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Corn Ethanol and US Biofuel Policy Ten Years Later: A Systematic Review 

and Meta-analysis 

Gal Hochman and David Zilberman 

Abstract 

We use data and estimates on biofuel impacts reported in the literature to assess some of the 
controversy surrounding the introduction of biofuels by conducting meta-analyses on the impacts 
of corn ethanol on food and fuel prices, greenhouse gases, employment, rural income, balance of 
trade, the United States government budget, and learning-by-doing. The meta-analyses suggest 
that corn ethanol has had a relatively significant impact on the income of agricultural and 
related agribusiness industries, employment in farm states, fuel security in terms of reducing the 
import of oil from abroad, and the overall balance of trade. These effects are likely the main 
drivers behind biofuel policies.  
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I. Introduction 

Corn ethanol entered large-scale production in the United States (US) in 2004 to address energy 

security, climate change, and concerns about peak oil. Desiring a path that would lead to national 

energy security, the US developed policies in the early 2000s to promote the production and 

consumption of biofuels.  

Since the US is the biggest producer of corn in the world, government policy makers saw 

corn as a promising path for developing a sustainable fuel source. In 2000, the United States 

produced 1.65 billion gallons of corn-based ethanol before any significant policies to promote its 

use were actually put in place. A big jump in the biofuel supply began in 2005 with introduction 

of the Energy Policy Act and then further increased with passage of the Energy Independence 

and Security Act of 2007. By 2008, production had risen to 9 billion gallons; in 2015, the output 

surpassed 13 billion gallons. Indeed, by 2015, corn ethanol had become the largest biofuel 

feedstock utilized globally. 

However, over the past 10 years, the use of biofuels has also become a source of 

controversy, with a large body of literature debating the effect of biofuels on food prices and 

food security, including arguments that question the overall merit of using biofuels to mitigate 

climate change.  

Now that we have sufficient data and estimates of the biofuel impact to reassess some of 

these claims, this paper analyzes previous findings and predictions, confronts them with existing 

evidence, and offers a fresh perspective on the impacts of biofuels to date and their potential for 

future decades. The paper evaluates and assesses findings from the literature on the impacts of 

biofuels by conducting several meta-analyses on the impacts of corn ethanol on food and fuel 

prices, greenhouse gases (GHGs), employment, rural income, balance of trade, and learning-by-

doing. Although the overall analysis surveys a vast body of literature, the statistical analyses 

focus on corn ethanol because of its importance, the large volume of research available, and the 

intense political debate on its continued use. 

These meta-analyses combine the results from multiple studies to better understand and 

reduce the uncertainty surrounding simulated estimates of the effects of the introduction of 
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biofuels on key economic and environmental variables. The statistical analysis investigates the 

main reasons for the differences found in the literature that reflect their heterogeneity in terms of 

the period covered, methods, and regional coverage, among other factors. Our statistical analyses 

use different sequences of stepwise and multivariate regressions to evaluate the robustness of the 

results through the revealed preference approach à la McFadden (1975, 1976). This part of the 

analysis is followed by a Bayesian analysis to estimate the distribution of the parameters of 

concern. Finally, actual data are used to validate the conclusions of the meta-analyses, and 

simple calculations are used to understand the economic and environmental implications of those 

conclusions.  

The meta-analyses suggest that the total effect of biofuels on food and fuel prices is 

limited. Specifically, the studies surveyed propose that corn ethanol has contributed to (i) an 

average increase in agricultural commodity prices of 61 US cents per bushel, which is about 20% 

at current prices, and (ii) a decrease in the average price of gasoline of 12 US cents per gallon, 

which is about 5% at current prices. The studies suggest that the gain to drivers was slightly 

larger than the loss to food consumers, but food price increases have affected the poor the most. 

However, there have been periods when corn ethanol has had significant impacts on prices. 

Biofuels also contributed to the spike in food commodity prices in the short run (e.g., the 

2007/2008 food price spike). The meta-analyses indicate that, on average, the price changes 

associated with corn ethanol have resulted in a small aggregate economic gain to the US. 

However, they also put forward that corn ethanol had a relatively significant impact on the 

income of agricultural and related agribusiness industries, employment in farm states, fuel 

security in terms of reducing the import of oil from abroad, and the overall balance of trade; the 

annual net gain of the balance of trade due to biofuels has been tens of billions of dollars. 

To understand the differences between the studies, we investigate the sources of 

heterogeneity among them and find that differences in the assumptions used in assessing the 

impacts of biofuels on food and fuel prices matter. In particular: (i) Assuming feedback effects 

among food commodities and petroleum refining products results in biofuel having a smaller 

impact on prices than otherwise, (ii) on the other hand, greater inelastic demand and supply 

curves result in biofuels having a greater impact on prices, and (iii) when using a later year to 
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calibrate the numerical model, that choice suggests a higher ratio of biofuels to petroleum fuels 

and results in biofuels having a greater impact on prices.  

Overall, these analyses indicate that biofuels were mostly used as a mechanism to 

improve US energy security and balance of trade as well as to improve rural employment in 

agricultural states. The emergence of fracking has introduced an alternative to the use of biofuels 

to reduce fuel imports and enhance the balance of trade, and thus fracking may reduce the 

importance of biofuels. The meta-analyses performed in this study may indeed explain why the 

environmental support for corn ethanol is lukewarm, at best, but the support for corn ethanol in 

the corn-producing states remains strong. 

The next section (section II) builds on McFadden’s (1975, 1976) revealed preference 

approach and develops the empirical model used to estimate the importance of the various 

factors affecting the different studies. Section III describes the meta data used, and the results of 

the meta-analyses are presented in section IV, with policy and concluding remarks offered in 

section V. 

II. The empirical approach 

Because we cannot evaluate the quality of politicians’ decisions using profitability and welfare 

maximization measures, we directly examine policy outcomes and evaluate and assess their 

performance (McFadden, 1975, 1976). 

While examining the performance of the US energy policy and evaluating the 

consequences or outcomes of energy policy decisions, we search for an implicit choice criterion 

that guides US energy policy choices. Since policy choices are driven by a myriad of facades, it 

is unrealistic to search for a single choice criterion that rationalizes all outcomes. The meta-

analysis comprises statistical methods for contrasting and combining results from different 

studies in the hope of identifying patterns among study results, thus shedding light on the 

“location” of the decision rules and the (relative) weights placed by leaders on energy security, 

rural development, and the environment; a larger impact suggests the factor receives more 

weight during the decision process.  
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Assume an observation includes the factual and counterfactual, and that if the paper also 

reports sensitivity analysis, those parameters are also coded. Let N denote the total number of 

observations. Let subscript (1) denote the policy outcome and subscript (0) denote the 

counterfactual with no policy. In addition, let i denote observation (𝑖 ∈ 𝑁), and j a study (paper). 

Then, each observation includes a vector of observed time-varying covariates, 𝑿𝒊𝒋, and a vector 

of (unobserved) study-fixed variables (confounders), 𝐒𝐣. Let Yij denote the outcome, that is, the 

dependent variable, where Yij of observation i of study j is either Yij,0 or Yij,1. Suppose further that  

ε*+ ≡ Y*+,/ − E Y*+,/|S+, X*+ .	

And assume that the causal effect of policy, denoted 𝜇, is additive and that it depends on the 

study variables (confounders). Let ∆𝑌:;< denote the difference between the two states of nature; 

hence 

∆𝑌:; = 𝑌:;,> − 𝑌:;,/.	

Then, we can show that 

∆𝑌:; = 𝜇 + 𝑆;′𝛽C + 𝑋:;′𝛽E + ∆𝜀:;      (1) 

Equation (1) is the empirical equation used to evaluate the significance of the policy with respect 

to the various effects.  

Next, we provide a non-parametric interpretation, thus making probability statements 

about the observed outcomes. To this end, a Bayesian approach is utilized. Bayesian analysis is a 

statistical procedure that endeavors to estimate parameters of an underlying distribution based on 

the observed distribution. Beginning with a "prior distribution" (in our case, either an 

uninformed distribution over the range of values reported in the various studies or an informed 

one that is based on the parameters estimated under Eq. [1]), we generate the posterior 

distribution. We generate data to calculate the likelihood of the observed distribution, multiply 

the likelihood function by the prior distribution, and normalize the product to obtain a unit 

probability over all possible values. This is called the posterior distribution.  
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The mode of the distribution is then the parameter estimate, and "probability intervals" 

(the Bayesian analog of confidence intervals) can be calculated using the standard procedure. 

Bayesian analysis is somewhat controversial because the validity of the result depends on how 

valid the prior distribution is, and this cannot be assessed statistically. However, the estimated 

posterior mean is similar to that estimated in the meta-regression analysis. The "location" of the 

estimated distribution provides information pertaining to the average weighting of factors on 

decisions whereas the "dispersion" supplies a measure of the internal consistency of the policy 

decisions made. We use these measures and Bayesian inference to assess the magnitude of the 

various outcomes affected by policy. 

III. Data 

The search for empirical studies uses the search engine Google Scholar and employs the 

following keywords: biofuels, ethanol, biodiesel, food prices, fuel prices, welfare, employment, 

and poverty. We focus on the population of studies that offered a numerical analysis which 

evaluated the economic and environmental effects of the renewable fuel standards. The list of 

studies reviewed in this paper is in Appendix B. 

When collecting studies, the population is not limited to peer-reviewed studies but 

expands to reports and unpublished papers – to the “gray literature” (Lommis and White, 1996). 

Some unpublished studies are not only newer and use newer data, but all studies, independent of 

their quality, contribute to the statistical identification of the factors responsible for the 

heterogeneity among studies (Stanley, 2001; Stanley et al., 2013). The meta-analysis also 

includes books, book chapters, and dissertations. 

The collected data from the population of studies include two alternative datasets: (i) an 

average set whereby the average of all reported change in each study is used and (ii) an all-

inclusive set whereby all relevant estimates reported in each study are used.  

IV. Results 

Our analysis evaluates multiple criteria used to assess the effect of the introduction of biofuels, 

including GHGs and land use changes, food and fuel prices, terms of trade, welfare, 
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employment, balance of trade, and learning-by-doing. While the various details pertaining to the 

empirical analysis are presented in the Appendix A, key results are discussed below.  

4.1. GHG and ILUC effect of corn ethanol 

The statistical analysis leading to the results discussed below is presented in section 1A of 

Appendix A.  

Our meta-analysis suggests that change in GHG emissions due to the introduction of 

biofuels depends on the specific geographic location, biofuel feedstock, and type of land used to 

grow the crop (Fargione, 2008) and that there is much variability among studies. While the 

average indirect land use change (ILUC) reported in the literature is 0.81 kg CO2 per liter of corn 

ethanol in gasoline-equivalent units, when dropping the Searchinger et al. (2008) paper from the 

sample, the average drops to 0.67 kg CO2 per liter of corn ethanol.1 The literature proposes that 

corn ethanol yielded a decline of 0.19 kg CO2 per liter. That is, if gasoline emits 3 kg CO2 per 

liter, then corn ethanol, in gasoline-equivalent units, emits 2.81 kg CO2 per liter. However, the 

standard deviation is 0.87, resulting in some papers arguing for net carbon savings and others 

calculating a carbon debt. 

Our meta-regression, which focuses on corn ethanol, offers further support to these 

claims. The meta-regression investigates reasons for differences across studies. The baseline 

specification (i.e., the stepwise regression with cluster standard deviations) is depicted in Table 1 

with robustness of the regression outcomes investigated in section 1A of the Appendix A.  

The analysis indicates that the studies modeling crude oil markets, in addition to land, are 

also the studies that used earlier years to calibrate their model. Early studies not only assessed 

the impact of the introduction of corn ethanol on GHG emissions but also the effect of biofuels 

on food and fuel prices. Later studies focused more on the GHG effects of ethanol and did not 

model the petroleum markets. The studies that calibrated later years reported lower CO2 per liter 

of corn ethanol; that is, the crude oil dummy parameter is 0.4412 and is significant at the 1% 

significance level. 

                                                
1 To this end, Searchinger et al.’s (2008) analysis suggests that production and consumption of corn ethanol is 2.21 
kg CO2 per liter. 
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Comparing results across studies also suggests that initially GHG emissions were lower 

than those calculated in 2008, where the literature recognized the unintended effect of corn 

ethanol on land use and its ILUC. However, since 2008, ILUC calculations have declined several 

fold; while Searchinger et al.’s (2008) results suggest that ILUC is more than 2.2 g CO2 per liter, 

Hertel et al.’s (2010) calculations indicate ILUC at 0.57 to 0.85 g CO2 per liter. 

The meta-regression analysis also indicates that the introduction of economic linkages 

(via partial and general equilibrium models), as opposed to life-cycle analysis (LCA) and/or 

agent models, results in corn ethanol having a larger GHG footprint; the model dummy 

parameter, which equals zero if an economic model is assumed and one if it is an LCA or agent 

model, is -0.1879 and is significant at the 1% significance level. 

 stepwise (0.2) + cluster 

Crude oil dummy 0.4412*** 

(0.0780) 

Model dummy -0.1879*** 

(0.0501) 

Constant -0.2314** 

(0.0848) 

R2 0.1485 

N 58 

Table 1. Heterogeneity among studies and the impact of corn ethanol on GHG emissions.  

To further assess the robustness of the results, we turn to Bayesian analysis and estimate 

the posterior distribution (Table 2). The models are simulated with the all-inclusive dataset. We 

subsample the Markov Chain to reduce the storage burden of the output and improve statistical 

efficiency by taking every fifth observation instead of all observations (Owen, 2015), while 

burn-in the first 50,000 to minimize the effect of the prior on the statistical analysis. That is, the 

sample analyzed is 200,000 in size. We assume that the prior is the normal distribution with a 
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mean of one and a standard deviation of zero but that the joint prior distribution of the 

coefficients and the variance is an inverse Gamma distribution. The trace, autocorrelation, 

histogram, and density are visually checked for the convergence of Markov Chain Monte Carlo 

(MCMC), and all are well behaved (section 1A of the Appendix A). 

The sign and size of the crude oil dummy in the Bayesian regression is similar across 

both methods and specifications, while the other parameters’ value varies across models and 

specifications (section 1A of the Appendix A). However, other than the crude dummy parameter, 

the coefficients are not significantly different than zero.  

 

 OLS 
specification 

Crude oil dummy 0.4061*** 

(0.0650) 

Year calibrated -0.0002 

(0.1053) 

Model dummy -0.0427 

(0.1053) 

Constant -0.0311 

(0.9992) 

Burn-in 50,000 

MCMC iterations 1,049,996 

Acceptance rate 0.358 

Table 2. GHG emissions and the Bayesian analysis: Posterior means. 

The meta-analysis suggests that corn ethanol resulted in a small reduction in total GHG 

emissions: The introduction of corn ethanol via the US mandate resulted in a 0.19 kg CO2 per 

liter reduction, on average, but with a standard deviation of 0.87. The magnitude of the 
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decline/increase in GHG emissions depends on the ILUC estimated. To this end, the funnel plot 

indicates no systematic biases (see section 1A in the Appendix A, Fig. 1A). GHG emissions did 

not yield much, if any, net benefit and are not likely the driver behind corn ethanol policies. 

4.2 Food prices 

In recent years, concerns that corn ethanol is responsible for rising food prices by diverting the 

grains that would have been consumed in developing countries as food and feed to ethanol have 

raised serious questions regarding the use of corn ethanol. The understanding that corn ethanol is 

not making a substantial dent in the transportation sector’s GHG emissions resulted in a demand 

to stop support for corn ethanol because of its negative effect on food consumption. Even so, 

does the existing literature support these claims? We investigate the food vs. fuel debate and the 

claims that corn ethanol significantly strains food prices. 

This section investigates the empirical literature on the food vs. fuel debate and uses meta-

analysis to make statistical claims on the effect of the introduction of corn ethanol on food 

commodity prices. To better understand the heterogeneity among various studies numerically 

assessing the effect of introducing biofuels on food commodity prices, our meta-analysis 

includes data on the assumed demand and supply elasticity of various crops, whether the study 

included fuel and other petroleum/crude oil markets, whether the analysis focused on the US or 

also included the rest of the world, the year data were calibrated, a dummy that equals 1 for food 

commodity price inflation (2007/2008), and assumptions on a mandate and tax credit as well as 

type of analysis, such as partial versus general equilibrium (see also Appendix A, section 2A, 

where summary statistics and more detailed presentation of the statistical analysis are supplied).  

On average, ethanol resulted in the price of corn increasing by 24.5%, although we 

observe a larger impact in the short run. Figure 1 depicts estimates of the effect of the 

introduction of biofuels on food commodity prices, while focusing on corn. The various studies 

are depicted on the x-axis with the y-axis measures the change in price per bushel. On average, 

the introduction of biofuels resulted in the price per bushel of corn increasing by 61 US cents, 

where the standard deviation is 0.65 and the maximum increase estimated is $3.29 US. 
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Figure 1. The introduction of biofuels and corn prices. 

The stepwise regression results, assuming backward-selection estimation (i.e., it starts 

with the full specifications), are depicted in Table 3. Because this part of the analysis uses the 

all-inclusive dataset whereby all relevant estimates reported in each study are documented, the 

empirical analysis needs to address heteroskedasticity. For these studies, we estimate a weighted 

regression, where the weights per observation are inversely related to the number of observations 

per study (the outcome of these regressions is also compared to those assuming clustered 

analysis; however, most of the results are the same ‒ see Appendix A section 2A).  

Introducing more flexibility in adjunct markets (i.e., the petroleum market) results in a 

smaller effect of biofuels on food commodity prices. Modeling the petroleum market allows 

petroleum producers to respond to prices and changes in demand and thus mitigates the effect of 

biofuels on demand for corn (the oil/petroleum markets coefficient is negative and significant at 

the 1% level). Another outcome of the meta-analysis, which is common among all estimated 

models, is that more inelastic demand or supply for corn has a larger effect on food commodity 

prices (recall that demand elasticity is negative while supply elasticity is positive, and more 

inelastic curves are those with elasticity closer to zero). Finally, while the effect of the 

introduction of biofuels on corn prices increases as the year used to calibrate the numerical 

model increases (i.e., the coefficient of year calibrated is positive) and using 2007/2008 increases 

the effect of corn ethanol on food commodity prices even further, the effect of increasing the 

number of countries beyond the US is mixed (i.e., rest of the world).  
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Variable	
Model	I	
Weighted	

Model	II	
Weighted	

Oil/petroleum	markets	
-1.1992	
(0.3850)	

-0.9795	
(0.3321)	

Rest	of	the	world	
removed	 removed	

Demand	elasticity	of	
crops	

1.4119	
(0.2145)	

1.5098	
(0.2257)	

Supply	elasticity	of	crops	
-0.7796	
(0.3976)	

removed	

Year	calibrated	
0.1004	
(0.0327)	

0.1525	
(0.0215)	

2007/08	food	commodity	
Inflation	

0.2662	
(0.1498)	

removed	

Mandate	
 -0.5005	

(0.0900)	

Constant	
-200.15	
(65.4768) 

-304.66	
(43.0954) 

N	 25	 25	
R2	 0.5436 0.6060 

	 	 	

Table 3. Stepwise regression and the effect of corn ethanol on food commodity prices.  

When assessing the distribution of the various parameters using Bayesian techniques, the 

estimations derived are similar to those obtained above. The models are simulated with the all-

inclusive dataset. Each simulation uses 200,000 iterations. The prior is the normal distribution 

with a mean of 1 and a standard deviation of 0, but the joint prior distribution of the coefficients 

and the variance is an inverse Gamma distribution. The estimation outcomes of the Bayesian 

analysis are depicted in Table 4. The trace, autocorrelation, histogram, and density are visually 

checked for the convergence of the MCMC, and all are well behaved (section 2A in the 

Appendix A).  

	 Model	I	 	
Acceptance	rate	 0.	3044	 	

Efficiency:	 	 	
Minimum	 0.1058	 	
Average	 0.2394	 	

Maximum	 0.8053	 	
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Fuel	market	 0.3892	
(0.0574)	 	

Oil/petroleum	
markets	

-0.9179	
(0.0602)	 	

Demand	elasticity	
of	crops	

0.0933	
(0.0475)	 	

Year	calibrated	 0.1203	
(0.0077)	 	

2007/08	food	
commodity	

Inflation	
-0.0731	
(0.0492)	 	

Mandate	 -0.2984	
(0.0408)	 	

Constant	 -0.2675	
(0.0665)	 	

	   

Variance	 0.1322	
(0.0068)	 	

Table 4. Bayesian analysis with all dataset: The posterior means. 

Next, we simulate the Bayesian models using the average dataset and use that dataset to 

calculate the funnel graph (see Figure 2). Although the plot suggests that studies are slightly 

biased because of the introduction of corn ethanol (some of the dots appear above the dashed 

line), we think these biases are negligible. 

 

Figure 2. Funnel plot. 
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consumer price index averaged less than one percentage point (Anderson et al., 2008; Collins, 

2008; Gecan et al., 2009; Glauber, 2008, among others).  

Measures such as the Renewable Fuel Standards (RFS) divert resources of land away 

from food and feed, but the literature argues that their impact on the price of food commodities is 

moderate at best, with most of the effect washing away as we move throughout the supply chain; 

corn ethanol’s effect on US food prices is small. This, however, may change in the short run as 

documented in the literature for the food commodity spike of 2007/2008.  

Based on existing literature, we argue that the environmental benefits of corn ethanol are 

limited, and its impact on food commodity prices is moderate. The next two subsections 

investigate the economic benefits of the introduction of corn ethanol and biofuel policy in the 

US. 

4.3 Fuel prices 

We begin with fuel prices; the collection of data pertaining to the effect of the introduction of 

biofuels on fuel prices includes changes in fuel prices, demand elasticity, whether the study is 

peer-reviewed, the year used to calibrate the model, the year published, the numerical method 

employed (whether agriculture production is modeled – that is if the analysis assumes partial, 

multi-market, or general equilibrium), whether the petroleum markets were modeled (other than 

fuel), and whether the analysis focuses on the US or also includes the rest of the world. Summary 

statistics are presented in the Appendix A, section 3A. 

The estimate of Eq. (1) is depicted in Table 5. Because the analysis uses the all-inclusive 

dataset whereby all relevant estimates reported in each study are documented, the empirical 

analysis needs to address heteroskedasticity. For these studies, cluster standard errors are 

employed. We also compare the clustered errors with weighted ordinary least squares (OLS) in 

the supplementary material, section 2.3A, where the weights per observation are inversely 

related to number of observations per study. The results of the cluster analysis are also compared 

with a stepwise OLS regression that performs backward-selection estimation (i.e., it starts with 

the full model) and also assumes clustered errors.  
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Variable	 OLS	
		 (Cluster)	

Demand	elasticity	 0.0313	

	
0.0188	

Peer	reviewed	 -0.1043	

 
0.0792	

Year	calibrated	 -0.0083	

 
0.0054	

Year	published	 -0.0259	

 
0.0193	

Petroleum	products	 0.2324	

	
0.1059	

Rest	of	the	world	 0.0601	

 
0.1388	

Model	 0.0299	

 
0.0340	

Constant	 68.4477	
		 39.0621	

Statistics	
 N	 43	

R2	 0.5659	

Table 5. Estimations of Eq. (1). 

The results depicted in Table 5 suggest similar and significant effects across different 

specifications for both the size of the demand elasticity and the modeling of petroleum markets. 

Assuming a more elastic demand for fuel results in a larger reduction in the price of fuel. 

However, modeling petroleum markets results in the introduction of biofuels having a smaller 

negative effect on the price of fuel. 

Figure 3 plots the predicted values of the stepwise OLS regression with clustered errors 

using the average dataset, while separating those that focus on petroleum markets from others. It 

also includes out-of-sample empirical studies investigating the effect of corn ethanol on fuel 

prices. The demand elasticity is depicted on the x-axis and the effect of the RFS on fuel prices is 

measured on the y-axis. We also include a fitted value line. Figure 3 offers further support to the 



 17 

regression outcomes summarized in Table 5, where explicitly modeling petroleum markets 

results in more price stickiness and the RFS results in smaller changes to fuel prices. 

 

Figure 3. Price stickiness and the petroleum markets. 

The averages in most of the studies fall to the left of the zero line (where the average for 

each study is the simple average of all estimates reported in a study), thus indicating that the 

introduction of biofuels resulted in a decline in the price of fuel. The standard deviation is 

calculated using all estimates of a study and is used to construct the 95% confidence interval. For 

most studies, the 95% confidence interval is located to the left of the zero line – again, indicating 

that the introduction of biofuels has a negative effect on the price of fuel. 

When including all data points (e.g., results of statistical studies), the negative effect of 

the introduction of biofuels on gasoline prices increased over time. However, when we exclude 

Due and Hayes’ (2008) study, there is no change over time, with biofuels, on average, resulting 

in fuel prices declining by 4.5%.  

The meta-analysis suggests that petroleum refineries respond to the introduction of 
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biofuels do make a dent in the refineries’ profit margins and negatively affect fuel prices (as well 

as crude oil prices). 

When comparing results across studies, models that include food commodity, as well as 

fuel markets, result in estimates that on average predict that the introduction of biofuels will 

result in a few percentage points of decline in fuel prices. On the other hand, models that focus 

more on fuel/ethanol markets predict that the introduction of biofuels results in a larger impact 

on fuel prices.  

A recurring outcome of the meta-analysis is that a more detailed and explicit modeling of 

related markets positioned throughout the supply chain results in the analysis predicting smaller 

effects on prices; linkages among markets matter and mitigate the price effect of the introduction 

of corn ethanol. Here, the introduction of other petroleum markets and food markets yields a 

smaller negative effect on fuel prices. When looking at food commodity prices, introducing the 

oil and petroleum markets results in corn ethanol having a smaller net effect on food commodity 

prices.  

Next, we want to further understand the distribution of the parameters affecting the 

results presented in the population of studies analyzed. Thus, we employ Bayesian estimation 

techniques, where a petroleum market dummy and demand elasticity are introduced to the 

empirical specification, as is the year the model is calibrated. Other specifications are introduced 

in the Appendix A section 3A. These specifications are simulated twice: (i) the all-inclusive 

dataset whereby all the results are included in the data and (ii) the average dataset whereby only 

the average of each study is included in the data. 

We present here the results of the all-inclusive dataset. Each simulation assumes 200,000 

MCMC iterations and we burn-in the first 5,000 iterations. An uninformed prior is assumed for 

the models’ coefficients. We also assume that the joint prior distribution of the coefficients and 

the variance are proportional to the inverse of the variance – namely, the Jeffrey prior. The 

estimation outcome of the Bayesian analysis, while employing the all-inclusive dataset, is 

depicted in the Appendix A section 3A. Overall, the analysis supports the assumption that the 

magnitude of the effect of the RFS depends on several key parameters, which can explain some 
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of the differences among the various studies; key parameters that we identify in the regression 

analysis are presented in Table 5. 

The meta-analysis and the robustness of the analysis suggest that the introduction of corn 

ethanol yielded a decline in the price of fuel, albeit a small one, and that the heterogeneity 

observed in the literature can partly be explained by differences in assumptions: A higher 

demand elasticity and the modeling of petroleum markets yield a smaller change in fuel prices 

with introduction of the RFS. Linkages among markets result in reducing the effects of corn 

ethanol on prices, and this is true for both fuel prices and food commodity prices (see section 

4.2). 

4.4 The macro-economic effect of biofuels and learning 

To better understand the heterogeneity among various studies numerically assessing the effect of 

the introduction of corn ethanol on economic surplus, our meta-analysis includes data on the 

measured effect of corn ethanol on US welfare, terms of trade, year calibrated, period 

investigated, and method employed (see Appendix A section 4A, where summary statistics and a 

more detailed presentation of the statistical analysis is supplied).  

When comparing changes in economic surpluses that are attributed to the introduction of 

biofuels, the median is around 0% with US (and Brazil) slightly positive but the rest of the world 

slightly negative. To this end, the mean change in US welfare because of the introduction of corn 

ethanol is $1.4 billion US.  

The OLS stepwise regression analysis (Table 6) shows that models that introduce the 

ripple effect of economic activity, namely, the direct (i.e., directly related to the corn ethanol 

industry), indirect (i.e., indirectly related to the corn ethanol industry, e.g., input suppliers), and 

induced (i.e., coming from the expenditure of incomes earned from direct and indirect 

employment) effects of corn ethanol, result in larger estimates of the economic benefits of corn 

ethanol to the US. To this end, the case studies presented in the literature looking at employment 

and the economic activity generated by the introduction of biofuels in rural communities suggest 

that biofuels stimulated rural communities and created economic value. Although the case 

studies we surveyed concluded that biofuels resulted in a net economic benefit to rural 
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communities, the introduction of biofuels did negatively affect livestock farmers and reduce 

employment in conventional biomass industries (Remedio and Domac, 2003; Domac et al., 

2005).  

We depict two regression models (Table 6): OLS stepwise regression and an OLS 

stepwise regression model with clustered standard deviations. The results of the regression 

indicate that introducing other countries, in addition to the US, and explicitly modeling trade 

between regions leads to estimates of higher benefits to the US from the introduction of corn 

ethanol. The analysis introduces a dummy variable that equals 1 if the study explicitly assumes 

other regions or the rest of the world, thus explicitly capturing the economic effect of trade with 

the US. Both specifications suggest higher net economic value to the US if trade is explicitly 

modeled; the empirical analysis suggests a $5.6 billion US difference, and the coefficient is 

significant at the 1% level (Table 6).  

The analysis introduces a dummy variable that equals one if the method employed is a 

computational general equilibrium (CGE) model and zero otherwise. The dummy variable 

distinguishes among models that capture the ripple effect of corn ethanol versus those that do 

not. The outcome presented in Table 6 shows a significant and positive effect of almost $3 

billion US in models that explicitly model the ripple effect of the introduction of biofuels on the 

US economy. 

Although policies promoting corn ethanol achieve only modest environmental 

improvements (section 4.1), these policies do result in substantial improvements to the US 

balance of trade and its energy balance, resulting in a significant positive effect on rural 

employment and the economy at large. Even though in 2005 the US consumed 3.34 billion 

barrels of finished motor gasoline annually, in 2011 US consumption of finished motor gasoline 

declined to 3.19 billion barrels annually. The amount of ethanol consumed in the US in 2011 

equaled 67.25% of the decline of finished motor gasoline consumption from 2005 to 2011. On 

the other hand, production of US gasoline in 2005 was 3.04 billions of barrels annually but it 

increased to 3.31 in 2011, an increase of 9%. While focusing on US energy policy, similar 

conclusions can be demonstrated using the petroleum-refining and coal industries as examples 

(Hochman and Zilberman, forthcoming; San et al., 2008). 
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Variable	 OLS	Stepwise	Regression	 OLS	Stepwise	Regression	
		

	
(Cluster)	

Year	Calibrated	 0.2756	 0.1125	

 
0.0544	 0.1160	

Year	Published	 -0.1208	 -0.1126	

 
0.0585	 0.1159	

ROW	 5.6125	 5.6119	

 
0.5002	 0.3312	

Model	 2.9829	 2.9850	

 
0.7740	 0.8236	

Constant	 -310.1964	 -310.7661	
		 109.0287	 99.5104	

Statistics	
	  N	 16	 16	

R2	 0.9722	 0.9354	
	

Table 6. The effect of the introduction of corn ethanol on the economic welfare of the US 

economy: estimations of Eq. (1) and measuring the effect of various factors on the US economic 

welfare reported in the literature. 

Based on a separate strand of this literature that estimates the learning-by-doing in the 

corn and sugarcane ethanol industries, the economic benefits from the introduction of ethanol are 

expected to increase over time. The concept used in this literature measures and quantifies the 

aggregated effect of technological development using the experience curve approach. This 

approach assumes that costs decline with a fixed percentage over each doubling in cumulative 

production, namely, learning-by-doing is measured by the progress ratio (PR) that represents the 

cost of production after cumulative production doubles. The results of this part of the meta-

analysis indicate that the average PR for production is 0.32, but that the PR for processing equals 

0.86.  

These outcomes are important and imply that the economic benefits from the introduction 

of biofuels will only increase with time. The outcomes also suggest that to fully understand the 

economic value of the introduction of biofuels to the US economy, dynamics need to be 
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incorporated into the analysis, including the dynamics of production and the dynamics of 

agricultural commodities, as well as the importance of inventories (Hochman et al., 2015). 

V. Policy discussions and concluding remarks 

The results of our meta-analysis indicate that the introduction of biofuels resulted in a moderate 

increase in food commodity prices, but a small impact on food prices and a small reduction in 

fuel prices. The analysis also implies that even though first-generation biofuels did not yield 

much benefit to the environment, they substantially affected the macro economy and rural 

development. To this end, evidence presented in the papers suggests a small positive net effect 

on aggregate US welfare.  

A recuiring outcome of the meta-analysis is that a more detailed and explicit modeling of 

related markets positioned throughout the supply chain results in the analysis predicting smaller 

effects on prices; economic linkages matter and alleviate the price effects attributed to the 

introduction of corn ethanol. The introduction of other petroleum markets and food markets 

resulted in a smaller negative effect of corn ethanol on fuel prices, while introducing the oil and 

petroleum markets resulted in corn ethanol having a smaller positive net effect on food 

commodity prices. GHG emission savings were also smaller if economic models were used. 

Biofuel policy, similar to oil, natural gas, and coal policies, results in political and 

economic gains and affects macroeconomic parameters that are key to politicians. Macro-level 

aggregate considerations, in addition to special interests, guide policy makers, and biofuel policy 

has resulted in macro-level aggregate outcomes that are emphasized by the executive branch. 

However, this may come at the expense of the environment.  

The meta-analysis indicates that dynamics matter, as do commodity inventories, implying 

that dynamic welfare analysis that includes learning and the dynamics of agricultural 

commodities is needed to better understand the effect of biomass on the economy. In the 20th 

century, technology moved the US from traditional agriculture to modern agriculture, thereby 

yielding higher return on investments in agriculture (Schultz, 1964). Technology will likely have 

similar effects on the bioeconomy in the 21st century, resulting in high returns on investment and 
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technologies that transform the bioeconomy beyond first-generation biofuels and expand the 

portfolio of bioproducts produced and consumed.  
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Appendices 

Appendix A: 

1A. GHG emissions and indirect land use 

To better understand the heterogeneity among the various studies that numerically assess the 

effect of the introduction of biofuels on GHG emissions, the following variables where included: 

CO2 emissions (percent and kg CO2e per liter of ethanol), g CO2 emissions due to ILUC per liter, 

biofuel production, US land use change, and global land use change. Summary statistics of the 

variable is presented in Table 1A. 

Variable	
Total	#	of	
observations	 Mean	 Std.	Dev.	 Min	 Max	

Percent	change	in	CO2	 62	 -0.06	 0.28	 -0.67	 0.93	
kg	CO2e	per	liter	of	ethanol	 70	 -0.19	 0.87	 -2.01	 2.71	

ILUC	g	CO2	per	liter	 23	 0.81	 0.52	 0.19	 2.36	

biofuel	production	(Mtoe)	 12	 122.07	 102.92	 11.35	 295	
US	land	use	change	(000	ha)	 6	 1005.67	 617.13	 390	 1844	

Global	land	used	change	(000	ha)	 20	 9863.71	 11390.77	 699.6	 44000	

Table 1A. Summary statistics 

The variables summarized in Table 1 are used to estimate Eq. (5A), whose results are 

depicted in Table 2A. Because this part of the analysis uses the all-inclusive dataset whereby all 

relevant estimates reported in each study are documented, the empirical analysis needs to address 

heteroskedasticity. For these studies, cluster standard errors are employed (Model IA). We also 

compare the clustered errors with weighted OLS (Model IVA), where the weights per 

observation are inversely related to number of observations per study (the two options are 

denoted with Cluster or Weights, respectively). The results of the cluster analysis are also 

compared with a stepwise OLS regression (Model IIA) that performs backward-selection 

estimation (i.e., it starts with the full model).  

 

Model IA Model IIA Model III Model IV 
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stepwise (0.2) 

Cluster OLS 

Stepwise (0.2) Weighted 

Crude oil 
dummy 

0.4412*** 

(0.0780) 

0.5041* 

(0.2772) 

0.5373*** 

(0.1818) 

0.4089* 

(0.2216) 

Year 
calibrated 

 

0.0147  

(0.0421) 

  

Model 
dummy 

-0.1879*** 

(0.0501) 

-0.1388  

(0.2464) 

  

Constant 

-0.2314**  

(0.0848) 

-29.6703  

(84.4438) 

-0.4095*** 

(0.1491) 

-0.3879* 

(0.2148) 

R2 0.1485 0.1504 0.1349 0.1011 

N 58 58 58 58 

	

Table 2A. Estimating the DIFF model 

Next, we simulated Markov Chain Monte Carlo (henceforth, MCMC), and subsampled 

the Markov Chain to reduce storage burden of the output and improved statistical efficiency 

(Owen, 2015). We thin the Markov Chain sample, taking every 5th observation instead of all of 

them. We also burn-in the first 50,000 to minimize the effect of the prior on the statistical 

analysis. That is, we had 1,049,996 iterations that led to a sample size of 200,000. The prior is 

the normal distribution with mean 1 and standard deviation 0 but the joint prior distribution of 

the coefficients and the variance is an inverse Gamma distribution. We ran the Bayesian 

estimation twice: with and without weights. 

 OLS 
specification 

Weighted 

OLS 
specification 

 

Crude oil dummy 0.4061 0.4216 
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(0.0650) (0.2349) 

Year calibrated -0.0002 

(0.1053) 

-.0001 

(0.0005) 

Model dummy -0.0427 

(0.1053) 

-0.1904 

(0.2260) 

Constant -0.0311 

(0.9992) 

-0.0053 

(0.9991) 

Burn-in 50,000 50,000 

MCMC iterations 1,049,996 1,049,996 

Acceptance rate 0.3580 0.3355 

Table 3A. The posterior means: comparing the Bayesian outcome 

The trace, autocorrelation, histogram and density were visually checked for the 

convergence of MCMC, and all are well behaved and depicted in Figure 1A, assuming the 

specification of Model IA yet assumed a weighted regression, where the weights per observation 

are inversely related to number of observations per study. Similar outcomes were also obtained 

under the alternative models.  
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Figure 1A. The trace, autocorrelation, histogram and density assuming weighted regression and 

specification of Model IA.  

2A. Food prices 

To better understand the heterogeneity among various studies numerically assessing the effect of 

the introduction of biofuels on food commodity prices, our meta-analysis included data on the 

assumed demand and supply elasticity of various crops, inclusion of a fuel and other 

petroleum/crude oil markets, did the analysis focus on the US or also include the rest of the 

world, year data calibrated, dummy that equals one for the food commodity price inflation 

(2007/08), and assumptions on a mandate and tax credit as well as type of analysis (partial versus 

general equilibrium).  
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Table 4A summarizes corn data used in this part of the analysis where the dependent 

variable is the price difference in constant 2005 US$ with and without biofuels.  

Variable	
#	of	observation	

(corn)	 Mean	 Std.	Dev.	 Min	 Max	

Difference	(constant	2005	
US$)	 88	 0.6090	 0.6513	 -0.85	 3.29	

Fuel	Market	 91	 0.6813	 0.4685	 0	 1	
Oil/Petroleum	Markets	 91	 0.3407	 0.4766	 0	 1	

Rest	of	the	World	 91	 0.4176	 0.4959	 0	 1	
Demand	elasticity	of	

crops	 31	 -0.4716	 0.5039	 -1.67	 -0.16	
Supply	elasticity	of	crops	 28	 0.3339	 0.1035	 0.15	 0.50	

Year	Calibrated	 93	 2005.85	 3.8106	 2000	 2012	
2007/08	Food	commodity	

Inflation	 93	 0.2688	 0.4457	 0	 1	
Mandate	 91	 0.5824	 0.4959	 0	 1	

Tax	credit	 91	 0.3187	 0.4685	 0	 1	

Table 4A. Summary statistics of food commodity price data 

The variables summarized in Table 4A are used to estimate Eq. (5A), whose results are 

depicted in Table 5A. Because this part of the analysis uses the all-inclusive dataset whereby all 

relevant estimates reported in each study are documented, the empirical analysis needs to address 

heteroskedasticity. For these studies, we estimate a weighted OLS, where the weights per 

observation are inversely related to number of observations per study. Furthermore, we focused 

on the stepwise OLS that performs backward-selection estimation (i.e., it starts with the full 

specifications). The parsimonious model was then estimated using multiple regression model and 

the estimated parameters were very similar to those of the stepwise regression. 

Variable	

Model	I	
OLS	

Weighted	

Model	II	
OLS	

Weighted	

Model	III	
Stepwise	
(0.2)	

Weighted	

Model	IV	
Stepwise	
(0.2)	

Weighted	

Model	V	
Stepwise	
(0.2)	

Weighted	

Model	VI	
Stepwise	
(0.2)	

Weighted	

Gasoline	market	
0.7400	
(0.4815)	

0.6667	
(0.3605)	

removed	 removed	 removed	 removed	

Oil/Petroleum	Markets	
-1.2967	
(0.4397)	

-1.1420	
(0.3787)	

-1.1992	
(0.3850)	

-0.9795	
(0.3321)	

-1.4465	
(0.4328)	

-0.9795	
(0.3321)	

Rest	of	the	World	
-0.2372	
(0.3423)	

-0.3024	
(0.2656)	

removed	 removed	 0.1521	
(0.0507)	

removed	
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Demand	elasticity	of	
crops	

1.1801	
(0.3890)	

1.4196	
(0.3025)	

1.4119	
(0.2145)	

1.5098	
(0.2257)	

2.1126	
(0.3458)	

1.5098	
(0.2257)	

Supply	elasticity	of	crops	
-1.6305	
(1.0111)	

-1.2362	
(0.9737)	

-0.7796	
(0.3976)	

removed	 removed	 removed	

Year	Calibrated	
0.0932	

(0.02990)	
0.1407	
(0.0345)	

0.1004	
(0.0327)	

0.1525	
(0.0215)	

0.1481	
(0.0358)	

0.1525	
(0.0215)	

2007/08	Food	
commodity	Inflation	

0.7869	
(0.2479)	

0.6133	
(0.2410)	

0.2662	
(0.1498)	

removed	 0.4763	
(0.0826)	

removed	

Mandate	
 -0.4659	

(0.1635)	
	 -0.5005	

(0.0900)	
	 -0.5005	

(0.0900)	

Tax	credit	
  	 	 0.4801	

(0.1616)	
removed	

Constant	
-186.16	
(60.16)	

-281.27	
(69.30)	

-200.15	
(65.4768)	

-304.66	
(43.0954)	

-
296.0887	
(71.83)	

-304.66	
(43.0954)	

N	 58 58 25 25 25 25 

R2	 0.3222	 0.3385	 0.5436	 0.6060	 0.6019	 0.6060	

Table 5A. Stepwise regression and the effect of biofuels on food commodity prices.  

The 2007/08 Food Commodity Inflation pairwise correlation coefficient with the 

dependent variable is small (-0.03) and the t-test cannot reject the hypothesis that it is different 

than zero at a 10% significance level. However, the pairwise correlation of the Food Commodity 

Inflation with other covariates is significant different than 0 at a 10% significant level including 

the Demand Elasticity (-0.5646), Oil/Petroleum Markets (-0.2346), and Year Calibrated 

(0.2033). Thus, because the 2007/08 Food Commodity Inflation is correlated with other 

covariates but not with the dependent variable, stepwise regression does not add it to Model IV. 

To this end, correlation among covariates will cause the regression estimates to change 

depending on which independent variables are entered into the regression model (Cody & Smith, 

1987, p. 184). 

Next, instead of a weighted regression, assume clustered standard deviations and the 

following specifications.  

Variable	
Multiple	regression	I	

Cluster	

Oil/Petroleum	Markets	 -0.2842	
(0.1683)	

Year	Calibrated	 0.0447	
(0.0217)	
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Mandate	 -0.4019 
(0.1368) 

Constant	 -88.8060	
(43.4560)	

N	 88 
R2	

0.1614	

Table 6A. Assuming clustered standard deviations 

When assessing the distribution of the various parameters using Bayesian technics, the 

estimated derived were similar to those obtained above. The models were simulated twice: first 

with the all-inclusive dataset, and then with the average dataset. 

The sample size is 200,000 and the burn-in is 5,000. The prior is the normal distribution 

with mean 1 and standard deviation 0 but the joint prior distribution of the coefficients and the 

variance is an inverse Gamma distribution. The estimation outcome of the Bayesian analysis, 

while employing the all-inclusive dataset, are depicted in Table 7A. 

	 Model	I	 Model	II	 Model	III	 	
Acceptance	Rate	 0.	3627	 0.	3044	 0.	3290	 	

Efficiency:	 	 	 	 	
Minimum	 0.0659	 0.1058	 0.1526	 	
Average	 0.1950	 0.2394	 0.2859	 	

Maximum	 0.8030	 0.8053	 0.7971	 	
	 	 	 	 	

Fuel	Market	 0.2981	
(0.0614)	

0.3892	
(0.0574)	

0.2839	
(0.0578)	 	

Oil/Petroleum	
Markets	

-1.0516	
(0.0687)	

-0.9179	
(0.0602)	

-1.0286	
(0.0601)	 	

Demand	elasticity	of	
crops	

0.2393	
(0.0532)	

0.0933	
(0.0475)	

0.2204	
(0.0457)	 	

Year	Calibrated	 0.0997	
(0.0083)	

0.1203	
(0.0077)	

0.0969	
(0.0072)	 	

2007/08	Food	
commodity	Inflation	

0.0313	
(0.0544)	

-0.0731	
(0.0492)	

0.0154	
(0.0491)	 	

Mandate	
	

-0.2984	
(0.0408)	 	 	

Tax	credit	 0.0315	
(0.0458)	 	 	 	

Constant	 -0.1643	
(0.0931)	

-0.2675	
(0.0665)	

-0.1193	
(0.0657)	 	
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Variance	 0.1416	
(0.0073)	

0.1322	
(0.0068)	

0.1415	
(0.0073)	 	

Table 7A. Bayesian analysis with all dataset 

The trace, autocorrelation, histogram and density were also visually checked for the 

convergence of MCMC, and all are well behaved and depicted in Figure 2A, assuming the 

specification of Model II Table 7A. Similar outcomes were also obtained under the alternative 

models.  

 

 



 34 

 

Figure 2A. The factors affecting the food commodity price outcome 

Next, we simulated the Bayesian models using the average dataset. The average dataset 

was also used to calculate the funnel graph (see Figure 2 of the paper). The results from the 

Bayesian analysis is presented in Table 8A. 

	 Model	IB	 Model	IIB	 	
Acceptance	Rate	 0.	3044	 0.	3627	 	
Efficiency:	 	 	 	

Minimum	 0.1058	 0.0659	 	
Average	 0.2394	 0.1950	 	

Maximum	 0.8053	 0.8030	 	
	 	 	 	

Fuel	Market	 0.3829	
(0.0574)	

0.2981	
(0.0614)	 	

Oil/Petroleum	
Markets	

-0.9179	
(0.0602)	

-1.0516	
(0.0687)	 	

Year	Calibrated	 0.1203	
(0.0077)	

0.0997	
(0.0083)	 	

2007/08	Food	
commodity	

Inflation	
-0.0731	
(0.0492)	

0.0313	
(0.0543)	 	

Mandate	 -0.2984	
(0.0408)	 	 	

Tax	credit	
	

0.0314	
(0.0458)	 	

Constant	 -0.2675	
(0.0665)	

-0.1643	
(0.0931)	 	

	
   

Variance	 0.1322	
(0.0068)	

0.1455	
(0.0073)	 	



 35 

Table 8A. Bayesian analysis with the average dataset 

3A Fuel prices 

The collection of data, pertaining to the effect of the introduction of biofuels on fuel prices, 

included changes in fuel prices, demand elasticity, whether the study was peer-reviewed, the year 

used to calibrate the model, the year published, the numerical method employed (whether 

agriculture production was modeled, and if it was did the analysis assume partial, multi-market, 

or general equilibrium), was the petroleum markets modeled (other than fuel), and did the 

analysis focus on the US or also included the rest of the world.  

Table 9A depicts the summary statistics of the population of studies. The dependent 

variable, i.e., change in fuel prices caused by the introduction of biofuels, suggests that for some 

studies corn-ethanol resulted in fuel prices increasing with the introduction of biofuels (e.g., de 

Gorter et al. 2015 BOOK) while others suggest it led to a decline in fuel prices (e.g., Chen 2010). 

The simple average of the population of studies suggests the introduction of corn-ethanol yielded 

a decline of 12 US cents in the price of gasohol (i.e., the mixture of gasoline and ethanol – ethyl 

alcohol – used as fuel in internal combustion engines). The summary below also suggests about 

60% of the data is peer reviewed; 35% of the data is calculated assuming explicit markets for 

petroleum products (i.e., “Petroleum markets”); and that most of the models are either 

multimarket or general equilibrium models. The population of studies suggests heterogeneity 

among studies – a hypothesis we will return to below.   

Variable	
#	

Observations	 Mean	 Std.	Dev.	 Min	 Max	
Change	in	fuel	price	 68	 -0.1200	 0.1269	 -0.42	 0.23	
Demand	elasticity	 43	 -0.9407	 1.4974	 -10	 -0.11	
Supply	elasticity	 42	 1.3624	 1.4897	 0.1	 5.5	
Peer	Reviewed	 68	 0.5735	 0.4982	 0	 1	
Year	calibrated	 68	 2009	 5.3645	 2000	 2010	
Year	Published	 68	 2011	 3.1379	 2003	 2015	

Petroleum	markets		 68	 0.3529	 0.4814	 0	 1	
Rest	of	the	world	 68	 0.4265	 0.4982	 0	 1	

Model	 68	 3.1618	 1.0164	 1	 4	
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Table 9A. Summary statistics 

The variables summarized in Table 9A are used to estimate Eq. (5A), whose results are 

depicted in Table 10A. Because this part of the analysis uses the all-inclusive dataset whereby all 

relevant estimates reported in each study are documented, the empirical analysis needs to address 

heteroskedasticity. For these studies, cluster standard errors are employed. We also compare the 

clustered errors with weighted OLS, where the weights per observation are inversely related to 

number of observations per study (the two options are denoted with Cluster or Weights, 

respectively). The results of the cluster analysis are also compared with a stepwise OLS 

regression that performs backward-selection estimation (i.e., it starts with the full model) and 

also assumes clustered errors.  

Variable	 OLS	 OLS	

OLS	
Stepwise	
regression					

		 (weights)	 (Cluster)	 (Cluster)	
Demand	elasticity	 0.0327	 0.0313	 0.0345	

	
0.0116	 0.0188	 0.0092	

Peer	Reviewed	 -0.1126	 -0.1043	 Removed	

 
0.0418	 0.0792	

	Year	Calibrated	 -0.0058	 -0.0083	 -0.0042	

 
0.0050	 0.0054	 0.0026	

Year	Published	 -0.0311	 -0.0259	 Removed	

 
0.0147	 0.0193	

	Petroleum	products	 0.2020	 0.2324	 0.1239	

	
0.0608	 0.1059	 0.0583	

ROW	 0.0731	 0.0601	 Removed	

 
0.0731	 0.1388	

	Model	 0.0086	 0.0299	 Removed	

 
0.0235	 0.0340	

	Constant	 74.0164	 68.4477	 8.4234	
		 31.7488	 39.0621	 5.2378	

Statistics	
	   N	 43	 43	 43	

R2	 0.5849	 0.5659	 0.4861	
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Table 10A. Estimating the DIFF model 

The forest plot, which provides context to the meta-analysis, is depicted in Figure 3A. 

The population of studies is depicted to the left, the 95% confidence interval is depicted to the 

right (presented in the plot as a line, with the center of the line being the mean) and is adjunct to 

the weights the meta-analysis places on each study. The averages of most of the studies fall to 

the left of the zero line (where the average for each study is the simple average of all estimates 

reported in a study), thus suggesting the introduction of biofuels resulted in a decline of the price 

of fuel. The standard deviation was calculated using all estimates of a study and was used to 

construct the 95% confidence interval. For most studies the 95% confidence interval is locate to 

the left of the zero line – again, suggesting introduction of biofuels has a negative effect on the 

price of fuel. 

 

Figure 3A. The forest plot assuming the average dataset 

Next, we wanted to further understand the distribution of the parameters affecting the 

results presented in the population of studies analyzed. Thus, we employed Bayesian estimation 

techniques which are simulated twice: (i) the all-inclusive dataset whereby all the results are 

included in the data, and (ii) the average dataset whereby only the average of each study is 

included in the data. 
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We first present the results of the all-inclusive dataset. Each simulation assumed 12,500 

MCMC iterations and we burned the first 2,500 iterations. An uninformed prior is assumed for 

the models’ coefficients. We also assume the joint prior distribution of the coefficients and the 

variance is proportional to the inverse of the variance – namely, the Jeffrey prior.  

The estimation outcome of the Bayesian analysis, while employing the all-inclusive 

dataset, are depicted in Table 11A. We also checked the trace, autocorrelation, histogram and 

density to visually check the convergence of MCMC (Model I depicted in Fig. 4A). Overall, all 

figures (for the all the specification presented in Table 11A) support the assumption that the 

effect of the Renewable Fuel Standard depends on the several key parameters that can explain 

some the differences among the various studies. 

Variable	 Model	I	 Model	II	

Demand	elasticity	 0.0347	 0.0344	

	
0.0111	 0.0103	

Year	Calibrated	
	

-0.0044	

 	
0.0023	

Petroleum	products	 0.1379	 0.1250	

 
0.0332	 0.0322	

Constant	 -0.1107	 8.6540	

	 0.0235	 4.6308	
Acceptance	Rate	 0.	3321	 0.	2025	

Efficiency: 	 	
Minimum	 0.0746	 0.0245	

Average	 0.1011	 0.0412	

Maximum	 0.1597	 0.0716	
	 	 	

Table 11A. Bayesian analysis with all dataset 
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Figure 4A. Trace, autocorrelation, histogram and density of Model 1 (Table 10A) 

Table 12A depicts the effective sample size, correlation times, and efficiencies of the two 

models and compares them to a model that only has a constant. The results suggest the 

parsimonious model (Model I) is marginally better than the Full model (Model II) but the 

analysis also suggests autocorrelation is a concern in the Full model. The coefficients of the 

demand elasticity and the existence of an explicit petroleum market, however, have similar 

effects on fuel prices under both models (see Table 12A). 

		 DIC	 log(ML)	 log(BF)	

	    Constant	 368.99	 -169.56	 .	
Model	II	 -69.77	 24.37	 193.93	
Model	I	 -67.90	 28.16	 197.72	

 

Table 12A. Efficiency of the Bayesian models 

Figure 5A presents the bivariate scatterplots of the parsimonious model’s coefficients. 

The plot suggests a general shape of the multivariate posterior distribution. A larger demand 

elasticity (in absolute value) and an explicit petroleum market results in a smaller constant. 
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Figure 5A. The multivariate posterior distribution 

Because of concerns from the use of the all-inclusive dataset – over emphasizing certain 

studies but not others (i.e., those with many observations) and heteroskedasticity – we also 

simulated the empirical models using the average dataset. The results of the Bayesian analysis 

assuming the average dataset are presented in Table 13A. 

Variable	
Model	I	
(AVE)	

Model	II	
(AVE)	

Demand	elasticity	 0.0672	 0.0661	

	
0.0171	 0.0161	

Year	Calibrated	
	

-0.0046	

 	
0.0001	

Petroleum	products	 0.1138	 0.1143	

 
0.0467	 0.0383	

Constant	 -0.0488	 9.1523	
	 0.0358	 0.1235	

Acceptance	Rate	 0.	3483	 0.	3253	

Efficiency: 	 	

Minimum	 0.0644	 0.0118	
Average	 0.0816	 0.0189	

Maximum	 0.1089	 0.0634	

	 	 	

Table 13A. The Bayesian simulation and the average dataset 

Constant
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The Bayesian information criterion are depicted in Table 14A. Although the Full model is 

marginally better, its convergence is still of a concern.  

	
DIC	 log(ML)	 log(BF)	

Full	model	 -26.75	 0.60	 .	
Parsimonious	model	 -24.95	 9.02	 8.42	

Table 14A. The Bayesian information criterion assuming average dataset 

The meta-analysis, and the robustness of the analysis, suggests that the introduction of 

biofuels yielded a decline in the price of fuel, albeit a small one, and that the heterogeneity 

observed in the literature can partly be explained by differences in the assumptions: a higher 

demand elasticity and the modeling of petroleum markets yields a lower fuel price with the 

Renewable Fuel Standards. Furthermore, the output of the OLS stepwise regression with 

clustered errors is very similar to the outcome of the Parsimonious model under the all-inclusive 

dataset. 

4A. The macro-economic effect of biofuels 
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