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Energy Shock and Price Adjustment: National Brands vs. Private Labels of Retail Milk Products 

 

 

Abstract 

This paper examines how retailers adjust prices of national brands and private labels when they are exposed to 

energy shocks. Empirical results from 12 U.S. fluid milk markets provide insights into the magnitude and timing 

of price adjustment. Asymmetric energy pass-through is validated. The pass-through rate is found to be 

consistently higher for national brands compared to private labels, indicating that the private labels are more 

insulated to energy shocks. Further results show that the speed of energy price pass-through is faster for national 

brands compared to private labels when the energy price increases. However, the speed is similar for the two 

when the energy price decrease. Overall, this paper shows that when there is a positive energy shock, the retailers 

adjust prices of national brands first, on average, but they are almost indifferent with the order of adjustment 

when there is a decrease in energy prices.  
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1. Introduction 

  In the last few years, U.S. food and energy prices have both experienced dramatic increases, resulting in a 

dual food and energy price inflation that has had a significant negative impact on consumers. Much of the 

previous literature sheds light on the relationship between oil prices and agricultural commodity or food prices. 

Generally speaking, the causal link between oil and food prices is explained by two mechanism (Reboredo, 

2012). First, oil prices affect production costs directly, given that agriculture is an energy-intensive sector. For 

example, Hanson, Robinson and Schluter (1993) and Nazlioglu (2011) find that an increase in oil prices causes 

a rise in input costs and a corresponding rise in agricultural price. The strength of this effect depends on several 

factors, such as the relative importance of oil in the production costs and the degree of market power to pass 

forward increased costs. Second, on the demand side, increased oil prices have significantly raised demand for 

corn- and soybean-based biofuels resulting in an indirect increase in the prices of these commodities due to 

increased demand. Chen, Kuo and Chen (2010) and Ignaciuk and Dellink (2006) show that higher crude oil 

prices induced a higher derived demand for corn and soybeans and greater competition with other grains for 

planting areas, resulting in increased grain prices for wheat as well as for corn and soybeans. Higher grain prices 

increase the cost of feed used in animal agriculture such as milk production.  

  Yet, some studies have found no statistically significant evidence regarding an oil-food price nexus. For 

example, Zhang et al. (2010) find that agricultural commodity prices are neutral to oil price changes in the long 

run. Gilbert (2010) explains the recent upward trend in agricultural prices by distinguishing between common 

and market-specific factors, reporting evidence of the neutrality of market factors like oil prices and biofuel 

demand.   

  The preponderance of evidence in previous studies links oil and agricultural commodity price indexes at the 

aggregate farm level. However, studies linking food and energy prices at the retailer product brand level are 

relatively lacking even though this is the level more relevant to consumers. Moreover, in the retail food sector, 

how energy cost is passed through to national brands (NBs) and private labels (PLs) is of importance but is 

under-analyzed.  

  To the best of our knowledge, Volpe (2004) shed some light on the effects of crude oil on prices of NBs and 

PLs, but the main objective of this study is to examine the pass-through rate of food price inflation. Additionally, 

Loy et al. (2005) investigate the cost pass-through in differentiated product markets, and they find significant 

positive asymmetries in the cost pass-through processes, which vary between brands (e.g., NBs and PLs) and 

outlets. However, they don’t focus on magnitude and timing of energy shock pass-through.  
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  This paper contributes to the literature by examining the dynamics of price adjustment responding to energy 

shocks based on the retailer and manufacturer’s profit-maximization behavior. Understanding the energy shocks 

to NBs and PLs (including magnitude and timing) is of great importance. First, PLs, in recent years, have 

witnessed a sharp increase in terms of quality, sales, and total product offered. As a prominent feature in the 

landscape of the retail food sector with the dollar share of 18% in United States in 2014 (Nielsen, 2014), PLs 

are widely used as a tool by retailers to gain bargaining power in most cases via a form of vertical integration 

(e.g., Mills, 1995; Bontems, Monier-Dilhan and Requillart, 1999; Ward et al., 2002; Bonanno and Lopez, 2005; 

Bontemps, Orozco and Requillart, 2008). Second, PLs are almost uniformly cheaper than NBs (Ailawadi, Neslin, 

and Gedenk, 2001; Parcell and Schroeder, 2007) and are more closely related to consumers’ welfare, particularly, 

the poor people, which is referred to as the PL welfare effects. Third, timing of the energy pass-though is 

certainly an important issue when policymakers try to understand and react to energy shocks (Leibtag, 2009). 

Finally, from the standpoint of academic research, the literature about energy pass-through to NBs and PLs is 

still relatively rare, in particular with regards to, the retailer and manufacturer’s behavior of price adjustment.   

  The purpose of this paper is to examine how retailers adjust prices of NBs and PLs when they are exposed to 

energy shocks, via a conceptual analysis of a sequential bargaining process and an empirical analysis using data 

from 12 U.S. fluid milk market. Retail milk provides a good case study for examining the relation between 

energy and retail food prices. First, energy plays an important role in milk production as well as transportation 

and marketing (Brush, Masanet and Worrell, 2011). Second, given the prevalence of obesity and over-

consumption of sugar-sweetened beverages (SSBs), milk is considered a lower-calorie and more nutritious 

substitute for SSBs (Runge, Johnson and Runge, 2011). Third, the price of milk as a staple food is closely 

connected with consumers’ welfare and social well-being, particularly children’s.  

  Using the sales data from Information Resources Incorporated (IRI), this study supports an asymmetric 

energy pass-through. Additionally, the pass-through rate is consistently higher for NBs compared to PLs, 

indicating PLs are more insulated to energy shocks. Further results show that the energy pass-through is faster 

for NBs compared to PLs when the energy price increases. However, the speed is similar for the two when the 

energy price decreases. Overall, these findings indicate that the retailers adjust prices of national brands first on 

average when there is a positive energy shock, and they are almost indifferent with the order of adjustment when 

the price of energy decreases. This paper contributes to the existing literature in the following aspects. First, it 

theoretically discusses how retailers adjust the price of NBs and PLs via a sequential bargaining process where 

retailer and manufacturer both seek profit-maximizations. Second, it empirically reveals on average, which 
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prices (NBs vs. PLs) are first adjusted by retailers. The structure of this paper is of the following format:  

Section 2 presents the theoretical models. Section 3 contains the empirical results and the conclusion is presented 

in Section 4. 

 

 

 

2. A conceptual analysis 

Suppose there is a typical retailer who behaves as a category manager, i.e., maximizing the joint profits of 𝑛 

brands and PL products it sells. The retailer’s profit maximization problem is stated as follows: 

                      𝑀𝑎𝑥𝑝𝑖
 𝜋𝑅 = ∑ (𝑝𝑖 −𝑛

𝑖=1 𝑤𝑖 − 𝑐𝑖)𝑠𝑖𝑀 + (𝑝𝐿 − 𝑐𝐿 − 𝑚𝑐𝐿)𝑠𝐿𝑀,             (2.1) 

where 𝑝𝑖 is the retail price, 𝑤𝑖 is the wholesale price, 𝑐𝑖 is the retailer’s marginal cost for brand 𝑖, 𝑠𝑖 is 

market share of brand 𝑖, and 𝑀 is market size (total quantity) of fluid milk sold in supermarkets. 𝐿 stands for 

PLs. 𝑐𝐿 is the retailer’s marginal cost for PLs, and 𝑚𝑐𝐿 is the processing marginal cost of the PLs. Note that 

the wholesale price for PLs is not present because it is fully integrated.  

The manufacturer’s profit maximization problem is: 

                            𝑀𝑎𝑥𝑤𝑖
 𝜋𝑀 = ∑ (𝑛

𝑖=1 𝑤𝑖 − 𝑚𝑐𝑖(𝜔𝑖, 𝑧𝑖))𝑠𝑖𝑀,                      (2.2) 

where 𝑚𝑐𝑖 is marginal cost as a function of 𝜔𝑖, which is brand 𝑖’s cost of raw milk, and 𝑧𝑖 denote costs of 

other input factors. 

  When there is an energy shock, the manufacturer and retailer both have incentives to adjust their offered 

prices, i.e., the retailer may adjust the prices (𝑝𝑖 , 𝑝𝐿) and manufacturer may adjust 𝑤𝑖, to maximize profits. All 

the possible cases are (1) the retailer adjust NBs prices first (2) the retailer adjust PLs price first, or (3) retailer 

sets NBs prices and PL price simultaneously. We discuss the bargaining process in each case as follows: 

Case 1. First, the retailer bargains with the manufacturer with an offer for NBs’ price to be 𝑝𝑖
∗, which might 

be the optimal price that satisfies 
∂𝜋𝑅

∂𝑝𝑖
= 0. At the same time, the manufacturer bargains with the retailer and set 

a price of 𝑤𝑖
∗ to maximize 𝜋𝑤. During the bargaining process, they reach an equilibrium at prices (𝑝𝑖

∗,𝑤𝑖
∗). 

Second, given 𝑝𝑖
∗ and 𝑤𝑖

∗, the retailer sets PLs’ price to be 𝑝𝐿
∗ in order to maximize its profit, i.e., 

∂𝜋𝑀

∂𝑝𝐿
= 0. 

In this sequential game, we denote the profits of the retailer and manufacturer to be  𝜋1
𝑅(𝑝𝐿

∗, 𝑝𝑖
∗, 𝑤𝑖

∗), and 

𝜋1
𝑀(𝑝𝐿

∗, 𝑝𝑖
∗, 𝑤𝑖

∗), respectively. 
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Case 2. First, the retailer adjusted PLs price to 𝑝𝐿
∗, which might be the optimal price that satisfies 

∂𝜋𝑅

∂𝑝𝐿
=

0. Here, the retailer uses PL to increase its bargaining power and negotiates with the manufacturer. Given 𝑝𝐿
∗, 

the manufacturer bargains with the retailer and adjusts its price to 𝑤𝑖
∗ in order to maximize 𝜋𝑤. Second, given 

𝑝𝐿
∗ and 𝑤𝑖

∗, the retailer sets the NB price 𝑝𝑖
∗ to maximize profit, i.e., 

∂𝜋𝑅

∂𝑝𝑖
= 0. In this sequential game, the profit 

of the retailer and manufacturer are denoted as 𝜋2
𝑅(𝑝𝐿

∗ , 𝑝𝑖
∗, 𝑤𝑖

∗) and 𝜋2
𝑀(𝑝𝐿

∗, 𝑝𝑖
∗, 𝑤𝑖

∗) respectively.  

 

Case 3. First, the retailer negotiates with the manufacturer and respectively sets the PLs and NBs’ prices 

simultaneously as 𝑝𝐿
∗  and 𝑝𝑖

∗,. At the same time, the manufacturer sets the price as 𝑤𝑖
∗. In this sequential 

game, the profits of the retailer and manufacturer are denoted as 𝜋3
𝑅(𝑝𝐿

∗, 𝑝𝑖
∗, 𝑤𝑖

∗)  and 𝜋3
𝑀(𝑝𝐿

∗, 𝑝𝑖
∗, 𝑤𝑖

∗) 

respectively.  

 

Note that there is no specific form of demand function and thus we cannot get an explicit solution and so, 

a direct comparison is not possible. However, the optimal strategy based on retailer and manufacture’s profit-

maximization behavior is known as follows: 

 If 𝜋1
𝑅(𝑝𝐿

∗, 𝑝𝑖
∗, 𝑤𝑖

∗) > 𝜋2
𝑅(𝑝𝐿

∗, 𝑝𝑖
∗, 𝑤𝑖

∗), and 𝜋1
𝑅(𝑝𝐿

∗, 𝑝𝑖
∗, 𝑤𝑖

∗) > 𝜋3
𝑅(𝑝𝐿

∗, 𝑝𝑖
∗, 𝑤𝑖

∗), then the retailer will set the 

price of NBs first and then adjust the price of PLs (i.e., Case 1).  

If 𝜋2
𝑅(𝑝𝐿

∗, 𝑝𝑖
∗, 𝑤𝑖

∗) > 𝜋1
𝑅(𝑝𝐿

∗, 𝑝𝑖
∗, 𝑤𝑖

∗), 𝜋2
𝑅(𝑝𝐿

∗, 𝑝𝑖
∗, 𝑤𝑖

∗) > 𝜋3
𝑅(𝑝𝐿

∗, 𝑝𝑖
∗, 𝑤𝑖

∗), the retailer will set the prices of 

PLs first (i.e., Case 2). 

If 𝜋3
𝑅(𝑝𝐿

∗, 𝑝𝑖
∗, 𝑤𝑖

∗) > 𝜋1
𝑅(𝑝𝐿

∗, 𝑝𝑖
∗, 𝑤𝑖

∗), 𝜋3
𝑅(𝑝𝐿

∗, 𝑝𝑖
∗, 𝑤𝑖

∗) > 𝜋2
𝑅(𝑝𝐿

∗, 𝑝𝑖
∗, 𝑤𝑖

∗), the retailer is indifferent to the 

order, and so prices are adjusted simultaneously (i.e., Case 3).  

 

As the optimal profits are not observed in each case, it is impossible to conclude the order that the retailer 

adjusts the prices of NBs and PLs. However, it is possible to infer which case most likely happens in the market 

based on an empirical analysis using scanner data.  

In the following section, we will investigate the price movements of NBs and PLs using energy shocks that 

include the magnitude and timing of energy price transmission.  
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3. Empirical analysis 

To investigate the magnitude and times of vertical price transmission from energy price to retail milk price, 

a vector error correction model (VECM) is applied as 

             𝒀𝒊𝒕 = 𝝋 + 𝑨 ∗ 𝑬𝑪𝑻𝒊,𝒕−𝟏 + ∑ 𝚽(𝒋) ∗ 𝒀𝒊,𝒕−𝒋
𝑘1
𝑗=1 + ∑ 𝚯(𝒍)∆𝒑𝒊,𝒕−𝒍

𝒈𝑘2
𝑙=1 + 𝜺𝒊𝒕,           (3.1) 

where 𝒀𝒊𝒕 = [
∆𝑝𝑖𝑡

1

∆𝑝𝑖𝑡
2 ], 𝝋 = [

𝜑1

𝜑2
], 𝑨 = [

𝛼1 0
0 𝛼2

], 𝑬𝑪𝑻𝒊,𝒕−𝟏 = [
𝑝𝑖,𝑡−1

1 − 𝛽0
1 − 𝛽0

1𝑝𝑖,𝑡−1
𝑔

𝑝𝑖,𝑡−1
2 − 𝛽0

2 − 𝛽0
2𝑝𝑖,𝑡−1

𝑔 ], 𝚽(𝒋) = [
𝛿1𝑗 𝜌1𝑗

𝛿2𝑗 𝜌2𝑗
], 

𝚯(𝒍) = [
𝜃1𝑙

𝜃2𝑙
], 𝜺𝒊𝒕 = [

휀𝑖𝑡
1

휀𝑖𝑡
2 ]. 

𝑝𝑖𝑡
1  and 𝑝𝑖𝑡

2  are the prices of NBs and PLs at market 𝑖 in time 𝑡, respectively. 𝑝𝑖,𝑡
𝑔

 is the commodity price of 

gasoline in market 𝑖  at time 𝑡 . 𝜑,  𝛼 ,  𝛿 ,  𝜌 ,  and 𝜃  are parameters to be estimated. 휀𝑖𝑡  is white noise 

disturbance, where 휀𝑖𝑡
1  and 휀𝑖𝑡

2  are assumed to be independent since the competition between NBs and PLs are 

captured in the third term on the right hand side of equation (3.1). The expression [
𝑝𝑖,𝑡−1

1 − 𝛽0
1 − 𝛽0

1𝑝𝑖,𝑡−1
𝑔

𝑝𝑖,𝑡−1
2 − 𝛽0

2 − 𝛽0
2𝑝𝑖,𝑡−1

𝑔 ] are 

often referred to as error correction term (𝑬𝑪𝑻), which captures deviations from the long-run equilibrium 

relationship between milk retail price (𝑝𝑖𝑡
1  𝑎𝑛𝑑 𝑝𝑖𝑡

2 ) and gasoline price 𝑝𝑖,𝑡
𝑔

. Here the 𝑬𝑪𝑻𝒊,𝒕−𝟏 equals zero 

when prices are in equilibrium in the long term. The parameters 𝛽  and α  are of great interest, which 

respectively, measure the magnitude of the pass-through rate from the energy price to the milk retail price in the 

long run and the speed at which deviations from equilibrium are corrected, i.e., the speed of the vertical price 

transmission. For example, if the speed of vertical price transmission is found to be larger for NBs than that for 

PLs, it indicates that the retailer is more likely to adjust the price of NBs first, on average.  

Asymmetric price transmission is also investigated in this paper, which describes the situation in which prices 

that are linked by a long-run equilibrium relationship react differently depending on whether they are pushed 

too close together or pulled too far apart relative to that equilibrium. In this paper, asymmetry refers to the retail 

price responds more rapidly (or more slowly) to an increase in the energy price than it does to a decrease in the 

energy price. Following von Cramon-Taubadel (1998), we use a modification of the vector error correction 

model proposed by Granger and Lee (1989) to test for asymmetry. This modification involves segmenting the 

error correction term into positive and negative components, i.e., 𝑬𝑪𝑻+ = 𝑚𝑎𝑥{0, 𝑬𝑪𝑻} and 𝑬𝑪𝑻− =

𝑚𝑖𝑛{0, 𝑬𝑪𝑻}, and estimating the following equation system: 

          𝒀𝒊𝒕 = 𝝋 + 𝑩 ∗ 𝑬𝑪�̃�𝒊,𝒕−𝟏 + ∑ 𝚽(𝒋) ∗ 𝒀𝒊,𝒕−𝒋
𝑘1
𝑗=1 + ∑ 𝚯(𝒍)∆𝒑𝒊,𝒕−𝒍

𝒈𝑘2
𝑙=1 + 𝜺𝒊𝒕           (3.3) 
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where 𝑩 = [𝛼1
+ 𝛼1

−

0 0

0 0
𝛼2

+ 𝛼2
−], and 𝑬𝑪𝑻′̃𝒊,𝒕−𝟏 = [𝐸𝐶𝑇𝑖,𝑡−1

1,+ , 𝐸𝐶𝑇𝑖,𝑡−1
1,− , 𝐸𝐶𝑇𝑖,𝑡−1

2,+ , 𝐸𝐶𝑇𝑖,𝑡−1
2,− ]. 

 

 

 

4. Data and estimation 

Sales data of fluid milk come from the IRI, provided by the Zwick Center for Food and Resource Policy, the 

University of Connecticut. It records weekly sales information (e.g. dollar sales and volume sales) for thousands 

of milk varieties in 12 main cities (Atlanta, Boston, Chicago, Dallas, Detroit, Hartford, Los Angeles, New York 

City, Philadelphia, San Francisco, Seattle, and Washington, DC) during time period of 2001-2011. The average 

milk retail price for NBs and PLs are computed via the aggregated weekly dollar sales by the aggregated weekly 

volume sold, respectively. The milk weekly price is merged with gasoline commodity weekly price data, which 

comes from the US Energy Information Administration. Here the unit of gasoline commodity price are 

transformed to dollar/gallon for comparison.   

Table 1 illustrates the summary statistics for the main variables, which include the mean and range for the 

PLs’ prices and NBs’ prices in 12 U.S. cities. It can be seen that the prices for PLs are consistently lower than 

NBs prices. In addition, the average prices in PLs are lowest in Detroit and highest in Washington D.C., and the 

average prices of NBs are lowest in Boston and highest in Washington D.C. Table 1 also shows us that NBs 

price range is smallest in Boston and largest in Dallas, while PLs price range is smallest in Boston and largest 

in Seattle. Without loss of generality, Figure 1 presents price trends of NBs, PLs and crude gasoline commodity 

in New York City where the milk prices and crude gasoline price show a very similar pattern of movement. 

Additionally, it seems that the price of NBs are much more volatile when compared to that of PLs.  

[Please insert Table 1 about here] 

[Please insert Figure 1 about here] 

 

Following Engle and Granger (1987), we estimate the equations for an asymmetric pass-through for NBs and 

PLs in two steps. First, we estimate the long-run relationship and compute the residuals 𝑬𝑪𝑻𝒊,𝒕−𝟏 using the 

NBs’ price and the energy price as well as the PLs’ price and energy price. In the second step, we use the 

residuals from the first step, and estimate the asymmetric error correction model. The model is estimated using 

the maximum likelihood method. Here, the lags of prices are chosen with Bayesian Information Criterion (BIC). 
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A smaller BIC indicates a better fit of the model.  

   

 

 

5. Results 

Table 2 presents Hadri LM test (Hadri, 2010) for existence of unit root in the price panel. The null hypothesis 

of Hadri test is that all panels are stationary and the alternative is some panels contain unit roots. The results of 

Hadri LM test show that all the panels of interest are non-stationary in levels and stationary in first difference. 

Additionally, we use the group-mean test and panel test to check whether the gasoline commodity price is 

cointegrated with NBs’ price and PLs’ price, respectively (Westerlund, 2007). The statistics in Table 3 indicate 

that the panel of prices are cointegrated no matter what test is used (group-mean test or panel test). Here a trend 

and a constant are included in the tests. The lag length of 2 is chosen based on the values of the AIC.  

[Please insert Table 2 about here] 

[Please insert Table 3 about here] 

Table 4 illustrates us the results of the estimation of the symmetric and asymmetric error correction models 

for NBs. In order to compare the estimates some of which are quite close, we report the results with four digits 

after decimal point. In the symmetric case, the pass-through rate is 0.7447, which is slightly higher than that in 

the asymmetric case (0.6776). This results indicate that if the gasoline commodity price increases by 10 cents, 

the average price of NBs will increase by 7.4 cents. For the speed of vertical price transmission in the symmetric 

case, the speed of pass-through is 0.0487. The negative sign indicates that an increase of energy price (i.e., the 

ECT will be negative) will result in an increase of retail milk price. However, in the asymmetric case, the speed 

of vertical price transmission is much faster when ECT is negative (0.0972) compared to when ECT is positive 

(0.0138), implying that when there is an increase in the price of gasoline, the cost is passed through to the retail 

milk price faster than that when gasoline price decreases.  

[Please insert Table 4 about here] 

It is also possible to compute the time it takes for the NBs’ price to go back to the equilibrium. If the energy 

commodity price increases by 1 dollar (i.e., a negative ECT), then it will take around 10.3 weeks for the NBs’ 

price to adjust and to reach a new equilibrium. If the energy price decreases by one dollar (i.e., a positive ECT), 

then this process will take about 72.5 weeks. This finding implies that the retailer is much more active in 

increasing the price when there is a positive energy shock comparing to when there is a negative energy shock. 
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Comparing the values of BIC, the model specification with asymmetric pass-through outperforms the symmetric 

one, supporting the asymmetric energy cost pass-through.  

Table 5 illustrates the symmetric and asymmetric error correction models for PLs. Compared to NBs, the 

pass-through rate for PLs are much lower (0.4793) in the symmetric case and 0.3051 in the asymmetric case, 

indicating that PLs are much more insulated to energy price shock when compared to NBs. For example, in the 

symmetric case, the pass-through rate for NBs is 0.7447 (i.e., each10 cent oil price increase leads to a 7.4 cents 

increase in the price of NBs), while for PLs, it is 0.4793 (i.e., each 10 cent oil price increase leads to a 4.8 cent 

increase in the price of PLs). For the asymmetric case, the pass-through rate for NBs is still higher than that of 

PLs (i.e., 0.6776 vs. 0.3051). A possible explanation for this can be found in the marketing channel. PLs 

consume less energy (i.e., transportation, packaging, cooling) and thus, are less energy dependent than NBs. 

Similarly, we find the model specification with an asymmetric pass-through is a better fit with a smaller BIC. 

[Please insert Table 5 about here] 

Another finding of this study is that the speed of vertical price transmission from an energy shock to NBs 

is faster than that of PLs. For example, in the symmetric case, the transmission speed is 0.0487 for NBs and 

0.0511 PLs. However, in the asymmetric case, when there is a positive energy shock (i.e., a negative ECT), the 

transmission speed is 0.0972 for NBs and 0.0913 for PLs. While when there is a negative energy shock (i.e., a 

positive ECT), the difference between the transmission speeds is quite small (0.0138 for NBs v.s. 0.0140 for 

PLs). These results indicate that when there is a positive energy shock, the retailer adjusts the price of NBs and 

PLs very differently. The adjustment for NBs price are much larger in magnitude and faster in speed, indicating 

that the retailer may gain more profits when they follow the strategy of adjusting the price of NBs first. While 

when there is a negative energy shock, the retailer adjusts the PLs’ price a little bit faster, strictly speaking. 

Essentially, NBs’ price goes up faster with positive energy shock and PLs’ price goes down faster with negative 

energy shock.  

 

 

 

6. Concluding remarks 

This paper studies how retailers adjust the prices of NBs and PLs when they are exposed to energy shocks. 

Using a conceptual analysis of a sequential bargaining process and an empirical analysis using IRI data of 12 

U.S. fluid milk market from 2001 to 2011, our empirical analysis validates an asymmetric energy pass-through. 
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Additionally, the pass-through rate is found to be consistently higher for national brands when compared to 

private labels, indicating that the private labels are more insulated to energy shocks. Further results show the 

speed of energy price pass-through is faster for national brands when compared to private labels in the event of 

an energy price increase. However, the speed is similar for the two when the price of energy decreases. Overall, 

this paper shows that the retailers adjust prices of national brands first when there is a positive energy shock, on 

average, and they are almost indifferent regarding the order of adjustment when the energy price decreases.   

This study reveals the strategy chosen by the retailers when there is an energy shock. The future work can be 

fruitful if we observe the behavior of specific retailers and analyze it within a structural model. Additional, a 

dynamic model also might provide some new insights, which is also left for future research.   
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Table 1 Summary statistics for price series 

Market  PL price mean PL price range NB price mean NB price range 

Atlanta 3.172 2.279 4.490 5.599 4.162 7.080 

Boston 3.009 2.585 3.853 4.445 3.444 5.482 

Chicago 2.712 1.883 3.507 4.734 3.340 5.863 

Dallas 2.802 1.652 4.001 3.681 2.449 5.191 

Detroit 2.593 1.707 3.632 4.510 3.291 6.277 

Hartford 3.541 2.785 4.237 4.892 3.339 6.096 

Los Angeles 3.001 2.425 3.782 5.884 4.761 6.809 

New York 3.541 2.760 4.383 5.251 3.920 6.362 

Philadelphia 3.539 2.887 4.416 5.235 3.746 6.106 

San Francisco 3.263 2.645 4.209 6.002 4.577 7.877 

Seattle 3.063 2.256 4.034 5.231 2.903 6.424 

Washington, DC  3.612 2.835 4.554 6.588 4.437 7.560 
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Table 2. Unit root tests for panels of prices 

Price of national brands 

Test Trend Lags Statistic P-value 

Hadri LM test in levels Yes 6 82.92 0.00 

Hadri LM test in first difference Yes 6 -3.26 1.00 

Price of private labels 

Test Trend Lags Statistic P-value 

Hadri LM test in levels Yes 6 62.87 0.00 

Hadri LM test in first difference Yes 6 -1.60 0.95 

Gasoline price 

Test Trend Lags Value P-value 

Hadri LM test in levels Yes 6 27.70 0.00 

Hadri LM test in first difference Yes 6 -2.94 1.00 

Note: a trend is also included in the test. 

Ho: All panels are stationary 

Ha: Some panels contain unit roots 
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Table 3. Group-mean tests and panel tests for cointegration 

Price of NBs and gasoline price  

Statistics Trend Lags Value P-value 

𝐺𝜏 Yes 2 -4.35 0.00 

𝐺𝛼 Yes 2 -51.78 0.00 

𝑃𝜏 Yes 2 -19.83 0.00 

𝑃𝛼 Yes 2 -65.49 0.00 

Price of PLs and gasoline price 

Statistics Trend Lags Value P-value 

𝐺𝜏 Yes 2 -3.982 0.00 

𝐺𝛼 Yes 2 -41.16 0.00 

𝑃𝜏 Yes 2 -15.98 0.00 

𝑃𝛼 Yes 2 -48.08 0.00 

Note: a trend and a constant are included in the tests.  

The # of lags is determined by the average AIC (1.75).  

The null hypothesis is there is no cointegration.   
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Table 4. Results of estimation of symmetric and asymmetric error correction models for NBs 

 Symmetry Asymmetry 

Coefficient Estimate SE Estimate SE 

Constant 𝜑1    0.2018*** 0.0228  -0.0204*** 0.0048 

𝛽1    0.7447*** 0.1310  0.6776*** 0.0070 

𝛼1   -0.0487*** 0.0055   

𝛼1
+   -0.0138* 0.0076 

𝛼1
−    -0.0972*** 0.0091 

BIC          -4220.53 -4264.09 
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Table 5.Results of the estimation of symmetric and asymmetric error correction models for PLs 

 Symmetry Asymmetry 

Coefficient Estimate SE Estimate SE 

𝜑1    0.1240*** 0.0143  -0.0126*** 0.0030 

𝛽1    0.4793*** 0.0740   0.3051*** 0.0056 

𝛼1   -0.0511*** 0.0051   

𝛼1
+   -0.0140* 0.0082 

𝛼1
−     -0.0913*** 0.0083 

BIC -7889.45 -7912.06 
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             Figure 1: The price trends of PLS, NBs and Gasoline commodity in New York City. 
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