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1. Introduction 

Precision agriculture (PA) encompasses many technologies that use field-level data in 

order to improve input application efficiency, which potentially reduces the environmental impact 

of agricultural production (National Research Council, 1997). Changes in the input costs of crop 

production, particularly seed, fertilizer, and chemical costs influence farmer use of PA 

technologies.  

The application of an input in sections of a field where that input has already been applied 

(e.g., seed, chemicals) is one example of input application inefficiency (Larson et al., 2016).  

Automatic section control (ASC) and auto-guidance (AG) systems are PA technologies that can 

reduce this type of inefficiency. ASC turns planter/sprayer sections or rows off in areas of the field 

where inputs have been previously applied or on and off at headland turns, point rows, terraces, 

and/or waterways, reducing or eliminating input overapplication (Fulton et al., 2011). AG systems 

complement ASC technologies by allowing producers to maintain a desired path through fields 

which can reduce application overlap and skips. In addition, AG systems reduce fatigue from 

operating machinery, giving producers the ability to extend their working hours (Shockley et al., 

2011). Conversely, AG systems may decrease operator hours by helping them navigate through a 

field more efficiently (McDonald, 2015). Previous research has evaluated the economic benefits 

of ASC technologies and GPS guidance systems (Batte and Ehsani, 2006; Shockley et al., 2011; 

Shockley et al., 2012; Velandia et al., 2013; Larson et al., 2016). However, while some research 

has evaluated the factors influencing the adoption of GPS auto-guidance systems (Martin et al., 

2007; Banerjee et al., 2008), no studies have evaluated the factors influencing the adoption of ASC 

technologies. Furthermore, no studies have evaluated the factors influencing the adoption of ASC 
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and GPS auto-guidance systems simultaneously, a desirable approach considering the 

complementary relationship between these technologies. 

Both ASC technologies and AG systems have been quickly adopted by producers due to 

their relatively low cost compared to other PA technologies. Despite their popularity, the factors 

that influence the adoption of ASC and AG among cotton producers are unknown. While previous 

research has evaluated the economic benefits of jointly adopting ASC and GPS guidance systems 

(Shockley et al., 2012), no study has evaluated the factors influencing the adoption of these two 

technologies simultaneously. Thus, this study will address a gap in the literature by using a 

bivariate probit regression to evaluate factors influencing the adoption of these technologies.  

 Information about the factors that influence the adoption of ASC and AG systems would 

be beneficial to several groups, particularly producers and machinery dealers. This research can 

be used in combination with decision-aid tools and extension publications to aid producers in 

evaluating the benefits of adopting these technologies. For example, calculations from the 

Automatic Section Control for Planters Cost Calculator (ASCCC)1 indicate that the impact of field 

geometry on seed savings due to ASC for planters adoption decreases as total farm size increases; 

this result could be confirmed or contradicted by the results presented in this study. For machinery 

dealers, results from this study can assist the development of marketing strategies that target 

clientele more likely to adopt ASC technologies and AG systems. 

2. Literature Review 

The existing literature in the field of PA technologies is quite extensive and includes both 

the evaluation of factors influencing the adoption of various technologies as well as the 

economic benefits of adopting these technologies. Some of the past research has evaluated the 

                                            
1 http://economics.ag.utk.edu/asccc.html 
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adoption of all PA technologies as a whole (Napier, Robinson, and Tucker, 2000; McBride and 

Daberkow, 2003), while other studies have evaluated the factors influencing the adoption of 

specific technologies (Napier, Robinson, and Tucker, 2000; McBride and Daberkow, 2003; 

Roberts et al., 2004; Larson et al., 2008; Walton et al., 2008; Walton et al., 2010; Lambert et al., 

2014). In regards to the technologies being evaluated here, few studies have evaluated factors 

influencing the adoption of GPS guidance systems, (Martin et al., 2007; Banerjee et al., 2008; 

D’Antoni, Mishra, and Joo, 2012) while no studies have evaluated the adoption of ASC 

technologies. Rather, the research on ASC has focused on the economic benefits of adopting this 

technology (Batte and Ehsani, 2006; Shockley et al., 2012; Velandia et al., 2013; Larson et al., 

2016). 

Martin et al. (2007) evaluated the adoption of GPS guidance systems using results from a 

2005 survey of cotton producers. Survey results indicated about 23% of cotton producers used 

GPS guidance systems (Martin et al., 2007). Martin et al. (2007) found that adopters of GPS 

guidance systems were younger, more likely to use portable laptop computers, and more likely to 

use other PA technologies. In addition, adopters of these technologies had higher levels of 

education, more acres of cropland, higher yields, and less farming experience than non-adopters. 

Banerjee et al. (2008) evaluated the factors influencing the decision to adopt GPS 

guidance systems. Similar to Martin et al. (2007), Banerjee et al. (2008) found that farm size, 

yield, years of formal education, age, use of computers for farm management, and use of other 

PA technologies affect the decision to adopt GPS guidance systems. In addition, the results from 

Banerjee et al. (2008) indicated that household income and state where farm operation is located 

can influence a producer decision to adopt these technologies. 
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D’Antoni, Mishra, and Joo (2012) assessed the factors influencing the decision to adopt 

autosteer or lightbar GPS guidance systems. Results indicated that producer expectations of input 

cost savings from the adoption of these technologies affect the decision to adopt GPS guidance 

systems. Likewise, producer expectations of the importance of PA technologies in the future also 

affected the decision to adopt GPS guidance systems (D’Antoni, Mishra, and Joo, 2012). 

Computer use for farm management, type of cotton picker (e.g., 4-row, 5-row, and 6-row), and 

farm size positively affected the decision to adopt GPS guidance systems, while producer age 

and age of the picker used in harvesting activities negatively impacted the adoption decision 

(D’Antoni, Mishra, and Joo, 2012).  

 Previous research about ASC technologies have evaluated the economic benefits of ASC 

adoption and potential factors influencing the size of these benefits (Batte and Ehsani, 2006; 

Shockley et al., 2012; Smith et al., 2013; Velandia et al., 2013; Larson et al., 2016). Shockley et 

al. (2012) found that small and irregularly shaped fields yielded larger cost savings from the 

adoption of ASC for sprayers. They also noted that the effect of irregularity on savings decreases 

as field size increases. Similarly, results from Velandia et al. (2013) indicated that the economic 

benefits from ASC adoption for planters will be greater when producers are farming small, 

irregularly shaped fields. Smith et al. (2013) evaluated the economic benefits of adopting ASC 

and AG systems. They evaluated field shape by calculating the average angle of machinery 

approach at headlands of a particular field. This angle of approach decreases as field irregularity 

increases (Smith et al., 2013). They found that irregularly shaped fields experienced larger 

economic benefits from ASC adoption and smaller economic benefits from GPS guidance 

systems adoption than regularly shaped fields (Smith et al., 2013).   
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Recently, Larson et al. (2016) used a sample of fields in west Tennessee to evaluate the 

effects of field geometry as measured by the perimeter-to-area ratio (P/A) on the profitability of 

ASC. The reduction in overlap from the adoption of ASC was measured for three different P/A 

levels. Consistent with previous research, Larson et al. (2016) found that the economic benefits 

from the adoption of ASC were higher for more irregularly shaped fields. Additionally, Larson et 

al. (2016) noted that P/A is a reliable measure of field irregularity and could be considered for 

use in future research evaluating field geometry.  

Luck et al. (2010) used three fields in Kentucky to evaluate the input application 

reduction when using automatic boom section control, and Batte and Ehsani (2006) analyzed the 

economic benefits from the adoption of ASC for sprayers. Both studies noted the potential 

environmental benefits from the reduction of chemical runoff (Batte and Ehsani, 2006; Luck et 

al., 2010). 

3. Conceptual Framework 

Modeling the decision to adopt PA technologies begins with the assumption that farmers 

maximize the discounted expected benefits from production over a time horizon (Walton et al., 

2008). Previous studies have used the random utility model framework to study adoption 

decisions (Rahm and Huffman, 1984; Roberts et al., 2004; Larson et al., 2008; Walton et al., 

2008; Jara-Rojas et al., 2013; Lambert et al., 2014), where a producer adopts a technology when 

the expected utility of profits is higher for the adoption scenario compared to the non-adoption 

scenario. Let )]([ AGUE π  ( )]([ NAGUE π ) be the expected utility of adopting (non-adopting) AG 

systems for producer i. Defining )]([)]([*
NAGAGAG UEUEU ππ −= , the expected utility-

maximizing producer will choose to adopt GPS auto-guidance systems if 0* >AGU . Likewise, let 

)]([ ASCUE π  ( )]([ NASCUE π ) be the expected utility of profits of adopting (non-adopting) ASC 
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technologies. Defining )]([)]([*
NASCASCASC UEUEU ππ −= , the utility-maximizing producer will 

choose to adopt ASC when 0* >ASCU .  

   As presented in Roberts et al. (2004) and Walton et al. (2008) and originally by 

McFadden (1974), the unobservable latent variables *
AGU  and *

ASCU  are hypothesized to be 

random functions of exogenous variables AGx  and ASCx , representing farmer and farm business 

characteristics, 

(1)                                           AGAGAGAG xU µβ +=* , 

(2)                                       ASCASCASCASC xU µβ +=* , 

where AGβ  and ASCβ  are vectors of unknown parameters associated with the explanatory 

variables, AGµ , ASCµ  are random disturbance terms. While *
AGU   and *

ASCU  are unobservable, but 

the decision to adopt any of these technologies can be observed such that  

 

(3)                                        

AGASCjfor
otherwise

Uif
y j

j

, 
      0

0       1 *

=


 >

=
. 

 

4. Data and Methods 

Data 

The data used in this study is from the 2013 Southern Cotton Farm Survey mailed in 

February of that year to 13,566 cotton producers in 14 states in the United States Southern 

region. A total of 1,810 surveys were found to be appropriate for analysis after those that were 

returned undeliverable or from producers who were no longer growing cotton were eliminated, 

resulting in a 14% response rate (Zhou et al., 2015). The survey followed the Dillman’s Tailored 
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Design Method, using reminder cards and a second mailing of surveys to those producers who 

did not respond to the first wave of surveys sent in February (Dillman, 2000).  

 The survey was divided into four sections: “You and Your Farm,” “General Questions 

about Precision Agriculture,” “Variable Rate Application on Cotton,” and “Information about 

Your Household.”  These sections contained questions about adoption and abandonment of PA 

technologies, sources used to obtain information about PA technologies, producer opinions about 

PA technologies’ importance and profitability, and farm and producer characteristics.  

 The survey did not include questions that could help assess farm field geometry; thus, 

secondary data was used to create field shape measures. Perimeter (pi) and area (𝑎𝑎𝑖𝑖) field data 

used to estimate shape indexes were created using the NASS Crop Data Layer (CDL). The crop 

map was uploaded in ArcGIS, and various procedures were used to generate a coverage of field 

polygons that allowed for the shape assessment. We used the field boundaries typically formed 

along roads, hedgerows, trees, or waterways, and all non-cropland pixels to break down the CDL 

into small land parcels that resembled a field rather than several parcels of land put together. 

Finally, a raster-to-vector conversion was performed on the remaining cropland dataset. The end 

result was a set of vector field boundaries that aligned with actual field boundaries.  

Post-Stratification Survey Weights 

A comparison of the survey data with data from the 2012 USDA Census of Agriculture 

indicates the distribution of survey respondents is skewed towards those farms with larger cotton 

acres planted (Figure 1). Using Lambert et al.’s (2014) approach, post-stratification survey 

weights were estimated to account for this difference in a way that the central tendency measures 

of the survey data approach the distribution of cotton farms from the 2012 Census of Agriculture.   

  



8 
 

Bivariate Probit Regression 

The adoption decisions for ASC and AG systems technologies are not considered to be 

mutually exclusive; thus, a farmer can adopt the two technologies simultaneously. This study 

hypothesizes that the unobserved factors influencing the decisions to adopt ASC and AG systems 

may be correlated.  Further, we emphasize that ASC adoption does not require the previous 

adoption of AG systems; thus, a producer can adopt ASC without adopting AG. If a producer 

adopts ASC without AG systems, machinery dealers recommend using a high accuracy GPS 

correction services such as OmniSTAR HP2 or OmniSTAR XP3. Therefore, a bivariate probit 

regression was used to evaluate the factors influencing the adoption decisions (Greene, 2003). 

The error terms in equations (1) and (2) are assumed to be normally distributed and correlated (

ρµµ =),( ASCAGCorr ). The null hypothesis to be tested associated with ρ assumes the model 

consists of independent probit regressions ( )0=ρ ; therefore, the regressions associated with 

adoption of ASC technologies and AG systems can be estimated separately. If this null 

hypothesis is rejected, a bivariate probit regression is appropriate for evaluating the factors 

influencing the decisions to adopt ASC and AG systems. 

Random Intercept Probit Regression 

As suggested by previous literature, field geometry may affect the potential economic 

benefits from the adoption of ASC (Velandia et al., 2013; Larson et al., 2016). Field geometry 

may be unique for each farm. If information regarding field geometry for each farm is available, 

then this information should be included in the ASC adoption decision equation. If this 

information is not available or a good proxy measuring field shape is not available for each farm, 

                                            
2 For information about this correction service visit: http://www.omnistar.com/SubscriptionServices/OmniSTARHP.aspx  
3 For information about this correction service visit: http://www.omnistar.com/SubscriptionServices/OmniSTARXP.aspx  

http://www.omnistar.com/SubscriptionServices/OmniSTARHP.aspx
http://www.omnistar.com/SubscriptionServices/OmniSTARXP.aspx
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omitting this variable from the ASC adoption equation may result in inconsistent parameter 

estimates, as this omitted variable will be part of the error term and, if correlated with the 

exogenous variables, may result in the violation of strict exogeneity (Wooldridge, 2002).  

In the case where a variable capturing specific individual characteristics affecting the 

adoption of ASC technologies is not available, a random-intercept probit regression like the one 

presented in Rabe-Hesketh and Skrondal (2012) where a producer-specific random intercept is 

included to capture unobserved heterogeneity may be appropriate to capture farm differences 

affecting the adoption of ASC technologies. Rabe-Hesketh and Skrondal (2012) present this 

approach in the context of longitudinal data with two dimensions (e.g., panel data). This 

approach is adjusted for the case of cross section data. Using the latent-response formulation, we 

can write the random-intercept model for ASC as,  

(4)                                       icASCcASCASCicASCicASC xU εςβ ++′=* , 

where *
icASCU  is the unobservable latent variable for farm i and group c, which is expected to be a 

function of the observable exogenous explanatory variables icASCx ; ASCβ  is a vector of unknown 

parameters associated with the explanatory variables. Finally, cASCς  is the group-specific random 

intercept that is assumed to be independent and identically distributed across group c and 

independent of covariates icASCx  and icASCε (i.e., random disturbances vector assumed to have a 

normal standard distribution). We hypothesized that the unobserved factors influencing the 

adoption of ASC by farms located in the same county (i.e., group c) may be correlated; thus, we 

relax the random disturbance independence assumption using cluster-robust standard errors. The 

AG systems adoption decision is represented as, 

(5)                           icAGAGicAGicAG xU εβ +′=* , 
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where *
iAGU  is the unobservable latent variable for farm i, which is expected to be a function of 

the observable exogenous explanatory variables iAGx ; AGβ  is a vector of unknown parameters 

associated with the explanatory variables. Finally, icAGε  is a vector of random disturbances for 

equation (5). The error terms icASCε  and icAGε  are assumed to be bivariate normally distributed 

with a zero mean and a correlation 𝜌𝜌.  

Empirical Model  

Existing research on the adoption of PA technologies guides the consideration of 

variables that may influence the adoption of ASC and AG systems. Variables that have been 

previously identified as factors influencing the decision to adopt PA technologies include age, 

computer use, education, sources used to obtain PA information, and farm size. McBride and 

Daberkow (2003), Roberts et al. (2004), Martin et al. (2007), Banerjee et al. (2008), Larson et al. 

(2008), Walton et al. (2008), D’Antoni, and Mishra, and Joo (2012), included age in the adoption 

equations and found that younger farmers with longer planning horizons were more likely to 

adopt PA technologies than older producers. Based on this previous literature, farmer age (AGE) 

is hypothesized to have a negative effect on the adoption of ASC technologies and AG systems.  

  Computer use has been considered as a variable influencing the adoption of PA 

technologies by previous studies including McBride and Daberkow (2003), Roberts et al. (2004), 

Martin et al. (2007), Banerjee et al. (2008), Larson et al. (2008), Walton et al. (2010), D’Antoni, 

Mishra, and Joo (2012), and Lambert et al. (2014), . These studies hypothesized that farmers 

using computers for farm management are more likely to be interested in new farming 

technologies. For example, Larson et al. (2008) found that cotton producers who used a 
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computer or handheld device for farm management were more likely to adopt remotely sensed 

imagery.  

Past research suggests that producer education level may influence the decision to adopt 

PA technologies (Napier, Robinson, and Tucker, 2000; McBride and Daberkow, 2003; Roberts 

et al., 2004; Martin et al., 2007; Banerjee et al., 2008; Larson et al., 2008; Walton et al., 2010; 

Lambert et al., 2014). Farmers with more education are hypothesized to have the skills to 

understand more complex technologies and their potential benefits. 

Farm size is hypothesized to have a positive influence on the decisions to adopt ASC 

technologies and AG systems (Napier, Robinson, and Tucker, 2000; McBride and Daberkow, 

2003; Roberts et al., 2004; Martin et al., 2007; Banerjee et al., 2008; Larson et al., 2008; Walton 

et al., 2010; D’Antoni, Mishra, and Joo, 2012; Lambert et al., 2014). A larger farm operation 

implies more crop area over which to spread investment costs. McBride and Daberkow (2003) 

found that farm size positively influenced the likelihood of PA technologies adoption. Farm size 

(AVACRES), rather than cotton acres farmed, is hypothesized to have a positive effect on the 

adoption of ASC and AG systems as cotton producers are able to benefit from the use of these 

technologies on other crops (e.g., corn, soybeans).  

Information sources used to obtain precision agriculture information have also been 

identified as factors that may influence the adoption of PA technologies (McBride and 

Daberkow, 2003; Velandia et al., 2010). For instance, McBride and Daberkow (2003) found that 

information obtained from extension personnel has a smaller impact on a producer decision to 

adopt PA technologies compared to that obtained from crop consultants or machinery dealers. 

Use of farm equipment providers to obtain PA information may be the most appropriate variable 

to be included in the adoption equations for both ASC technologies and AG systems due to the 
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fact that equipment providers distributed them and also provide support to producers who 

purchase these technologies. In contrast, crop consultants handle other issues such as map 

development, using yield information to set recommendations for variable rate application. 

Extension agents and specialists provide research-based information regarding the economic 

benefits of adopting these technologies but may not be the first source producers consult when 

making PA technology purchasing decisions. A farm dealer variable (FARMDEALER) is 

included in the ASC and AG adoption equations. This variable is hypothesized to have a positive 

effect on the likelihood of adopting both ASC and AG technologies.  

Shockley et al. (2012), Velandia et al. (2013), and Larson et al. (2016) found that 

producers with irregularly shaped fields will experience the highest cost savings (e.g., saved seed 

and saved chemicals associated with overlap reduction) from the adoption of ASC technologies. 

Perimeter-to-area ratio (P/A) was used by Velandia et al. (2013) and Larson et al. (2016) as a 

measure of field irregularity, where lower P/A levels represent more regularly shaped fields. 

Previous research suggests that P/A positively impacts the potential input costs savings from the 

adoption of ASC; thus, P/A measures were included among the shape variables considered in 

this research. The median perimeter-to-area ratio of a county (MEDIANIRR) was considered, as 

well as a modified sum of perimeter-to-area ratio per county (SUMOFIRR), 

(6)                   𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
∑ 𝑝𝑝𝑖𝑖
𝑁𝑁𝐶𝐶
𝑖𝑖=1

∑ 𝑎𝑎𝑖𝑖
𝑁𝑁𝑐𝑐
𝑖𝑖=1

, 

where pi and 𝑎𝑎𝑖𝑖 are perimeter and area of field i in county c, respectively, and 𝑁𝑁𝑐𝑐 is the number 

of fields in a specific county. The median perimeter-to-area ratio MEDIANIRR and SUMOFIRR 

are expected to be higher in counties with a larger percentage of irregularly shaped fields.  

We also considered an alternative measure of irregularity borrowed from the land 

fragmentation literature. There are five dimensions used to describe the complexity of farm land 
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fragmentation: 1) the number of plots farmed; 2) plot size; 3) plot shape; 4) plot distance to the 

farm buildings; and 5) plot scattering (Latruffe and Piet, 2014). In the current study, we focus 

specifically on plot shape.  

The area weighted mean shape index (AWMSI) is a measure of plot shape used in 

previous research evaluating land fragmentation (Aslan, Gundogdu, and Arici, 2007; Latruffe 

and Piet, 2014). This measures was included in this study as a measure of field shape irregularity 

and it is defined as, 

(7)                                               𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  1
𝐴𝐴𝑐𝑐
∑ 𝑎𝑎𝑖𝑖

𝑝𝑝𝑖𝑖
4�𝑎𝑎𝑖𝑖

𝑁𝑁𝑐𝑐
𝑖𝑖=1  , 

where pi and 𝑎𝑎𝑖𝑖 are perimeter and area of field i in county c, 𝑁𝑁𝑐𝑐 is the number of fields in a 

specific county, and 𝐴𝐴𝑐𝑐 is the total area of county c. Higher values of AWMSI indicate a county 

has more irregularly shape fields than a county with a lower AWMSI. The shape measures 

presented above are expected to positively influence the likelihood of adopting ASC 

technologies. We took the natural logarithm of all the variables presented above (i.e., 

LOGMEDIANIRR, LOGSUMOFIRR, and LOGAWMSI) to simplify the interpretation of their 

marginal effects.

Descriptive Statistics and Multicollinearity Tests 

The producer and farm characteristics for ASC adopters and non-adopters and AG system 

adopters and non-adopters were compared using independent sample t-tests (Tables 2 and 3). 

Multicollinearity can distort results by inflating the estimated variances (Greene, 2003). For the 

purpose of evaluating multicollinearity, the condition index was used to compare the models in 

this study (Belsley, Kuh, and Welsch, 1980). Condition indexes between 30 and 80 are 

considered to be an indication of moderate to strong collinearity among covariates (Belsley, 

1991).  



14 
 

Model Selection Criteria 

Because there are three different field shape irregularity measures considered in this 

study, there are a total of six different regressions (i.e., two per measure, associated to the 

bivariate probit regression and the random intercept bivariate probit regression) to be evaluated 

and compared. For this purpose, the Akaike Information Criterion (AIC) (Akaike, 1974), the 

Bayesian Information Criterion (BIC) (Schwarz, 1978), and likelihood-ratio tests were used to 

compare the different approaches and select the approach that best fits the data used in this study. 

5. Results 

Descriptive Statistics  

Table 1 presents variable definitions and descriptive statistics for the 1,145 observations 

that were included for analysis after eliminating those with missing values. The average crop 

acres harvested between 2011 and 2012 were 976, and 36% of producers were using cover crops 

on their fields. The average producer was 57 years old; 58% had used farm dealers to obtain 

information about PA technologies and 41% had a bachelors or graduate degree. Field shape 

irregularity measures were estimated at the county level. About 31% of respondents had adopted 

ASC technologies and 59% had adopted AG systems.  

Table 2 and Table 3 present comparisons of operator characteristics, farm business 

characteristics, and the shape indexes for ASC and AG systems adopters and non-adopters. 

Results suggest that adopters of ASC technologies are younger and have achieved higher levels 

of education on average, with 48% having a bachelors or graduate degree compared to 39% of 

non-adopters indicating having this level of education (Table 2).  

Total crop acres harvested were 1,517 and 737 for ASC adopters and non-adopters, 

respectively. Results also suggest that ASC adopters are more likely to use farm dealers to obtain 
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information about PA technologies and use cover crops. Statistically, field shape measure values 

were not significantly different between adopters and non-adopters. This result may reflect that 

field shape measures used in this study may be imprecise rather than reflecting that there is no 

relationship between ASC and shape measures (Wasserstein and Lazar, 2016). Finally, 94% of 

cotton producers who adopted ASC technologies also adopted AG systems compared to 44% of 

producers who had not adopted ASC technologies. 

Similar to ASC adopters, AG adopters are younger and have a higher level of education 

than non-adopters. About 46% of adopters have a bachelors or graduate degree compared to 34% 

of non-adopters (Table 3). In addition, AG adopters harvest more crop acres and are more likely 

to use farm dealers for information about PA technologies than non-adopters. Lastly, about 48% 

of AG systems adopters also use ASC technologies, while only about 4% of the AG systems 

non-adopters use ASC technologies.  

Multicollinearity Tests 

The condition indexes revealed a potential correlation between the variables representing 

computer use for farm management and producer education level. Although computer use and 

education have been used in past adoption models, the inclusion of both of these as covariates 

within the adoption equation led to an increased condition index and suspected ill-conditioning 

of the regressor matrix when evaluating the random intercept probit regressions. While previous 

studies have incorporated both variables in the adoption equations (McBride and Daberkow, 

2003; Roberts et al., 2004; Banerjee et al.,2008; Larson et al.,2008; Walton et al., 2010; Lambert 

et al., 2014), we decided to include education but not computer use in both ASC and AG 

adoption equations to avoid potential multicollinearity problems. Education was included as it 
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yielded lower condition indexes compared to those condition indexes obtained when including 

computer use as a regressor.  

Results and Discussion from Bivariate Probit Regressions 

The bivariate probit regressions evaluated include: 1) a bivariate probit regression with a 

shape measure included as an independent variable and a random-intercept included in the ASC 

equation; and 2) a bivariate probit regression with a shape measure but no random-intercept 

included in the ASC equation. The correlation coefficients between residuals (ρ) from both 

adoption equations were positive and statistically significant at the 1% level for all evaluated 

regressions, supporting the hypothesis that the error terms in the ASC and AG equations are 

correlated. Therefore, a bivariate probit-regression approach is appropriate for this analysis. The 

estimation of marginal effects on the probability of adoption of ASC and AG systems are 

presented in Tables 5 and 6. Marginal effects are presented for the marginal probabilities of ASC 

and AG. 

The likelihood-ratio test was used to evaluate model fit between regression models with 

and without the random intercept for each field shape measure; this resulted in the selection of 

the random-intercept approach for all shape measures. Table 4 contains the AIC, BIC, values of 

the log-likelihood function, and condition numbers (i.e., highest condition index) for the six 

regression approaches evaluated. AIC and BIC values were used to compare random-intercept 

regression models using different shape measures. The bivariate regression including a random 

intercept and LOGSUMIRR as a measure of field shape irregularity have the smallest AIC and 

BIC values. Field shape irregularity measure LOGSUMIRR is the most appropriate measure of 

field shape irregularity for this analysis according to these statistics. Results from the bivariate 
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probit regressions including random intercepts, and LOGSUMIRR and LOGAWMSI as measures 

of field shape irregularity are presented in Tables 5 and 6.  

Table 5 contains the parameter estimates and marginal effects of the regression approach 

evaluating the factors influencing the adoption of ASC technologies and AG systems including 

LOGSUMIRR as a shape field irregularity measure and a county-level random intercept. The 

overall regression model is significant at the 1% level. Results suggest that farm business 

characteristics positively influencing the decision to adopt ASC technologies and AG systems 

include farm size and field shape irregularity. Producers with additional 100 acres of cropland 

harvested are 1% more likely to adopt ASC technologies and AG systems, and a 1% increase in 

SUMIRR increases the likelihood of adopting ASC by 8%. 

Producer characteristics influencing the decision to adopt ASC technologies and AG 

systems include education level, age of producer, the use of farm dealers to gather information 

about PA technologies, and use of cover crops. Producers with a bachelors or graduate degree 

are more likely to adopt ASC and AG (Table 5). Likewise, the use of farm dealers to obtain PA 

information increases the probability of adopting AG systems by 14% and the probability of 

adopting ASC technologies by 19%. Consistent with previous literature, older producers are less 

likely to adopt ASC and AG systems. The signs of all variables are consistent with the 

hypotheses presented in this research.  

The parameter estimates and marginal effects for the bivariate probit regression with 

random intercepts and LOGAWMSI as a measure of field shape irregularity are presented in 

Table 6. The overall regression model is significant at the 1% level. Producer characteristics 

influencing the adoption of ASC and AG include age, education attainment, and use of farm 

dealers to obtain PA information. For example, a producer using farm dealers to obtain 
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information about PA technologies is 14% more likely to adopt AG and about 19% more likely 

to adopt ASC.  

Farm and business characteristics influencing the adoption of ASC and AG systems 

include crop acres harvested and field shape irregularity measure LOGAWMSI.  For example, 

additional 100 acres of crop harvested increases the probability of ASC and AG adoption by 1%. 

While field shape irregularity was hypothesized to have a positive impact on the adoption of 

ASC, results indicate a 1% increase in AWMSI actually, decreases the probability of adopting 

ASC by 9% (Table 6).  

Overall, the results from the regressions presented above indicate that adopters of ASC 

and AG are likely to be more educated, younger, harvest more crop acres, and more likely to use 

farm dealers as a PA information source than non-adopters. When considering the two regression 

approaches that fit best the data use in this study, results from the regression approach 

considering AWMSI as a measure of field shape irregularity seem to contradict the hypothesis 

that farms with more irregularly shaped fields are more likely to adopt ASC technologies. This 

result may be explained by the facts that this field shape irregularity measure is taken out of the 

context of land fragmentation which is a concept including various dimensions other than field 

shape. Therefore, this measure in itself may not be capturing field shape irregularity as an 

individual measure that could potentially affect the adoption decision considered in this study. 

From these results we infer that a good measure of field shape irregularity when farm-level data 

is not available is SUMIRR. As hypothesized, farm operations located in counties that are more 

likely to have fields with higher levels of shape irregularity may be more likely to adopt ASC 

technologies.    
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Conclusions 
 

Precision agriculture technologies such as ASC and AG will continue to be adopted by 

producers in the United States as the size of the average farm, and fertilizer and seed costs 

increase. Technologies like the ones evaluated in this study that result in both monetary and time 

savings may have a particular advantage, specifically for larger farms. A bivariate-probit 

regression approach was used to evaluate the adoption of ASC and AG, and a county-level 

random intercept was included to take into account unobserved farm-level heterogeneity. Not 

only do findings from this study clarify the understanding of the factors influencing the adoption 

of these technologies, but they may also contribute to the discussion about measurements of field 

shape irregularity at a county-level when field shape measures are not available at the farm level.  

 A producer decision to adopt ASC and AG is influenced by farmer and farm business 

characteristics. These include crop acres harvested, age of the producer, educational attainment, 

and the use of farm dealers to obtain PA information. Producers who are older are less likely to 

adopt ASC or AG, which follows the hypothesis that these producers have shorter planning 

horizons than younger producers and are, therefore, less likely to make drastic changes in their 

production systems. Additionally, consistent with previous literature, producers with larger farms 

are more likely to adopt ASC and AG due to their ability to spread the cost of the technology 

across more acres. 

Although results from this study suggest farms located in counties with more irregularly 

shape fields are more likely to adopt ASC technologies, the variable used in this analysis to 

measure field shape irregularity should be used with caution. The lack of farm-level data on field 

shape irregularity led to the creation of shape measures using the CDL data. This approach was 

not validated matching fields obtained from CDL data with actual field data from individual 
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farms, as this data was not available. Further, the aggregation of the shape measures by county 

may not be an appropriate approach when attempting to measure field shape irregularity at the 

farm-level. Until the procedure used in this study to create field shape irregularity measures is 

validated, SUMIRR should be used with caution when evaluating field shape irregularity at the 

farm-level.  
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Appendix 

 
Table 1. Summary Statistics of Variables with Shape Index (n=1445) 

Variables Description Mean Standard 
Deviation Min Max 

A. Dependent 
variables:      

ASC = 1 if producer has 
adopted ASC for 
planters or sprayers 

0.31  0 1 

AG = 1 if producer has 
adopted AG auto-
guidance systems 

0.59  0 1 

B. Independent 
variables:  

    

AVACRES Average cotton acres 
harvested in 2011 and 
2012, divided by 100 

   9.75 1323.74 2 17500 

BGDEDUCATION = 1 if the producer’s 
highest level of 
education is a 
bachelors or graduate 
degree 

0.41  0 1 

AGE Age of primary 
decision maker as of 
2014 

56.85 13.32 20 100 

FARMDEALER = 1 if the producer has 
used a farm dealer as a 
source of information 
about precision 
farming 

0.58  0 1 

COVER = 1 if producers uses 
cover crops, 0 
otherwise 

0.35  0 1 

LOGAWMSI Area Weighted Mean 
Shape Index of the 
county a producer 
operates within 

2.72 1.98 1.15 15.14 
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Table 1 Continued.  

Variables Description Mean Standard 
Deviation Min Max 

SUMIRR The sum of the perimeter-
to-area ratio of the county a 
producer operates within 50.51 31.84 0.32 173.77 
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Table 2. Summary Statistics of Variables by ASC Adoption 
Variable ASC=1 ASC=0 

AVACRES*** 15.17 7.37 
BGDEDUCATION*** 0.48 0.39 

AGE*** 52.39 58.82 
COVER*** 0.40 0.32 

FARMDEALER*** 0.78 0.50 
LOGAWMSI 2.70 2.74 
LOGSUMIRR 52.08 49.82 

AG*** 0.94 0.44 
*, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively. 
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Table 3. Summary Statistics of Variables by AG Adoption 
Variables AG=1 AG=0 

AVACRES*** 12.54 5.64 
BGDEDUCATION***       0.46 0.34 

AGE***       54.95 59.36 
FARMDEALER*** 0.67 0.45 

ASC(%)*** 0.48 0.04 
*, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively. 
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Table 4. Goodness of Fit Measures for All Models 

Shape Variable 
Random 

Intercepts Sign AIC BIC 
Log-

Likelihood 
Condition 

Index 
LOGAWMSI No (-) 44101.41 44170 -22132.93 14.5735 
LOGAWMSI Yes (-) 2998.518 3072.38 -1485.2591 14.5735 

       
LOGSUMIRR No (+) 44132.27 44200.86 -22053.14 26.4532 
LOGSUMIRR Yes (+) 2997.293 3071.155 -1484.6466 26.4532 

       
LOGMEDIANIRR No (+) 44257.32 44325.9 -22115.65 25.5774 
LOGMEDIANIRR Yes (+) 3002.113 3075.975 -1487.0563 25.5774 
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Table 5. Parameter Estimates and Marginal Effects for ASC and AG Adoption Equations 
from a Bivariate Probit Regression with LOGSUMIRR, County-level Random Intercepts, 
and Cluster Robust Standard Errors Included (n=1445) 

 Adoption Equations Marginal 
Effect 

Marginal 
Effect  AG ASC 

Independent 
Variables Coefficient Coefficient AG=1 ASC=1 

AVACRES 0.0300*** 0.0300*** 0.0100*** 0.0100*** 

 (0.0001) (0.0001)   
BGDEDUCATION       0.2399*** 0.2320**       0.0906*** 0.0786** 
 (0.0758) (0.1040)   
AGE       -0.0150*** -0.0213***       -0.0057*** -0.0072*** 
 (0.0024) (0.0038)   
FARMDEALER 0.3597*** 0.5864*** 0.1369*** 0.1893*** 
 (0.0686) (0.1046)   
COVER  0.1523  0.0511 
  (0.1060)   
LOGSUMIRR  0.2382**  0.0799*** 
  (0.0784)   
Constant 0.5106*** 0.9449**   
Likelihood value -1484.65    
𝜒𝜒2(10) 343.87***    
Correlation coefficient 0.79***    

 *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively. 
 Numbers in parentheses are standard errors. 
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Table 6. Parameter Estimates and Marginal Effects for ASC and AG Adoption Equations 
from a Bivariate Probit Regression with LOGAWMSI, County-level Random Intercepts, 
and Cluster Robust Standard Errors Included (n=1445) 

 Adoption Equation Marginal 
Effect 

Marginal 
Effect  AG ASC 

Independent 
Variables Coefficient Coefficient AG=1 ASC=1 

AVACRES 0.0300*** 0.0300*** 0.0100*** 0.0100*** 

 (0.0001) (0.0001)   
BGDEDUCATION      0.2411*** 0.2333**       0.0913*** 0.0789*** 
 (0.0791) (0.1108)   
AGE       -0.0150*** -0.0217***       -0.0057*** -0.0072*** 
 (0.0026) (0.0042)   
FARMDEALER 0.3586*** 0.5817*** 0.1372*** 0.1875*** 
 (0.0739) (0.1161)   
COVER  0.1577  0.0528 
  (0.1097)   
LOGAWMSI  -0.2701***  -0.0904** 
  (0.0241)   
Constant 0.5108*** -0.0508   
Likelihood value -1485.33    
𝜒𝜒2(10) 259.70***    
Correlation 
coefficient 0.80***  

  

 *, **, and *** represent statistical significance at 10%, 5%, and 1% levels, respectively. 
  Numbers in parentheses are standard errors. 

 

 
 
 
 
 
 
 
 
 
 
 



33 
 

 
 
Figure 1. Cotton Acres Harvested from Agricultural Census vs. Survey Data  
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