027.

The remaining marginal utility parameters, β, are recovered using the instrumental vari-

ables procedure outlined in Section 4.5. We hypothesize that baseline expected utility from

hunt j depends on the season duration, the time of hunt (i.e., whether the hunt takes place in

early-, mid-, or late-fall), the forest area open to hunting in each BMU, average past hunter

success rates (i.e., the mean proportion of hunters who successfully take a bear), and the

12Estimation required approximately 90 minutes for convergence using MATLAB’s trust-region-reflective
constrained optimization algorithm. The interior point algorithm would not successfully converge due to the
flat shape of the log-likelihood function near the optimum.
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Table 3: Stage 1 Estimation Results

Discount factor, ρ Marginal utility of income, µ∗ Log-likelihood AIC

(Std. error)b

0.95a —— —— ——

0.975 −0.002747∗∗∗ –128,641 257,284
(0.0000)

0.99 −0.002502∗∗∗ –128,833 257,664

(0.0000)
a The algorithm failed to converge for ρ = 0.95.
b *** denotes estimates are significant at the 1 percent level or smaller.

population of residents living in the BMU. A constant term is included to account for the

normalization used in Stage 1. The estimated marginal utility parameters associated with

each of these variables are presented in Table 4.

Table 4: Stage 2 Estimation Results

Explanatory variable Coefficienta tb

Season duration (days) –0.490*** –10.88
Early-fall hunt = 1 5.583** 2.27
Mid-fall hunt = 1 2.962* 1.74
Forest land open to hunting (acres) 3.63E–6** 2.50
Hunter success rate 11.23* 1.76
BMU population (individuals) –3.5E–5*** –4.86
Constant –3.60*** –3.10

Observations 186
F6,21 36.78
Prob. > F 0.000
R2 0.25
a *** and ** denote the estimate is significant at the 1 and 5 percent

level, respectively.
b Standard errors are clustered by BMU.

Our results indicate that baseline hunt utility is higher for earlier hunts. This is in line

with our hypothesis that bears become less active and more skittish later in the year (see

Figure 2). Baseline hunt utility also increases with the number of forest acres open to hunt-

ing. This is unsurprising since larger BMUs offer a greater diversity of locations in which
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to hunt. Hunter success rate also has a positive effect on baseline utility; this relationship

is significant both statistically and—especially—economically. In contrast, utility decreases

with the population residing in the BMU. This suggests hunters value more remote hunt-

ing opportunities. Baseline expected utility also decreases with the season duration. The

explanatory variables are jointly highly significant and explain approximately 25 percent of

the variation in the calculated δ∗∗jp .

6 WTP for Changes to Hunt Access and Quality

An advantage to estimating a structural model of lottery choice is the ability to perform

counterfactual analysis (Arcidiacono and Ellickson, 2011), wherein the estimated marginal

utility parameters β∗, ξ∗j , and µ∗ can be used to estimate applicants’ WTP for hunting

opportunities and site characteristics. Consider first the welfare changes that occur if the

DNR closes a BMU to hunting permanently and without warning.

Prior to the closure, each applicant’s expected present value of indirect utility from

applying is V ∗∗∗ijp , calculated in the first stage or our estimation procedure. Our distributional

assumptions allow us to calculate a money metric value of the expected present value from

bear hunting using the familiar log-sum expression,

WTP 0
i =

ln
(∑

j∈J exp(Vijp)
)

|µ∗|
. (16)

After the closure, all choice alternatives that contain the closed BMU will be removed

from the applicants’ choice set. Closing a site has two effects on applicants’ indirect expected

present value of utility. First, site closure reduces utility directly by reducing the number

of choice alternatives available to the applicant (i.e., by reducing the summation term in

(6)). Second, site closure may change utility indirectly by causing applicants to change

their application choices, reflected by σj, leading to new success probabilities that arise

endogenously via equilibrium sorting.
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Timmins and Murdock (2007) suggest using yet another contraction mapping to calcu-

late the equilibrium shares under the restricted choice set. Specifically, they show that the

function describing the share of individuals that choose site j (which is analogous to equa-

tion (7) in our model) is a contraction mapping under certain regularity conditions. This

contraction mapping can be solved in a manner similar to (11) in the middle nest of our

estimation procedure to yield the updated equilibrium shares.

Unfortunately, (7) does not satisfy the necessary conditions for a contraction mapping,

and so we require an alternative means for calculating the updated σj.
13 In the Appendix,

we propose an alternative approach for estimating σj under the restricted choice set using a

global optimization technique known as a genetic algorithm (GA). GAs are computationally-

intensive and hence are extremely time consuming; we will conduct more rigorous counter-

factual policy analyses in future research.

It is still possible to roughly estimate the value of a BMU assuming the σj and, hence,

the φjp do not change ex post. This may occur, for instance, if a hunt with relatively few

applicants, each of whom had a relatively few preference points, were to close. As an example,

consider the change in value from closing final hunt in the Carney BMU (hunt 12, Table 1),

for which only 408 applicants applied in 2009. The vast majority of these applicants had

one or fewer preference points (Figure 4), and hence closing the site (thereby forcing these

applicants to apply elsewhere) is likely to have a negligible effect on the probability of being

drawn for other sites. Removing the Vijp associated with the final Carney hunt from (16)

results in the restricted choice set J ′; the money metric value of the expected present value

from bear hunting under the restricted choice set is then

WTP 1
i =

ln
(∑

j∈J ′ exp(Vijp)
)

|µ∗|
. (17)

Subtracting WTP 1
i from WTP 0

i yields individual i ’s WTP access to the third Carney hunt.

13Specifically, (15) is not Lipschitz continuous (Nadler, Jr., 1969). To see this, note that σjp in (7)
depends on φjp ∀p, which in turn depends on σj in (1). Small changes to σj can cause discrete “jumps” in
the probability that an applicant wins a permit under a preference point lottery, and so (7) is not continuous.
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The mean WTP is only $2.64 per applicant; aggregated over the entire population of appli-

cants, the total WTP for access to Drummond Island is $149,185.

Figure 4: Preference point stocks of applicants for the third hunt in the Carney BMU, 2009

An analogous procedure can be used to elicit values from small changes in site quality

characteristics; a full explanation is omitted for conciseness.

7 Conclusion

Preference point lotteries are an important mechanism for allocating access rights to natural

resources. These lotteries also serve as a natural choice experiment that can be used to value

access to hunting sites and their characteristics. Being able to estimate these values is of

critical importance for effective resource management.

We develop a novel method for valuing access to natural resources that are governed by

preference point lotteries. Our estimation procedure accounts for the intertemporal trade-offs

and equilibrium sorting behavior inherent in these lottery types. As a result, our approach

improves on those used in prior studies which either (i) assume myopic decision-making or

(ii) ignore the endogenous equilibrium sorting behavior of applicants that arises from changes

to site access and site quality characteristics.
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Our approach does suffer some key limitations. Our ability to perform counterfactual

policy analysis is hampered by the discrete nature of the success probabilities (1). Accu-

rately valuing changes to site quality characteristics or site access requires computationally-

intensive approaches which are both expensive and time-consuming. On-going work is fo-

cused on simplifying the process of simulating the process of equilibrium sorting to enhance

our potential for performing counterfactual policy analysis. Furthermore, the need to dis-

cretize travel costs means that the WTP measures estimated here are approximations; future

studies that employ our method must balance computational tractability with numerical pre-

cision in order to use the method most effectively.

Appendix: Counterfactual Policy Analysis with a Ge-

netic Algorithm

Genetic algorithms (GAs) can be used to calculate the updated equilibrium application

shares, σj, after a site closure or changes to site quality characteristics. GAs are a global op-

timization technique that are increasingly used to optimize highly nonlinear or discontinuous

problems in applied economics (e.g., Dietz and Asheim 2012; Rabotyagov et al. 2009, 2014;

Reeling and Gramig 2012; Richards et al. 2014). GAs mimic the biological process of evo-

lution: an initial “population” of candidate solutions is ranked according to their “fitness,”

or how well they satisfy an objective function. The fittest solutions are then combined, and

new “child” solutions are formed. “Mutations,” or random changes to the child solutions,

introduce variety to the candidate solutions. Over enough “generations,” or iterations, the

GA converges to the global optimum.

We can solve for the updated equilibrium shares by using the GA to minimize

∆ = max(|σ0
jp − σ̂jp|) ∀j, p, (18)
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where σ0
jp is a “guess” about the updated equilibrium share and σ̂jp is the calculated equi-

librium share implied by σ0
jp, defined as in (7). A sufficiently small value of ∆ implies

convergence to the new equilibrium under the restricted choice set. Given the updated σj,

we can use (6) to calculate the expected present value of indirect utility under the new

equilibrium. WTP can then be estimated using (17), as above.
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