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Abstract 

We explore how climate, climate risk and weather affect maize intensification among 

smallholders in Kenya. We find that each plays an important role in maize intensification choice. 

The economic implications of this choice are also analyzed. We find that the share of maize area 

planted to hybrid seeds contributes positively to expected crop income, without increasing 

exposure to income variability or downside risk. The promotion of maize hybrids is potentially a 

valuable adaptation strategy to support the well-being of smallholder farmers, especially if these 

prove tolerant to a wide range of conditions.   
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1. INTRODUCTION 

Farmers in Africa are among the most vulnerable to climate change. On the African continent, 

multiple stresses occur at multiple scales; African smallholder farmers, who are among the world’s 

poorest, have limited capacity for adaptation (Boko et al., 2007). Kenya is heavily exposed to 

changing climatic patterns, with serious repercussions for the well-being of farming households 

(Oremo, 2013).  Many areas of the country have registered rising seasonal mean temperatures 

over the last 50 years. Regional climate model studies suggest drying over most parts of Kenya in 

August and September, although climate impacts are likely to be unevenly distributed across the 

country (Niang et al., 2014). 

Smallholder farm families pursue various adaptive strategies to cope with climate change, 

but intensification of production - e.g. increased use of hybrid seed and mineral fertilizer - is not 

generally considered to be one of them.  Since the Green Revolution in Asia, researchers have 

debated whether the yields of improved varieties and hybrids are higher but also more variable, 

exposing poor farmers to greater risk (e.g., Anderson and Hazell, 1989). In general, empirical 

evidence on this point depends on the counterfactual (which varieties/hybrids are compared) and 

the geographical scale of analysis. In the major agricultural regions of Kenya, farm families 

depend on maize as a food staple and ready source of cash. Maize growers have high adoption 

rates and a history of growing maize hybrids with and without fertilizer (Mathenge et al., 2014). 

They have limited access to credit and no access to insurance, so they have a strong incentive to 

plant seed that reduces the variance of yields and limits their exposure to downside risk. 

Preliminary research by Jones et al. (2012), who considered several of the major maize-growing 

agro-ecologies, suggested that the use of hybrids in maize production not only enhanced mean 

yields but also reduced downside risk, with no significant effect on yield variance.  

Smallholder agricultural production in rainfed agriculture, like that found in Kenya, relies 

on environmental production conditions that are “exogenously” determined - largely outside the 

control of farm families (Sherlund et al., 2002). Ochieng, Kirimi and Mathenge (2016) estimated 

the effects of climate variability and change in crop revenue on maize and tea revenues earned by 

smallholder farmers in Kenya, finding differences between the two crops; temperature affected 

crop revenues negatively in maize but positively in tea production, while rainfall had a negative 

effect on income from tea. An analysis by Wineman et al. (2016) explored the channels through 
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which exposure to extreme weather in Kenya affects the well-being of smallholder farm 

households, based on longitudinal and spatial analysis of income- and calorie-based measures of 

welfare. The authors found that extreme weather generally affects household welfare via crop 

production, recommending the development of new varieties with enhanced tolerance of dry and 

moist extremes.  

Here, we focus on variety choice.  Climate and soil characteristics are rarely incorporated 

into micro-economic analysis of variety choice. Mutiso (1996) showed that farmers in southeastern 

Kenya follow local knowledge systems when choosing the time to prepare land and plant. Other 

agronomic factors also guide planting decisions, especially in areas with sparse rainfall (Sacks et 

al., 2010). Thus, it is important to account not only for environmental conditions, including climate 

and soil quality, but also for factors influencing farm management choices and adaptation options, 

such as human capital (labor supply and quality), financial and physical capital (assets, access to 

credit, farm size and tenure). 

We address two research questions in this paper. First, we ask how climatic shocks, weather 

and climate change affect smallholder decisions to intensify maize production. We measure 

intensification as the share of maize area per farm allocated to hybrid seeds. While controlling for 

relevant covariates as noted above, we differentiate and test the separate effects of climatic 

shocks, climate and weather on hybrid area shares. Climate shocks refer to the number of times 

during the previous decade that each village experienced a serious drought. The term climatology 

refers to climate normals. Climate normals are measured as average weather conditions over a 

30-year period (1971-2010). Weather indicates the rainfall and temperature registered during the 

main rainfall season of the corresponding data collection year.  

Second, we ask whether and how allocating a higher share of maize area in hybrid seeds per 

farm affects the vulnerability of smallholder income, expressed in terms of expected crop income, 

crop income variability and downside risk. Maize is the primary staple food grown by all 

smallholder farmers in the sample, across a wide range of livelihood types and farming systems. 

Mathenge et al. (2014) report that maize accounts for about 28% of gross farm output in the 

small-scale farm sector and that, outside the semi-arid areas, 98% of households grow maize. 

Tegemeo Institute data, used by Mathenge et al. (2014) and here, show that the share of crop 

income in household income averages 45%, varying only between 44% and 48% over the years 
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of the survey.  

With reference to the portfolio theory of decision-making, we address the second question 

by using Antle’s (1983) method of moments. Our econometric strategy reflects the structure of 

our data-generating process and conceptual frame. We apply our model to four waves of panel 

data collected in the major agricultural regions of Kenya, controlling for time-invariant 

heterogeneity by applying the Mundlak-Chamberlain procedure.  We are interested in 

examining both the maize intensification decision and the relationship of maize intensification to 

income vulnerability in our two-stage econometric modeling. We also consider the potential 

endogeneity of input choices in crop income outcomes.  

We contribute to the existing literature in several directions. First, from a methodological 

perspective, we differentiate the roles of climatology, climate shock and weather on input choices 

in a micro-economic context.  Second, we explore the intensification of staple food production 

through the dimension of hybrid seed. The Boserupian hypothesis (Boserup, 1975) suggests that 

population pressures on a declining environmental base generate incentives for intensifying food 

production. In a volatile environmental context, input intensification could aggravate smallholder 

vulnerability. We test this hypothesis.  

Third, in the second stage of the estimation procedure, we include, along with 

intensification variables, climatology, climate shocks and weather as explanatory factors, gauging 

the impact on crop income and risk across agro-regional zones. The inclusion of both climate and 

weather variables allows us to capture the full extent of underlying adaptation decisions (Bezabih 

et al., 2014). Thus, our work contributes to illuminating an ongoing debate concerning the 

appropriate measurement methods in adaptation studies.  

Finally, we include detailed information on environmental production conditions, such as 

climate and soil characteristics at the village level, and separate the main rainfall season and short 

season rainfall. The incidence of seasons and their length vary across Kenya’s agro-regional zones, 

and across years. Sherlund et al. (2002) have demonstrated the potential bias in production models 

of failing to control for soil quality. In terms of measurement techniques, we utilize the most 

advanced drought index available (SPEI). The SPEI is a multi-scalar drought index that accounts 

for the fact that the impact of rainfall on the growing cycle of a plant depends on the extent to which 

water can be retained by the soil.  
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2. THEORETICAL BASIS 

A leading paradigm in models of seed-fertilizer adoption since the Green Revolution has been the 

portfolio theory of investment attributed to Markowitz (1952), articulated by Just and Zilberman 

(1983) in terms of trade-offs between the mean and variance of yield distributions, where the 

choice variable was the crop area share allocated to new techniques (here, hybrid seed) with higher 

mean yields as compared to more traditional farmers’ techniques (local maize, no mineral 

fertilizer).   

However, the approach has been far less commonly applied in the analysis of natural 

resource management. We apply it in the context of intensification choices made under climate 

change and extend it to include skewness effects, following Antle’s method of moments (1983). 

Recent research has demonstrated the importance of the third moment in analyzing climate-related 

risk in agricultural production (Koundouri et al., 2006; Di Falco and Chavas, 2009). Notably, we 

assume that a farm family will maximize the following function:  

   
  

                  
  

 
  

   
  

  

 
  

    
(1) 

where the family chooses to allocate the maize area share of    to the riskier hybrid seeds at time t 

and the other terms are defined as follows: Rt+1 is the return to hybrid maize, from time t to time 

t+1; Rf,t+1 is the return to local maize, from time t to time t+1; EtRt+1 is the conditional mean 

(conditional on the farmer’s information at time t, thus they are written with t subscript) of the 

maize area planted with hybrid seeds and    
  is the conditional variance of the maize area planted 

with hybrid seeds. 

The terms   and    are coefficients representing farmers’ risk aversion to yield variance 

and skewness respectively. Higher terms k1 and k2 indicate more conservative farmers who hold 

less hybrid seeds. 

We extend the standard mean variance model by adding skewness, defined as: 
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Given the definition of    we can re-define the overall variance of (maize) yields 

as:    
     

   
 . Similarly, we define the skewness as     

     
   .  The return on the input mix 

(the seeds portfolio) is a linear combination of the simple returns of the riskier and less risky inputs. 

By definition, the input that generates higher means (in this case, the intensifying input, hybrid 

seeds) also generates greater variance.  One of the factors that can contribute to increasing the 

vulnerability of modern agricultural production systems is the utilization of a narrow range of 

genetic material in plant breeding, so that the different varieties grown by farmers are in fact 

closely related; another is the slow turnover of modern varieties in farmers’ fields, although we 

have no evidence of such a situation in Kenya (Smale and Olwande, 2014). 

We assume that the benchmark input set has sufficiently low risk, so that the solution of the 

problems is almost identical to the standard mean-variance model with a riskless asset. The farm 

family prefers a high mean and low variance of returns on the mix. As in the standard mean 

variance model, we assume that the farm family maximizes a linear combination of mean and 

variance of returns from inputs, with a positive weight on the mean and a negative weight on the 

variance. The farm family is averse to results skewed in a specific direction (     .  

By solving the first order condition of Equation (1), we can find the optimal share of maize 

land to be farmed with the riskier input set.  

                      
      

    = 0 (2) 

Defining: 

                                              
 

    
                 

    

 
  

 

The solution of the maximization problem also can be written as: 

                                           (   
  √     

   
     )       (3) 

In cases where the yield skewness plays a small part, an approximate solution, up to the first order 

in  , is: 
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where  
 

    
  

|  | 
   

  
   

   and higher orders are expected to be negligible, because of the way we 

defined the approximation. 

Equation (4) indicates the share of (maize) land on which the farmer is willing to plant 

riskier inputs (hybrid seeds). This share is equal to the risk premium divided by the conditional 

variance times a coefficient representing the risk aversion of the farm family plus a term capturing 

aversion to negative outcomes of the distribution of skewness. By including skewness in the model, 

we can approximate downside risk exposure. Increased skewness of yield (income) implies lower 

exposure to downside risk. Downside risk refers to the probability of zero or negative crop income 

for a smallholder farming family, which is potentially disastrous (Di Falco and Chavas, 2009). 

Reducing downside risk decreases the asymmetry of the yield (income) distribution by shifting it 

toward higher outcomes, holding both means and variances constant (Menezes at al., 1980; Di 

Falco and Chavas, 2009). We can view the short-term decision of a farming family as intended to 

avert negative outcomes or yield fluctuations in a specific direction. 

Figure 1 illustrates the result of the farmer’s maximization problem presented in Equation 

(4). The figure shows the optimal share of (maize) land planted to intensified inputs, for given 

ranges of variance, skewness and expected returns. Figure 1 has some interesting features. First, we 

notice that, for high values of the variance term   
 , the distribution of the skewness of the yield 

does not matter in defining the share of land allocated to the risky inputs   , as indicated by the 

almost vertical boundary lines for values in the range from   ,=0.1 to   =0.4. However, as 

variance decreases or expected crop income increases (i.e., as we move to the right along the 

horizontal axis), the distribution of yield skewness (captured by     becomes increasingly relevant 

in determining the family’s allocation to the risky input, up to a point where the variance is very 

low and only extremely adverse distributions of outcomes matter. 
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Figure 1: Optimal (maize) land partition 

For example, we can consider an initial land allocation between risky and less risky input 

combinations, defined by the red cross in the graph, where 90% of the area is allocated to 

intensified inputs and 10% to the other input set.  We assume that the distribution of skewness 

equals zero and that the ratio 
 

    
   equals almost 1.1 for this input choice.   

If skewness increases to high enough positive outcomes, holding the variance constant will 

cause the share     to increase to 1. However, as the distribution of skewness assumes negative 

outcomes (and the farm family fears crop failure), the share of cropland allocated to the intensified 

input decreases. Under downside risk aversion, farm families are adversely affected by downside 

risk (e.g., risk of negative crop income).  We expect that a downside-averse decision maker will 

invest in adaptation strategies to reduce such risk (Menezes et al., 1980; Antle, 1983 and 1987; Di 

Falco and Chavas, 2009). Our research interest in capturing how inputs contribute to the skewness 

of the crop income distribution is greatest when variance is neither too low (and thus there is very 

little risk associated with the second moment of the distribution of crop income), nor is variance 

extremely high.  

The precise shape of the cutting lines in Figure 1 depends on the range of values attributed 

to the expected yields, as well as their variance and skewness. These are determined by the type of 

crops grown and local environmental conditions. Figure 1 provides intuition concerning why, 
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under some conditions, the third moment of the distribution of agricultural yields does not seem to 

be a key determinant of farmer input choices, although some literature has found it to be crucial 

(Koundouri et al., 2006; Di Falco and Chavas, 2009; Groom et al., 2008; Di Falco and Veronesi, 

2014). For example, skewness and variance effects might be very different across a country like 

Kenya, which is characterized by the presence of various agro-regional zones. Notably, hybrid 

seed would be preferred in areas where the marginal productivity is higher.  

3. EMPIRICAL APPROACH 

3.1  Data sources  

We draw on three comprehensive data sources in our analysis. The first source is household 

survey data collected by Egerton University’s Tegemeo Institute of Agricultural Policy and 

Development, with technical support from Michigan State University, in four rounds (2000, 

2004, 2007, 2010). Argwings-Kodhek (1999) provides a detailed description of the sample 

design, which was implemented in consultation with the Kenya National Bureau of Statistics 

(KNBS).  Survey instruments are available online (www.tegemeo.org). All non-urban divisions 

in the selected districts were assigned to one or more agro-regional zones based on agronomic 

information from secondary data. The panel dataset comprises eight agro-regional zones. Within 

each division, villages and households (in that order) were randomly selected. The sample 

excluded large farms with over 50 acres and two pastoral areas. The final dataset used in this 

study contains detailed farm-level data from 1,243 agricultural households in 22 districts. Certain 

village-level covariates, such as population density and agro-regional zones, are included in these 

data and our analysis.  

Second, we associate climate variables developed from the monthly average maximum, 

minimum and average temperature and monthly cumulative precipitation for 107 villages across 

Kenya from 1971. These climate data are from the Climatic Research Unit (CRU) TS3.21 dataset 

(Harris et al., 2014). We compile climate data to match the main rainy season and the short rains 

season, taking into account local differences in the length and timing of these two seasons. These 

data were used to calculate the SPEI Index; as discussed above, this multi-scalar drought index 

accounts for the impact of rainfall on plant growth in the context of the soil’s capacity to retain 

water. This in turn depends on the characteristics of the soil and on the extent to which sunshine 
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induces evaporation (Harari and La Ferrara, 2014). The indicator, developed by Vicente-Serrano 

et al. (2010), considers the joint effects of precipitation, potential evapotranspiration (PET) and 

temperature in determining droughts.  

The SPEI index is an extension of the widely used Standardized Precipitation Index (SPI) 

(McKee et al., 1993), and can be used for determining the onset, duration and magnitude of 

drought conditions with respect to normal local conditions.  Increasingly, the SPEI index is 

considered an improved measure over similar indexes previously used
1
 because it provides a 

better measure of the effective amount of moisture received by the soil (Vicente-Serrano et al., 

2010; Harari and La Ferrara, 2014). We employ a three-month SPEI Index (SPEI3), determined 

for the last month of the main rainfall season and comprising also the two preceding months, 

taking into account differences between agro-climatic zones in establishing the reference month. 

Third, we draw on soils data at the village scale from the Harmonized World Soil 

Database, a partnership between the Food and Agriculture Organization (FAO) and the European 

Soil Bureau Network (FAO, IIASA, ISRIC, ISSCAS, JRC, 2012).  

3.2.  Estimation strategy  

Our analysis is conducted in two stages. In the first stage, we analyze the determinants of maize 

intensification, paying particular attention to the role of past climatic shocks (captured by the 

SPEI3 index), access to markets (captured by population density) and the price per kg of fertilizer 

used on dry maize from hybrid seeds during the main rainfall season
2
. Second, we probe how 

maize intensification, along with climate and weather, affect farmers’ welfare under uncertainty, 

taking into account the heterogeneity in agro-regional conditions within Kenya. In this second 

step, we model the production technology as a stochastic production function, assessing its 

probability distribution using the sequential estimation procedure (Antle 1983; Kim and Chavas, 

2003). The dependent variables in the second step of the estimation procedure are expected crop 

income, variance and skewness of crop income.  

                                                           
1
 Examples include the SPI, which is based on rainfall only, and on the assumption that temperature and potential 

evapotranspiration have negligible variability compared to precipitation, as well as the Palmer Drought Severity Index 

(PDSI) (Palmer, 1965), which is based on the soil-water balance equation on a fixed temporal scale between 9 and 12 

months. 
2 By dry maize, we refer to maize grown and harvested dry, rather than green. Price is averaged over fertilizer types, of which the 

dominant type applied to hybrid maize was Diammonium Phosphate (DAP).  
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We test and control for the potential endogeneity of maize intensification decisions by 

estimating two-stage least squares. This is a robust estimation method that provides a standard 

starting point for applying instrumental variables (Angrist and Krueger, 2001). In the first stage 

of the estimation procedure, we use the frequency of climatic shocks, the logarithm of population 

density at the village level and the price of fertilizer as instrumental variables for the decision on 

maize intensification. For identification purposes, some of the variables in the equation 

determining maize intensification (Equation 5) can be excluded from the crop income and risk 

equations (Equation 6). 

In the first stage of our estimation, we use Equation (5) to represent the optimal strategy 

undertaken by the representative farm household:  

      (   
     

     
      

     
  
    

       
       

         )           (5) 

The subscript    denotes the     farm household in year  , while the subscript r is used for 

village-level observations and k indexes the rainfall seasons.
 
Terms   and   are vectors of 

parameters, and     is the household-specific random error term. The dependent variable     is a 

continuous variable indicating the share of land planted with hybrid seeds of dry maize. 

3.3 Explanatory variables 

Definitions for each variable are presented in Table 1. Descriptive statistics of the variables used 

in this study are presented in Table 2.  

Vectors    
      

  
   include household and other farm characteristics respectively.  The 

human capital resources of the household are measured as the number of adult men and adult 

women in the household with a secondary education. Financial capital is measured in terms of 

livestock wealth, access to credit at the village level, and salaries and remittances, which provide 

liquidity that is uncorrelated with crop income. Farm physical capital is represented by scale of 

land cultivated, with a dummy variable indicating ownership by deed.  
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 Vector     
  

 includes the farm price for fertilizer applied to hybrid maize grown during the 

main rainfall season,
3
 while the vector    

   includes soil quality information at the village level. 

Vector    
  includes the logarithm of population density at village level.  

Of special interest is vector    
  , capturing how climatic risk affects intensification 

decisions. This vector includes a climate risk proxy stemming from the SPEI3 index, determined 

for the last month of the main rainfall season, taking into account differences between 

agro-climatic zones in establishing the reference month. Notably, we include the number of times 

during the previous decade that the value of the SPEI3 was lower than -1.65. This value indicates 

the exposure of the village to serious drought stress. The SPEI3 drought index expresses the 

incidence of past droughts (climatic shocks) as determinants of input choices. Vectors 

   
      

  include climate and weather information. Vector    contains agro-regional zones fixed 

effects. We include them in the analysis, as we believe that being in a specific agro-regional zone 

affects significantly the farm management decisions. For examples, the way farmers adapt to 

climate change might differ significantly depending on whether the farm is located in a zone with 

a bimodal or unimodal rainfall regime.  

The role of variable    , representing farmers’ decisions on the intensification of 

production, enters the second stage of our estimation strategy via the predictions from the system of 

Equation (1). Through this second step, we investigate how intensification affect farmers’ expected 

crop income under risk.  

In order to capture the full extent of risk exposure, we assess the impact of intensification 

strategies on the distribution of expected crop income (Equation 6a), its variance (Equation 6b) 

and skewness (Equation 6c). To do this, we follow Antle’s moment-based approach to specify the 

stochastic structure of the model. 

Accordingly, the estimated relationship between crop income risk equations, climatic 

variables, maize intensification decisions and other covariates is given by: 

                                   ̂           (6a) 

  ̂ 
                               ̂         ̌  (6b) 

                                                           
3 If the household did not buy fertilizer for this crop during the main rainfall season, the village’s average is used. 
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  ̂ 
                               ̂         ̃  (6c) 

The subscripts  ,  , r and k are defined as in Equation 5.
 
The dependent variable       denotes 

the logarithm of crop income for the     farm household at year  .
4
 We incorporate both weather 

and climate measures as determinants of farm-level crop income and risk, as presented in 

Equation 6. Therefore,      is a vector of weather variables: temperature (minimum and 

maximum) and precipitation (monthly cumulative) in year t, while     is a vector of climate 

normals for the mean temperature and cumulative rainfall. Both vectors refer to village r, for the 

main rainfall season (k=1). Vector     includes socioeconomic and physical farm characteristic 

variables at time t. Vector    contains soil quality variables, available at the village level. Za is a 

set of agro-regional zone fixed effects. These dummy variables can capture exogenous variables 

that vary by agro-regional zone but have not been measured. 

The coefficients       ,  ,    ,   and   represent the vectors of parameter estimates 

for each associated vector of variables, while     is the error term. The composite error term is 

composed of a normally distributed random error term,           
  , and an unobserved 

household specific time-invariant component (  ), as follows: 

                     (7) 

Similarly,   ̌  and   ̃  are the composite error terms for the variance Equation (6b) and the 

downside risk Equation (6c) respectively, and have the same distribution properties as    .  

The panel structure of our dataset necessitates the use of a fixed effect estimator that 

permits the time-variant regressors to be correlated with the time-invariant component of the 

error term, while assuming that these regressors are uncorrelated with the idiosyncratic error. 

This estimation provides consistent parameters even if there is correlation between the 

independent variables and time-invariant unobserved heterogeneity such as soil quality. The 

estimation of an instrumental variables model with fixed effect methodology would allow us to 

test and control for potential endogeneity caused by a correlation between decisions regarding 

                                                           
4 In order to treat the zero values in the sample, which would result into a reduction of the sample size, we add the constant 1 to each 

variable before taking the natural logarithm i.e.: ln(variable)=ln[1 + (variable)]. By doing this, we ensure that all of the logarithms 

will exist. 
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intensification and vulnerability outcomes. However, standard fixed effect models rely on a data 

transformation that removes the individual effect. 

We have previously discussed the importance of including in our framework variables 

that are by their nature time-invariant regressors, such as climatology and soil quality variables. 

One way to include time-invariant variables while addressing endogeneity is to estimate a 

random effects model while controlling for unobserved heterogeneity using the 

Mundlak-Chamberlain approach (referred to as the pseudo-fixed effects model). Following 

Mundlak (1978) and Chamberlain (1982, 1984), the right-hand side of our regression equation 

includes the mean value of the time-varying explanatory variables. This approach relies on the 

assumption that unobserved effects are linearly correlated with explanatory variables. Thus, the 

unobserved household specific time-invariant component in Equation (7) can be specified as: 

      ̅       

where  ̅ is the mean of the time-varying explanatory variables within each farm household 

(cluster mean),   is the corresponding vector coefficient, and     is a random error unrelated to 

the  ̅ s. The vector   will be equal to zero if the observed explanatory variables are uncorrelated 

with the random effects. The use of the Mundlak-Chamberlain device also addresses the problem 

of selection and endogeneity bias where these are due to time-invariant unobserved factors, such as 

household heterogeneity (Wooldridge, 2002). If we failed to control for these factors, we would not 

obtain consistent parameter estimates. Moreover, estimation of parameters   allows us to test for 

the relevance and strength of the fixed effects via an F test, performed for the endogenous variable. 

4.  RESULTS 

First-stage regression results for the potentially endogenous variable are reported in Table 3. 

Frequent past climatic shocks, as manifested by drought incidence, reduce the maize area share per 

farm allocated to hybrid seeds. Looking at the weather variables, extreme temperature influences 

maize intensification. Maximum temperature has a negative (insignificant) impact on 

intensification of production at an increasing rate (significant), while minimum temperatures have 

the opposite signs with the same significance. Higher rainfall has a significant, positive correlation 

with hybrid seed use, at a decreasing rate. Farmers in areas where the weather is more favorable 

tend to allocate more maize area to hybrid seeds; temperatures are lower in the areas with the 
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highest historical adoption rates.   

Population density has a positive correlation with maize intensification, consistent with the 

Boserupian hypothesis. The presence of educated men in the household has a positive impact on 

the adoption of maize hybrid seeds, since education provides access to information, services and 

communication, as well as the potential to utilize these more effectively. 

 Fertilizer price has the expected negative sign but is not a statistically significant 

determinant of maize area shares planted to hybrid seed. Other research in Kenya has suggested 

that Kenyan farmers tend to apply non-optimal quantities of mineral fertilizers. Ogada et al. (2010) 

found that most Kenyan farm households apply insufficient quantities of mineral fertilizers; 

Sheahan (2011) and Marenya and Barrett (2009) found the opposite. Our empirical model does not 

enable us to draw conclusions regarding the quantitative response of fertilizer application rates on 

maize to price variation, but only regarding the jointness of use of mineral fertilizers and hybrid 

seed. In about 90% of the plots in our dataset where maize hybrid seeds are planted during the main 

rainfall season, mineral fertilizers were also applied.
5
  Also using the Tegemeo dataset, Smale et 

al. (2015) found a strongly significant and expected negative sign for the relationship between 

nitrogen nutrient kgs per ha of maize and the fertilizer price.  

Wealthier farm families and families with higher human capital resources are more likely to 

plant a larger share of their land with hybrids. There is no statistically significant evidence that 

those farmers living in villages with less binding expenditure constraints are planting larger land 

shares with hybrid seeds. Credit is not provided directly for maize production in Kenya, but 

farmers who obtain credit for other purposes may also be more likely to plant hybrids (such as tea 

growers in the highlands). A larger land endowment is negatively associated with the land share 

allocated to maize hybrid seed planted, suggesting that larger landowners might allocate a larger 

land share to other crops, such as cash crops, instead of staple crops. Soil quality strongly affects 

intensification decisions. 

 Table 4 reports the results for the second stage regressions. We address the issue of the 

instruments’ relevance using an F test of the joint significance of the excluded instruments, 

                                                           
5 The remaining 10% of observations have missing values regarding the application of mineral fertilizers on the plot; thus, we 

cannot exclude the possibility that the percentage of the plot farmed with hybrid seeds where mineral fertilizers was applied is even 

higher.  
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reported at the bottom of Table 3. The F statistic is greater than 10. This result indicates the strength 

of the chosen instruments (Staiger and Stock, 1997). The choice of instruments seems appropriate 

and we turn to discussing our main regression results. 

 Column (1) reports the impact of intensification of production on expected crop income. 

Consistent with previous research, a larger share of maize area per farm allocated to hybrid seed 

tends to positively affect expected crop income (Jones et al., 2012; Mathenge et al. 2014). To 

capture the full extent of how these management decisions determine risk exposure, we also report 

both the farm-specific variance function (Column 2) and the skewness function (Column 3) for 

crop income.  We find no evidence that a larger share of land allocated to dry maize hybrid seeds 

(intensification) increases risk, either in terms of variance (this finding is consistent with Jones et 

al. (2012)) or skewness of the distribution of crop income. The share of maize area allocated to 

hybrids has no significant impact on either the variance or the skewness of crop income. Thus, 

planting a greater area with maize hybrid seed contributes positively to mean crop income, with no 

statistically significant impact on the other risk equations.  

In general, long-term impacts are larger than short-term effects, a result also found in 

Bezabih et al., (2014). Looking at weather, the squared temperature and precipitation coefficients 

are generally significant. This finding implies that the model is nonlinear.
  

The fact that the squared 

terms are positive or negative reveals that seasonal effects are convex or concave, respectively. The 

maximum diurnal temperature correlates negatively with expected crop income, whereas higher 

minimum temperature is beneficial. Furthermore, higher diurnal temperature is associated with 

crop failure. Several agronomic studies confirm that maize reacts differently to maximum and 

minimum temperature (Harrison et al., 2011). Rainfall during the current main rain season has a 

bell-shaped relationship with crop income. Looking at the crop income equation (Column 1) we 

also notice that the coefficients associated with temperatures are much larger than the coefficients 

associated with rainfall. This result confirms those of Kabubo-Mariara and Karanja (2007), who 

concluded that, in Kenya, the temperature component of global warming is much more important 

than precipitation. Interestingly, weather, but not climate, has an impact on the third moment of the 

distribution of crop income. 

The impacts of climate normals on expected crop income are very similar, generally larger 

than the impacts of weather, but not statistically significant. An increase in rainfall climatologies 
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enhances the risk associated with the variance of the distribution of agricultural yields, as well as 

the risk of crop failure. This result is probably related to the fact that most of the agriculture in the 

country (and in our sample) is rainfed and depends strongly on the quantity and distribution of 

rainfall across space and time. 

Soil quality is an important determinant of farm crop income. Higher values associated with 

the gravel variable indicate higher percentage of materials in the soil that are larger than 2mm. In 

areas where this type of soil is predominant, farming is more difficult and plant life is sparser. 

Notably, the higher the value associated with gravel soil, the lower the ability of the soil to retain 

moisture, and the lower the presence of mineral nutrients. Henceforth, the negative coefficient 

associated with this variable complies with our expectations.  pH is a measure for the acidity and 

alkalinity of the soil, measured in concentration levels (-log(H+)). pH between 5.5 and 7.2 (acid to 

neutral soil) offers the best growing conditions, and the mean value of the sample is in this range. 

Higher pH (associated with alkaline soils) is negatively correlated with crop income. Furthermore, 

farmers in Kenya tend to apply DAP as the main fertilizer type on dry maize from hybrid seeds, 

when they need to increases the soil pH. This application might, however, also increase acidity of 

the land over the medium to long-term.  

Farm size, as expected, plays an important, positive role in determining crop income, as 

does the value of livestock assets. Higher shares of remittances and other salaries in total household 

income negatively affect crop income, probably because farmers with outside options in terms of 

income diversification have lower incentives to take management and investment decisions to 

improve maize farming conditions.  

Whether the family has a deed title over the land it operates is not statistically significant on 

expected crop income. However, the associated coefficient is negative, indicating that land tenure 

insecurity could be detrimental to crop income. Since the ratification of the new constitution in 

Kenya, land tenure and entitlement has been a prominent concern. This finding suggests that land 

certification could be an effective policy instrument to buffer against climate anomalies. The 

presence in the household of women with secondary education is positively correlated with crop 

income and reduces the risk of crop failure. This result highlights the importance of human capital 

in efficiently managing agricultural technology. 
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5.  CONCLUSIONS AND IMPLICATIONS 

In this paper, we have analyzed two major research questions. First, we have explored how 

climatology, weather, and climate shocks affect maize intensification, other factors held constant. 

Second, we have tested whether maize intensification affects the vulnerability of smallholder 

farmers to crop income variability and downside risk, in the presence of these factors. We have 

defined maize intensification as the maize area share per farm allocated to hybrid seed (much of 

which is fertilized). Drawing from and extending the portfolio theory of investment choice, we 

estimated a two-stage model to identify the determinants of input use and assess the effects of 

input use on the mean, variance and skewness of crop income among smallholder farmers in 

Kenya. We focus on maize production, considering the importance of this crop not only as a food 

staple but also an income source in Kenya. In order to include time-invariant variables such as 

soils and agro-regional fixed effects, while addressing endogeneity, we estimate a random effects 

model while controlling for unobserved heterogeneity using the Mundlak-Chamberlain approach 

(referred to as the pseudo-fixed effects model).  We extend the portfolio investment approach 

previously applied to the analysis of input use decisions by incorporating and differentiating the 

effects of weather, climate change and climatic shocks.  

Our approach enables us first to demonstrate that maize intensification is strongly affected 

by weather, climate shocks and climatology, in addition to commonly cited, household-farm 

characteristics such as education, wealth, access to credit and off-farm earnings. Next, we find 

that maize intensification has a positive effect on expected crop income but has no significant 

effect on crop income variability or downside risk. Moreover, relying on a higher proportion of 

hybrid seed use, which is negatively associated with persistent climatic shocks, is not enough to 

statistically significantly reduce the likelihood that crop income falls below a given threshold 

(downside risk). Importantly, cropping system decisions are related to longer-term investment 

choices, while decisions on specific hybrid types are, rather, annual decisions.  

Thus, maize intensification is not in and of itself an effective strategy in the face of 

climate change and climate shocks. Further, our results suggest that farmers are not adapting 

optimally to climate change. Suboptimal choices might reflect multiple market failures, such as 

credit constraints, poor access to input and output markets and information asymmetries.   
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In addition to these major findings, our empirical analysis confirms the need to account for 

agro-regional zones and soil quality variables in microeconomic models of input use and 

adaptation strategies. Omission of these factors could cause biased estimates of included 

coefficients. Regression results support the Boserupian theory that rising population density 

provides incentives for the shift toward more intensive farming systems. Finally, we find trade-offs 

between nonfarm employment and crop income, indicating changing dynamics of income in rural 

communities as Kenya urbanizes.  

Our findings lead us to recommend that the Government of Kenya play an active role in 

encouraging smallholder adaptation to changing climate patterns and climate shocks. In Kenya, 

multiple market failures include poor or non-existent insurance, so that farmers use other 

risk-coping mechanisms, which can be weak (Fafchamps, 1992; Kurosaki and Fafchamps, 2002). 

Safety nets typically provide only limited support (Dercon and Krishnan, 2000; Dercon, 2004), 

while off-farm income that is not covariant with agricultural shocks is limited in more remote rural 

areas. In this context, smallholder maize growers need other adaptation mechanisms than the use of 

hybrid seed as a strategy to buffer against downside risk. Not only do smallholders need continued 

improvement of access to well-adapted hybrid seed and other inputs through decentralized, 

competitive markets but also effective, widely-diffused market information services and other 

insurance mechanisms. Helping farmers learn about weather, climate, production and post-harvest 

handling, as well as other adaptation strategies, would be beneficial.  
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Table 1: Variables Definitions 

Variable Description 

Farm specific variables (Source: Tegemeo) 

Crop income Value of crop production minus input and land preparation 

costs (labor and seeds costs excluded). 

Price fertilizer (kes) Farm price fertilizer for dry maize from purchased hybrids. If 

the household did not buy fertilizer for this crop category, the 

village’s average is used. 

Educated men No of adult men with secondary education 

Educated women 

Livestock assets (KES) 

No of adult women with secondary education 

Total nominal value (KES) of livestock assets 

Credit village Proportion of village households that received credit, by year 

Salaries & remittances  Share of salaries and remittance earnings in total household 

income  

Land total household land area (ha)  

Land title deed =1 if land owned with no title deed,  0 otherwise 

Village-specific climate characteristics (Source: CRU TS3.21) 

SPEI3 Index  

 

 

 

 

 

 

 

Droughts_165 

3 months Standardized Precipitation-Evapotranspiration Index 

(SPEI3) for the last month of the main rainfall season (January, 

July or August, depending on the division and agro-regional 

zone to which each village belongs) and the two preceding 

months. We calculated the SPEI index manually, using the R 

routines developed by Vicente Serrano et al. (2010). SPEI 

index for each location is based on monthly precipitation and 

rainfall at village level, downloaded from the CRU TS3.21 

dataset (Harris et al., 2014) for the period 1971-2012. 

Number of times in the last decade
#
 the value of the spei3 was 

<-1.65 in the last month of the main rainfall season. 

Temperature max (°C)* 

 

Temperature min (°C)* 

 

Temperature average (°C)* 

Monthly average maximum air temperature (°C) during the 

major rainfall season  

Monthly average minimum air temperature (°C) during the 

major rainfall season 

Monthly average average air temperature (°C) during the 
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Rainfall (mm/mo)* 

major rainfall season  

Cumulated rainfall (mm/mo) during the major rainfall season  

Temperature average 

climatologies* 

Rainfall climatologies 

(mm/mo)* 

Average air temperature (°C) 1971-2010 during the major 

rainfall season 

Cumulated rainfall (mm/mo) 1971-2010 during the major 

rainfall season 

Village-specific soil characteristics (Source: World Soil database) 

AWC_mm 

 

Ph top soil (-log(H+)) 

 

Gravel top soil (%vol) 

Available water storage capacity class of the soil unit, 

measured in mm/m 

pH measured in a soil-water solution. It is a measure for the 

acidity/alkalinity of the soil 

Volume % gravel (materials in a soil larger than 2mm) in the  

topsoil (i.e. 0-30 cm) (%vol) 

Village level socio economic variables & Agro-regional Zones 

Population density Village population density (cap/km²) 

Agro-regional zone  HPMZ high potential maize zone (26.6%); CHI central 

highlands (19.4%), WLO western lowlands (12%); WTR 

western transitional (11.7%);  ELO eastern lowlands (11.3%); 

WHI western highlands (10.3%); CLO coastal lowlands 

(5.9%); MRS marginal rain shadow (2.7%). Percentages 

indicate the frequency of farms in our sample in each 

agro-regional zone. 

*We take into account the relevant cropping season: e.g. for villages in the Rift Valley, the 

reference period is March (year-1) to (August year-1).  
# 

Reference Decades: 1989-1999 for 2000; 1993-2003 for 2004; 1996-2006 for 2007; 1999-2009 

for 2010. 
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Table 2: Descriptive Statistics 

Variables  Mean Std. Dev.  Min Max 

Farm-specific variables 

Crop income 87,911 142,264 0  3,883,123 

Hybrid seeds (maize land share) 0.338 0.323 0  1 

Price Fertilizer (kes) 37.08 18.03 0.32  700 

Educated men 0.89 0.98 0 10 

Educated women 0.71 0.81 0 6 

Livestock assets (kes) 81,366 217,682 0  8,679,900 

Credit village 0.47 0.30 0 1 

Salaries & remittances income share 0.18 0.24 0 1 

Land  5.80 8.72 0 157 

No land title deed dummy 0.36 0.48 0 1  

Village-specific climatic variables 

Temperature max (°C) 26.56 3.63 19.12 33.47 

Temperature min (°C)  14.04 3.76 7.5 23.95 

Temperature average (°C) 20.27 3.62 13.3 28.67 

Rainfall (mm/mo) 708.75 209.29 145  1154.1 

Temperature average climatologies (°C) 19.57 3.69 13.61 27.89 

Rainfall climatologies (mm/mo) 708.95 186.32 184.58 946.44 

SPEI3 Index -0.18 1.01 -2.28 2.24 

Droughts_165 0.74 0.72 0 2 

Village-specific soil characteristics 

AWC_mm 149.42 3.77 125  150 

Gravel top soil (%vol) 1.25 4.09 0  28 

Ph top soil (-log(H+)) 5.75 1.04 4.5  8.9 

Village-specific socio economic variables 

Population Density  363.47 214.88 16.43 1,245.11  
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Table 3: Estimation results – First Stage regressions 

 
share acreage under purchased hybrids  

 Droughts_165 -0.0565***   [0.0085] 

ln population density 0.3534*** [0.0536] 

ln fertilizers price -0.0163 [0.0104] 

Temperature max -0.2010 [0.1514] 

Temperature max squared 0.0059** [0.0029] 

Temperature min  0.0581 [0.0657] 

Temperature min squared -0.0042* [0.0022] 

Rainfall 0.0004* [0.0002] 

Rainfall squared -2.81e-07** [1.41e-07] 

Temperature average climatologies -8.2869*** [1.1446] 

Temperature average climatologies squared 0.1481*** [0.0257] 

Rainfall climatologies -0.0133*** [0.0039] 

Rainfall climatologies squared 6.02e-06** [2.36e-06] 

AWC_mm 0.0008 [0.0030] 

Ph top soil 0.0892*** [0.0117] 

Gravel top soil 0.0087*** [0.0019] 

ln livestock assets 0.0060* [0.0031] 

ln credit village 0.0468 [0.0323] 

no land title dee dummy -0.0045 [0.0092] 

ln educated men 0.0267** [0.0120] 

ln educated women 0.0012         [0.0121] 

ln salaries & remittances income share 0.0558 [0.0347] 

ln land -0.0466*** [0.0125] 

agro-regional FE Yes 

F test of excluded  instruments F(5, 4041)=30.58 

Observations 4,085 

Notes: pseudo-fixed effect estimation. Robust standard errors in brackets. 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 4: Estimation results – Second Stage regressions (Pseudo Fixed Effects Estimation) 

 
(1) ln_crop Income (2) Variance (3) Skewness 

share acreage under purchased hybrids 0.8873*** [0.2615] -0.4921 [0.4843] 
-1.8270       
[60.4570] 

Temperature max -3.3191*** [0.4660] 0.9754 [1.0438] -12.4135** [6.2528] 

Temperature max squared 0.0637*** [0.0091] -0.0175 [0.0200] 0.2433* [0.1661] 

Temperature min  1.9952*** [0.2060] -0.4800 [0.4717] 5.3069* [3.0216] 

Temperature min squared -0.0659*** [0.0071] 0.0146 [0.0150] -0.1723* [0.0934] 

Rainfall 0.0068*** [0.0006] -0.0005 [0.0007] 0.0065 [0.0208] 

Rainfall squared -4.42e-06***  [3.82e-07] -1.41e-07   [4.44e-07] 
-4.14e-06        

[0.00002] 

Temperature average climatologies -2.6787 [8.1524] -9.1297 [30.8128] 6.2084 [4944.3] 

Temperature average climatologies sq. 0.0826 [0.1686] 0.1458 [0.6034] 
0.0967        
[100.828] 

Rainfall climatologies -0.0037 [0.0088] 0.0270 [0.0271] -0.0289 [3.9933] 

Rainfall climatologies sq. 5.55e-06 [6.30e-06] -0.00002*[0.00002] 0.00003 [0.0029] 

AWC_mm -0.0008 [0.0133] 0.0593** [0.0273] 0.0228 [0.3569] 

Ph top soil -0.4427*** [0.0447] 0.0831 [0.0689] 0.1851 [1.4567] 

Gravel top soil -0.0449*** [0.0087] -0.0083 [0.0170] -0.0250 [1.0743] 

ln livestock assets 0.0456*** [0.0096] -0.0268* [0.0159] 0.2112 [0.3059] 

ln credit village 0.3046*** [0.1029] 0.3764* [0.2040] -2.1129 [2.8854] 

no land title dee dummy -0.0365 [0.0273] -0.0742** [0.0308] 0.2418 [0.1665] 

ln educated men 0.0093 [0.0386] 0.0813 [0.0504] 0.0534 [1.3603] 

ln educated women 0.0992** [0.0462] -0.1979 [0.1217] 1.2878* [0.6849] 

ln salaries & remittances income share -1.0519*** [0.1429] 0.5615 [0.4673] -4.9736 [6.7722] 

ln land 0.4596*** [0.0464] 0.1290* [0.0731] -0.7405 [2.9065] 

Agro-regional FE Yes Yes Yes 

Observations 4,085 4,085 4,085 

Number of hhid 1,166 1,166 1,166 

Notes: Pseudo-Fixed effect estimation. Robust standard errors in brackets. *** p<0.01, ** p<0.05, 

* p<0.1. 
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