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Research Agenda:

1. Develop a model to assess how annual allocation trade by a hypothetical
EWH can impact ecosystem services in the Murrumbidgee catchment

2. Use the model to optimize strategic year to year water management
decisions.

But first, need to describe mathematically how hydrological indictors (and water
trade) impact ecosystem services and economic value

-thresholds
-trade-offs
-interactions



Theoretical Basis: Ecosystem Services Cascade

« “bridging the worlds of natural science and economics” (Braat and de Groot, 2012)

Management or restoration Institutions and Feedback between value
(e.g. sustainable diversion limit) human judgments perception and use of ecosystem
L i .g. political process
(determining the use of : services (e.g. po )
services, e.g. Murray—Darling N Water Act 2007)
Basin Authority Basin Plan)

Ecosystems and biodiversity Human wellbeing
Biophysical (socio-cultural context)
structure or -

Function*
FIEEt . (e.g. ecosystem
(e.g. floodplain . |
vegetation, maintenance) Ecosystem |
microsites for service
birds) (e.g. habitat,_ fresh (‘Eﬁtﬂbeﬂg: t)o E ]
water, tourism) wellbeing) conomic
value
(e.g. WTP for
protection)

*subset of biophysical structure or
process providing the service

For flow dependent ecosystems:

A hydrological — A biophysical — A ecosystem services —A economic value
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Ecosystem Service Dynamics

A hydrological — A biophysical — A ecosystem services —A economic value

Ecosystem service values are not static

- Ecosystem services — and hence economic value — change with respect to
hydrological conditions
- Flow volumes (spatial dimension)
- Flow frequencies (temporal dimension)

- It is not sufficient to say an asset is worth $x in all cases

Example: a wetland watered with a 1500GL flood in a timely manner provides
more ecosystem services ($) than the same volume flood 5 years later

- By extension, the marginal value of water has a temporal dimension

Key point:

Ecosystem services are multiple and they change across time, space, and with
considerable degrees of uncertainty.

We therefore need continuous descriptive functions to represent this.
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Example: Carbon Sequestration

Market valuation technique

Value ($) = f(area, tree health, market prices)
Tree health = f(desired rerutn interval, actual return interval)

As time past return interval increases, carbon value ($) decreases

Extreme drought, no e_watering of floodplain for 50 years (Q=1700GL/year)
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Example: Carbon Sequestration

- When watering event occurs, tree recovery begins
- Increase in carbon value ($)
- Recovery rate proportional to tree health

Extreme drought - e_watering of floodplain every 20 years (Q=1700GL/year)
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Example: Carbon Sequestration

- During recovery, time past watering still counting

If desired return interval is exceeded, decay begins again from new,
lower point

- Gradual decrease over time until threshold reached (lost asset)

Extreme Drought, e_watering of floodplain every 20 years (Q=1700GL/year)
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Example: Carbon Sequestration

« Time past return interval is zero, carbon value ($) maintained at maximum

Normal/wet - e_watering floodplain every 4 years (Q=1700GL/year)
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Relationship with EWH water trade

There is an opportunity for annual EWH water trade to influence the inter-
annual distribution of overbank flooding and ecosystem service values.

Existing models:

- Kirby et al., 2006

- Connor et al., 2013
- Ancey, et al., 2014

- Existing models are largely abstract and conceptual

- Contribution
- Articulate multiple individual ecosystem services
- Economic valuation of individual ecosystem services
- Consideration of temporal thresholds, trade-offs and interactions



Ecosystem Services Considered:

A hydrological — A biophysical — A ecosystem services —A economic value

Flow Frequency —>| RiverRed |— Carbon »| Market Valuation
Gum Health \ Sequestration
Erosm_n *|  Avoided Cost
Prevention
Flow Volume |— Habitat — | Recreational . Marginal
Suitability Fishing Expenditure

Flow Velocity |[— Thermal —— | Blue Green |—| Avoided Cost
Mixing A|gae
Prevention




Objective Function: Sum of Ecosystem
Services

Seek the best combination of yearly management decisions influencing Q(vol)
and Q(freq) to maximize ecosystem service benefits

Optimization algorithm to evaluate options:

q
z ESn,t

1 n=1

T
max P =
t=

Where:

ESn is g number of ecosystem services
T is the time horizon

t is the time step in years

Subject to:

Hydrological constraints (delivery, carryover, storage capacity)
Fiscal constraints (budget,non — debt,non — profit, self sufficiency)
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Valuation Challenges

Uncertainties in market prices (water, carbon)
Avoid double counting by excluding willingness-to-pay for habitat services:

- But monetary value of Basin Plan flow benefits dominated by habitat ecosystem services
(non-use values)

Conceptual issues equating avoided cost, impacts, and value of ecosystem service benefits
- e.g. avoided cost of erosion prevention

- e.g. marginal expenditure of recreational fishing

Multiple management options each with different costs

Q1+Q0
Ac

- e.g. cost of BGA prevention is cost of (Q1 — Q0), Whenfl—g < 0.03?, such that >
0.03

« OR/ cost of dosing water with Chlorine
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Epistemological uncertainty: .| |
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- Ecological boundary conditions
- Groundwater conditions

Stochastic (natural) uncertainty:
- Spatial heterogeneity

- Stochasticity of flow

- Irrigation + domestic demands



Marginal Value of e _water

- The Marginal Value is the change in the total value
created by the change in quantity of the control variable.

- Example: Horne et al., (2009).

(a) (b) (c) (d)
. High
o 20 10 20 5 10 15 20 20

Flow (ML/day)

Figure 3. Possible total benefit curves for an environmental flow. (a) Trigger response to flow, (b) Linear response to flow, (c) Staged response to
flow and (d) Significant initial response to flow, diminishing benefit of additional flow

784 A. HORNE ET AL.
(@) b) (c) (d)
g
= e ——
20 10 20 0 15 20 20

Flow (ML/day)

Figure 4. Associated marginal benefit curves for an environmental flow. (a) Trigger response to flow, (b) Linear response to flow, (c) Staged
response to flow and (d) Significant initial response to flow, diminishing benefit of additional flow
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Example: Erosion Prevention
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Example: Blue Green Algae Prevention
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Example: Recreational fishing
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