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Abstract: 

Revealed preference methods require survey data on past resource use, and numerous 

studies have found reported recreation frequency to be overestimated and concentrated on 

prototype (rounded and calendar-based) values. This paper develops an approach to treat extreme 

values and rounded responses in survey datasets and thereby improve model fit and resulting 

welfare estimates. We illustrate how, when modeling single-site trip data, model fit can be 

improved by transitioning from a discrete to a continuous distribution at a cut-point where 

response behavior begins to exhibit rounding. We feel this method will be useful for recreation 

demand research and may have broad applicability to the general analysis of count data. 
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Introduction 

The estimation of economic values for environmental amenities is critical to making 

informed resource management decisions and accurately assessing environmental damages. 

Revealed preference methods for measuring economic values require data on observed behavior. 

Typically such behavior is elicited by surveys of target populations regarding their past use of a 

natural resource. Since recall periods are generally over a past season or year, the issue of recall 

accuracy needs to be considered. Systematic biases in reporting past behavior may compromise 

the methods used to derive values from revealed preference data.   

Numerous studies have found that reported recreation frequency has been overestimated. 

For instance, Connelly and Brown (1995) found that reported angling trips on Lake Ontario were 

over-estimated by roughly 44% as compared with diary data, with recall bias increasing with 

user avidity. Hoehn et al. (1996) similarly found recall bias to be associated with respondents’ 

over-statement of Michigan angling trips. Explanations for this bias are concerned mainly with 

the saliency of the resource, the respondent’s strategic behavior (real or imagined), and the 

respondent’s self-delusion (or effort to impress the surveyor) if the activity can be considered 

glamourous or healthy. Another dimension of recall bias is respondents’ tendency to round off 

responses to end in a zero or five. Tourangeau et al. (2000) report that open-ended questions 

which require a numerical response may manifest these characteristics: i) the larger the number 

to be reported the more likely it will be a round value; ii) the distances between successive 

rounded values increase as the numbers increase.1 

                                                           
1 Tourangeau et al. (2000) further clarify that if respondents round fairly (i.e., if they always round their responses to 

the nearest round value), due to the uneven spacing of round values, the net effect of rounding will actually be a 

downward bias in the data. However, if respondents are not rounding fairly but are characteristically rounding up or 

down, systematic error is introduced into the model in the direction of the rounding. The evidence in the recreational 

survey response literature generally finds that respondents do not round fairly – they overstate their participation.  
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To illustrate the patterns observed in recreation survey data, consider the following table 

of reported trips in three different recreation demand studies: 

Table 1. Trips reported in recreation demand studies. 

Trips 

Ozuna 

and 

Gomez 

(1995) 

Moeltner 

(2006) 

Parsons 

et al. 

(1999) 

 Trips 

Ozuna 

and 

Gomez 

(1995) 

Moeltner 

(2006) 

Parsons  

et al. (1999) 

0 417 469 287  16 1 0 0 

1 68 24 60  17 0 0 2 

2 38 22 38  20 3 1 11 

3 34 9 36  25 3 2 4 

4 17 7 25  26 1 0 0 

5 13 10 24  28 0 0 1 

6 11 5 17  30 3 0 2 

7 2 4 4  35 0 0 1 

8 8 2 5  40 3 0 3 

9 1 1 0  50 1 0 2 

10 13 4 34  88 1 0 0 

11 2 1 0  100 0 1 1a 

12 5 0 0  N 659 563 565 

13 0 1 0     
aAlso 

150,200,250 

14 0 0 1      

15 14 0 4      

 

The Ozuna and Gomez (1995) study collected data from a random sample of registered 

boat owners about boating trips to a popular lake in Texas. Moeltner (2006) collected data from a 

random sample of fishing license holders regarding fishing trips to the trophy section of a local 

Nevada river. Parsons et al. (1999) collected data from a random sample of Delaware residents 

regarding their visits to a popular beach. 

It is noteworthy how many properties these datasets share. First, there is a large 

proportion of zeros (indicating a lack of involvement in the recreational activity being studied) 
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which suggests what Sarker and Surry (2004) refer to as a “fast decay” process. Second, there is 

a disproportionate number of rounded responses and some evidence of rounding to the half-

dozen and dozen. Third, there are some very large reported values which are almost all rounded 

to the nearest 10.   

This paper develops an approach to treat both the presence of extreme values and 

rounded responses that we feel will be of interest to recreation demand modelers and that may 

have broad applicability to the analysis of other types of count data. 

 

Theoretical Background 

A common problem in recreation survey response data is a preponderance of zeros due to 

non-participation. This excess-zero problem may be addressed by considering a negative 

binomial (NB) estimator for the recreation demand model or by employing some of the 

alternative count data estimators suggested by Sarker and Surry (2004).2 The remaining question 

is how to treat the rounded responses. Schaeffer and Presser (2003) have claimed that 

“estimation strategies lead to heaping at common numbers, such as multiples of 5 or 10…these 

strategies can be considered techniques for ‘satisficing’…conserving time and energy and yet 

producing an answer that seems good enough for the purposes at hand.” Similarly, Tourangeau et 

al. (2000) state that “by reporting their answers as round values, respondents may be consciously 

attempting to communicate the fact that their answers are at best approximations.” 

                                                           
2 If the zeros are generated by a different process than the non-zero responses (i.e., if some inherent, behavioral 

difference between users and non-users of a resource is readily identifiable), then hurdle count data models may 

need to be estimated (Haab and McConnell 2002). 
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“There are no established conventions for rounding survey responses. Hence, 

researchers cannot be sure how much rounding there may be in survey data. Nor 

can researchers be sure whether respondents round to simplify communication or 

to convey partial knowledge,” (Manski and Molinari 2010). 

Vaske and Beaman (2006) provide a summary of their research on the topic of survey 

response, describing how respondents may answer recall questions about frequencies (such as 

days of participation) using episode enumeration, formula-based multipliers, and prototypes, 

which cause their responses to deviate from what occurred in reality. With low participation and 

episode enumeration (the recall and counting of specific occurrences), episode omission or 

telescoping may cause response errors. With greater participation and formula-based multipliers 

(the recall of a frequency rule applied to a time frame), misestimation of the rule or failure to 

recall exceptions to it may result in response error. With the use of prototypes (a single number 

used to represent a range of values), response clusters can occur, commonly around 0’s and 5’s.  

All of these approximations can manifest in the data as response “heaping” – where 

reported numbers occur more often than chance would suggest. As Vaske and Beaman (2006) 

explain, heaping is likely related to number (or digit) preference: “numbers that a person has a 

disposition to use or avoid.” Indeed, Huttenlocher et al. (1990) found that respondents tend to 

overuse both multiples of 5 and 10 and numbers associated with calendar events such as weeks 

or months (7, 14, 21, 30 and 60, for example).3 These patterns (heaping, rounding and digit 

                                                           
3 Huttenlocher et al. (1990) also describe the occurrence of forward bias, which results both from response leaping 

and from response “bounding”: the imposition of an upper boundary (self-imposed or otherwise) on reports. This 

phenomenon (and more generally, response contraction bias) is further explored in Tourangeau et al. (2000). 
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preference) have all been observed and studied in the demographic, epidemiological and 

historical literatures (Pudney 2008).  

Another manifestation of recall error is response “leaping” – where response heaping 

increases with reported magnitudes. “For responses under 15, several studies have found limited 

0-5 heaping…Above 100, responses may fall largely on 150, 200, 300, and 500 with gaps 

widening as responses move into the thousands,” (Vaske and Beaman 2006).  

A number of papers discuss front-end reduction (prevention) of response bias and suggest 

strategies to improve survey design and implementation (Pudney 2008; Schaeffer and Presser 

2003; Miller and Anderson 2002; Tarrant and Manfredo 1993; Chu et al. 1992). With regard to 

back-end reduction (correction) of response bias, Evans and Herriges (2010) and Barfield and 

Shonkwiler (2015) provide recent examples. Evans and Herriges (2010) employ a latent class 

model which assumes respondents are members of either a rounding or non-rounding class. 

Using generated data experiments, they find that rounding bias can have significant impacts on 

parameter estimates and resulting welfare measurements, with consumer surplus loss due to site 

closure being overstated by 5-37 percent. Barfield and Shonkwiler (2015) focused on very large 

reported counts. In the sample they analyzed, the overall mean number of trips was 2.09 and the 

mean number of trips by users was 6.31. However, for those 13 respondents who reported 20 or 

more trips, only one count was not a multiple of five or ten. Through the use of the incomplete 

beta function, they specified a negative binomial count data model with multiple censored 

regimes. Their rationale was that for larger counts the regimes should cover larger intervals. 
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Methodology 

Both the Evans and Herriges (2010) latent class model and the Barfield and Shonkwiler 

(2015) censored regime method have their merits and shortcomings. The Evans and Herriges 

(2010) approach requires the identification of two regimes: rounders and non-rounders. As the 

mean number of rounders’ trips will likely greatly exceed the mean number of non-rounders’ 

trips, a stochastic specification to identify class membership must be employed. It is unclear how 

to precisely formulate this, and there is no obvious reason why rounders and non-rounders 

should have different conditional means. While the Barfield and Shonkwiler (2015) approach 

allows for the same conditional mean formulation for all respondents and may improve model 

fit, it suffers from the fact that increasing the size of the intervals will necessarily increase the 

value of the log likelihood. Since there is no statistical penalty from this approach, the selection 

and size of the censored regimes can only be based on a reasonableness criterion.4 The researcher 

must consequently justify the sizes and positions of multiple intervals. 

An alternative approach is to assume that at some cut-point, the distribution of responses 

changes from a discrete to a continuous distribution. The selection of this single cut-point, where 

a transition from non-rounding to rounding behavior can be assumed, is again based on a 

reasonableness criterion. For a discrete distribution, a given integer outcome has a unique 

probability associated with it, and though the term “count data regression” has become 

commonplace, it is somewhat misleading. In truth, the count data model is based on a probability 

mass function with a conditional mean – it is not, in fact, a regression. There is no underlying 

                                                           
4 Increasing the width of the intervals allows each regime to encompass larger sums of probabilities. Attempting to 

parameterize the bounds on these regimes will therefore result in the model selecting bounds at the minimum and 

maximum responses. To avoid this collapsing of regimes, the researcher must determine and impose what they deem 

to be appropriate interval bounds for their particular dataset. 
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distribution of outcomes associated with a conditioning variable. By contrast, a regression model 

with a continuous response variable has a distribution of responses associated with a 

conditioning variable because the probability of a given response is very small. 

For smaller responses where rounding is less likely to have occurred and where an 

outcome of zero is meaningfully different from outcomes such as one or two, the (less flexible) 

discrete distribution can reasonably be applied to calculate an exact probability for each 

response. For larger responses where rounding is more likely to have occurred and there is less 

certainty that outcomes are exact, the (more flexible) continuous distribution calculates 

probabilities around each response.5 Under this formulation, the area of responses defined by the 

discrete distribution is right truncated, and the area of responses defined by a continuous 

distribution is left truncated. The form that the likelihood function takes in each of these 

partitions is therefore determined by the specific mixture of distributions chosen, and will be 

illustrated with regard to our specific application.  

Our statistical approach employs the negative binomial (NB) distribution (see Cameron 

and Trivedi 2013), which is capable of handling large numbers of zeros and extreme values.6 Its 

probability mass function is: 

(1)                   
𝛤(𝑦+𝛼−1)(

𝜇

𝜇+𝛼−1)
𝑦

(
𝛼−1

𝜇+𝛼−1)
𝛼−1

𝛤(𝑦+1)𝛤(𝛼−1)
 

                                                           
5 If a respondent has engaged in rounding behavior, the researcher may observe that the respondent took, for 

example, 50 trips to a recreational resource. In fact, there is some distribution of trips around this 50 trip response 

that better represents the respondent’s true pattern of visitation. 
6 For additional discussion of the NB distribution’s strengths in this context, please see Sarker and Surry (2004). 
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where 𝛤is the gamma function, 𝑦 is the number of trips to a site, µ = 𝐸(𝑦), and α is a scale 

parameter capturing overdispersion. Note that if α = 0, the NB distribution collapses to a Poisson 

distribution. 

We use the generalized Pearson 𝑋2 statistic (McCullagh and Nelder 1989) to evaluate 

our model fit. This statistic is chi-square distributed with degrees of freedom equal to the number 

of observations (i.e. respondents) minus the number of parameters estimated: 

 (2)                 𝑋2 =  ∑ {𝑦𝑖 − 𝐸(𝑦𝑖; 𝜃)}2/𝑉(𝑦𝑖; 𝜃)𝑛
𝑖=1  

where n is the number of respondents, 𝑦𝑖 is the number of trips reported by person i, 𝜃 is a vector 

of estimated parameters, and V is variance. This form of the Pearson statistic is preferred to the 

form based on observed and expected frequencies as it does not require the assignment of data to 

groups (“bins”). The null hypothesis of this statistic is that the model fits the dataset well; 

specifically, that the model’s predicted values accurately reproduce the dataset’s first two 

moments (the mean and variance). Thus, a low p-value for this statistic indicates that the model 

fits badly – there is a low probability of error in rejecting this null hypothesis – and vice versa. 

 

Application 

 Using data from Parsons et al. (1999)7, we consider day-trip visits to a single site (Cape 

Henlopen State Park) in our estimation. The numbers of trips reported by the respondents in this 

survey are shown below in table 2. Again, we see a large number of zeros, possible heaping at 

rounded numbers and the half-dozen and dozen marks, some extreme values, and increasing 

                                                           
7 The Parsons et al. (1999) survey was conducted in October, 1997, asking respondents about recreational trips to 62 

Mid-Atlantic beaches during 1997 to date.   
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distances between the larger numbers of reported trips (“leaping”). There is also evidence of 

overdispersion, with an observed mean of 2 and a variance of over 48.  

Table 2. Reported trips to Cape Henlopen State Park, 1997. 

Trips Reported Respondents Proportion  Trips Reported Respondents Proportion 

0 378 0.6690  15 4 0.0071 

1 54 0.0956  18 1 0.0018 

2 24 0.0425  20 4 0.0071 

3 26 0.0460  25 3 0.0053 

4 11 0.0195  30 1 0.0018 

5 21 0.0372  35 1 0.0018 

6 10 0.0177  40 1 0.0018 

8 6 0.0106  50 1 0.0018 

10 11 0.0195  72 1 0.0018 

12 5 0.0088  100 1 0.0018 

14 1 0.0018  
Descriptive 

Statistics 
n=565 

s2=48.73 

mean=2.09 

 

Barfield and Shonkwiler (2015) fit both standard and generalized variations of the NB 

distribution to this same dataset and found the (more flexible) generalized NB to be superior. 

Following their results, we propose the use of the generalized NB for the discrete distribution. 

For the continuous distribution, we propose the use of the lognormal distribution. The lognormal 

distribution has the advantage of a long right tail, and the NB and lognormal distributions follow 

the same conditional mean process. This makes the transition from the discrete to the continuous 

distribution smoother than in the case of latent class models where there are different conditional 

means depending on class membership.  
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For observations at or below the cut-point, c, the likelihood is:       

 (3)                                               
𝛤(𝑦+𝑎)(

𝜇

𝜇+𝑎
)

𝑦
(

𝑎

𝜇+𝑎
)

𝑎

𝛤(𝑦+1)𝛤(𝑎)Pr (𝑦≤𝑐)
Pr (𝑦 ≤ 𝑐)  

where 𝑎 =  
1

𝛼
 𝜇𝛷, µ is the conditional mean, α is the dispersion parameter, and y is the number of 

trips to a site up to the cut-point, c (i.e., y = 0,1,…,c). This is the result of multiplying the right 

truncated generalized NB distribution by the probability of being in that regime—hence, the two 

probabilities will cancel out.  

 For observations above the cut-point, the likelihood is: 

(4)                           
exp (−.5(

(log(𝑦)−log(𝜇))

𝜎
)2)(1−𝛺(𝑥,𝑎,𝑐+1))

(𝜎√2𝜋)(𝛷(
log(𝜇)−log(𝑐+1)

𝜎
))

 

where y is the number of trips to a site beyond the cut-point (i.e., y = c+1,…), 𝛺(𝑥, 𝑎, 𝑐 + 1) is 

the sum of probabilities of the generalized NB distribution from 0 to c, and 𝛷(𝑧) is the standard 

normal cumulative distribution function. In this case, 𝛷(𝑧) is the probability that the lognormal 

distribution is above c to account for the left truncation. The term (1 − 𝛺(𝑥, 𝑎, 𝑐 + 1)) accounts 

for the probability of being above the cut-point and can be computed using the incomplete beta 

function (note that x is now defined as (𝑎 (𝑎 + 𝜇⁄ )). 

 To calculate the Pearson statistic, we must obtain the conditional means and variances of 

this mixed distribution model.  

For the right truncated generalized NB distribution, we refer to the recent work by 

Shonkwiler (2015), which corrects the second moments as reported by Gurmu and Trivedi 

(1992) and Cameron and Trivedi (2013). The formulas are as follows for the conditional mean: 

(5)                                   𝐸[𝑌|𝑌 ≤ 𝑐] = 𝜇 −
(𝑐+1)𝑝𝑚𝑓(𝑐+1)

𝑥 Pr(𝑌≤𝑐)
= 𝜇0      
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and conditional variance:  

(6)      𝑉(𝑌|𝑌 ≤ 𝑐) = 𝜇 + 𝜇2/a + (𝑐 + 1)(𝜇0 − 𝜇) − (𝜇0 − 𝜇)2 − (a − 1)(𝜇0 − 𝜇)𝜇/a 

where 𝑝𝑚𝑓(𝑐 + 1) represents the generalized NB probability mass function evaluated at c+1. 

For the left truncated lognormal distribution8, the conditional moments can be written as:  

(7)                          𝐸(𝑦|𝑦 > 𝑐) = exp(log (𝜇) + .5𝜎2) 
𝛷(𝜎+(log(𝜇)−log(𝑐))/𝜎)

𝛷((log(𝜇)−log(𝑐))/𝜎)
  

(8)                       𝐸(𝑦2|𝑦 > 𝑐) = exp(2log (𝜇) + 2𝜎2) 
𝛷(2𝜎+(log(𝜇)−log(𝑐))/𝜎)

𝛷((log(𝜇)−log(𝑐))/𝜎)
 

This permits straightforward computation of the Pearson statistic. 

 

Results  

Our results from the basic generalized NB specification are summarized in table 3 below. 

Table 3. Estimates: Generalized negative binomial distribution. 

Variable/Parameter Coefficient Robust Std. Error z-Value 

Constant 1.4250 1.4686 0.9703 

Trip Cost -0.0354 0.0045 -7.9368 

Log Age 0.1283 0.3926 0.3269 

Child <10 0.7206 0.2090 3.4486 

Retired -0.5810 0.3190 -1.8216 

Student 0.9522 0.3252 2.9278 

Alpha 6.4913 0.8720 7.4443 

Phi 0.4765 0.1033 4.6141 

    

Pearson Statistic: 621.5, p=0.030 Log Likelihood = -785.11   

                                                           
8 These formulas are based on the work of Bebu and Mathew (2009) (note what they report as the variance is 

actually E(y2)).   
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In our application of the Distribution Transition Method, the model was fit to the data 

with a cut-point set at 19, as we believe responses of 20 reported trips or more could exhibit 

rounding behavior. The results we obtained (table 4) are remarkably similar to those found by the 

censored regime applications of Barfield and Shonkwiler (2015), and display similar 

improvements as compared with a simple truncated distribution (described below).  

Table 4. Estimates: Mixed generalized negative binomial—lognormal distribution. 

Variable/Parameter Coefficient Robust Std. Error z-Value 

Constant 1.568 1.4055 1.116 

Trip Cost -0.0340 0.0044 -7.766 

Log Age 0.0653 0.3728 0.175 

Child <10 0.6897 0.1980 3.483 

Retired -0.5750 0.3091 -1.86 

Student 0.9255 0.3198 2.894 

Alpha 6.2178 0.7927 7.844 

Phi 0.5168 0.1077 4.798 

Sigma 1.0608 0.1884 5.631 

Pearson Statistic: 477.5, p=0.993 Log Likelihood = -741.04   

 

In the context of over-reporting and extreme values, a common practice in the survey 

response literature is simply to exclude larger values from the dataset on the basis that they are 

likely to be unrepresentative of the general (or target) population. To this end, we consider how 

our results would be affected if we truncated the data at 50 (thereby losing three, extreme-value 

observations) and estimated a generalized NB model.  Our results from this specification are 

summarized in table 5 below. 
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Table 5. Estimates: Truncated, generalized negative binomial distribution. 

Variable/ Parameter       Coefficient Robust Std. Error      z-Value 

Constant 2.0370 1.3548 1.5036 

Trip Cost -0.0309 0.0041 -7.5161 

Log Age -0.1108 0.3549 -0.3123 

Child <10 0.6409 0.1897 3.3783 

Retired -0.5312 0.2958 -1.7961 

Student 0.8711 0.3123 2.7891 

Alpha 5.9586 0.7362 8.0940 

Phi 0.5994 0.1131 5.2982 

    

Pearson Statistic: 

488.2,  p=0.979 

Log Likelihood = -757.72   

  

We have lost information in estimating this model (by eliminating data points), and as a 

result, the fit is not quite as good as when we incorporate this information under uncertainty 

using the Distribution Transition Method. Estimated per-trip consumer surplus9 moves from 

$29.41 in the mixed generalized negative binomial-lognormal distribution to $32.36 in the 

truncated distribution, and we observe changes in all of the parameter estimates. While these 

changes are not statistically different, we have only lost three observations in this particular 

example. In datasets with large numbers of extreme values to either truncate or model under 

uncertainty, the disparities in these parameter estimates could become significant with regard to 

policy implications.  

 

                                                           
9 Calculated as the inverse of the estimated coefficient on trip cost, the marginal utility of income.  
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Discussion 

 The survey response literature has established that respondents tend to over-report their 

recreational activities, and correcting for “heaps and leaps” in survey response data is largely an 

empirical issue. This paper illustrates how, when modeling single-site recreational trip data using 

a negative binomial distribution, the model’s fit is significantly improved by transitioning from 

the NB (a discrete distribution) to the lognormal (a continuous distribution) at a cut-point where 

it is supposed that response behavior begins to exhibit rounding. This approach offers empirical 

advantages over those methods recently proposed by Evans and Herriges (2010) and Barfield 

and Shonkwiler (2015).  

We find two socio-demographic variables to be significant: Child<10 and Student. We 

hypothesize this is because Cape Henlopen State Park is a popular vacation destination for those 

who are, or have children who are, out of school during the summer. Our analysis did not find a 

statistically significant difference in the parameter or per-trip consumer surplus estimates when 

extreme values were either truncated or incorporated under uncertainty. However, only three 

observations were truncated in our particular application, which may not have provided a 

significant enough loss of information to impact the overall estimation. As we expand this 

research, we may examine other sites in the rich Parsons et al. (1999) dataset (or different 

datasets entirely) where the impacts of truncation may be more extensive.  
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