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Abstract 

 

This study adopts a stochastic volatility (SV) model with two asymptotic regimes and a 

smooth transition for oil returns. We find that SV models with a smooth transition between 

two regimes imply an asymmetric leverage effect with different regimes. In particular, the 

half-life of a negative volatility shock is longer than that of a positive shock.  
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1. Introduction 

 

Oil is a crucial economic resource in the commodity, manufacturing, and financial 

markets. Both the oil price and its volatility have significant effects on the global economy. 

Thus, oil price movements and shocks are closely monitored by producers, consumers, 

investors, and policymakers. Furthermore, the extent to which the volatility affects prices 

depends critically on the permanence of shocks to the variance. More generally, modeling the 

pricing of contingent claims relies on perceptions of how permanent the shocks to the 

variance are. Therefore, accurately modeling oil price volatility is meaningful. However, few 

studies have analyzed oil volatility. Furthermore, most studies apply ARCH-type models to 

estimate oil volatility and leverage effects. Recently, stochastic volatility (SV) models have 

been used to specify volatility as a separate random process and, thus, can have advantages 

over ARCH-type models when modeling the dynamics of return series.3 However, SV models 

used in previous studies have not been able to explain the asymmetric leverage effect for 

volatility regimes and ignore the possibility that the half-life of volatility shocks could 

depend on the sign of the shocks. 

This study adopts an SV model with two asymptotic regimes and a smooth transition 

between their returns, as proposed by Park (2002) and Kim et al. (2009), in order to fully 

capture the stylized facts of oil price dynamics. We find two distinct characteristics of oil 

price volatility. First, SV models with a smooth transition between two regimes imply an 

asymmetric leverage effect in different states of the regimes. Second, the half-life of a 

negative volatility shock is rather longer than that of a positive shock. This is another 

3 See Kim et al. (1998) and Jacquier et al. (1994, 2004). 
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asymmetric effect on oil price volatility, because a negative shock does not have the same, 

but opposite effect of a positive shock with the same magnitude. Therefore, oil refiners, 

investors, and policymakers should consider the asymmetric leverage effects and the 

asymmetric speed of an adjustment in oil price volatility. 

 

2. Model  

We consider the following SV model, as proposed by Park (2002) and Kim et al. (2009). 

We let 𝑟𝑟𝑡𝑡 be a demeaned return series. Then, 

𝑟𝑟𝑡𝑡   = �𝑓𝑓𝑡𝑡(𝑥𝑥𝑡𝑡)𝜀𝜀𝑡𝑡         (1) 

𝑥𝑥𝑡𝑡+1 = 𝛼𝛼 𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡+1,         (2) 

where � 𝜀𝜀𝑡𝑡
𝑢𝑢𝑡𝑡+1

�  ~ 𝑁𝑁 ��00�  ,   �1 𝜌𝜌
𝜌𝜌 1� �,      (3) 

and 𝑥𝑥𝑡𝑡 is a scalar latent volatility factor that generates the stochastic volatilities of oil and is 

assumed to be AR(1). If the AR(1) coefficient of latent volatility factors 𝛼𝛼 ≈ 1, the volatility 

can be persistent. The correlation between the return and volatility is imposed in order to test 

the leverage effect for the oil market. Therefore, the correlation parameter, 𝜌𝜌, generates a 

leverage effect if −1 ≤ 𝜌𝜌 < 0 . 

The actual volatilities in this study are generated by the parametric logistic function, 

which is given by 

𝑓𝑓(𝑥𝑥𝑡𝑡)  = 𝜇𝜇 + 𝛽𝛽
1+𝑒𝑒𝑒𝑒𝑒𝑒(−𝜆𝜆(𝑥𝑥𝑡𝑡−𝜅𝜅))

, with 𝜇𝜇 > 0,𝛽𝛽 > 0 and 𝜆𝜆 > 0.  (4)  

The parameters 𝜇𝜇 and 𝜇𝜇 + 𝛽𝛽 represent the asymptotic low and high volatility regime, 

respectively. The parameters 𝜆𝜆 and 𝜅𝜅 specify the transition between the two regimes (i.e., 

the speed and the reflection point of the transition). As the transition speed increases, 𝜆𝜆 
4 

 



increases, and the actual volatilities are realized by one of the two asymptotic regimes. Given 

the reflection point 𝜅𝜅, if the value of the latent volatility factor 𝑥𝑥𝑡𝑡 is lower than that of 𝜅𝜅, the 

volatility is closer to the asymptotic low regime, 𝜇𝜇; otherwise 𝑥𝑥𝑡𝑡 is greater than 𝜅𝜅, and the 

volatility is closer to the asymptotic high regime, 𝜇𝜇 + 𝛽𝛽.  

In this study, we use the Bayesian approach to estimate our model. We define some additional 

notation, for convenience. Let 𝑅𝑅 = (𝑟𝑟1 , … . . , 𝑟𝑟𝑇𝑇 ) and 𝑋𝑋 = (𝑥𝑥1, . . . , 𝑥𝑥𝑇𝑇) be the vector of 

demeaned oil returns and the vector of latent variables, respectively. In addition, we define 

𝜃𝜃 = (𝛼𝛼,𝜌𝜌, 𝜇𝜇,𝛽𝛽, 𝜆𝜆, 𝜅𝜅) as the vector of unknown parameters. By Bayes’ theorem, the joint 

posterior is given by 𝑝𝑝(𝜃𝜃,𝑋𝑋|𝑅𝑅) ∝  𝑝𝑝(𝑅𝑅,𝑋𝑋|𝜃𝜃)𝑝𝑝(𝜃𝜃), where 𝑝𝑝(𝜃𝜃) =

𝑝𝑝(𝛼𝛼)𝑝𝑝(𝜌𝜌)𝑝𝑝(𝜇𝜇)𝑝𝑝(𝛽𝛽)𝑝𝑝(𝜆𝜆)𝑝𝑝(𝜅𝜅). We assume that 𝑝𝑝(𝛼𝛼) ∼ 𝐵𝐵(𝑎𝑎1���,𝑎𝑎2���),𝑝𝑝(𝜇𝜇) ∼ 𝐺𝐺(𝜇𝜇1���,𝜇𝜇2���), 𝑝𝑝(𝛽𝛽) ∼

𝐺𝐺�𝛽𝛽1���,𝛽𝛽2����, 𝑝𝑝(𝜅𝜅 ) ∼ 𝑁𝑁(𝜅𝜅1���,𝜅𝜅2���), 𝑝𝑝(𝜆𝜆) ∼ 𝐺𝐺�𝜆𝜆1���, 𝜆𝜆2����, and 𝑝𝑝(𝜌𝜌) ∼  𝑈𝑈(−1, 1). 4
P For the usual 

Bayesian procedure, we implement a Markov chain Monte Carlo (MCMC) method to sample 

the latent factors and the parameters from 𝑝𝑝(𝜃𝜃,𝑋𝑋|𝑅𝑅). The Bayesian MCMC approach is 

particularly suitable, has been proven to perform well, and produces relatively accurate 

results. For our MCMC procedure, we employ the Gibbs sampler and the Metropolis–

Hastings (MH) algorithm within the Gibbs sampler. In particular, to sample 𝑥𝑥𝑡𝑡, we use the 

grid-based chain suggested by Tierney (1994). 

 

3. Estimation Results 

We use weekly oil futures prices from January 2, 1986, to October 10, 2014, obtained 

from Datastream. The returns are calculated as the natural log differences of the prices. We 

4 B, G, N, and U denote the beta, gamma, normal, and uniform distributions, respectively. 
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draw 200,000 samples for each parameter and latent variable using the Gibbs sampler, and 

discard the first 84,000 samples as a burn-in period. 

Table 1 presents the estimation results for the stochastic volatility of the oil returns and 

reports the posterior means, standard deviations (SD), and the 5th and 95th quantiles. The last 

column lists the convergence diagnostics (CD) by Geweke (1992). Our results indicate 

relatively high convergence diagnostics for all parameters. The estimated parameters are 

significant at the 5% significance level, except for 𝜅𝜅. However, the estimated parameter for 

κ is significant at the 10% significance level and converges well.  

 

Table 1 Estimation Results 

 Posterior  

Parameter Mean SD 5% 95% CD 

µ 0.00025 0.00008 0.00010 0.00041 1.2900 

β 0.0067 0.0011 0.0045 0.0089 -0.0727 

κ 0.8189 0.4659 -0.0944 1.7321 0.1597 

λ 0.4882 0.0469 0.3964 0.5801 0.7793 

α 0.9858 0.0050 0.9760 0.9956 0.0632 

ρ -0.4980 0.0884 -0.6712 -0.3248 0.2309 

 

Our empirical results reveal that the asymptotic low and high levels of the stochastic 

volatilities for oil are √𝜇𝜇 =1.59% and �𝜇𝜇 + 𝛽𝛽 = 8.34%, respectively, in a given week. The 

AR(1) coefficient of the latent factor, 𝛼𝛼, is 0.9858, which is highly persistent and can generate 

highly autocorrelated volatility or volatility clustering. The estimate of the correlation 

coefficient, ρ, is -0.498 and is significant, implying a negative relation between shocks to 
6 

 



returns and volatility. Several studies on the oil and commodity markets, such as Schwartz 

and Trolle (2009), Vo (2009), Larsson and Nossman (2011), and Du et al. (2011), show that 

the correlation coefficient is negative, but not significant. However, our finding strongly 

supports the leverage effect in the oil market.  

 

Figure 1 Estimated Volatility Function 

 

Figure 1 shows the estimated logistic volatility function. The horizontal axis denotes the 

latent factor, xt, and the vertical line indicates the estimated conditional variance, 𝑓𝑓𝑡𝑡. The 

dashed lines represent the asymptotic low and high regimes, respectively, and the shaded area 

implies a transition period, which is the interval [-1.88, 3.52].5 Therefore, we can regard the 

area below the lower boundary of the transition period as the low volatility regime and the 

5 Kim et al. (2009) note that the interval [𝜅𝜅 − �1
𝜆𝜆
� 𝑙𝑙𝑙𝑙𝑙𝑙�2 − √3� , 𝜅𝜅 − �1

𝜆𝜆
� 𝑙𝑙𝑙𝑙𝑙𝑙�2 + √3�] can be regarded as the 

transition period, where 𝑓𝑓′′′(𝑥𝑥) = 0 at the endpoints of this interval.  
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area above the upper boundary as the high volatility regime. This model differs from the 

usual regime-switching model, which assumes only two regimes in the economy and an 

exogenous and abrupt change in switching regimes, which is unrealistic. Figure 2 displays the 

extracted latent factor, 𝑥𝑥𝑡𝑡, which generates the oil volatilities. The extracted latent factors 

from the SV model show that the latent factors stayed in the high state of volatility around 

1986, during the Gulf War from August 1990 to February 1991, and the global financial crisis 

and the recession period. Vo (2009) notes that the oil volatility surges to a high level around 

1986, when Saudi Arabia, the dominant member of OPEC, stopped acting as a swing 

producer and let oil prices plummet.  

 Figure 2 Estimated Latent Factor 

 

Figure 3 shows the estimated and realized volatility for oil. The dotted and thick lines 

display the absolute value of oil returns and the estimated volatilities, √𝑓𝑓𝑡𝑡� , respectively. The 

estimated volatilities explain the realized volatilities well, particularly in light of their trend 

behaviors. 
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Figure 3 Absolute Returns and Estimated Volatility 

 

Table 2 Leverage Effects with Different Regimes 

Size of shock (𝜀𝜀𝑡𝑡) Regime Volatility growth rate 

Negative shock 

 

Low 0.1674  

Transition 0.1332  

High 0.0246  

Positive shock 

 

Low -0.1070  

Transition -0.1233  

High -0.0378  

 

Table 2 quantifies the magnitude of the leverage effects across the states of the economy. 

The empirical results show that a negative shock to the oil price return has a bigger impact on 

the volatility than does a positive shock during the low-volatility regime. However, the 
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reverse is true during the high-volatility regime.6  

 

Figure 4 Estimated Impulse Response Function: Positive and Negative Shock 

 

 

For the standard SV model, the impulse response function (IRF) is calculated as the 

coefficient of the moving average representation. However, estimating the IRF for our SV 

model is not as simple. For a given size of shock, we first simulate the IRFs conditioned on 

every initial condition, and then by averaging all the simulated impulse response sequences to 

avoid obtaining an impulse response conditioned on a specific initial condition. Moreover, 

using the estimated IRF, we measure the rate of mean reversion by calculating the half-life of 

a volatility shock. Figure 4 displays the estimated IRFs for a positive shock (left) and a 

negative shock (right). From our simulation result, the half-life of a positive volatility shock 

is 51 weeks, while that of a negative volatility shock is 61 weeks. Thus, the half-life of a 

negative volatility shock is markedly longer than that of a positive shock. Therefore, the 

6 These features are evident regardless of the size of the shock. 
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effect of a volatility shock is not symmetric. 

 

4. Conclusions 

This study adopts an SV model with two asymptotic regimes and a smooth transition 

between them for the oil market. According to the empirical results of the SV model, the 

leverage effect is asymmetric with different states of volatilities, and the rate of the mean 

reversion depends on the sign of the shock. To the best of our knowledge, this is the first 

empirical study to examine the asymmetric leverage effect with different regimes and the 

estimated half-life of volatilities with a negative and a positive shock.  
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