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Abstract

In this paper, we examine the relationship between productivity and innovation, us-
ing the U.S. manufacturers’ patent data from 1976-2006. First, we investigate whether
productive firms actively participate in innovation in terms of having more patents,
and then examine whether their innovation activities are involved in a wide spectrum
of technological categories. Moreover, we are interested in, to successfully develop a
new patent in a certain technological field, whether productive firms need to cite more
or less patents within the field and/or across various related fields. The firm-level
productivity is estimated as the total factor productivity (TFP). We find that: (i) pro-
ductivity is positively correlated with the number of patents granted and the number
of technological categories for these patents; and (ii) productivity is positive correlated
with the number of citations per granted patent, and is also positively correlated with
the number of technological categories for cited patents per granted patent. Whereas
the former finding indicates that productive firms actively conduct research and their
innovation is involved in different technological fields, the latter suggests that, to devel-
op a new patent, productive firms are capable of learning from cited patents in various
technologies fields.
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1 Introduction

The quest to explain the sources of productivity growth has led to a large body of empirical

literature that investigates the relationship between firm-level productivity and innovative

activities by using patent data. Early work suggested a positive correlation between produc-

tivity and innovation, but was less conclusive about how firms’ productivity is related with

the spectrum of technological categories associated with patents. The process of producing

a patentable innovation is similar to the combination of several pieces of familiar and un-

familiar technological components (Fleming, 2001). Entering in an unfamiliar technological

field would incur additional costs to overcome technical barriers. A firm’s productivity may

be associated with the probability of choosing to bear such costs, and may be important in

expanding the spectrum of technological fields and spurring innovation by combining new

ideas and inventions.

In this paper we examine the empirical relationship between firm-level productivity

and innovation from a variety of perspectives. First, we investigate whether productive firms

actively participate in innovation in terms of patents. Second, we examine whether firms’

patents are involved in a wide spectrum of technological categories (extensive innovation

scope), and whether their innovative activities focus on inventing within a narrow set of

fields (intensive innovation scope). Third, we investigate whether, to successfully develop a

patentable innovation in a certain technological field, productive firms cite patents across

various related fields (extensive citation scope) or whether they only cite more patents from

a narrow set of technological categories (intensive citation scope). Lastly, this paper explores

how the novelty of invented patents is correlated with firm-level productivity.

The data that we use pertain to US public firms in the manufacturing sector over

the period 1976-2006. This dataset is compiled from two main sources: the NBER patent

database, and Compustat data (Wharton Research Data Services). The former provides

comprehensive information for patents granted by the US Patent and Trademark Office,

while the latter includes detailed financial information for all firms traded in the US stock
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market during the study period. Since the main focus of this paper is on the manufacturing

sector, we further restrict our sample to industries within this sector, and match the data

with the industry-level NBER-CES manufacturing productivity database.

Productivity, a key variable in our analysis, is estimated as total factor productivity

(TFP), using the Levinsohn and Petrin (2003)’s method. To link productivity with inno-

vation, our dependent variables include measures of innovation quantity measured by the

number of patents. Each patent is classified into technological fields by using the Internation-

al Patent Classification (IPC) code. We use technological categories associated with patents

to define extensive and intensive innovation scope, capturing the technology spectrum in

which a firm has produced patentable inventions. The extensive innovation scope is simply

proxied by the number of different technological fields associated with these patents, while

the intensive innovation scope is the number of different technological fields divided by the

number of patents. Similarly, we count the number of different technological fields for cited

patents, and divide it by the number of patents. This measure captures the number of cited

technical fields per patent that a firm learns from cited patents. Furthermore, two addition-

al measures on the "generality" and "originality" of patents are used, following Trajtenberg

et al. (1997).

Our findings are consistent with the empirical literature on the relationship between

firm-level productivity and innovation (Hall, 2011; Mohnen and Hall, 2013). First, we doc-

ument a consistent and positive correlation between productivity and innovation quantity –

the more productive a firm, the more patentable inventions are produced. Second, there are

some novel insights about how productivity is related to extensive and intensive innovation

scope at the firm level. A positive correlation between productivity and extensive innovation

scope is documented. Productive firms tend to engage in a wide spectrum of technological

fields. Moreover, intensive innovation scope is also positively correlated with productivity,

indicating that on average productive firms appear to invent relatively less patents in a wide

area of technical fields. Lastly, our findings show that productivity is positively correlated
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with both average citations per patent and average cited technical fields per patent. The

former indicates productive firms tend to cite more patents per patented invention, while the

latter suggests that these productive firms are more capable of learning from cited patents

across various technologies fields. Furthermore, the "generality" and "originality" measures

of novel patents are positively correlated with firm productivity.

This paper is related to the growing literature that study innovation using firm-level

patent. One strand is the (causal) relationship between productivity and patent innovation.

Recent review papers (Nagaoka et al., 2010; Hall, 2011; Mohnen and Hall, 2013) summa-

rize the pioneering work by Griliches (1996, 1998), which attempt to employ patents stock

to explain the residual growth in productivity. Most of the followed-up studies that have

examined the effects of innovation on labor productivity are based on the well-known CDM

(Crepon, Duguet, and Mairesse, 1998) model. This model is generally presented as a recur-

sive system of three blocks of equations with endogenous choices of innovation, and hence

handles some of the endogeneity problem related to R&D expenditures and product or pro-

cess innovation. Whereas a few studies document a negative correlation between innovation

and productivity (Roper et al., 2008; Van Leeuwen and Klomp, 2006), this strand of work

have found the positive relationship between innovation and productivity (Crepon et al.,

1998; Janz et al., 2004; Loof and Heshmati, 2006; Castellani and Zanfei, 2007; Hall et al.,

2009; Raymond et al., 2013; Hall and Sena, 2014). When the growth rather than the level

of productivity is chosen as the dependent variable (Geroski, 1989; Miguel Benavente, 2006)

or human capital is added as a control variable (Crepon et al., 1998; Castellani and Zanfei,

2007; Therrien and Hanel, 2009), the effects of innovation on productivity is weakened.

This paper is also related to existing literature that use the matched data between

NBER patent database and firm-level financial information. Among the first wave of prac-

titioners that link NBER patent with firms’ innovation expenditure, Bound et al. (1982);

Hall et al. (1984) analyze the R&D and patenting behavior of manufacturing firms. Hall

et al. (2001) summarize how NBER patent data are merged and matched with public firms
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in Compustat. Using this matched firm-level patent data, one of emerging studies by Hall

and Helmers (2010) examines the role of patent protection in technical changes, and another

work by Hall and Harhoff (2012) investigate whether patent protection encourages technol-

ogy transfer from dirty to clean. Arora et al. (2015) emphasizes the decline of scientific

publications in corporate R&D.

The remainder of the paper is organized as follows. The next section describes data

sources, data construction and description. The empirical strategy, results and robustness

checks are provided in section 3. The last section concludes the paper.

2 Data

2.1 Data Sources

The data pertain to the US public firms in the manufacturing sector over the period of 1976

- 2006. We compile the data from two main sources: the NBER patent database and the

Compustat data. The former provides comprehensive information for patents granted by

the US Patent and Trademark Office (USPTO), while the latter maintained by Wharton

Research Data Services (WRDS) includes detail financial information for all firms traded in

the U.S. stock market during the study period. The industry-level variables that are used to

construct variables of interests are obtained from the NBER-CES manufacturing industry

database (Becker et al., 2013).

The NBER patent data comprise detail information on US patents granted from 1976

- 2006, and all citations associated with these patents.1 The patent information file records

patent application year, granted year, technological classification in terms of 8-digit IPC

code, and the unique assignee identification number. There are about 2.87 million patents

associated with 0.20 million firms in this original database. Moreover, for each granted
1Please see the data from the new NBER data project via link https://sites.google.com/site/

patentdataproject/Home.
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patent, the patent citing file contains information about all citations made to each patent

(backward citations) and total cites received by patents (forward citations) issued during

1976-2006. There are about 23 million citation observations with 2.8 million citing patents

and 2.5 million cited patents.

The US Compustat database provides historical archive of annual financial statement

and balance sheet for all firms traded in the US stock market from 1975 to 2007. The

firm-level variables include gvkey as an identification code, standard industry classification

(SIC), net sales, number of employees, book value of asset value, capital expenditure, wage,

R&D expenses, and may others. We use this firm-level data to estimate TFP, and construct

other firm-level variables of interest, including capital intensity, firm age, size, and R&D

expenditure per value of assets. The construction method mainly follows Keller and Yeaple

(2009), which will be discussed in details in the following subsection of variable construction.

Bessen (2009) has matched patent data with public firms in Compustat, using an

algorithm involved with firm names.2 As owners of patent change over time, the patent

and Compustat matched file provides dynamic match of patent assignee to corporate entity

in the Compustat. The matching results uniquely link assignee identification number from

patent data with public firms’ permanent identification number (i.e., gvkey) in Compustat

database. In the matched sample, there are around 1.8 million patents associated with 6,575

unique corporate identities and 132,585 firm-by-year observations.

Since the main focus of this paper is on the manufacturing sector, we further restrict

our sample within this industry, and match with the industry-level NBER-CES manufactur-

ing productivity database. This step of data matching and merging leads to a final sample of

52,055 firm-by-year observations with 3,182 unique firms across the study period from 1976

to 2006. These firms have 528,620 granted patents with over 5 million citations.
2For the matching algorithm and matched results, please refer to the new NBER patent project via link

https://sites.google.com/site/patentdataproject/Home.
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2.2 Variables Construction

Table 1 presents the definition and construction of each dependent and independent variables

of interests used in our empiric work.

2.2.1 Innovation

The main dependent variable is innovation. The existing studies in related literature have

employed patents to measure firm-level innovation output (Griliches, 1998; Hall et al., 2001;

Amore and Morten, 2011; Aghion et al., 2013). Following this strand, we use the log number

of patents granted to proxy firm’s innovation quantity,

Innovationit = log(1 + # of Patentit)

Each patent is assigned with a 8-digit IPC code provided by the World Intellectual

Property Organization (WIPO). The IPC separates the whole body of technical knowledge

using a hierarchical classification system, i.e., section, class, subclass, group and subgroup, in

descending order of hierarchy. There are eight sections with each section symbol designated

by one of the capital letters A through H. Each section is subdivided into classes which are

the second hierarchical level of the IPC. The class symbols consist of the section symbol

followed by a 2-digit number. Each class comprises several subclasses with the symbol of

the class symbol followed by a capital letter. Lastly, each subclass is then broken down into

groups, either main groups or subgroups. Take one IPC code for example, H01S3/00 is the

code for "Lasers", where "H" denotes the section of Electricity, "H01" stands for the class of

"Basic Electric Elements", while "H01S" references the subclass of "Devices using Stimulated

Emission." The IPC has been periodically revised to take account of technical improvement

with minor adjustments for the definition of class and subclass technology fields. Using the

2006 edition of the IPC, the whole body of technology spectrum is divided into 129 classes
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and 633 subclasses.3 We use 4-digit IPC code (i.e., the subclass) to define technological

fields. For each year, we sum up the number of different technological categories in which

a firm’s patents are classified. Hence, the extensive innovation scope is measured by the log

number of unique technological fields, capturing the wide spectrum of a firms’ technological

categories in which it has invented patents.

Extensive Innovation Scopeit = log(1 + # of TechFieldit)

To further understand the intensiveness of a firms’ technological spectrum, we mea-

sure the intensive innovation scope by the log number of unique technological fields divided

by the number of patent,

Intensive Innovation Scopeit = log(1 + # of TechFieldit

# of Patentit

)

Definition of technology categories is of importance to our study. To check whether

results are robust to the alternative IPC code, we use the first 3-digit IPC code (i.e., class)

to separate technology categories from each other. An alternative measure of extensive

innovation scope is the count of different technological fields associated with patents in

terms of the first 3-digit IPC code. Thus, Alt. Extensive Innovation Scopeit = log(1 +

# of Alt. Tech Fieldit). Similarly, an alternative measure of intensive innovation scope is

defined as Alt. Intensive Innovation Scopeit = log(1 + # of Alt. TechFieldit

# of Patentit
).

Forward citations appear to be correlated with the value of patents (Trajtenberg,

1987), whereas backward citations reflect knowledge spillover of "prior art."4 For each firm,
3Please refer to the summary statistics table provided by the WIPO http://www.wipo.int/

classifications/ipc/en/ITsupport/Version20060101/transformations/stats.html.
4Patent examiners, rather than applicants, are ultimately responsible for for the citations made(Hall et al.,

2001; Nagaoka et al., 2010). Unfortunately, we could not distinguish citations added by patent examiners
with citations referenced by inventors.
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we calculate average backward citations per patent, that is,

Average Citationit = log(1 + # of Citationit

# of Patentit

)

Similar to the innovation scope, for each granted patent owned by a firm, we classify

all patents that were cited by the focal patent into different technological categories in terms

of 4-digit IPC code. We then calculate the number of unique technological fields associated

with cited patents for all patents granted by the firm. This measure denotes extensive citation

scope.

Extensive Citation Scopeit = log(1 + # of CitedTechFieldit)

Furthermore, the intensive citation scope, computed as the number of unique cited

technological fields divided by the number of patents granted, captures how many different

fields on average a firm must reference to innovate a new patent.

Intensive Citation Scopeit = log(1 + # of CitedTechFieldit

# of Patentit

)

In the section of robustness check, we broaden the definition of technological fields from

4-digit IPC (i.e., subclass) to 3-digit IPC (i.e., class) code on the one hand, and recalculate

measures of citation scope by using the number of nonself-citations, which is the number of

backward citations from other firms but itself.

A wide variety of citations-based measures is defined to examine different aspects of

patent innovation. Following Trajtenberg et al. (1997), we use "generality" and "originality"

measures, computed in the original patent file, to proxy patent quality. The former is

computed based upon a patent’s forward citations, while the latter is calculated based upon

its backward citations. The "generality" measure renders a lower score if a patent’s forward

citations are concentrated in a few technology fields, while a higher score if its forward
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citations belong to a wide range of fields. Similarly, the "originality" measure takes a high

score if a patent’s backward citations in a wide range of fields, but a low score if its backward

citations belonging to a narrow set of technologies. We further calculate the firm-level

generality and originality measures by computing the weighted average patents scores of

"generality" and "originality," respectively.

2.2.2 Other Firm-Level Controls

The main variable of interest is the estimated firm-level productivity, denoted by TFPit. The

estimation of productivity is full of challenges. Olley and Pakes (1996) (the OP method for

short) solves the simultaneity of output and capital stock when estimating the TFP. In addi-

tion, this method corrects the selection bias problem that only firms with high productivity

can survive and be continually observed in panel data sample. Based on the OP method,

Levinsohn and Petrin (2003) (the LP method for short) propose a similar method by intro-

ducing intermediate inputs to the estimation to solve the simultaneity problem. Compared

with OLS and fixed effects, both the OP and LP methods use investment or intermediate

inputs to control for correlation between input and unobserved productivity. Because of

their special advantages, the OP method and the LP method are widely used in applied

researches relative to firm’s productivity (Keller and Yeaple, 2009; Smarzynska Javorcik,

2004; Fernandes, 2007; Kasahara and Rodrigue, 2008; Petrin and Levinsohn, 2012). In this

paper, we use the TFP estimated from the LP method in the baseline, and choose the TFP

estimated from the OP method as a robustness check.

As noted in the growing literature (Konar and Cohen, 2001; Bloom et al., 2010;

Carrion-Flores and Innes, 2010; Amore and Morten, 2011; Kock et al., 2012), other firm-level

characteristics play important roles in explaining firms innovation activities. Specifically, we

use firm’s (log) deflated net sales to measure firm size. Capital intensity is calculated as

the ratio of deflated capital to employment. Moreover, we also control for firm’s age, which

is the difference between the current year and its beginning year reported in Compustat.
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R&D expense is generally regarded as a driving force for firm’s innovation. We employ

R&D expense per asset value as a control variable. Last, but not least, patent stock and

technology stock represent firms’ knowledge stock. Firms tend to create ideas and invent

new patents if they have accumulated knowledge in certain technological fields that they are

familiar with. Thus, the stock of patents and technologies have expected positive impacts

on firms’ innovative behavior. For each firm, we sum up all patents and unique technological

categories occurred in previous years, and use these variables to measure the spillover effects

of knowledge stock on innovation.

2.3 Descriptive Statistics

The upper panel of Figure 1 depicts average TFP and innovation across year during the

study period of 1976 - 2006, while the lower panel of Figure 1 captures annual changes in

average TFP and innovation measures. For each year, we take average of firm-level TFP,

innovation, innovation scope, citation, and citation scope. This figure shows that innovation

activities are positively correlated with TFP across years. We further take a close look at

the correlation between TFP and innovation at firm level. Figure 2 provides box plots for

firm-level innovation and TFP. We rank firms by their estimated TFP, and divide the TFP

distribution by 10 deciles. For each decile of the productivity distribution, a series of box

plot for firm-level innovation, innovation scope, citation, and citation scope are plotted. As

shown in Figure 2, the horizontal line is the 10 deciles of TFP distribution. From left to

right, the TFP increases from the lowest 10 percentile to the top 10 percentile. Clearly, there

is a positive correlation between productivity and innovation activities.

Table 2 presents summary statistics for variables of interests at firm level. On average,

each firm has around 12 patents granted per year, covering roughly 3 different technological

fields in terms of 4-digit IPC code. The total backward citations for all patents granted

by each firm reach more than 120 and are involved in 9 different technological fields. To

develop a new patent, each firm on average needs to cite around 5 patents across two different
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technological fields.

3 Empirics and Results

We are interested in investigating how firm-level productivity is correlated with innovation

activities in terms of the number of patents granted and the number of technological fields

associated with these patents. Moreover, to successfully develop a new patent in a certain

technological field, we explore how firm-level productivity is associated with the number

of citations per patent and the number of technological fields associated with these cited

patents. Furthermore, we include a handful of firm-level controls while estimating the corre-

lation between productivity and innovation activities at firm-level. To this end, the following

specification with a set of fixed effects for industry, year, and firm is presented:

Yit = β0 + β1TFPit−1 + αXit−1 + θjt + δt + µi + εijt (1)

where i indexes a firm, j indicates an industry, and t references a year. In (1), θjt is a vector

of industry variables that remove the time-variant shocks common to all manufacturers in the

same industry, δt is year fixed effect, µi is firm-level fixed effect controlling for unobservable

firm heterogeneity, and εijt is the stochastic error term.

The outcome variable Yit includes a series of measures on firm-level innovation, inno-

vation scope, citation, and citation scope. TFPit−1, which is critical to our study, denotes

the estimated one-year lagged firm-level productivity using the LP method. Other one-year

lagged firm-level controls that are related to innovation activities are absorbed in a vector

of Xit−1. The parameter of interest, denoted by β1, captures how firm-level productivity is

correlated with firms innovation activities.

Based upon the baseline specification (1), we first seek to explore how productivity

and firms characteristics are correlated with innovation, extensive innovation scope, and

intensive innovation scope. We then test how firm-level productivity is related with citations
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and citation scope in both extensive and intensive fashions.

3.1 Innovation and Innovation Scope

Table 3 presents the OLS estimation results for innovation and innovation scope. In each

column, a set of fixed effects for year, industry, and firm as well as industry year trend is

added in specification (1) as noted in the bottom of the table. Industry fixed effects are

measured at 4-digit SIC level. Standard errors presented in the parenthesis are clustered at

firm level.

Columns (1) - (3) in Table 3 provide the estimated results for the correlation between

TFP and innovation, controlling for firms’ characteristics that are related to innovation

choices. The estimated coefficients for TFP are positive and statistically significant at 1%

level in all columns, capturing the positive correlation between firm-level productivity and

innovation in terms of the number of patents granted. Productive firms tend to be more

actively engaged in innovation. One percent increase in productivity is associated with

roughly 10 percent increase in the number of patents granted as noted in column (3). Firms

characteristics other than productivity also plays an important role in innovative activities.

The effect of firm size on innovation is positive and statistically significant for 1% level.

Firms with bigger size in terms of larger value of sales are more likely to bear sunk costs

of investment in innovation. In addition, there is a positive estimate of capital intensity,

which is statistically significant at 1% level. Firms with intensive capital relative to labor

appear to have more patents granted. In column (1), the estimated coefficient for firms age

is negative and statistically significant at 1% level, suggesting that younger firms are more

actively involved in innovation. With firm fixed effects added in columns (2)-(3), the negative

estimates of firm age lose statistical significance at any conventional level, suggesting little

evidence on the negative effects of firm age on innovation. When it comes to R&D expenses

per value of asset, the estimated coefficient is positive and statistically significant at 1%

level. As one of driving forces for innovation, the more expenses in R&D per value of asset,
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the more patents a firm would have. Lastly, the estimated coefficients for patent stock and

technology stock are positive. These positive estimates with statistical significance at 1%

level lend support to the strong evidence that knowledge stock has a positive and statistically

significant spillover effects on innovation.

Columns (4)-(6) in Table 3 show the estimated results for extensive innovation scope,

which is measured by the log number of unique technological categories for patents granted

at the firm level. First of all, positive estimates of TFP are documented. These estimates are

statistically significant at 1% level, reflecting the positive correlation between productivity

and extensive innovation scope. Productive firms tend to develop patents in a wide spectrum

of technological categories. The point estimate of β1 coefficient is 0.068 in column (8),

indicating that one percent increase in TFP is associated with 6.8 percent increase in the

number of unique technological fields. Secondly, firms attributes including size and capital

intensity are found to have positive and statistically significant effects on extensive innovation

scope. The estimated effect of R&D expenses on innovation is positive and statistically

significant at 1% level. Lastly, knowledge stock, either in a form of patent stock or technology

stock, appears to have significantly positive spillover effects on broadening firms’ technology

spectrum.

Last three columns of Table 3 present the corresponding results for intensive inno-

vation scope. The estimated coefficients for TFP are positive and statistically significant

at 1% level. These positive estimates suggest that productive firms have less patents per

technological field. Other firms’ attributes including capital intensity, R&D expenses, and

knowledge stock appear to facilitate innovating firms to focus on certain technological fields,

as shown by negative and statistically significant coefficients in columns (9)-(12) of Table 3.

Together with strong evidence on the positive correlation between productivity and

innovation or innovation scope, we find that productive firms have more patents, and their

innovative activities cover a wide area of technological fields.
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3.2 Citation and Citation Scope

We are interested in, to develop a new patent, how many citations are needed for patentable

inventions, and how many different technological fields associated with these cited patents

the firm must reference. Moreover, we seek to exaime how firms attributes are related

with citation, average citation, and measures of citation scope. Table 4 presents the OLS

estimation results for specification (1) with dependent variables constructed based upon

citation and citation scope.

So far as the effect of productivity on citation is concerned, we find consistently

positive coefficients of β1 for the estimated TFP in columns (1)-(3) of Table 4. These

estimated coefficients are statistically significant at 1% level, lending a strong support on the

positive correlation between productivity and citation. Together with the positive correlation

between patents and productivity, the more productive a firm, the more patents it has been

granted, and the more citations associated with granted patents the firm references. As

moving on to the average citation, shown in columns (4)-(6), we document positive and

statistical significant estimates on the productivity. To develop a new patent, firms with

higher productivity on average cite more patents than those with lower productivity. Put it

differently, productive firms are more capable of learning from a relatively large number of

other patents to develop a new one.

When it comes to citation scope, we first look at the extensive citation scope, which

is the number of unique technological fields associated with cited patents. As reported in

columns (7)-(9) of Table 4, the estimated coefficients for TFP are positive and statistically

significant at 1% levels. These positive estimates suggest that the more productive a firm,

the more the number of technological fields associated with cited patents the firm references.

The remaining columns of Table 4 show the results for intensive citation scope. A consistently

positive estimate for TFP is documented with statistical significance at 1% level, suggesting

productive firms on average cite patents from a wider spectrum of technological fields than

their competing counterparts.
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3.3 Originality and Generality

Table 5 presents the OLS results for measures regarding novelty of invented patents. T-

wo additional firm-level measures of originality and generality are examined as dependent

variables. The measure of originality captures a firm’s ability of inventing a new patent

by combining pieces of knowledge from different technological fields, whereas the measure

of generality reflects how popular patents of a firm are widely used (hence cited) in other

future invention of patents.

In the first three columns of Table 5, estimates of TFP are positive and statisti-

cally significant at 1% level, lending a strong support on the positive correlation between

productivity and the novelty of invented patents. The higher productivity, the more novel

the invented patents owned the firm are. Moreover, consistently positive estimates of TFP

are documented in the last three columns of Table 5. These statistically significant esti-

mates imply that productive firms tend to invent patents which are generally cited by future

inventors.

In addition, firm-level characteristics other than productivity significantly contribute

to the novelty of innovation. Size, capital intensity and R&D expenditure per value of

asset have positive and statistically significant impacts on both originality and generality of

innovation. Age of firms, however, still is negatively correlated with the novelty of innovation.

The negative estimates of firm age are statistically significant at 1% level with year and

industry fixed effects added, while the significance loses at any conventional level when firm

fixed effects are controlled to absorb unobservable firm-level heterogeneity. Lastly, knowledge

stock, in a form of patent stock or technology stock, is positively correlated with the novelty

of innovation, as suggested by the positive estimates with statistical significance at 1% level

in all columns.
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3.4 Robustness Checks

We conduct a series of robustness checks on alternative model specification, technological

classification, nonself-citations, and productivity measure.

3.4.1 Poisson Method

Because the number of patents and the number of unique technological fields associated with

patents are count data, the Poisson model is an alternative specification suitable to dealt with

this type of data. Instead of taking logarithm, we use the number of patents and the number

of unique technological fields served as alternative measures for innovation and extensive

innovation scope, respectively. Moreover, the number of citations and the number of unique

technological fields associated with cited patents are adopted for dependent variables. The

alternative specification is given by,

Yit = exp(β1TFPit−1 + αXit−1)ηit + εit (2)

where Yit ∈ {0, 1, 2, 3, · · · } is the count data of interests. TFPit−1 is the estimated one-

year lagged productivity using the LP method, and Xit−1 is a vector of one-year lagged

firm attributes including size, age, capital intensity, R&D expenses per value of asset, and

knowledge stock in a form of patent and technology stock. ηit captures all unobservable,

time-varying attributes of firm i and may be correlated with some of variables Xit−1. εit is

an error term satisfying E(εit|Xit−1, ηit) = 0.

Table 6 presents the corresponding estimation results for the Poisson specification that

employs the count data. Columns differ in the choice of fixed effects (i.e., year, industry, and

firm level) as noted in the bottom of the table. Standard errors presented in the parenthesis

are clustered at firm level. The first four columns of Table 6 show how firms attributes are

related with innovation and extensive innovation scope, while the remaining columns present

how firms attributes are correlated with citations and extensive citation scope. The positive
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coefficients for productivity are statistically significant at 1% level in all columns, but column

(7), providing the corroborating evidence that TFP is positively correlated with innovation,

extensive innovation scope, citation, and extensive citation scope when the count data are

employed.

The results for firms other attributes are also robust to the alternative specification

of Poisson model. There are consistently positive and statistically significant correlation

between firms size and innovation or innovation scope. Similarly, the positive correlations

are documented for other firm-level characteristics including capital intensity, R&D expenses

and knowledge stock (either in a form of patent or technology stock). One exception is firm

age. The estimated coefficients for firm age are negative and statistically significant without

firm-level fixed effects. When firm fixed effects are controlled to absorb unobservable firm

heterogeneity, firm age has no statistically significant effects on extensive innovation scope,

citation and extensive citation scope.

3.4.2 Alternative Technology Classification

To test the robustness of our empirical results, we further relax patents’ technological classifi-

cation from the primary 4-digit IPC code to 3-digit IPC code. Hence, technological categories

are broadened from subclass to class in the ascending IPC hierarchy. With this alternative

definition of technology categories, associated dependent variables of innovation scope and

citation scope in forms of both extensive and intensive fashions are recalculated. In addition,

an alternative measure for technology stock is computed when the 3-digit IPC code is used

to define technology fields.

Columns (1)-(4) in Table 7 present the corresponding OLS estimation for specification

(1) with the implementation of the alternative technology classification. The main results

regarding the positive correlation between productivity and dependent variables of interests

are robust to this alternative measure. Productive firms are involved in a wide spectrum of

technology categories, and have less patents per technology field. To develop a new patent,
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productive firms cite patents from a wide area of technological fields.

3.4.3 Nonself-Citation

In this robustness check, we subtract citations made by firms themselves when counting the

number of citations, and the number of unique technological fields associated with citations.

Hence measures for average citation, extensive and intensive citation scope are recalculated

without accounting for self-citations. Columns (5)-(7) in Table 7 present the corresponding

results for the relevant dependent variables. In the last two columns of Table 7, both the

alternative technology classification and nonself-citation are taken into consideration for the

relevant dependent variables. We still find consistent evidence on the positive and significant

correlation between productivity and dependent variables of interests.

3.4.4 Alternative Productivity Measure

Lastly, but not least, we use the OP method to estimate firm’s productivity. Under a series

of assumptions, the OP method can get consistent estimations, using the firm-level product

function. One of these assumptions is the monotonic relationship between investment and

output. However, not every firm in every year conducts investment, thereby having zero

investment in some years. Under the OP method, many observations with zero investment

have to be deleted.

Table 8 shows the estimated results for the baseline specification with an alternative

productivity measure estimated from the OP method. A set of fixed effects on year and

firm is controlled as noted in the bottom of the table. Compared with the baseline results in

Table 3 and 4, the estimates for the alternative productivity measure remain the same sign

with smaller magnitude, but lose statistical significance in any conventional level when it

comes to intensive innovation scope and intensive citation scope. For the remaining firm-level

characteristics, the main results are robust to the alternative productivity measure.
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4 Conclusion

This paper employs firm-level patent data from the US manufacturing public firms over

the period of 1976-2006. We document several interesting and novel results regarding firm-

level productivity and innovation. First, there is a positive correlation between productivity

measured by the TFP estimates and innovation proxied by the number of patents. Unsur-

prisingly, productive firms tend to have more patents. Second, when taking closer look at

technological fields associated with these patents, there is strong evidence on the positive

correlation between productivity and extensive innovation scope. Productive firms are more

actively engaged in innovation not only by having more patents, but also being involved in

a wide spectrum of technological fields. Third, a positive correlation between productivity

and intensive innovation scope, measured by innovation scope per patent, is documented.

Productive firms appear to conduct innovation intensively across a wide spectrum of techno-

logical fields. Lastly, when it comes to developing a new patent, we find consistently evidence

supporting a positive correlation between productivity and extensive citation scope, and a

positive correlation between TFP and intensive citation scope. The more productive a firm,

the more patents it must cite to develop a new one, the wide spectrum of technological filed

associated with cited patents the firms must reference.
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Table 1: Variable Description

Variables Description
Firm-Level Patent Data from NBER Patent Database

Patent Number of patents
Tech Fields Number of unique technology categories associated with patents

under 4-digit IPC
Citation Number of forward citations for firms’ patents
Cited Tech Fields Number of unique technology categories associated with cited

patents under 4-digit IPC
Innovation log(1 + # of Patent)
Extensive Innovation Scope log(1 + # of Tech Field)
Intensive Innovation Scope log(1 + # of Tech Field

# of Patent )
Citation log(1 + # of Citation)
Average Citation log(1 + # of Citation

# of Patent )
Extensive Citation Scope log(1 + # of Cited Tech Field)
Intensive Citation Scope log(1 + # of Cited Tech Field

# of Patent )
Patent Stock Stock of patents
Technology Stock Stock of patents’ unique technology categories under 4-digit IPC

Firm-Level Financial Statement from Compustat of WRDS
TFP Productivity estimated by the Levinsohn and Petrin (2003)’s

method
Alt. TFP Alternative productivity estimated by the Olley and Pakes (1996)’s

method
Sales Value of net sales/turnovers (item 12 at Compustat), deflated by

industry-level value of shipment deflator
Capital Total net value of property, plants and equipment less depreciation

(item 8), deflated by industry-level shipment deflator
Labor Number of employees (item 29)
Wage Expenditure Total payrolls, calculated labor multiplied by average industry wage
Materials Costs of goods sold (item 41) plus administrative and selling ex-

penses (item 189) less depreciation (item 14) and wage expenditure,
deflated by industry-level material costs deflator

R&D Expenses Research and development expenses (item 46)
Asset Value Book value of total assets (item 29)
Investment Capital expenditures (item 128), deflated by industry-level invest-

ment deflator
Revenue Total revenue
Age Firm’s age (current year - the first year)
Size Log sales, deflated by industry-level value of shipment deflator
Capital Intensity Log ratio of capital to labor

Industry-level Data at the 4-Digit SIC from the NBER-CES Manufacturing Data
Value of Shipment Deflator Deflator for value of shipment
Investment Deflator Deflator for investment value
Material Cost Deflator Deflator for material costs
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Table 2: Summary Statistics

Variables N Mean Std. Dev. Min Max
Patent 37340 12.22 71.80 0 2344
Extensive Innovation Scope 37340 3.241 9.854 0 152
Intensive Innovation Scope 37340 0.344 0.422 0 5
Citation 37340 127.9 931.1 0 60010
Average Citation 37340 5.415 13.14 0 505.8
Extensive Citation Scope 37340 9.261 25.89 0 359
Intensive Citation Scope 37340 1.094 1.856 0 44
Originality (ln) 37340 1.398 1.956 0 10.38
Generality (ln) 37340 1.148 1.763 0 9.356
Patent Stock 37340 117.8 759.5 1 30937
Technology Stock 37340 11.37 28.92 1 397
TFP 36663 3.521 1.536 -6.844 11.22
Alt. TFP 33485 37.53 26.22 -1.375 113.3
Capital (ln) 37216 3.112 2.754 -6.908 11.64
Employment (ln) 36849 -0.116 2.240 -6.908 6.776
Capital Intensity (ln) 36815 3.235 1.073 -2.977 8.352
RD Expenditure per Asset Value (ln) 30899 -2.804 1.983 -10.23 9.435
Sale (ln) 37239 4.753 2.419 -0.0192 12.72
Age 37340 11.22 7.083 1 31

Note: TFP is the estimated productivity, using the LP method, while Alt. TFP is the estimated
productivity with the OP method. All variables of interests presented in the above table are not
implemented in log fashions unless noted.
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Table 3: Baseline Results for Innovation and Innovation Scope

VARIABLES Innovation Extensive Innovation Scope Intensive Innovation Scope
log(1 + # of Patentit) log(1 + # of TechFieldit) log(1 + # of TechFieldit

# of Patentit
)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

TFP 0.124*** 0.174*** 0.096*** 0.081*** 0.113*** 0.068*** 0.017*** 0.018*** 0.021***
(0.015) (0.023) (0.022) (0.011) (0.017) (0.016) (0.005) (0.006) (0.007)

Size 0.054*** 0.122*** 0.169*** 0.050*** 0.098*** 0.125*** 0.005 0.037*** 0.036***
(0.010) (0.022) (0.023) (0.007) (0.016) (0.017) (0.003) (0.006) (0.006)

Capital Intensity 0.071*** 0.085*** 0.059*** 0.039*** 0.057*** 0.041*** 0.007* 0.009* 0.008*
(0.012) (0.016) (0.015) (0.009) (0.012) (0.011) (0.004) (0.005) (0.005)

Age -0.029*** 0.019 -0.000 -0.021*** 0.012 -0.004 -0.004*** -0.008** -0.010***
(0.002) (0.022) (0.020) (0.001) (0.014) (0.012) (0.001) (0.003) (0.003)

R&D Expenditure 0.115*** 0.138*** 0.126*** 0.090*** 0.098*** 0.090*** 0.025*** 0.026*** 0.026***
(0.009) (0.013) (0.012) (0.006) (0.010) (0.009) (0.003) (0.004) (0.004)

Patent Stock 0.457*** 0.257*** 0.271*** 0.268*** 0.121*** 0.133*** -0.005 -0.067*** -0.065***
(0.023) (0.028) (0.026) (0.015) (0.020) (0.019) (0.004) (0.005) (0.005)

Tech Stock 0.248*** 0.284*** 0.255*** 0.267*** 0.240*** 0.217*** 0.055*** 0.034*** 0.032***
(0.035) (0.039) (0.033) (0.024) (0.030) (0.025) (0.005) (0.007) (0.007)

Observations 31,066 31,066 31,066 31,066 31,066 31,066 31,066 31,066 31,066
Adjusted R2 0.705 0.290 0.314 0.681 0.232 0.256 0.079 0.033 0.038
Year FE Y Y Y Y Y Y Y Y Y
Industry FE Y Y Y
Firm FE Y Y Y Y Y Y
Industry Year Trend Y Y Y

Note: All independent variables are in one-year lagged fashion. TFP is the estimated productivity, using the LP method. Size is log deflated
value of sales. Capital intensity is the log ratio of capital to the number of employment. Age is firm’s age. R&D expenditure is the log R&D
expenses per deflated value of asset. Patent Stock is the stock of a firm’s patent in past years. Tech Stock is the stock of unique technological
categories associated with a firm’s patents in past years. Standard errors presented in the parenthesis are clustered at plant level. Industry
dummies are measured at the 4-digit SIC level. ∗∗∗ significant at 1% level, ∗∗ significant at 5% level, ∗ significant at 10% level.
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Table 4: Baseline Results for Citation and Citation Scope

VARIABLES Citations Average Citation Extensive Citation Scope Intensive Citation Scope
log(1 + # of Citationit) log(1 + # of Citationit

# of Patentit
) log(1 + # of CitedTechFieldit) log(1 + # of CitedTechFieldit

# of Patentit
)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

TFP 0.213*** 0.229*** 0.153*** 0.102*** 0.076*** 0.077*** 0.115*** 0.138*** 0.091*** 0.009*** 0.017*** 0.014***
(0.025) (0.037) (0.038) (0.017) (0.023) (0.025) (0.015) (0.023) (0.024) (0.003) (0.004) (0.004)

Size 0.038** 0.265*** 0.317*** -0.012 0.169*** 0.175*** 0.047*** 0.163*** 0.198*** 0.006*** 0.017*** 0.019***
(0.017) (0.037) (0.040) (0.011) (0.021) (0.023) (0.010) (0.023) (0.025) (0.002) (0.003) (0.003)

Capital Intensity 0.142*** 0.139*** 0.111*** 0.074*** 0.059*** 0.056*** 0.074*** 0.086*** 0.069*** 0.002 0.006* 0.004
(0.020) (0.027) (0.028) (0.014) (0.018) (0.019) (0.012) (0.017) (0.017) (0.002) (0.003) (0.003)

Age -0.054*** -0.012 -0.039 -0.028*** -0.038*** -0.046*** -0.032*** -0.002 -0.021 -0.001*** -0.002 -0.004
(0.004) (0.031) (0.029) (0.002) (0.014) (0.014) (0.002) (0.020) (0.017) (0.000) (0.002) (0.002)

R&D Expenditure 0.198*** 0.232*** 0.225*** 0.102*** 0.117*** 0.120*** 0.121*** 0.143*** 0.139*** 0.013*** 0.017*** 0.015***
(0.015) (0.023) (0.022) (0.010) (0.015) (0.015) (0.009) (0.015) (0.014) (0.002) (0.002) (0.002)

Patent Stock 0.720*** 0.439*** 0.454*** 0.251*** 0.097*** 0.100*** 0.393*** 0.210*** 0.224*** -0.010*** -0.057*** -0.055***
(0.038) (0.039) (0.037) (0.020) (0.019) (0.019) (0.022) (0.026) (0.025) (0.002) (0.003) (0.003)

Tech Stock 0.321*** 0.414*** 0.377*** 0.104*** 0.148*** 0.138*** 0.305*** 0.308*** 0.280*** 0.028*** 0.015*** 0.014***
(0.057) (0.058) (0.052) (0.028) (0.027) (0.027) (0.034) (0.039) (0.035) (0.003) (0.004) (0.004)

Observations 31,066 31,066 31,066 31,066 31,066 31,066 31,066 31,066 31,066 31,066 31,066 31,066
Adjusted R2 0.619 0.288 0.299 0.344 0.164 0.169 0.622 0.255 0.269 0.060 0.038 0.044
Year FE Y Y Y Y Y Y Y Y Y Y Y Y
Industry FE Y Y Y Y
Firm FE Y Y Y Y Y Y Y Y
Industry Year Trend Y Y Y Y

Note: All independent variables are in one-year lagged fashion. TFP is the estimated productivity, using the LP method. Size is log deflated value of sales. Capital intensity is the log
ratio of capital to the number of employment. Age is firm’s age. R&D expenditure is the log R&D expenses per deflated value of asset. Patent Stock is the stock of a firm’s patent in
past years. Tech Stock is the stock of unique technological categories associated with a firm’s patents in past years. Standard errors presented in the parenthesis are clustered at plant
level. Industry dummies are measured at the 4-digit SIC level. ∗∗∗ significant at 1% level, ∗∗ significant at 5% level, ∗ significant at 10% level.
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Table 5: Alternative Measures on the Novelty of Innovation

VARIABLES Originality Generality
(1) (2) (3) (4) (5) (6)

TFP 0.192*** 0.187*** 0.131*** 0.184*** 0.224*** 0.158***
(0.022) (0.033) (0.033) (0.020) (0.030) (0.030)

Size 0.017 0.199*** 0.239*** 0.027* 0.167*** 0.203***
(0.015) (0.032) (0.035) (0.014) (0.029) (0.032)

Capital Intensity 0.138*** 0.126*** 0.106*** 0.093*** 0.114*** 0.094***
(0.018) (0.023) (0.024) (0.017) (0.022) (0.022)

Age -0.046*** -0.013 -0.037 -0.034*** -0.016 -0.034
(0.003) (0.026) (0.025) (0.003) (0.028) (0.025)

R&D Expenditure 0.168*** 0.191*** 0.186*** 0.165*** 0.203*** 0.192***
(0.013) (0.020) (0.019) (0.012) (0.019) (0.018)

Patent Stock 0.660*** 0.515*** 0.529*** 0.536*** 0.229*** 0.245***
(0.034) (0.034) (0.032) (0.028) (0.032) (0.031)

Tech Stock 0.283*** 0.360*** 0.327*** 0.305*** 0.358*** 0.329***
(0.050) (0.050) (0.045) (0.041) (0.043) (0.039)

Observations 31,066 31,066 31,066 31,066 31,066 31,066
Adjusted R2 0.623 0.331 0.341 0.570 0.254 0.264
Year FE Y Y Y Y Y Y
Industry FE Y Y
Firm FE Y Y Y Y
Industry Year Trend Y Y

Note: All independent variables are in one-year lagged fashion. TFP is the estimated productivity,
using the LP method. Size is log deflated value of sales. Capital intensity is the log ratio of capital
to the number of employment. Age is firm’s age. R&D expenditure is the log R&D expenses per
deflated value of asset. Patent Stock is the stock of a firm’s patent in past years. Tech Stock is the
stock of unique technological categories associated with a firm’s patents in past years. Standard errors
presented in the parenthesis are clustered at plant level. Industry dummies are measured at the 4-digit
SIC level. ∗∗∗ significant at 1% level, ∗∗ significant at 5% level, ∗ significant at 10% level.
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Table 6: Robustness Check for Poisson Method

VARIABLES Innovation Extensive Innovation Scope Citation Extensive Citation Scope
# of Patentit # of TechFieldit # of Citationit # of CitedTechFieldit

(1) (2) (3) (4) (5) (6) (7) (8)

TFP 0.377*** 0.338*** 0.216*** 0.224*** 0.208*** 0.170 0.158*** 0.194***
(0.025) (0.078) (0.013) (0.049) (0.047) (0.128) (0.013) (0.044)

Size 0.079*** 0.161*** 0.108*** 0.178*** 0.058* 0.127 0.102*** 0.175***
(0.014) (0.050) (0.008) (0.036) (0.031) (0.094) (0.008) (0.034)

Capital Intensity 0.217*** 0.176*** 0.072*** 0.132*** 0.121*** 0.274*** 0.051*** 0.144***
(0.020) (0.055) (0.011) (0.041) (0.036) (0.065) (0.011) (0.035)

Age -0.030*** 0.051** -0.028*** 0.026 -0.033*** 0.036 -0.028*** 0.019
(0.003) (0.022) (0.002) (0.017) (0.003) (0.023) (0.002) (0.017)

R&D Expenditure 0.333*** 0.238*** 0.243*** 0.208*** 0.277*** 0.162* 0.200*** 0.213***
(0.020) (0.070) (0.009) (0.040) (0.038) (0.097) (0.010) (0.036)

Patent Stock 0.537*** 0.300*** 0.264*** 0.096*** 0.640*** 0.391*** 0.290*** 0.137***
(0.019) (0.046) (0.012) (0.031) (0.038) (0.082) (0.012) (0.028)

Tech Stock 0.334*** 0.440*** 0.480*** 0.412*** 0.241*** 0.401*** 0.399*** 0.373***
(0.021) (0.044) (0.015) (0.036) (0.029) (0.058) (0.016) (0.033)

Observations 31,066 30,133 31,066 30,133 31,066 30,133 31,066 30,133
Year FE Y Y Y Y Y Y Y Y
Industry FE Y Y Y Y
Firm FE Y Y Y Y

Note: All independent variables are in one-year lagged fashion. TFP is the estimated productivity, using the LP method. Size is log deflated
value of sales. Capital intensity is the log ratio of capital to the number of employment. Age is firm’s age. R&D expenditure is the log R&D
expenses per deflated value of asset. Patent Stock is the stock of a firm’s patent in past years. Tech Stock is the stock of unique technological
categories associated with a firm’s patents in past years. Standard errors presented in the parenthesis are clustered at plant level. Industry
dummies are measured at the 4-digit SIC level. ∗∗∗ significant at 1% level, ∗∗ significant at 5% level, ∗ significant at 10% level.
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Table 7: Robustness Check for Alternative Technology Classification and Nonself-Citation

Atl. Tech Class Nonself Citation Both
VARIABLES Extensive Intensive Extensive Intensive Extensive Average Intensive Extensive Intensive

Innovation Scope Innovation Scope Citation Scope Citation Scope Citation Scope Citation Citation Scope Citation Scope Citation Scope
(1) (2) (3) (4) (5) (6) (7) (8) (9)

TFP 0.055*** 0.019*** 0.070*** 0.012*** 0.088*** 0.074*** 0.034** 0.069*** 0.027**
(0.014) (0.007) (0.020) (0.003) (0.024) (0.025) (0.014) (0.020) (0.011)

Size 0.118*** 0.031*** 0.176*** 0.015*** 0.199*** 0.173*** 0.076*** 0.171*** 0.059***
(0.015) (0.006) (0.022) (0.003) (0.025) (0.023) (0.012) (0.021) (0.010)

Capital Intensity 0.033*** 0.007 0.055*** 0.003 0.068*** 0.055*** 0.025** 0.055*** 0.018**
(0.011) (0.005) (0.015) (0.003) (0.017) (0.018) (0.010) (0.015) (0.009)

Age -0.004 -0.010*** -0.018 -0.003 -0.022 -0.046*** -0.025*** -0.019 -0.020***
(0.009) (0.003) (0.014) (0.002) (0.017) (0.013) (0.008) (0.014) (0.006)

R&D Expenditure 0.079*** 0.022*** 0.118*** 0.013*** 0.139*** 0.120*** 0.053*** 0.117*** 0.041***
(0.008) (0.004) (0.012) (0.002) (0.014) (0.015) (0.008) (0.012) (0.007)

Patent Stock 0.130*** -0.066*** 0.215*** -0.048*** 0.279*** 0.110*** -0.061*** 0.211*** -0.076***
(0.016) (0.005) (0.020) (0.003) (0.023) (0.017) (0.010) (0.020) (0.008)

Alt. Tech Stock 0.143*** 0.022*** 0.178*** 0.005 0.198*** 0.099*** 0.062*** 0.172*** 0.045***
(0.024) (0.006) (0.032) (0.003) (0.036) (0.026) (0.014) (0.031) (0.011)

Observations 31,066 31,066 31,066 31,066 31,066 31,066 31,066 31,066 31,066
Adjusted R2 0.213 0.035 0.241 0.048 0.261 0.161 0.070 0.239 0.053
Year FE Y Y Y Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y Y Y Y
Industry Year Trend Y Y Y Y Y Y Y Y Y

Note: All independent variables are in one-year lagged fashion. TFP is the estimated productivity, using the LP method. Size is log deflated value of sales. Capital intensity is the log ratio of capital to
the number of employment. Age is firm’s age. R&D expenditure is the log R&D expenses per deflated value of asset. Patent Stock is the stock of a firm’s patent in past years. Alt. Tech Stock is the stock
of unique technological categories by 3-digit IPC associated with a firm’s patents in past years. Standard errors presented in the parenthesis are clustered at plant level. Industry dummies are measured
at the 4-digit SIC level. ∗∗∗ significant at 1% level, ∗∗ significant at 5% level, ∗ significant at 10% level.
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Table 8: Robustness Check for Alternative Productivity Measure

VARIABLES Innovation Extensive Intensive Citation Average Extensive Intensive Originality Generality
Innovation Scope Innovation Scope Citation Citation Scope Citation Scope

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Alt. TFP 0.115*** 0.071*** 0.002 0.114** 0.004 0.060* 0.008 0.089** 0.111***
(0.032) (0.023) (0.008) (0.050) (0.030) (0.032) (0.005) (0.044) (0.039)

Size 0.223*** 0.164*** 0.047*** 0.398*** 0.213*** 0.247*** 0.028*** 0.307*** 0.301***
(0.020) (0.015) (0.005) (0.032) (0.018) (0.021) (0.003) (0.028) (0.026)

Capital Intensity 0.051*** 0.033*** 0.003 0.082*** 0.030 0.051*** 0.001 0.080*** 0.070***
(0.017) (0.012) (0.005) (0.028) (0.018) (0.018) (0.003) (0.024) (0.023)

Age -0.405*** -0.246*** -0.015 -0.438** -0.057 -0.226* -0.029* -0.347** -0.437***
(0.121) (0.088) (0.030) (0.188) (0.111) (0.120) (0.017) (0.166) (0.147)

R&D Expenditure 0.087*** 0.066*** 0.020*** 0.162*** 0.089*** 0.099*** 0.011*** 0.134*** 0.135***
(0.015) (0.011) (0.004) (0.026) (0.016) (0.017) (0.003) (0.022) (0.021)

Patent Stock 0.259*** 0.123*** -0.069*** 0.450*** 0.103*** 0.218*** -0.059*** 0.531*** 0.256***
(0.030) (0.022) (0.006) (0.042) (0.020) (0.028) (0.004) (0.037) (0.035)

Tech Stock 0.293*** 0.246*** 0.037*** 0.426*** 0.154*** 0.318*** 0.018*** 0.369*** 0.356***
(0.040) (0.031) (0.007) (0.061) (0.029) (0.041) (0.004) (0.052) (0.046)

Observations 27,848 27,848 27,848 27,848 27,848 27,848 27,848 27,848 27,848
Adjusted R2 0.295 0.238 0.035 0.298 0.170 0.265 0.040 0.345 0.264
Year FE Y Y Y Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y Y Y Y

Note: All independent variables are in one-year lagged fashion. Alt. TFP is the calculated productivity, using the alternative OP method. Size is log deflated value of sales.
Capital Intensity is the log ratio of capital to the number of employment. Age is firm’s age. R&D Expenditure is the log R&D expenses per deflated asset value. Patent Stock is
the stock of a firm’s patents in past years. Tech Stock is the stock of unique technological categories associated with a firm’s patents in past years. Standard errors presented in
the parenthesis are clustered at plant level. Industry dummies are measured at the 4-digit SIC level. ∗∗∗ significant at 1% level, ∗∗ significant at 5% level, ∗ significant at 10% level.
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