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Abstract: This paper adds to the literature by investigating whether municipal, county, and utility policies 

drive residential solar photovoltaic (PV) adoption. While previous studies have investigated the effects of 

state policies, none have do so while including policies at the sub-state level. I employ spatial 

econometric techniques, which recently have been used to empirically account for the peer effects and 

spatial clustering that have been found in residential markets. Results from the largest residential solar 

market in the US suggest that after controlling for solar resource, environmental preference, and other 

demographic information, the local policies are an important driver in the residential solar PV market: the 

average solar policy stimulates a 6.0-7.9% percent increase in installed residential capacity. Further, the 

residential market exhibits a moderate amount of spatial autocorrelation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1. Introduction 

A market failure exists when the price mechanism fails to account for all associated costs and benefits in 

the market. The emission of heat-trapping greenhouse gases (GHGs) generated by the production of 

electricity from non-renewable sources is one such failure. These GHGs represent a significant externality 

to production. Accordingly, the social costs of production are higher than those felt privately, leading to 

lower (higher) equilibrium prices (quantities produced) of carbon-based electricity than what would be 

otherwise realized at the social optimum. With increased understanding of both this market failure and its 

implications to current and future economic development, policymakers tried to provide incentives to 

promote renewable energy generation.  

Solar is one such option. As a substitute to non-renewable electricity production, it is an attractive non-

carbon based option: increased solar generation could help reduce carbon-based generation to socially 

optimal values while helping meet the predicted increase in consumption levels. Of the three main non-

carbon based generation methods, wind, solar, and hydro, only wind and solar have large potential to 

increase their capacity, as nearly all optimal dam locations have been utilized. While certainly 

intermittent, solar generation will always have a baseline generation capacity, as even on the cloudiest 

days some generation is possible. There are trade-offs for large-scale solar generation: large land 

requirements in potentially sensitive environments have caused some activist groups, otherwise in support 

of solar generation, to raise concerns. Further, often new or improved transmission lines are required for 

connecting utility-scale plants to consumption areas. However commercial and residential scale solar are 

seen by some as more attractive, as the generation infrastructure can fit on existing and available rooftops. 

In addition to the use of solar energy to heat and light a home or business, there are two main 

technologies able to harness solar energy: solar photovoltaic (henceforth solar PV) technologies generate 

electricity, while solar thermal systems provide water heating. While both replace carbon-emitting 

electricity production, solar PV does so directly, and has generated significantly more interest in 

individual homeowners, businesses, and policymakers alike. 



 

The installation of a solar PV generation system requires significant upfront financial resources. 

According to the National Renewable Energy Laboratory (NREL), a residential PV system costs on 

average $3.09 per watt of installed capacity, or more than $15,000 for a 5 kW system before government 

and utility financial incentives (Chung et al., 2015). That said, their costs are decreasing. Figure 1 

displays the cost reduction in these values: since Q4 2013 the cost of solar has decreased by 7%, since Q4 

2009 that reduction is larger than 55% (Chung et al., 2015). These costs have continued their descent into 

2015, with the majority of cost reductions coming from declines in soft costs. However some price 

declines have been offset by falling incentives (Barbose and Darghouth, 2015).  

Figure 1: Costs of Residential Solar PV Installations 

 

Source: Chung et al., 2015 

Even with this reduction the financial benefits of a system, namely the offset of electricity that would be 

otherwise purchased from a utility, surpass the upfront costs only years after their installation. While the 

exact timing depends on the costs and financial incentives available to the homeowner, the difference 

explains a significant amount of the energy efficiency ‘gap’: the difference between the economically 

advantageous and actual amount of solar generation installed. A number of third party firms now 

capitalize on this opportunity by installing and owning entire home systems, while selling the generated 



 

electricity either directly to the home or to the connecting utility. Regardless of the financing, the 

adoption of residential solar is considered a social good, and has received considerable attention recently 

in the literature. 

Borenstein (2015) evaluated the residential solar PV market in California, and found that while it is 

primarily high-income individuals adopting, that disparity has declined. Further, he finds that adoption is 

driven by the heaviest electricity-consuming households. California’s electricity rate structure is tiered, 

and adopting households generally pay significantly higher rates for electricity, suggesting that both rate 

structure and are important considerations. This tiered pricing structure was also found to be significant in 

California by Dargouth et al. (2011). Bauner and Crago (2015) apply an option value framework to 

household solar PV decisions, finding that policies that reduce uncertainty could be the most effective 

stimulants to adoption.  

Alongside household financial and personal characteristics, the financial incentives provided are key 

drivers in the choice of home solar adoption. From individual municipalities to the federal government, 

political organizations at nearly every level offer varying forms of financial assistance to help spread the 

diffusion of solar power. The modeling of this policy impact was done differently in the literature. Crago 

(2014) evaluates the effectiveness of a number of key state policies that have incentivized solar PV 

adoption, finding significant positive associations between specific policies and capacity addition. 

Borchers et al. (2014) find similar effects between specific policies and wind and solar adoption on US 

farms, however using a different set of state policies. Kwan (2012) also models residential PV adoption, 

however he measures the effects of an average level of state incentives. None of the preceding study 

models the effects of federal policy, as those effects are felt everywhere in their study area. Similarly, 

none measure the impact that sub-state regulatory processes create. This may be an important omission: 

Two studies (Burkhardt et al., 2015, Dong and Wiser, 2013) highlight how local permitting and 

regulations can greatly influence both adoption prices and development times.  



 

However the choice to adopt solar power is not strictly a financial choice. The understanding of solar 

technology is an important predictor of residential adoption, leading Islam and Meade (2013) to 

recommend education policies to stimulate solar adoption. Noll et al. (2014) demonstrate how Solar 

Community Organizations have been an effective means of reducing barriers to adoption. Peer effects are 

also demonstrated to impact adoption at the zip code level (Bollinger and Gillingham, 2012 and Snape 

and Rynikiewicz, 2012).  

There have been recent attempts to quantifying these peer effects. Marcello and Gillingham (2015) find 

notable clustering in the solar PV adoption, patterns that do not merely follow intuitive spatial patterns of 

either income of population. Richter (2013) empirically demonstrates small but significant social 

spillovers in UK installations at the neighborhood level. Balta-Ozkan et al. (2015) further quantify these 

spatial spillovers in UK solar PV adoption by utilizing spatial econometric methods, which this study 

follows builds upon looking at the western US market.  

The goal of this paper is to investigate whether sub-state policies have an influential impact on residential 

solar PV adoption. Using a unique dataset created to geographically locate relevant incentivizing policies, 

this paper improves the literature by estimating their effect on the solar PV market, while at the same time 

accounting for the empirically demonstrated spatial patterns of residential adoption. Finding suggest that 

after controlling for relevant demographic, environmental, and solar potential variables, local policies are 

found to have a positive and significant impact on the residential market. Further, solar PV adoption is 

estimated to have a weak but significant spatial dependence. Interestingly after the inclusion of state 

fixed-effects, state-level solar incentivizing policies do not have a significant effect in the market, 

suggesting that other differences at the state level have a larger effect in the market than the particular 

adoption policies.  

2. Hypothesized Model 



 

The main empirical goal of this paper is to accurately model the key drivers of solar adoption in the 

Western United states. Given the cited literature above, I create equation (1) as a hypothesized linear 

model of the market: 

 𝑦𝑖,𝑡 = 𝛼 + 𝑋𝑖,𝑡𝛽 + 𝑃i,tγ + 𝐸𝑖,𝑡𝛿 + 𝐻𝑖,𝑡𝜙 + 𝑃𝑜𝑖,𝑡𝜁 + 𝑆𝑖,𝑡𝜅 + 𝑆𝑡𝑖,𝑡𝜓 + 𝜖𝑖,𝑡 (1) 

The dependent variable 𝑦𝑖,𝑡 represents the total amount of solar PV capacity in county 𝑖 in year t. In the 

WECC there are 405 counties, and for the data available t denotes years 2009-2014. 𝑋𝑡 is an (n*t) by k 

matrix of k county-level demographic characteristics such as income, age, race, and population and 

homeownership. Nearly all empirical studies have suggested that income and solar adoption have a strong 

positive correlation. There is some evidence that racial background is an important determinant of 

environmental concern. I choose the percent Hispanic (𝐻𝑖,𝑡) designation for the western US states as other 

racial designations (i.e. Black, Asian, etc) are heavily skewed towards California, and would possibly 

capture other California-specific effects. However in western US states, the Hispanic population is more 

evenly distributed1. The level of homeownership is likely an important predictor of residential solar 

adoption. Similar to other home improvements, renters have little incentive and likely less ability to pay 

the large up-front costs of solar installations. Further, landlords will have significantly less incentive to 

add solar PV to rental units, especially given the high opportunity cost they would face: those resources 

could otherwise be spent in ways that would quickly and reliably increase rent, such as newer appliances, 

better heating, etc.    

𝑃𝑡 is an (n*t) by 1 vector of electricity prices. Solar installations are a substitute to purchasing electricity 

from a utility. A positive relationship, with higher prices incentivizing greater adoption, is both intuitive 

and empirically demonstrated in Borenstein (2015) and Dargouth et al. (2011). However this relationship 

could exhibit a degree of endogeneity, as greater share of electricity generated by solar PV could also 

                                                      

1 Results are qualitatively similar when using percent Black or percent non-white.  



 

impact prices. In fact, utilities often make the argument increased solar PV integration raises prices, as it 

takes increased effort to manage its intermittent generation. 𝐸𝑡 represents an (n*t) by 1 vector of 

environmental preferences. There are a number of important positive environmental outcomes from large-

scale adoption of solar power, mainly the reduction of GHG emission and improvements in air and water 

quality caused by a reduction in coal or natural gas emissions. Capturing these preferences likely helps 

explain the household decision2. 𝑃𝑜𝑡 is an nxr matrix of solar policies that residents in county i at time t 

face, where r is equal to the number of geographic levels of policy. For example, a household in Oakland 

will receive the incentives from any policy run by the city, Alameda County, their electric utility (PG&E), 

the state of California, and by the US federal government, and each will vary given they year. Finally, 𝑆𝑡𝑡 

represents a vector of state fixed effects that would capture any additional differences between states 

affecting solar adoption (e.g. labor costs, construction and connection standards, etc). The states in this 

sample area likely have significant difference in permitting, labor, and safety regulations. While the 

impact of each individual regulatory difference on the solar PV market is likely small, aggregated these 

could make non-trivial differences.  

3. Data 

3.1 Solar Installations 

Data for residential solar capacity was obtained from the Open PV Project3. Produced by the National 

Renewable Energy Lab (NREL), the Open PV project is a comprehensive dataset of solar PV 

installations, with data contributed by utilities, installers, and the general public. Data is validated by 

NREL through a variety of ways, in part based on the trust NREL gives to the reporter. I used data from 

                                                      

2 However strict environmental preference may not be the best explanatory variable: while there is a strong 

correlation between environmental preference and the political left, energy independence is a trait shared 

across the political spectrum. There are some for example with strongly divergent views about the importance 

of air quality who nevertheless support the increase in solar generation 

3 For more information about data methodology, see https://openpv.nrel.gov/about. 



 

counties in the Western Electricity Coordination Council (WECC) region of Oregon, Washington, 

California, Utah, Nevada, Colorado, Wyoming, Arizona, and parts of New Mexico, Montana, Texas, and 

South Dakota (see figure # for study area). Individual home installation data are aggregated to the county 

level. Following Kwan (2012), I limit the upper range of individual solar installations to 10 kW to ensure 

that the solar installations included are in fact residential systems (n=230,152)4. The distribution of 

installed solar capacity in 2016 (Figure 2, Panel A) and number of solar PV installations (Figure 2, Panel 

B) is highly concentrated in the Southwest part of the WECC. Given both the large number of zeros and 

the right-skewedness of the distribution of county kW installed capacity, I use an inverse hyperbolic sine 

transformation, which accommodates zero values but otherwise is directly interpretable as a log 

transformation (see Burbidge et al., 1988, MacKinnon and Magee, 1990).  

Figure 2: Residential Solar PV Capacity and Number of Installations, 2016 

Panel A                                                                      Panel B 

           

 

                                                      

4 As of 4/15/2016 



 

3.2 Policy Variables 

State, utility, county, and municipality policies are collected from the North Carolina Clean Energy’s 

Database of State Incentives for Renewables and Efficiency (DSIRE, 2015). The DSIRE database is a 

comprehensive collection of policies and incentives that involve renewable energy and energy efficiency 

growth in the US. There are 43 categories of renewable policy; everything from corporate tax credits to 

feed-in tariffs. From these categories, I select from all but the corporate and utility categories those 

designated with as solar technologies. While many of these policies are at the state level, a significant 

number are enacted by cities, counties, and utilities. Dong and Wiser (2013) provide evidence that city-

level permitting tangibly affects both the price and development time of residential PV installations. With 

this in mind, I include both municipality and county policies. However given that demographic data is 

only available at the county level, I aggregate municipal policies to the county level. Only policies in the 

county’s dominant population center are included, however there were only a small number of municipal 

policies in a county that were not included at the county level, as in general municipal policies are enacted 

in larger cities that dominate the majority of the county. 

Renewable policies from utilities are important to include in the analysis as well. Investor-owned utilities 

(IOUs) are generally not interested in measuring and/or correcting for social costs. Further, they have 

some disincentive for the increase of solar energy: Solar PV is both distributed and intermittent, making 

their job of providing electricity at all hours difficult and often more expensive. However, there are some 

reasons for IOUs to promote residential solar PV capacity additions: Evidence. Further, municipal utilities 

and electric cooperatives are generally more attuned to both customer preferences as well as larger 

problems, and more insulated from the pressure to increase profit. Thus I include solar policies at the 

utility level. Assigning them to a particular county can be difficult, as their boundaries often do not align 

perfectly with county jurisdictions. I follow the similar path with that of city-level policies: counties 

whose main population centers within a utilities coverage area are said to be affected by this policy, and 

vice versa. Utility coverage areas for most states in the WECC are available through individual states’ 



 

Public Utility Commissions, with varying degrees of resolution. Only California has utility coverage areas 

available in shapefile formats: for the rest utility coverage images were georeferenced and interpolated 

using ArcGIS. I combine these sub-state policies from the utility, county, and municipality level into one 

‘Local’ value for each county, and another reflecting the policies for the state in which the county resides. 

The distribution of state solar policies are displayed in panel A of figure 3. As can be seen, significant 

variation happens at the state hole. Non-state policies are displayed panel B, which displays a much 

smaller amount of variation between counties. 

Figure 3: Number of Solar Incentivizing Policies  

Panel A                                    Panel B 

                                     

  



 

3.3 Solar Insolation 

To measure the amount of potential a given county has to generate electricity from solar radiation, I use 

annual solar insolation, the cumulative kilowatts per square meter per day. This data is collected and 

distributed by NREL5 and produced by the State University of New York/Albany satellite radiation 

model. This data is available at 10 kilometer resolution, and each county’s annual average values are 

calculated using ArcGIS’s spatial statistics toolbox. These averages are displayed in figure 4. 

Figure 4: Average Solar Insolation 

 

3.4 Environmental Preference 

To capture county residents’ environmental preferences, I use results from the US Presidential elections. 

Coan and Holman (2008) demonstrate how there has been a long established and intuitive correlation 

between Democratic Party voting and environmental concern. Further, in his first presidential term and 

during the 2012 election campaign, President Obama frequently made mention of themes of climate 

                                                      

5 Available: http://www.nrel.gov/gis/data_solar.html 



 

change, energy independence, renewable resources, and a ‘green’ economy. While the decision for a 

single office will be a selection of a number of non-policy issues, and thus provide a weaker proxy for a 

single preference, given the recent rise in political polarization in the US the difference in voting record 

from individual elections will likely matter less.  

In the cross-sectional analysis, I include the number of Whole Foods locations in each county to further 

capture environmental preference is. Whole Foods is an upscale food retailer, specializing in food 

certified as natural and/or organic. It caters to a population with a willingness to pay higher prices for 

food perceived to be healthier and more ethically produced, which I assume is highly correlated with the 

environmental preferences that would drive solar adoption. To my knowledge, this is the first time Whole 

Food locations have been used to measure environmental performance. However many similar measures 

have been used, such as organic food sales and hybrid and electric vehicle penetration.  

3.5 Electricity Prices, County Demographics 

Average residential electricity prices come from EIA’s form 861, which provide average electricity prices 

at the residential level from each utility, which are averaged at the state level. County demographic 

information comes from US Census’ American Community Survey, using the American FactFinder 

website6. Using their five year ACS estimates, I use income per capita7, percent identifying as Hispanic, 

and county median age. Summary statistics for demographic information and all other variables are 

displayed in Table 2. 

Table 1: Summary Statistics 

                                                      

6 Available: http://factfinder.census.gov/faces/nav/jsf/pages/searchresults.xhtml?refresh=t 

7 2014 dollars 



 

 

4. Empirical Model  

A limitation of the model in equation (1) is that it ignores any spatial influence on the adoption of solar 

power. As explained in the previously cited literature, there are likely strong spatial influences in an 

empirical model estimating the adoption of residential solar, from peer effect causing industry and/or 

adoption clustering. Failing to include influential explanatory variables into the model would create 

omitted variable bias. To test the spatial effects presented in equation (1), I generate a Moran’s I statistic, 

and in comparing it to a chi-squared distribution with 1 degree of freedom, I strongly reject the null 

hypothesis of no spatial autocorrelation. 

4.1 Spatial Methodology  

Given this significant presence of spatial autocorrelation, I follow Balta-Ozkan et al. (2015) in applying 

spatial econometric methods to solar PV market, modeled in equation (1). I do this in three ways: First, I 

evaluate the market using a cross sectional approach. Second, to better address questions of identification, 

I adopt a simple fixed-effects panel approach. And third, I incorporate the covariates the cross sectional 

analysis to evaluate their impact in a panel setting. Overall, results suggest that sub-state policies hae been 

an important driver in the choice to adopt residential solar PV. 

Variable Obs Mean Std. Dev. Min Max
Year 2430 2011.5 1.708177 2009 2014
LocalP 2430 3.756379 4.766848 0 25
StateP 2430 8.1893 5.399439 3 21
ResCapkW 2430 2418.246 11647.16 0 202219.9
tr(ResCapkW) 2430 3.016599 3.431741 0 12.91026
lnPers 2430 10.54842 0.2309342 9.758636 12.17811
PctDem 2430 40.69779 16.29271 5.772967 93.38633
MedAge 2430 39.98428 6.768037 21.7 61.2
HmeOwn 2430 69.85514 7.924824 36.59945 94.7254
Hisp 2430 17.22641 17.36023 0 85.17928
wBach 2430 24.4986 10.02818 2.4 67.8
StateE 2430 10.73388 2.280217 7.58 16.25
SolPot 2430 5783.208 1133.905 2912.353 8020.807
lnNumOwd 2430 8.954802 1.712668 4.867535 14.25511
Detached 2430 70.5549 9.642919 18.1 98.3



 

In a cross-sectional setting, there are a number of methods that account for the presence of spatial 

dependence (for detailed background, see LeSage and Pace 2009). The most common form is the Spatial 

Autoregressive (SAR) model: 

𝑦𝑖 = 𝜌𝑊𝑦𝑖 + 𝑋𝑖𝛽+𝜖𝑖 (2) 

where 𝑊 represents a known nxn spatial weights matrix, and the scalar 𝜌 is estimated to describe the 

degree of spatial dependence in the model. When 𝜌 = 0, there is no spatial dependence, and the model 

reduces to a standard OLS model, as in equation (1). Every model considered here and below uses a 

spatial-weights 𝑊 matrix, which has a number of ways to model, such as assigning neighbors based on 

distance or shared borders. However the marginal effect estimates produced by the model are generally 

not sensitive to 𝑊’s specification (LeSage and Pace, 2014). In this study I build a contiguity-based 

weights matrix. 

Another common form of spatial modeling is the Spatial Error Model, or SEM, which models the error 

terms to follow some spatially weighted process: 

𝑦𝑖 = 𝑋𝑖𝛽+𝑢𝑖,   𝑢 = 𝜆𝑊𝑢𝑖 + 𝜖𝑖 (3) 

where 𝜆 describes the degree of spatial dependence in the error term. Like the SAR, a 𝜆 value of 0 

reduces the model to standard OLS. The SEM is unique in that its estimates of the marginal effects are 

similarly interpretable as those from OLS. 

The interpretation of non-SEM spatial econometric models requires more care than is generally given. 

Producing the marginal effects from the SAR requires simple algebra to generate its reduced form: 

 𝑦𝑖 = 𝜌𝑊𝑦𝑖 + 𝑋𝑖𝛽 + 𝜖 

𝑦𝑖 − 𝜌𝑊𝑦𝑖 = 𝑋𝑖𝛽 + 𝜖 

𝑦𝑖(𝐼𝑛 − 𝜌𝑊) = 𝑋𝑖𝛽 + 𝜖 

 



 

 𝑦𝑖 = (𝐼𝑛 − 𝜌𝑊)−1𝑋𝑖𝛽 + (𝐼𝑛 − 𝜌𝑊)−1𝜖 (4) 

Partially differentiating the reduced form equation with respect to 𝑥𝑖,𝑡 produces: 

𝜕𝑦𝑖

𝜕𝑥𝑖
= 𝑆(𝑊) =  (𝐼𝑛 − 𝜌𝑊)−1𝑋𝑖 

(5) 

where 𝑆(𝑊) is an nxn matrix displaying the all marginal effects on 𝑦𝑖 from a change in 𝑥𝑖. The diagonal 

elements in this matrix are the marginal effects from county 𝑖 on the dependent variable in county 𝑖, 

known as the direct effects. The off-diagonal elements in 𝑆(𝑊) are the effects on the dependent variable 

in county 𝑖 from a change in the independent variable in county 𝑗, called the indirect effects. Total effects 

sum direct and indirect. While each individual effect can be calculated, LeSage and Pace (2009) 

recommend presenting the average total, direct, and indirect effects. Accordingly, the marginal effects are 

presented following this method below. 

4.2 Cross Sectional Model  

To select the most appropriate model for cross sectional data, I follow Florax et al.. (2003) in using 

Lagrange Multiplier (LM) tests to evaluate the results from the SEM and SAR relative to OLS. Both tests 

strongly reject their individual null hypotheses (no omitted spatial lag, no spatial correlation in residuals). 

A strong limitation is that they both assume no spatial autocorrelation in the form in which they did not 

test: LM lag tests assumes no spatial autocorrelation in the error, and LM error assumes no spatial 

autocorrelation in the variable being measured (Burnett and Lacombe, 2012). Robust LM Lag and Error 

models have been developed to address these concerns. Results of these tests also confirm spatial 

dependence. I follow Ellhorst (2010) by using Likelihood Ratio (LR) tests to determine whether either the 

SAR or SEM is preferable to the Spatial Durban model (SDM): 

𝑦𝑖 = 𝜌𝑊𝑦𝑖 + 𝑋𝑖𝛽 + 𝑊𝑋𝑖Θ + 𝜖𝑖 (6) 

The two null hypothesis for the LR tests are that in the SDM, 



 

1) 𝐻𝑜: Θ = 0     ,     2) 𝐻𝑜: 𝜌𝛽 + Θ = 0 (7) 

If the first null hypothesis is correct, a SAR model is preferable, if the second is correct the SEM should 

be used. In the event of rejection of both null hypotheses, the SDM is the best fit for the cross sectional 

model (Ellhorst, 2010).  

Results for the Moran’s I, LM, and LR tests are provided in table 2. Both LM tests are significant at the 

1% significance level, supporting the Moran’s I results and strongly rejecting the null hypothesis of no 

spatial dependence, and point towards the use of either the SAR or SEM. The robust versions of the LM 

Lag tests are also highly significant, however the LM Error test is only significant at the 10% level. LR 

tests evaluate the two null hypotheses in (7), which are both strongly rejected. These results both suggest 

that the SDM is the preferable model. As the SDM nests both the SAR and SEM, it will produce unbiased 

coefficients even if the true DGP is the SAR or SEM. Conversely, using a SAR or SEM when the true 

DGP is an SDM will lead to either omitted variable bias or a loss in efficiency, or both (Ellhorst, 2010). 

Table 2: Spatial Specification Tests 

 

Regression coefficients of each model considered are presented in table (3). Here it can be seen that each 

spatial model estimates highly significant values of both 𝜌. This value of spatial dependence is considered 

moderate: Pace et al. (2012) find much higher 𝜌 values in many economic factors such as income and 

production. That said, at the county level, spillovers are an important part of the market (𝜌=.44-.54), 

suggesting that in this time-period when a county increased its solar PV capacity by 10kW, neighboring 

counties will increase theirs by an average of 4.4-5.4 kW. This lends weight to the arguments put forth 

above about the importance of both peer effects and spatial clustering.  

Statistic P-value

Moran's I 5.1026 0.000000

LM Lag 34.3008 0.000000

LM Lag Robust 23.9787 0.000001

LM Error 13.9770 0.000001

LM Error Robust 4.2833 0.038480

LR Spatial Lag 22.4361 0.032900

LR Spatial Error 39.6550 0.000082



 

Table 3: Cross Sectional Regression Coefficients 

 

As noted previously, the marginal effects of the spatial econometric models are not the regression 

coefficients. The marginal effects the preferred SDM model in three specifications are properly reported 

in table 4. The average direct effects are highly significant for the local policy variable in each 

specification listed (and for all that I ran). These positive marginal effects suggest that an addition solar 

polices at the city, county, and utility level between 2009-2014 lead to an increased in installed residential 

solar PV capacity by 6-7.9%.  

  

SDM SDM-W SAR SEM OLS
consta -9.550 . -4.734 -8.000* -5.052

(0.279) . (0.245) (0.069) (0.313)
LocalP 0.0358** 1.1403 0.0290** 0.0222 0.0447***

(0.016) (0.254) (0.022) (0.109) (0.004)
StateP -0.003 2.1552** 0.0536* 0.0549 0.1494***

(0.957) (0.031) (0.062) (0.208) (0.000)
lnPers -0.021 0.4183 -0.245 -0.365 -0.621

(0.960) (0.675) (0.520) (0.377) (0.185)
PctDem -0.013* -0.144 -0.010 -0.004 -0.014*

(0.092) (0.884) (0.100) (0.528) (0.058)
Age 0.0539*** -0.923 0.0290** 0.0398*** 0.0559***

(0.001) (0.355) (0.017) (0.006) (0.000)
Hisp 0.0236*** -1.576 0.0154** 0.0249*** 0.0259***

(0.007) (0.114) (0.010) (0.001) (0.000)
Educ 0.0501*** -1.289 0.0143 0.0224* 0.0107

(0.000) (0.197) (0.154) (0.050) (0.383)
StatEl 0.2930 -1.577 -0.091 0.1472 -0.102

(0.150) (0.114) (0.282) (0.285) (0.327)
SolPot 0.0000 1.3312 0.0003*** 0.0004** 0.0007***

(0.766) (0.183) (0.001) (0.020) (0.000)
Detach -0.006 -1.938* -0.005 0.0004 -0.022**

(0.508) (0.052) (0.529) (0.956) (0.030)
lnNOwn 0.9764*** -2.282** 0.5953*** 0.6963*** 0.8796***

(0.000) (0.022) (0.000) (0.000) (0.000)

rho 0.4709*** . 0.5709*** . .
(0.000) . (0.000) . .

lambda . . . 0.688*** .
. . . (0.000) .

R-Squared 0.818 . 0.6651 0.7585 0.6376



 

Table 4: Cross Sectional Marginal Effects 

 

In the preferred SDM model, the average direct effect of state policies have no statistically significant 

effect, however the indirect effects of state policies are highly significant. The significance of the indirect 

effects is intuitive: the majority of neighboring counties will be subject to the same state policies as a 

given county. In this model, the state effects then are captured by the indirect and total effects. That the 

magnitude of these effects is so much larger than the local policies is also intuitive: states have 

significantly more financial resources available then do municipal or county governments. Their inventive 

programs likely offer higher subsidies, thus are able to incentivize larger amounts of adoption.  

While the number of owned houses in a given county is highly significant, the percent detached is not, 

suggesting that the total number of houses owned in a county is a much better predictor of solar adoption. 

In the west, the row houses common to areas like Washington DC are rare. It is likely that only few 

populous counties have significant large percentages of attached housing units, while the majority of the 

rural counties in the WECC have smaller values. Education is found to have a positive and significant 

Average Average Average Average Average Average
Direct Effects Indirect Effects Total Effects Direct Effects Indirect Effects Total Effects

LocalPol 0.0409*** 0.0877* 0.1286*** 0.0321*** 0.0363** 0.0685**
(0.005) (0.051) (0.007) (0.018) (0.033) (0.022)

StatePol 0.0121 0.3029*** 0.3150*** 0.0603* 0.0672* 0.1276**
(0.823) (0.004) (0.000) (0.051) (0.055) (0.049)

lnPersInc 0.0228 0.7143 0.7371 -0.260 -0.290 -0.551
(0.959) (0.612) (0.626) (0.532) (0.539) (0.534)

PctDem -0.014 -0.015 -0.029 -0.010 -0.012 -0.023
(0.063) (0.554) (0.273) (0.106) (0.125) (0.112)

Age 0.0540*** -0.000 0.0538 0.0307*** 0.0345** 0.0653***
(0.000) (0.996) (0.269) (0.017) (0.026) (0.019)

Hisp 0.0226*** -0.018 0.0044 0.0167*** 0.0188*** 0.0356***
(0.007) (0.388) (0.825) (0.009) (0.015) (0.010)

wBach 0.0494*** -0.011 0.0378 0.0150 0.0169 0.0319
(0.000) (0.759) (0.332) (0.171) (0.188) (0.176)

ElectPr 0.2709 -0.514 -0.243 -0.099 -0.113 -0.212
(0.156) (0.131) (0.360) (0.290) (0.302) (0.293)

SolPot 0.0001 0.0010** 0.0011*** 0.0004*** 0.0004*** 0.0008***
(0.643) (0.023) (0.000) (0.001) (0.002) (0.001)

Detached -0.010 -0.069 -0.080 -0.006 -0.006 -0.013
(0.263) (0.027) (0.016) (0.492) (0.509) (0.499)

lnNumOwn 0.9897*** 0.2451 6.3414*** 0.6433*** 0.7255*** 1.3689***
(0.000) (0.204) (0.000) (0.000) (0.000) (0.000)

SDM SAR



 

impact on adoption, lending weight to earlier research that suggests knowledge of renewable systems is a 

strong driver of adoption.  

4.2 Panel Model  

A limitation of this model is that of identification: there is no guarantee the policies came before the 

installation of solar PV systems. The scenario where incentive policies were enacted after the capacity 

was installed could also produce those exact coefficients. To partly mitigate this, I consider a spatial 

model using panel data 

𝑦𝑖,𝑡 = 𝜌𝑊𝑦𝑖,𝑡 + 𝑋𝑖,𝑡β + 𝜇𝑖 + 𝜂𝑡+𝜖𝑖,𝑡 (8) 

where 𝜇𝑖 represents a kx1 vector of county indicators and 𝜂𝑡  represent an Tx1 indicator for years in the 

sample (where T=6, with the sample running from 1999-2014). In similar specification tests as in table 2, 

the SDM is preferred to the SAR. Hausmann tests suggest that pooled-OLS models are preferred to ones 

adding time, county, or time and county fixed effects. The marginal effects from this model (Table 5) 

suggest similar conclusions as the cross sectional model: an additional sub-state policy increased installed 

capacity in this time period of 7.15%.  

  



 

Table 5: Panel Marginal Effects 

 

This lends support to the arguments put forth in Burkhardt et al. (2015) and Dong and Wiser (2013) that 

local policies are an important driver of solar adoption. An important distinction is that this study only 

considers renewable policies, whereas these earlier studies use a more comprehensive set of local 

construction, connection, and permitting policies. Nevertheless, these results should help direct attention 

of local municipality and county policies as a main driver of solar PV adoption. There is no significant 

effect in the change of neighboring counties, which suggests that the clustering found in Bollinger and 

Gillingham (2012) is likely limited to within county effects. These results provide robust evidence that 

sub-state policies at the municipal, county, and utility level are important drivers of residential solar 

adoption. 

The impact of average solar insolation is positive and significant in each direct and indirect total estimate, 

This relationship seems intuitive, and indeed potentially overshadowing other relationships, especially in 

the WECC region, as greater amounts of solar insolation would decrease the time required to pay off the 

Average Average Average Average Average Average

Direct Effects Indirect Effects Total Effects Direct Effects Indirect Effects Total Effects

LocalPol 0.0445*** 0.0271 0.0715*** 0.0292*** 0.0368 0.066***

(6.794) (1.284) (3.089) (2.719) (1.476) (2.649)

StatePol -0.0009 0.3127*** 0.3117*** 0.0076 -0.099 -0.092

(0.000) (7.667) (10.26) (0.127) (0.000) (0.000)

lnPersInc 0.0121 1.3477** 1.3597** -0.781 -4.812 -5.593

(0.063) (2.263) (2.119) (0.000) (0.000) (0.000)

PctDem -0.010 -0.009 -0.019 -0.037 0.0546*** 0.0166

(0.000) (0.000) (0.000) (0.000) (2.459) (0.704)

Age 0.0506*** -0.065 -0.014 -0.000 0.0799** 0.0793**

(8.817) (0.000) (0.000) (0.000) (2.116) (1.978)

Hisp 0.0174*** -0.020 -0.003 0.0118 -0.034 -0.022

(4.552) (0.000) (0.000) (0.871) (0.000) (0.000)

wBach 0.0493*** 0.0025 0.0517*** 0.0067 0.0037 0.0104

(9.397) (0.136) (2.724) (0.665) (0.107) (0.254)

ElectPr 0.2134*** -0.187 0.0261 0.0916 -0.223 -0.131

(2.730) (0.000) (0.354) (1.324) (0.000) (0.000)

SolPot 0.0003*** 0.0006*** 0.0009*** . . .

(2.453) (3.719) (7.585) . . .

Detached -0.213 -2.651 -2.865 -0.183 -2.120 -2.303

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

lnNumOwn 1.127*** 2.6424*** 3.7695*** 0.0255 -3.369 -3.343

(5.367) (3.328) (4.880) (0.045) (0.000) (0.000)

SDM: Pooled OLS SDM: Time and Spatial Fixed Effects



 

upfront investment. However these results suggest that while it is an important consideration, there are 

other salient factors. Consider the case of Germany: with the solar potential roughly of Seattle, Germany 

leads the world in installed solar PV capacity. Even in cold and cloudy areas, electricity can be generated 

using solar PV. With sufficient interest, policy incentive and financial resources, a household could still 

be willing to install a PV system even with relatively limited solar insolation. The value of solar 

insolation is time invariant, and thus is not included in the third model with both time and spatial fixed 

effects.  

Income has expected significant and positive effects on adoption, confirming earlier studies’ assertions 

that adoption is concentrated among wealthy households. The percentage of voters who chose democratic 

candidates is insignificant in every effect measure, suggesting that either the percent voting democrat is 

an inaccurate measure of environmental preference or more likely that other covariates such as income 

and solar potential have a much greater impact on the decision to adopt solar PV.  

6. Conclusions 

This paper has contributed to the literature by empirically demonstrated how sub-state policies are 

important drivers of residential solar PV adoption. Focusing on the largest residential solar market, I 

created a unique dataset identifying the location of utility, county, and municipality solar incentive 

policies, and exploit their variation to examine their effects on known residential installations. I also 

utilize spatial econometric methods to evaluate the spatial spillovers in the market, which while modest 

are significant.  

There are a number of important policy considerations from this study. First, a larger focus on local 

policies and regulations is warranted when considering residential markets. Potential consumers may have 

a better familiarity of local incentive policies available to them, and those on the margin are likely more 

influenced by the policies they know. Second, proponents of policies to promote residential solar PV 

adoption may do well to focus their efforts towards sub-state governments. There the potential to enact 



 

policy change might be significantly lower than at the state level, as county commissioners are likely 

more accessible and amenable to lobbying efforts. Third, residential solar firms may do well to focus their 

marketing efforts in areas with already high levels of installed capacity, where they could capture the 

peer-effects and spatial clustering of residential systems. Given the significant spatial autocorrelation 

displayed in the market, they may well already be doing so.  

This study is limited in a number of ways. As mentioned above, this research design is unable to capture 

the effect of tiered electricity prices and may be omitting an important driver. This study treats all policies 

as homogeneous, which is unlikely to be the case. One net-metering policy may be more favorable than 

another, whereas PACE financing might offer more incentives in some areas. This variation within and 

between policy categories is not captured, but could be part of future work. Further, this study was not 

able to incorporate local permitting or regulatory process efficiency, which may explain a large share of 

solar PV adoption. However even with these limitations, this study presents new evidence that local 

renewable policies are a significant driver of solar PV adoption. 

 

7. References 

Balta-Ozkan, N., Yildirim, J., & Connor, P. M. (2015). Regional distribution of photovoltaic deployment 

in the UK and its determinants: A spatial econometric approach. Energy Economics, 51, 417-429. 

 

Barbose, G. L., Darghouth, N. R., Millstein, D., Spears, M., Wiser, R. H., Buckley, M., ... & Grue, N. 

(2015). Tracking the Sun VIII: The Installed Price of Residential and Non-Residential Photovoltaic 

Systems in the United States(No. LBNL-188238). Lawrence Berkeley National Laboratory (LBNL), 

Berkeley, CA (United States). 

 

Bauner, C., & Crago, C. L. (2015). Adoption of residential solar power under uncertainty: Implications 

for renewable energy incentives. Energy Policy, 86, 27-35. 

 

Bollinger, B., & Gillingham, K. (2012). Peer effects in the diffusion of solar photovoltaic 

panels. Marketing Science, 31(6), 900-912. 

 

Borchers, A. M., Xiarchos, I., & Beckman, J. (2014). Determinants of wind and solar energy system 

adoption by US farms: A multilevel modeling approach. Energy Policy, 69, 106-115. 

 

Borenstein, S. (2015). The Private Net Benefits of Residential Solar PV: The Role of Electricity Tariffs, 

Tax Incentives and Rebates (No. w21342). National Bureau of Economic Research. 



 

 

Burkhardt, J., Wiser, R., Darghouth, N., Dong, C. G., & Huneycutt, J. (2015). Exploring the impact of 

permitting and local regulatory processes on residential solar prices in the United States. Energy 

Policy, 78, 102-112. 

 

Burnett, W., & Lacombe, D. J. (2012). Accounting for Spatial Autocorrelation in the 2004 Presidential 

Popular Vote: A Reassessment of the Evidence. The Review of Regional Studies, 42(1), 75. 

 

Burbidge, J. B., Magee, L., & Robb, A. L. (1988). Alternative transformations to handle extreme values 

of the dependent variable. Journal of the American Statistical Association, 83(401), 123-127. 

 

Coan, T. G., & Holman, M. R. (2008). Voting Green*. Social Science Quarterly, 89(5), 1121-1135. 

 

Chung, D., Davidson, C., Fu, R., Ardani, K., & Margolis, R. (2015). US Photovoltaic Prices and Cost 

Breakdowns: Q1 2015 Benchmarks for Residential, Commercial, and Utility-Scale Systems (No. 

NREL/TP-6A20-64746). NREL (National Renewable Energy Laboratory (NREL). 

 

Crago, C., & Chernyakhovskiy, I. (2014). Solar PV Technology Adoption in the United States: An 

Empirical Investigation of State Policy Effectiveness. In 2014 Annual Meeting, July (pp. 27-29). 

 

Darghouth, N. R., Barbose, G., & Wiser, R. (2011). The impact of rate design and net metering on the bill 

savings from distributed PV for residential customers in California. Energy Policy, 39(9), 5243-5253. 

 

Dong, C., & Wiser, R. (2013). The impact of city-level permitting processes on residential photovoltaic 

installation prices and development times: An empirical analysis of solar systems in California 

cities. Energy Policy, 63, 531-542. 

 

Elhorst, J. P. (2010). Applied spatial econometrics: raising the bar. Spatial Economic Analysis, 5(1), 9-28. 

 

Florax, R. J. G. M., Folmer, H. & Rey, S. J. (2003) Specification Searches in Spatial Econometrics: the 

Relevance of Hendry’s Methodology. Regional Science and Urban Economics, 33, 557-579. 

 

Islam, T., & Meade, N. (2013). The impact of attribute preferences on adoption timing: The case of 

photo-voltaic (PV) solar cells for household electricity generation. Energy Policy, 55, 521-530. 

 

Kwan, C. L. (2012). Influence of local environmental, social, economic and political variables on the 

spatial distribution of residential solar PV arrays across the United States. Energy Policy, 47, 332-344. 

 

LeSage JP, Pace KR (2009) Introduction to Spatial Econometrics. CRC Press, Boca Raton 

 

LeSage, J. P., & Pace, R. K. (2014). The biggest myth in spatial econometrics. Econometrics, 2(4), 217-

249. 

 

MacKinnon, J. G., & Magee, L. (1990). Transforming the dependent variable in regression 

models. International Economic Review, 315-339. 

 

Pace, R. K., LeSage, J. P., & Zhu, S. (2012). Spatial dependence in regressors and its effect on 

performance of likelihood-based and instrumental variable estimators. Advances in Econometrics, 30, 

257-295. 

 



 

Richter, L. L. (2013). Social Effects in the Diffusion of solar Photovoltaic Technology in the UK. Faculty 

of Economics, University of Cambridge. 

 

Snape, J. R., & Rynikiewicz, D. C. (2012). Peer effect and social learning in micro-generation adoption 

and urban smarter grids development? Network Industries Quarterly, 14(24), 2-3. 

 

 

 

 


