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The efficient management of water resources, given rising water demand and projected 

reductions in precipitation as a direct result of climate change, has become a critical issue. 

Several regions in the U.S. continue to experience significant drought and water shortages, which 

directly threatens the viability of agriculture. This has led to an increase in irrigation, which is in 

direct competition with other uses of water for domestic, industrial, and hydroelectric activities. 

Consequently, conservation and efficient water use has emerged as an important focal point in 

water policy related issues in the U.S. (Clemmens et al. 2008; USDA 2014).  

The evidence within the United States that establishes the connection between climatic 

variability and the need for secondary sources of water, such as irrigation, has been building for 

years. A major argument has been that changing temperature and precipitation patterns will lead 

directly to modifications in farming systems and resource use (e.g., Mendelsohn, Nordhaus and 

Shaw 1994; Adams et al. 1995; Mendelsohn and Dinar 2003; Deschenes and Greenstone 2007; 

Schlenker and Roberts 2009; Hatfield et al. 2014). Most importantly, some of these studies have 

noted a growing reliance on irrigation (e.g., Mendelsohn and Dinar 2003; Schlenker, Hanneman 

and Fisher 2005; Deschenes and Greenstone 2007; Hatfield et al. 2014). The implementation of 

such adaptation strategies can be expected, on the one hand, to reduce the long-run adverse 

effects stemming from changes in climatic conditions (Schlenker, Hanemann and Fisher 2005), 

while on the other, putting further pressure on a resource that is becoming increasingly scarce. 

These developments are clearly not compatible and are likely to increase tensions between 

farmers and other sectors of the economy (Schaible and Aillery 2012). 

According to the U.S. Geological Survey (USGS), the agricultural sector is the second 

largest consumer of water resources in United States. Combined water withdrawals used in 

irrigation, livestock and aquaculture accounted for approximately 115,000 million gallons per 
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day, with 62.4 million acres of land under irrigation (USGS 2014). Moreover, U.S. farmers are 

shifting to higher revenue crops while several climate models predict significant changes in 

weather, characterized by warmer temperatures and lower precipitation. As a result, it is 

expected that demand for water will continue to surpass its supply resulting in a strain in water 

available for household and industrial purposes (Schaible and Aillery 2014). Hence, the threat of 

water scarcity has become an issue of concern among policy makers and stakeholders alike with 

conversations on how best to manage this scarce resource being brought to the forefront (e.g., 

McGuckin, Gollehon, and Ghosh 1992; Weinberg, Kling, and Wilen 1993; Chakraborty, Misra, 

and Johnson 2002; Wu, Devadoss, and Lu 2003; Lilienfeld and Asmild 2007; Clemmens, Allen, 

and Burt 2008). 

Consequently, in the face of water scarcity, the role of irrigation has become increasingly 

important in agricultural production. As several regions particularly in the Southwest continue to 

experience frequent and prolonged droughts, water extraction rates are projected to rise, and with 

this, concerns with the depletion of ground water sources will escalate. Irrigation systems are 

likely to be brought under increased scrutiny with a push towards more efficient irrigation 

methods (e.g., Evans and Sadler 2008; Hatfield et al. 2014; Schaible and Aillery 2014; 

Zilberman 2014). Hence, understanding the role that improvements in irrigation efficiency can 

have in alleviating water scarcity is an important area of research and one that can provide useful 

information to policy makers. We conjecture that farmers adjust their production plans by 

altering their scale of operations and mix of inputs and outputs based on several factors including 

differences in soil types and slopes, disparities in temperature and precipitation across regions, 

water availability, and predominant irrigation technologies. A hypothetical type of adjustment is 

a shift away from high value crops that require large amounts of water (e.g., almonds, rice, 
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alfalfa) towards crops that are more drought-tolerant and thus require less water. Furthermore, 

several studies have predicted an increase in irrigated area in response to climatic variability 

characterized by unpredictable rainfall, rising global temperatures that lead to higher rates of 

evapotranspiration (e.g. Nelson et al. 2009; Fisher et al. 2007; Padgham 2009).  

Sustainable agriculture, characterized as an integrated system of plant and animal 

production practices that over the long term enhances environmental quality and the natural 

resource base upon which the agricultural economy depends, requires the protection and 

enhancement of water resources (USDA 2014). Improved water management practices are 

required to maximize the economic efficiency of irrigation systems (Schaible and Aillery 2012). 

Updating and modernizing irrigation technology is one approach that can enhance water-use 

efficiency generating benefits beyond the farm. Given the sensitivity of agriculture to secondary 

water sources, this study seeks to analyze irrigation efficiency in the United States. Here we 

follow Karagiannis et al. (2003) and define irrigation efficiency (IE) as the ratio of the minimum 

feasible water used to observed water usage associated with a given level of output holding other 

inputs and technology constant. 

 The objective of this study is to evaluate irrigation efficiency across U.S. counties and to 

establish whether IE has improved or deteriorated over time in the presence of climatic 

variability and diverse environmental and topographic conditions. The results from this study 

will add to existing knowledge on irrigation efficiency and provide policy makers with insights 

on how to formulate policies that are compatible with conservation and efficient water use in 

agriculture. We conjecture that U.S. counties that are heavily reliant on irrigation are likely to 

exhibit higher IE because water scarcity in these regions would have induced overtime the 

following adjustments: (i) a shift to less water-intensive crops; (ii) an increase in investments in 
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modern irrigation technology; and/or (iii) the adoption of statutory requirements that regulate the 

amount of water usage at the farm level. Moreover, irrigation is conducted in geographically 

diverse regions that face distinct environmental conditions. For example, farming in the western 

states are heavily reliant on irrigation, whereas in eastern states irrigation practices are mostly 

supplemental (Wichelns 2010).  

Several approaches have been utilized in the literature to evaluate agricultural water 

productivity and efficiency including: 1) Frontier methods that are commonly used to measure 

the technical efficiency (TE) component of productivity. These efficiency measures can be 

divided into: (a) output-oriented TE which is based on the traditional radial measure that 

incorporates all inputs (e.g., Aigner, Lovell and Schmidt 1977; Meeusen and van den Broeck 

1977); and (b) an input-oriented approach which has been used to derive a non-radial measure of 

efficiency that isolates the TE of a single input, while holding other inputs, output and 

technology constant (e.g., Kopp 1981; Reinhard, Lovell and Thijssen 1999; Karagiannis et al. 

2003); 2) Total factor productivity (TFP) which is defined as aggregate output divided by 

aggregate inputs used over a given period of time (e.g., O’Donnell 2016) after which a partial 

factor productivity (PFP) measure can be derived. Such an approach seeks to measures the ratio 

of aggregate output divided by volumetric measures of irrigation water used, while holding other 

inputs used in the production process constant (Njuki and Bravo-Ureta 2016); and 3) Single 

factor productivity defined as output divided by the water input while ignoring other inputs 

commonly referred to as “crop per drop” (e.g., Seckler, Molden and Sakthivadivel 2003). This 

approach differs from the partial factor productivity (PFP) approach mentioned in (2) above 

because PFP accounts for all inputs used in the production process while “crop per drop” ignores 
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all inputs, except water, used in the agricultural production process (e.g., Scheierling et al. 

2014). 

This article uses frontier methods in order to analyze both irrigation efficiency and 

technical efficiency. The economic intuition is that a non-radial measure of the irrigation input 

can be used to quantify the feasible reduction in irrigation water applied. The approach will 

generate distinct rankings for technical efficiency (TE) and irrigation efficiency (IE) for each 

Decision Making Unit (DMU) under study.  

The Production Technology 

The theoretical foundation used here distinguishes between the production technology and the 

environmental factors that impact the technology. Whereas the production technology is a 

system, or technique that transforms inputs into outputs, the environmental factors comprise all 

the exogenous variables that impact the production process but are beyond the control of the firm 

(O’Donnell 2016). Environmental factors comprise weather variables, and time-invariant 

physical features such as topography. We refer to all technologies available in period-t as the 

period-t metatechnology. The combinations of inputs and outputs that are feasible using a given 

metatechnology in a given environment is given as: 

1  𝑇! 𝑧 =  (𝑥, 𝑞) ∈  ℜ!
!!!: 𝑥 can produce 𝑞 in environment 𝑧 in period 𝑡 . 

We also assume the following properties regarding the production technologies (see O’Donnell 

2016):  

P1:  (𝑥, 0)  ∈ 𝑇! 𝑧  for all 𝑥 ∈  ℜ!
! implying that inactivity is possible;  

P2:  the output set 𝑃! (𝑥, 𝑧) ≡  {𝑞: (𝑥, 𝑞)  ∈ 𝑇! 𝑧 } is bounded for all  𝑥 ∈  ℜ!
!;  
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P3:  if 𝑞 > 0, then 0, 𝑞 ∉ 𝑇! 𝑧 , implying that a strictly positive amount of at least one 

input is required to produce a positive amount of output. This is also referred to as the 

weak essentiality property;  

P4:  if (𝑥, 𝑞)  ∈ 𝑇! 𝑧  and 0 ≤ 𝜆 ≤ 1, then (𝑥, 𝜆𝑞)  ∈ 𝑇! 𝑧 , implying outputs are weakly 

disposable; 

P5: if (𝑥, 𝑞)  ∈ 𝑇! 𝑧  and 𝜆 ≥ 1, then (𝜆𝑥, 𝑞)  ∈ 𝑇! 𝑧 , implying inputs are weakly 

disposable as well (this property implies that if an output vector can be generated using a 

particular input vector, then it can also be produced using a scalar magnification of that 

input vector);  

P6:  the output set 𝑃! (𝑥, 𝑧)  ≡  {𝑞: (𝑥, 𝑞)  ∈ 𝑇! 𝑧 } is closed, implying the set of outputs that 

can be produced given an input vector contains all the points on its boundary;  

P7:  the input set 𝐿! (𝑞, 𝑧)  ≡  {𝑥: 𝑥, 𝑞 ∈ 𝑇! 𝑧 } is closed, implying the set of inputs that can 

produce a given output vector contains all the points on its boundary.  

When these seven properties are satisfied, then the period-t metatechnology is said to be regular 

and it can be represented using a period-and-environment-specific output distance function 

(ODF), as in (2) below, that is nonnegative, homogeneous of degree one, and non-decreasing in 

outputs: 

2  ln  𝐷!!  𝑥, 𝑞, 𝑧  = 𝑖𝑛𝑓 𝛿 > 0: (𝑥,
𝑞
𝛿 ∈ 𝑇

!(𝑧) . 

If there are no environmental variables in the production process and there is no technical 

change, then expression 2 collapses to the distance function of Shephard (1970). In addition, we 

assume that: 

P8: if (𝑥, 𝑞)  ∈ 𝑇! 𝑧  and 0 ≤ 𝑞 ≤ 𝑞 , then, (𝑥, 𝑞)  ∈ 𝑇! 𝑧 , implying that outputs are 

strongly disposable. Strong disposability of outputs implies that it is possible to use the 
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same vector of inputs to produce fewer outputs. This guarantees that the output distance 

function is non-decreasing in outputs; 

P9: Conversely, (𝑥, 𝑞)  ∈ 𝑇! 𝑧  and 𝑥 ≥ 𝑥, meaning that (𝑥, 𝑞)  ∈ 𝑇! 𝑧 , inputs are strongly 

disposable. Strong disposability of inputs guarantees that it is possible to produce the 

same outputs using more inputs and that the input distance function is non-decreasing in 

inputs; and 

 P10:  (𝑥, 𝑞)  ∈ 𝑇! 𝑧 , and that for all 𝜆 > 0, then (𝜆𝑥, 𝜆!𝑞)  ∈ 𝑇! 𝑧 . This last property 

means that the metatechnology is homogeneous of degree-r. The logarithm of the output 

distance function is such that − (1/𝑟)  ln  𝐷!!  𝑥!" , 𝑞!" , 𝑧!" = ln  𝐷!! 𝑥!" , 𝑞!" , 𝑧!" , where 𝑟 

is the degree of homogeneity.		

The output distance function that is nonnegative, homogeneous of degree-r, and non-decreasing 

in outputs can be represented using a Cobb-Douglas (C-D) functional form, which can be 

expressed as:1  

3  ln  𝐷!!  𝑥, 𝑞, 𝑧  = ln 𝑞!" − 𝛼! − 𝛼!𝑡 − 𝜌! ln 𝑧!

!

!!!

− 𝛽! ln 𝑥!

!

!!!

. 

Data and Econometric Specification 

The data consist of a panel of county-level input-output data drawn from the U.S. Department of 

Agriculture, Census of Agriculture for the years 1987, 1992, 1997, 2002, 2007 and 2012. The 

‘State and County rankings’ volume that is published alongside every census report is used to 

select 340 of the top agricultural counties, based on the market value of agricultural products 

sold in 2012. The input-output variables utilized include total value of agricultural sales, 

1 If the output distance function (ODF) is represented using a flexible functional form such as the translog 

specification then the associated metatechnology cannot be regular. This is because the translog ODF is undefined for 

regions where q=0. As a result the translog ODF does not satisfy properties P1, P3, P6 and P7. Moreover, properties P8 and P9 

are only satisfied if all second order coefficients are zero. 
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agricultural land in acres, livestock (number of dairy cows, beef cows, hogs, sheep, horses, 

poultry) converted into animal equivalents by taking into account feed requirements for each 

animal type (USDA 2000), value of machinery and equipment, hired and contract labor, 

expenditures on intermediate material (fertilizer, chemicals, electricity) and total fuel used in 

gallons. All monetary values are adjusted to 2016 dollars using the GDP implicit price deflator 

that is made available by the Bureau of Economic Analysis of the U.S. Department of 

Commerce.  

The input-output data is augmented with contemporaneous monthly averages of 

temperature and precipitation derived from the Parameter-Elevation Regressions on Independent 

Slopes Model (PRISM) Climate Group. The PRISM incorporates a climate-mapping system to 

generate temperature and precipitation information at 4×4 kilometer grid cells for the entire 

United States and accounts for effects of elevation, coastal proximity, temperature inversions and 

terrain induced air-mass blockage (Daly et al. 2008, 2012, 2015).  

From an agronomic perspective, crop production relies on ambient weather conditions 

from planting to harvesting so output tends to be influenced not only by average weather but also 

by weather extremes. The threshold above which temperatures are considered harmful for crop 

development is considered to be 89.4°F (Ritchie and NeSmith 1991). Consequently, we 

incorporate in the model the number of days within the growing season (i.e., April 1 to 

September 30) where temperatures exceeded the crop ambient level. We refer to this non-linear 

measure as the number of degree-days.  

Local precipitation measures are an inaccurate measure of water quantities required for 

crop growth and animal husbandry. This is because in the absence of adequate rainfall additional 

water is applied via irrigation. Volumetric measures of agricultural water used at the county-level  
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are obtained from the U.S. Geological Survey and are available for the years 1985, 1990, 1995, 

2000, 2005 and 2010.2 Linear interpolation methods are used to match this data with the input-

output data. 

Finally, it is important to point out that agricultural production is likely to be impacted by 

topography and soil characteristics. Therefore, information on land characteristics obtained from 

the National Resource Inventory of the U.S. Department of Agriculture are incorporated into 

the model. This information comprises data on soil samples obtained from soil surveys. It 

contains detailed information on the physical characteristics and soil features such as 

measures of susceptibility to soil erosion (k-factor), estimates of susceptibility to floods, 

length of slope, permeability, fraction of land cover under clay and sand, level of moisture 

capacity, and salinity of the soil. Similar measures of soil characteristics have been used in 

other studies of climate change such as (e.g., Deschenes and Greenstone 2007; Schlenker, 

Hanemann and Fisher 2006).   

 The stochastic production frontier that represents the unknown technology is estimated 

using a True Random Effects with Random Parameters model (TRE-RP), which is an 

extension of the true random effects model (see Greene 2005a, b), albeit with one key exception.  

This exception, as the name of the model suggests, allows for the random variation across 

DMUs. In this article, in addition to having an intercept that varies across each DMU the 

parameter for irrigation is also allowed to vary across DMUs. Thus, the TRE-RP can be written 

as:  
4    𝑦!" = 𝛼!! + 𝛼!𝑡 + 𝛽!! ln 𝑥!!" + 𝛽! ln 𝑥!"#

!

!!!

+ 𝜌! ln 𝑧!"#

!"

!!!

+ 𝑣!" − 𝑢!" 

2 Note that U.S. Geological Survey does not indicate if these volumetric measures are obtained from groundwater or 
surface water sources.  
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!
!

where 𝑦!" is the log of output, which can be produced using conventional inputs 𝑥!"#, irrigation 

quantity given by 𝑥!!", and environmental factors 𝑧!!". The parameter 𝛼!! is an intercept term, and 

𝛽!! captures heterogeneity in irrigation water usage across counties. Both are allowed to vary 

hence inducing variation of the parameters across DMUs (see Greene 2012). The error structure 

includes the term 𝑣!" , which captures statistical noise from various sources (e.g., functional form 

errors) and we assume that 𝑣~𝑁(0, 𝜎!!).  The term 𝑢!" = − ln 𝐷  𝑥!" , 𝑦!" , 𝑧!"  is an output-

oriented technical efficiency effect with distributional parameters 𝑢~𝑁!(0, 𝜎!!). This output-

oriented technical efficiency is a traditional radial measure that incorporates all inputs including 

irrigation.  

Another measure of efficiency that is of interest here is the technical efficiency associated 

with a single input, in this case irrigation water use. As mentioned above, the economic intuition 

is that one can obtain a non-radial measure of the irrigation input, while holding output and all 

other inputs constant. This will enable the evaluation of the extent to which irrigation water 

applied can be reduced. Based on stochastic frontier models, the input-oriented approach has 

been previously used to evaluate irrigation water use efficiency by Karagiannis et al. (2003) for a 

sample of Greek farmers and to measure technical efficiency of an environmentally detrimental 

input (Reinhard, Lovell and Thijssen 1999). All these papers use a conventional SPF model 

along with a translog specification.   

A key point of departure between these prior studies and this article is our use of a True 

Random Effects with Random Parameters (TRE-RP) on a Cobb-Douglas framework. As 

mentioned earlier, a flexible functional form that incorporates squares and cross products of log-

inputs and log-outputs violates key properties of a regular metatechnology, notably: inactivity, 

strong disposability of inputs and strong disposability of inputs, and output and input closedness 
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(see O’Donnell 2012b, 2016). Given that inputs are assumed to be strongly disposable, the 

distance (resp. production) function is globally nonnegative and nonincreasing (resp. 

nondecreasing) in inputs. A translog distance (resp. production) function cannot satisfy these 

properties and its use inevitably leads to a functional form error.  

An illustration of irrigation efficiency is provided in Figure 1. The inefficient 

representative decision-making unit is initially producing output level 𝑞!  using 𝑥!!  units of 

irrigation water. In Figure 2, OTE is a radial measure where 𝑂𝑇𝐸 = 0𝐵/0𝐴. The minimum 

feasible quantity of water needed to produce 𝑞!  is denoted by 𝑥!! ; therefore, the maximum 

possible reduction in irrigation water is given as 𝑥!! − 𝑥!!; hence, 𝐼𝐸 = 𝑥!! 𝑥!!. The quantity 𝑥!! is 

not observed; however, rewriting the latter expression for IE we can get  𝑥!! = 𝐼𝐸 × 𝑥!! . 

Therefore, the stochastic production frontier in 4 above can be rewritten as:  

5    𝑦!" = 𝛼!! + 𝛼!𝑡 + 𝛽!! ln 𝑥!!"! + 𝛽! ln 𝑥!"#

!

!!!

+ 𝜌! ln 𝑧!"#

!"

!!!

+ 𝑣!" 

Note that 𝑥!!"!  lies on the frontier, a region that is technically efficient, therefore 𝑢!" = 0. The 

economic intuition is that one can obtain a non-radial measure of irrigation water, holding output 

and all other inputs constant, and thus establish the extent to which the quantity of irrigation 

water applied can be reduced. Thus, a measure of irrigation efficiency can be obtained by 

equating expressions (4) and (5) in order to obtain: 

6  𝐼𝐸! = 𝑙𝑛𝑥!!"! − 𝑙𝑛𝑥!!" = exp
𝑢!"
𝛽!!

Results from equation 6 will enable us to establish how efficient DMUs are at using the minimal 

possible level of irrigation water. The OTE and IE approach will enable the dual ranking of 

counties based on both measures. 
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Results 

Before discussing the results, we acknowledge concerns about endogeneity in the stochastic 

production frontier literature (e.g., Mutter et al. 2013; Tran and Tsionas 2013; Shee and Stefanou 

2015). In this article, a likely source of endogeneity is that input choices are likely driven by 

weather outcomes. For example, extended periods of drought may drive up the demand for 

irrigation withdrawals. On the other hand, when rainfall is spread evenly throughout the growing 

season there is unlikely to be need for irrigation. Using intra-annual standard deviation of rainfall 

from 5 years prior as instruments, a two-stage least squares estimation procedure is conducted to 

test for endogeneity where the null hypothesis of the Durbin and Wu-Hausman (Hausman 1978) 

test is that the variable under consideration, in this case irrigation withdrawals, can be treated as 

exogenous. We obtain an F-statistic=0.56 and a p-value=0.4536 and based on this large p-value 

we fail to reject the null hypothesis of exogeneity.   

Recall that the estimated equation is a True Random Effects with Random Parameters 

(TRE-RP) model and that we generate distinct partial elasticities of irrigation for each county 

across each census year. The mean of the random parameter for irrigation as well as for the 

conventional inputs (i.e., land, labor, capital, livestock, intermediate inputs, fuel) are reported in 

Table 2. These estimates can be interpreted as partial elasticities. A Wald test for returns to scale 

where the null hypothesis is constant returns to scale generates an F-Statistic=164.81 and p-

value=0.000. Consequently we reject the null hypothesis that this production function exhibits 

constant returns to scale. Moreover, the sum of the coefficients indicates that the estimated 

elasticity of scale is 1.15 revealing slightly increasing returns to scale. The ratio of 𝜎! and 𝜎! (𝜆) 

is equal to 0.917 indicating that the error components (one and two sided) play a similar role in 

the overall error term.  
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The estimates of the weather variables reveal that, on average, spring temperatures (April 

to June), spring precipitation (April to June) and the number of degree-days have statistically 

significant impacts on the total value of agricultural output. These results indicate that, ceteris 

paribus, average spring precipitation has a negative effect whereas average spring temperatures 

have a positive impact on total value of agricultural output. On the other hand, an increase in the 

number of degree-days (i.e., days with temperatures exceeding 89.4°F) has a negative effect on 

total value of output.  

Finally, results on the impact of land and soil features on total value of agricultural output 

reveal that regions characterized by clay soils, higher levels of soil permeability, and moisture 

capacity all result in higher levels of total value of agricultural output. On the other hand, soils 

characterized as flood-prone, susceptible to soil erosion (k-factor), wetlands, and saline soils 

contribute, ceteris paribus, lead to lower values of agricultural output.  

As mentioned earlier, irrigation efficiency is measured as the minimum feasible quantity 

of water needed to generate a given level of output at the frontier (Karagiannis et al. 2003). It 

involves estimating the maximal possible reduction in irrigation withdrawals while holding all 

other inputs constant. The economic intuition being that the usage of irrigation water input can 

be progressively scaled back up to a minimal feasible level required for producing a given level 

of output. Average irrigation efficiency across all counties is estimated to be 79.4% whereas 

average technical efficiency across all counties is estimated to be 81.4%. An illustration of the 

kernel densities of irrigation efficiency and technical efficiency is provided in Figure 2. In Table 

3, we present results of the best performing Counties based on estimates of irrigation efficiency 

for the years 1987, 1992, 1997, 2002, 2007 and 2012. Wilchens (2010) conjectures that counties 

that rely heavily on irrigation for their primary water needs are likely to be more efficient than 
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counties that use irrigation water for supplemental purposes. Based on our results, we find no 

evidence that this is the case. On the contrary, other than the counties of San Luis Obispo, CA, 

Santa Barbara, CA, Tillamook, OR and Cavalier, ND, all the other counties that rank highest in 

terms of irrigation efficiency are located in the eastern half of the United States which is 

characterized by a farm sector that utilizes irrigation for supplemental needs. In Table 4 we 

present results of the worst performing counties, again based on our estimates of irrigation 

efficiency. With the exception of San Bernardino, CA, Comanche, TX and Douglas, NV, the 

counties that feature on this list are located in the eastern half of the U.S. We also present 

technical efficiency estimates alongside the irrigation efficiency estimates. We find that counties 

characterized by high levels of irrigation efficiency are also likely to be highly technically 

efficient. Conversely, counties that are characterized by low levels of irrigation efficiency are 

also technically inefficient.  

In Table 5 we provide a correlation matrix that illustrates the relationship between 

irrigation efficiency, technical efficiency, with some of the environmental factors, such as, 

fraction of clay and sand, susceptibility to soil erosion (k-factor), soil permeability, moisture 

capacity, spring and summer temperatures, and precipitation. Recall that irrigation efficiency is 

defined as the minimum feasible quantity of irrigation water needed to produce a given level of 

output. We find irrigation efficiency to be negatively correlated with sand, and soil permeability, 

revealing that regions characterized by sandy soils and high levels of soil permeability require 

higher volumes of irrigation water than the minimum feasible needed to generate a given level of 

output. In addition, we find irrigation efficiency to be negatively correlated with spring and 

summer temperatures and precipitation. We surmise that increased levels of spring and summer 

temperatures lead to higher levels of evapotranspiration necessitating higher volumes of water 
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than the minimum feasible required. On the other hand, irrigation that is conducted in the 

presence of increased precipitation levels is likely to lead to more than minimum feasible levels 

required for agricultural output leading to lower levels of irrigation efficiency.  

Concluding Remarks 

This article uses stochastic production frontier production methods to calculate and evaluate 

measures of technical efficiency and irrigation efficiency using a sample of 340 counties of the 

top U.S. agricultural counties based on the total value of agricultural sales. Two distinct 

approaches are used: an output-oriented technical efficiency approach that radially measures the 

efficiency of all inputs used in the production process; as well as a non-radial input-oriented 

approach that isolates and measures the efficiency of a single input. The objective is to evaluate 

irrigation efficiency across U.S. counties in the presence of climatic variability and diverse 

environmental and topographic conditions. Our general findings reveal that irrigation contributes 

positively to output. As regards irrigation efficiency, which we define as the minimum feasible 

quantity of irrigation water needed to produce a given level of output, we find that irrigation 

efficiency averaged 79.4%. On the other hand, technical efficiency averaged 81.4% during the 

period of study, 1987-2012. Our findings also reveal irrigation efficiency to be highly correlated 

with technical efficiency thus establishing that counties that are technically efficient are also 

likely to be characterized by high levels of irrigation efficiency. Some studies have observed that 

states in the western half of the U.S. rely on irrigation for their primary water needs whereas in 

states located in the eastern half of the country irrigation is mostly supplemental (e.g., Wichelns 

2010; Schaible and Aillery 2012). Based on this, we conjecture that counties that are heavily 

reliant on irrigation water for their primary needs are likely to be more efficient partly because 
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water scarcity has necessitated a move towards less water-intensive crops, investments in 

irrigation technology, and State and local statutory requirements that regulate the amount of 

water used. Our results reveal that most of the best performing counties in terms of irrigation 

efficiency are located in the eastern half of the U.S.  

Irrigation efficiency is one dimension that seeks to improve irrigation water management 

practices across the United States. These results should provide policy makers with insights on 

how to formulate policies that are compatible with conservation and the promotion of efficient 

water use under conditions that are characterized by increasing water scarcity. 
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Figure 1: Input oriented irrigation efficiency 
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Figure 2: Probability density function for technical and irrigation efficiency 
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Table 1: Summary Statistics 

Variable Obs. Mean Std. Dev Min Max 
Total Value of Ag. Products ('000 $) 2034  305,463.60   450,905.60   2,405.84   5,157,044.00 
Land (acres) 2034  440,795.70  423,976.70  1,047.00  3,112,271.00 
Livestock (animal equivalent) 2034  42,334.44  59,285.84  29.69  595,766.50 
Machinery ('000 $) 2034  146,154.50  104,642.70  1,223.66  1,030,971.00 
Labor (hours) 2034  3,662.06  8,941.37  12.92  96,120.48 
Intermediate Inputs ('000 $) 2034  31,287.66  50,825.04  0.00  533,028.40 
Fuel (Gallons) 2034  5,503.54  7,054.12  0.00  187,803.70 
Irrigation (Mgal/day) 2034 114.65 324.62 0.03 3411.04 

2034 50.92 7.83 31.86 79.25 
2034 71.09 30.54 1.71 231.97 
2034 59.84 6.44 28.23 81.50 
2034 69.82 5.89 32.00 91.93 
2034 80.36 35.70 0.00 241.22 
2034 79.52 42.24 0.00 290.91 

Weather Variables 
Temperature (Fahrenheit) 
Precipitation (mm) 
Spring Temperature (Fahrenheit) 
Summer Temperature (Fahrenheit) 
Spring Precipitation (mm)
Summer Precipitation (mm)
Degree Days  2034 31.71 34.20 0.00 171.00 

Soil Characteristics 
Fraction of Clay 2034 0.17 0.21 0.00 1.00 
Fraction of Sand 2034 0.08 0.18 0.00 1.00 
Flood Prone 2034 0.12 0.18 0.00 1.00 
K-Factor 2034 0.30 0.06 0.02 0.51 
Permeability 2034 2.67 2.41 0.25 13.69 
Wetlands 2034 0.11 0.11 0.00 0.73 
Moisture Capacity 2034 0.18 0.04 0.05 0.30 
Salinity 2034 0.01 0.05 0.00 0.64 
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Table 2: Parameter Estimates of True Random Effects with Random Parameters Model 

Variable Parameter Coefficient Std. Error 
Land β1 0.0317a 0.0099 
Labor β2 0.2920a 0.0071 
Capital β3 0.5719a 0.0099 
Livestock β4 0.1284a 0.0059 
Intermediate β5 0.0847a 0.0024 
Fuel β6 0.0262a 0.0039 
Spring Temperature ρ1 0.9687a 0.2648 
Summer Temperature ρ2 -0.3869 0.3244 
Spring Precipitation ρ3 -0.0412a 0.0054 
Summer Precipitation ρ4 -0.0020 0.0054 
Degree Days ρ5 -0.0060a 0.0022 
Fraction Clay ρ6 0.0053a 0.0016 
Fraction Sand ρ7 -0.0009 0.0019 
Flood Prone ρ8 -0.0052a 0.0017 
K-Factor ρ9 -0.1924a 0.0366 
Permeability ρ10 0.0601a 0.0226 
Wetlands ρ11 -0.0301a 0.0070 
Moisture Capacity ρ12 0.1955a 0.0430 
Salinity ρ13 -0.0035c 0.0021 
Trend ρ14 0.0204a 0.0009 

        Means for random parameters 
Constant 𝛼! -1.4623a 0.5201 
Irrigation 𝜃! 0.0187a 0.0047 

Lambda λ 0.9164 0.0718 
Sigma (uit) σu 0.2399 
Sigma (vit) σv 0.2617 

Note: a, b, c denote significance at the 1%, 5%, and 10% levels. 
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Table 3: Best performing Counties based on Irrigation Efficiency (1987 - 2012) 

County Year Irrigation 
Efficiency 

Technical 
Efficiency 

Estimated 
Irrigation 
Volumes 

(Mgal/day) 

 Union, NC 1987 0.878 0.906 3.080 
York, ME 1987 0.870 0.892 0.910 
Sheboygan, WI 1987 0.869 0.892 1.246 
Duplin, NC 1987 0.864 0.894 4.172 
Piscataquis, ME 1987 0.864 0.879 0.128 

 Essex, VT 1992 0.882 0.891 0.090 
Union, NC 1992 0.880 0.913 5.380 
Frederick, MD 1992 0.876 0.918 8.878 
Rockingham, VA 1992 0.875 0.908 6.176 
Cavalier, ND 1992 0.874 0.888 0.168 

 Monroe, WI 1997 0.929 0.963 1.314 
San Luis Obispo, 
CA 1997 0.892 0.897 161.444 
Santa Barbara, CA 1997 0.891 0.908 286.252 
Mills, IA 1997 0.889 0.909 0.736 
Essex, VT 1997 0.889 0.894 0.058 

 Morris, NJ 2002 0.899 0.922 1.210 
Frederick, MD 2002 0.886 0.912 2.382 
Tillamook, OR 2002 0.882 0.915 5.194 
Rockingham, VA 2002 0.878 0.908 2.672 
Cavalier, ND 2002 0.875 0.882 0.028 

 Jo Daviess, IL 2007 0.918 0.948 1.474 
Fayette, KY 2007 0.907 0.938 1.578 
Middlesex, MA 2007 0.904 0.930 4.266 
Frederick, MD 2007 0.899 0.932 2.342 
Cavalier, ND 2007 0.895 0.902 0.066 

 Wilkin, MN 2012 0.972 0.962 0.170 
Cavalier, ND 2012 0.902 0.906 0.056 
Traverse, MN 2012 0.895 0.904 0.152 
Essex, VT 2012 0.894 0.901 0.122 
Union, NC 2012 0.888 0.917 2.966 



23	

Table 4: Worst performing Counties based on Irrigation Efficiency (1987 - 2012) 

County Year Irrigation 
Efficiency 

Technical 
Efficiency 

Estimated 
Irrigation 
Volumes 

(Mgal/day) 

 Franklin, NY 1987 0.270 0.275 1.378 
Berkshire, MA 1987 0.468 0.480 0.876 
Grand Isle, VT 1987 0.474 0.491 0.328 
Essex, VT 1987 0.544 0.571 0.096 
Bennington, VT 1987 0.559 0.585 0.108 

 Franklin, NY 1992 0.354 0.362 1.704 
Lafayette, MO 1992 0.592 0.603 1.790 
Chouteau, MT 1992 0.621 0.623 21.856 
Loudoun, VA 1992 0.630 0.648 0.682 
Portage, WI 1992 0.663 0.665 27.318 

 Loudoun, VA 1997 0.527 0.545 0.500 
Berkshire, MA 1997 0.572 0.586 0.942 
Pittsylvania, VA 1997 0.699 0.715 2.020 
Comanche, TX 1997 0.711 0.717 37.278 
Douglas, NV 1997 0.711 0.715 126.410 

 Marion, FL 2002 0.247 0.244 18.584 
Douglas, NV 2002 0.530 0.522 98.504 
San Bernadino, 
CA 2002 0.565 0.559 187.388 
Orange, NY 2002 0.573 0.583 2.140 
Windsor, VT 2002 0.580 0.597 0.492 

 Loudoun, VA 2007 0.424 0.430 2.124 
Douglas, NV 2007 0.490 0.485 62.576 
Jefferson, WV 2007 0.513 0.535 0.222 
Marion, FL 2007 0.554 0.554 15.462 
Pittsylvania, VA 2007 0.579 0.588 2.366 

 Redwood, MN 2012 0.191 0.195 1.480 
Robertson, TN 2012 0.242 0.245 2.630 
Loudoun, VA 2012 0.404 0.410 2.034 
Douglas, NV 2012 0.483 0.470 121.166 
Marion, FL 2012 0.505 0.504 25.342 
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Table 5: Correlation Matrix 

Irrig. 
Eff. 

Tech. 
Eff. 

Clay Sand K-Factor Perme
ability 

Moisture 
Cap. 

Spring 
Prec. 

Summ. 
Prec. 

Spring 
Temp. 

Summ. 
Temp. 

Irrig. Eff. 1.000 
Tech. Eff. 0.994 1.000 
Irrigation 0.029 0.034 
Clay 0.076 0.067 1.000 

 Sand -0.008 0.001 -0.247 1.000 
K-Factor 0.022 0.022 0.152 -0.620 1.000 

 Permeability -0.027 -0.017 -0.369 0.915 -0.694 1.000 
Moisture Cap. 0.065 0.057 0.186 -0.667 0.361 -0.635 1.000 
Spring Prec. -0.033 -0.034 -0.151 0.126 -0.265 0.172 0.093 1.000 
Summ. Prec. -0.014 -0.014 -0.203 0.270 -0.351 0.310 0.006 0.613 1.000 

 Spring Temp. -0.008 0.007 0.180 0.326 -0.089 0.277 -0.360 -0.047 0.024 1.000 
Summ. Temp. -0.013 0.004 0.153 0.292 -0.043 0.250 -0.362 -0.058 -0.031 0.963 1.000 

24
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