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Abstract

Bringing together emerging lessons from biophysical and social sciences as well as newly

available data, we take stock of what can be learned about the relationship among perceived

soil fertility, measured soil fertility, and farmer management practices in east Africa. We identify

the correlates of Kenyan and Tanzanian maize farmers’ reported perceptions of soil fertility and

assess the extent to which these subjective assessments reflect measured soil chemistry. Our

results o↵er evidence that farmers base their perceptions of soil quality and soil type on crop

yields. We also find that, in Kenya, farmers’ reported soil type is a reasonable predictor of

several objective soil fertility indicators while farmer-reported soil quality is not. In addition,

in exploring the extent to which publicly available soil data are adequate to capture local soil

chemistry realities, we find that there is still immense value to the time-consuming collection of

soil samples where highly accurate soil measures are important to research objectives. However,

in the estimation of agricultural production or profit functions, where the focus is on averages

and where there is low variability in the soil properties, there may be limited value to including

any soil information in the analysis.

Keywords: natural resource management, soil fertility, agricultural productivity, farmers’

perceptions, Kenya, Tanzania.
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1 Introduction

While many socio-economic factors contribute to poor crop yields across Sub-Saharan Africa (SSA),

a major biophysical contributor is the depletion of soil fertility (Sanchez 2002; Sanchez and Swami-

nathan 2005; Vanlauwe et al. 2015; Tully et al. 2015). Across di↵erent agro-ecological zones in

SSA, soils poor in nutrients and soil organic matter not only partially account for low yields but

also limit the e↵ectiveness of other inputs such as fertilizer and labor, and reduce farm household

resilience to external stressors and shocks (e.g., pests, crop diseases, climate change). Moreover, the

direct links between soil fertility, agricultural productivity, food insecurity, and rural poverty can be

self-reinforcing. Whether due to an initial poor soil endowment or resource constraints leading to

low input use (fertilizers and/or organic soil amendments), the broad pattern across much of SSA

is soil degradation over time (Tittonell et al. 2005a; Guerena et al. 2016). As a result, some farmers

find themselves trapped in a low productivity equilibrium (Shepherd and Soule 1998; Antle et al.

2006; Stephens et al. 2012; Barrett and Bevis 2015). Despite the importance of soil fertility in the

context of agricultural development, major barriers remain in our understanding of how farmers

form perceptions about their soil fertility, and how soil fertility (perceived, directly measured, and

estimated) is related to farmers’ behaviors in terms of input use, cropping strategies, and other

management practices.

A paucity of research directly examines the relationship between soil fertility and the existing

farm management practices, especially in SSA. Agronomic studies that have precise measures of

soil fertility and yields often ignore farmers’ behavioral responses (see, for example, Vanlauwe et al.

(2011)) while economic studies fail to account for soil fertility in estimation of agricultural profits

and farmer welfare, at best including indicator proxy variables for soil fertility (e.g., Duflo et al.

(2008); Sheahan et al. (2013)). Only several studies with access to precise measures of soil fertility

analyze farmers’ knowledge of land quality and within-farm variability in resource allocation and

yields (e.g., Tittonell et al. (2005b)). Therefore, in this paper, we attempt to bring together

emerging lessons from the biophysical and social sciences as well as newly available data to take

stock of what we can learn about the relationships among perceived (subjective), measured, and

estimated soil fertility and farmers’ management practices.

Several other studies have examined these relationships, with mixed results. Cross-sectional
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data from the World Bank’s Living Standards Measurement Study-Integrated Survey in Agriculture

(LSMS-ISA) surveys across six di↵erent countries, for example, suggest that farmers in SSA do not

significantly vary input application rates according to perceived soil fertility (Sheahan and Barrett

2014). At the same time, there is evidence from Kenya that farmers apply fewer external inputs on

soils with objectively verified low soil carbon content and fertility (Marenya and Barrett 2009a), and

adjust planting timing and weeding intensity on plots with di↵erent land quality (Tittonell et al.

2005b). To better understand these empirical observations, we identify the correlates of farmers’

perceptions of soil fertility and assess whether currently available soil data are adequate to capture

farmers’ perceptions and knowledge.

We also explore the extent to which publicly available soil data, estimated via sophisticated

interpolation methods from point observations across the African continent, are adequate to capture

local soil chemistry realities at the household, village, and sample levels. Such data sets are an

incredible resource and their availability may obviate the need for detailed on the ground soil data

collection, saving researchers, agricultural organizations, and governments both time and money.

This exercise allows us to make recommendations to the broader research community about the

relative trade-o↵s inherent in relying on one soil metric over another. Finally, we assess the value

of soil information from a research standpoint by interchanging various soil metrics in a production

function approach to the analysis of yields.

In particular, we address the following four research questions in the course of our analysis:

1. What can we learn from household survey data about how farmers in east Africa form per-

ceptions about their soil fertility? Do agricultural inputs and/or outputs vary with perceived

soil quality and soil type?

2. How well do farmers’ subjective perceptions of soil fertility correspond to objective laboratory

measurements of soil chemistry? Are there any systematic factors a↵ecting farmers’ soil

fertility perceptions?

3. Can the new high-resolution and publicly available estimated soil fertility data sets provide

su�cient information to obviate the expensive and time-consuming collection of detailed plot-

level data?
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4. What is the value of soil information? Are there significant costs to farmers’ and researchers’

(mis)perceptions about local soil fertility?

To answer these questions, we rely on three data sets that correspond with a small number of

maize farming households in western Kenya and two data sets that correspond with a nationally

representative sample of maize farmers in Tanzania. In both study regions, farmers’ perceptions of

soil fertility and their agricultural practices are drawn from household survey responses. Global po-

sitioning system (GPS) coordinates allow us to match all of these households with publicly available

geo-referenced soil data at 250-meter spatial resolution from the Africa Soil Information Service

(AfSIS) (Hengl et al. 2015). In western Kenya, additional laboratory measures of plot-level soil

fertility are obtained from soil analysis based on the resource- and time-intensive collection of soil

samples (Berazneva et al. 2016). Apart from geographic di↵erences, both the Kenya and Tanzania

data sets also o↵er di↵erent contexts in terms of data collection e↵orts: the Kenya data are from a

small-scale detailed survey, while the Tanzania data are from a nationally representative large-scale

project. Combining the two geographic locations allows us to compare across the contexts, provide

external validity to our findings, and o↵er recommendations to researchers on soil data collection

and use.

Our results o↵er some evidence that farmers base their perceptions of soil quality and soil

type on crop yields. We also find that, in Kenya, farmers’ reported soil type (soil texture) is a

reasonable predictor of several objective soil fertility indicators drawn from laboratory soil analysis

while farmer-reported soil quality is not. In addition, we find that the di↵erences between the

two objective soil data sets that we compare in Kenya—plot-level measured soil analysis data and

estimated AfSIS soil data—are considerable, indicating that there is still immense value to the time-

consuming collection of soil samples where highly accurate and local soil measures are important to

research or extension objectives, despite the growing availability of high-resolution geo-referenced

soil data. However, in the estimation of agricultural production or profit functions, where the focus

is on averages and where there is low variability in the soil properties, there may be limited value

to including any soil information in the analysis.

Our paper proceeds as follows. In the next section, we briefly discuss the context from which our

research questions arose. We then discuss our data sources and the methods, mostly descriptive, we
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use. The following section o↵ers results for each of the four questions under investigation. The last

section concludes, taking stock of what we have learned about the relationship between perceived,

measured, and estimated soil fertility and farmer management practices, and o↵ering additional

research questions worth pursuing, both for better comprehension of farmer behavior and for the

collection of better data.

2 Background

The international development community has recently begun to turn its attention towards the

role of soils in agricultural and human development; in fact, the Food and Agriculture Organi-

zation of the United Nations declared 2015 the International Year of Soils. Aware that soils are

important, development and agricultural economists are increasingly including soil fertility data in

their analyses. When it comes to using soil data, economists generally fall into three camps. The

first camp takes farmers’ knowledge of soil fertility as a su�cient measure of or su�cient proxy

for soil fertility without any verification exercise or follow-up discussion about how farmers make

these determinations (see, for example, Sherlund et al. (2002)). These measures are often used as

control or proxy variables. The second camp assumes that farmers are too information-constrained

to accurately report soil quality measures and therefore relies on highly aggregated or estimated

measures of soil quality or soil type, derived from external mapping exercises and often matched

using administrative boundaries (e.g., Sheahan et al. (2013)). The third camp makes the same

assumptions as the second but collects and analyzes soil samples from the actual plots or farms

under study in lieu of relying on highly aggregated or predicted external data sets (e.g., Marenya

and Barrett (2009a)).

Each camp makes reasonable assumptions under the reality of data constraints, but little re-

search attempts to empirically understand the uniqueness of the information embodied in each of

these types of soil data. This information is valuable when choosing the most accurate soil fertil-

ity metrics for analysis and in understanding the reasons why other metrics may be insu�cient.

This is particularly true of farmer-reported values, which are collected in most agricultural surveys

implemented today.

While it is reasonable to expect that farmers in SSA are constrained in their ability to know the
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precise nutrient content of their soils, farmers do form assessments of their soil fertility and produc-

tivity (Niemeijer and Mazzucato 2003). To our knowledge, only a few studies in economics have

sought to aid our understanding of this process absent measurement.1 Marenya et al. (2008), for

example, study farmers’ perceptions of soil fertility and the impacts of fertility on yields in western

Kenya. Using objective measures of soil fertility, the authors find evidence of widespread farmer

misperception of soil fertility and these misperceptions cannot be easily explained by observed plot

or farmer characteristics such as plot size or farmer’s gender or age. The Kenyan farmers in the

study, similar to the farmers of the south-central highlands of Ethiopia (Karltun et al. 2013), use

crop yields as the key soil fertility indicator. Yet if yield changes lag behind the changes in soil

fertility, farmers may be unable to identify important dynamic patterns in soil fertility and may

be slow to update their assessments. This delayed response can result in significant deteriora-

tion in soil fertility or render soils unresponsive, making regeneration e↵orts expensive. Once soil

has degraded below a productivity threshold, soil restoration can become prohibitively costly and

therefore “economically irreversible” (Antle et al. 2006).

Moreover, resource allocation and crop management can di↵er according to perceived soil fer-

tility. Tittonell et al. (2005b), for example, find di↵erences in the timing and intensity of crop

management according to farmers’ perceptions of the quality of their land in Kenya. More fertile

plots are planted earlier, with more spacing between plantings, and are weeded more often. These

practices unsurprisingly lead to greater yields. Therefore, subjective soil fertility perceptions mat-

ter. However, beyond these few papers, the formation of farmers’ soil fertility assessments as well

as the interactions between farmers’ assessments and land management practices have not been

explored.

The formation of farmers’ perceptions about their soil fertility and the farming practices that

flow from these perceptions are important to understanding the critical linkages between resource

endowments, crop and land management, and agricultural productivity. These linkages, in turn,

may have major policy and programmatic implications. From a research perspective, understanding

the formation of farmers’ soil assessments is a first step towards evaluating the research value of

these subjective measures.

1A review of rural development literature, as well as studies in ethnopedology that focus on how farmers understand
their soils based on collective experiences, can be found in Marenya et al. (2008).
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If objective measures of soil fertility are deemed preferable over subjective measures, then the

next logical question is whether researchers should forsake free and publicly available data sets in

pursuit of their own expensive and time-consuming collection of soil chemistry data; i,e, which of

the soil-data-using-economist-camps is preferred? Massive amounts of resources have been funneled

into the creation of these publicly available data sets with high resolution and either continental

or global coverage, including but not limited to AfSIS2 and the FAO’s Harmonized World Soil

Database.3 In fact, the publicly available household survey data collected by national statistics

agencies throughout SSA and overseen by the LSMS-ISA initiative include files with soil data from

the FAO. Researchers wanting an even fuller complement of soil variables can easily match the

household survey data with the AfSIS database using provided enumeration level coordinates. But,

in the end, these soil data sets are the result of interpolation and are only as good as the data fed

into the algorithm and the underlying model. Moreover, interpolation itself implies that the areas

between sampling points are estimated, which, depending on the spatial resolution of the data,

may have large associated error. Without a critical assessment of how well these data represent

local soil chemistry realities, as derived from plot-level soil analysis, researchers cannot make good

decisions about which data may be most appropriate for their work. With very few exceptions

(e.g., Bui (2010)) comparative analyses of a publicly available spatial soil databases with plot level

soils data are not available, and we have found no studies that assess the performance of AfSIS at

the local level.

With renewed international recognition of the important role soils play in agricultural produc-

tion, welfare dynamics, and carbon sequestration (Lal 2012; Barrett and Bevis 2015; Lehmann and

Kleber 2015) as well as with major resources being devoted to the collection of a variety of subjec-

tive and objective, measured and estimated indicators of soil fertility, it is imperative to assess what

these data can and cannot tell us. This paper helps to sort through the implications by bringing

together and comparing some of these data sources.

2
http://www.isric.org/data/afsoilgrids250m

3
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/

en/
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3 Data and methods

Since crop choice may be both a function of and response to a farmer’s perceived soil fertility, we

limit our analysis to maize, the main and most important cereal in east Africa. Our data come

from Tanzania and western Kenya and are described in the subsections that follow. After providing

details on the data, we describe the analytical methods used to answer our four research questions.

Farmer-reported soil fertility measures, yields, inputs

We use a nationally representative sample of households from the 2010-2011 wave of the publicly

available Tanzania National Panel Survey, data collected as part of the World Bank’s LSMS-ISA

project. From the full sample, we restrict our analysis to the sub-sample of 2,360 plots containing

maize in the main growing season across 1,566 households, with plot-level data on agricultural inputs

and maize yield. A typical LSMS-ISA questionnaire asks respondents to specify soil quality and type

for each plot under cultivation without prompting or guidance so that farmers’ responses should be

purely based on their perceptions. The responses are then grouped into pre-coded categories. For

the Tanzania LSMS-ISA, the pre-coded categories for soil quality are good, average,4 or bad; for

soil type or texture they are sandy, loam, clay, or other. The presence of sampling weights allows

us to apply household-level population weights in the statistical analysis that follows.

The standard modules of the LSMS-ISA questionnaire were adopted for a household survey

e↵ort of over 300 households collected in 2011-2012 in fifteen villages in the Nyando and Yala

river basins of rural western Kenya (Berazneva et al. 2016). We use data for all maize-growing

households for which soil analysis is available, for a sample size of 509 maize plots cultivated by

307 households. Identical to the LSMS-ISA survey, respondents classify their soil quality and type

based on their knowledge, as well as report agricultural input and maize production levels. The

near-identical questions and classifications between the LSMS-ISA survey implemented in Tanzania

and that implemented in Kenya allow us to easily compare across the two regions.5

Agricultural input and output variables are drawn from farmer recall related to the last main

4We use good, average, and bad soil categorizations to mirror the questions in the household surveys. Average
should be understood as intermediate (not an arithmetic mean).

5The soil type question was identical across the two data sources. The soil quality question o↵ered several
additional pre-coded options (poor, very poor, and not productive at all) in Kenya that were later grouped into the
bad category to correspond to the Tanzania data.
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season. Where applicable, we standardize input and output values by plot size. For Kenya, plot

area is measured with hand-held GPS units. For Tanzania, GPS-measured plot areas are only

available for a sub-set of all plots, so we rely on imputed plot sizes as described in Palacios-Lopez

and Djima (2014). We also create a range of plot- and household-level characteristics from the

survey data, relying mainly on those variables observed consistently across the two countries.

Researcher-collected plot-level soil samples

In western Kenya, soil samples were collected from the largest maize plot of each farm household at

the end of the long rains season of 2011. Topsoil (0-20 cm) was randomly sampled from four points

across the plot, mixed together (homogenized), and analyzed at the World Agroforestry Center’s

Soil-Plant Spectral Diagnostics Laboratory in Nairobi, Kenya. The samples were analyzed using

mid-infrared spectroscopy (MIR), a rapid nondestructive technique for examining the chemical

composition of materials (Shepherd and Walsh 2002; Cozzolino and Moron 2003; Shepherd and

Walsh 2007). The MIR analysis provided information on several key soil characteristics: soil

carbon measured as percentage of total soil carbon by mass (% by weight or % w/w),6 nitrogen

content measured as percentage of total nitrogen in the soil by mass (% by weight or % w/w), soil

pH (measured on 1 to 7 scale), and cation exchange capacity (CEC) measured in milliequivalent of

hydrogen per 100 grams of dry soil (meq/100g). Soil carbon and nitrogen content have been used

as proxies for soil fertility in the past (see, for example, Marenya and Barrett (2009b)). These two

measures are highly collinear and correspond to soil organic matter content that can be transient

and influenced by farm management practices. Soil pH and CEC, on the other hand, relate more

strongly to soil texture and mineralogy, and therefore are more stable indicators of soil fertility

(Sparks 1996).

In order to classify soils as “fertile,” we use thresholds and recommendations for soils in western

Kenya from the Kenya Agricultural Research Institute (Mukhwana and Odera 2009) and from the

Cornell Soil Health Test (Moebius-Clune et al. 2011). Fertile soil is defined as soil with organic

carbon content greater than or equal to 2% w/w, total nitrogen content greater than or equal to

0.2% w/w, and pH greater than or equal to 5.2. The resulting soil data o↵er on-the-ground insight

6The soils in the research site in Kenya are acidic and do not contain carbonates so that total stocks of soil carbon
are equivalent to total organic carbon content.
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into the plot-level soil fertility of smallholder farmers in rural western Kenya. In the discussion

below, we refer to these laboratory measurements as “measured soil data” or “soil analysis data.”

Geo-referenced and estimated soil quality measures

We also match the household survey data with publicly available data from the Africa Soil Infor-

mation System (AfSIS). AfSIS, a collaborative soil ecosystem services project, provides data on soil

characteristics at 250-meter spatial resolution (Vagen et al. 2010). The data were created by inter-

polating soil characteristics from more than 28,000 sampling locations using techniques detailed in

Hengl et al. (2015).

The AfSIS data were downloaded from the Africa Soil Profiles Database Version 1.2, where

.tifs of a variety of soil characteristics are available at 0–5cm, 5–15cm, 15–30cm, and etc. depths.

Because we want the AfSIS data to be comparable to the laboratory measured soil data in Kenya,

we selected the data representing the 0-20cm depth where available (total soil nitrogen). Where

the 0–20cm-depth level was not available (soil organic carbon, pH, and CEC), we selected data

representing the 0–5cm and 5–15cm depths and averaged them together.

We paired the AfSIS data with the Kenyan and Tanzanian households by extracting the geo-

references available in the household surveys. In Kenya, these points pertain to plots; in Tanzania,

these points pertain to the average of the enumeration area (EA), as per World Bank LSMS-ISA

restrictions.7 While the AfSIS data repository provides information about a large number of soil

indicators, we extract only the soil characteristics that best match those same values available in

the soil analysis data in order to make valid comparisons: soil organic carbon, total soil nitrogen,

pH, and CEC.8 While organic carbon and total nitrogen content are susceptible to change over

time, soil pH and CEC are more stable and therefore potentially more appropriate measures of soil

fertility to obtain through satellite data.

7In order to pair the AfSIS data with the Kenya plot level geo-references, we extracted the values for each soil
characteristic as observed (i.e., we extracted the value for the 250m cell the geo-referenced point fell in). So as to pair
the AfSIS data with the Tanzania enumeration area geo-references, we extracted the values for each soil characteristic
as interpolated (i.e., we extracted a value produced via interpolation from the values of the four nearest raster cells in
the AfSIS data). We took these two di↵erent approaches—strict extraction versus interpolation—for the two countries
due to the nature of the geo-references available to us in the household survey data for each country. However, it
should be noted that there was little substantive di↵erence between the observed and interpolated points in either
country. For eight EAs in Tanzania, the included geo-reference details landed in bodies of water so that we were
unable to match these with AfSIS data. In these cases, we replaced with median values across EAs within a ward.

8Carbon: A/10, nitrogen: A/10, pH: A/10, CEC: no conversion necessary as the AfSIS data are already in the
same units as the soil analysis data. A indicates AfSIS data.
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Analytical methods

We combine the three aforementioned data sets to address our research questions. Graphically,

Figure 1 displays the sample of Kenyan households with the soil analysis data (in circles) overlaid

on the AfSIS soil pH data. From this figure we can see the relative resolution of the two data

sets. In the left panel we observe all fifteen-study villages as well as the general variation in soil

pH across western Kenya. Zooming in on one of the villages (in the Lower Nyando region) in the

right panel, we see that the variation in soil pH both decreases and becomes more pixelated as we

approach the 250-meter resolution level.

Our statistical analysis relies mainly on di↵erence-in-means tests. To determine whether the

means of perceived soil quality and soil type di↵er significantly across agricultural inputs, maize

yield, and the measured (soil analysis) and estimated (AfSIS) indicators of soil fertility, we use the

Tukey-Kramer test, which allows for multiple pairwise comparisons while accounting for the family-

wise error rate. To explore the heterogeneity in farmers’ perceptions we also estimate an ordered

probit model with a similar set of variables included in the di↵erence-in-means analysis. The

dependent (ordered) variable is farmers’ perceptions of soil quality (1=bad, 2=average, 3=good),

while factors hypothesized to a↵ect farmers’ classification include estimated (AfSIS) soil organic

carbon and CEC, maize yield, agricultural inputs, and plot- and household-level characteristics.

In addition, we undertake several descriptive analyses to assess how well the estimated (AfSIS)

data capture the soil results found in the measured (soil analysis) data in Kenya. We provide

scatter plots to visually explore how the data di↵er by household. We also report pairwise correla-

tion coe�cients and equivalence tests at the village and sample-level to assess whether the AfSIS

data can statistically capture the village-level means. Finally we estimate a maize production

function with and without soil variables to quantify the “usefulness” of having soil information.

We report the results of a Cobb-Douglas9 production function with three inputs (land, labor, and

fertilizer), with and without controls, as well as the predicted yields and marginal physical products

of fertilizer for Kenya and Tanzania. Marginal physical product (MPP) measures the additional

9For zero values in fertilizer input, we add one to all input levels before taking logs. The point of estimating a
production function is to demonstrate whether the coe�cients change after including di↵erent soil variables. Since
returns to inputs may be conditional on soil fertility (Marenya and Barrett 2009b), we also estimate the maize
production function with input-soil fertility interaction terms. The coe�cients on the interaction terms are not
statistically significant.
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output that results from the use of one additional unit of input. In our case, MPP of fertilizer

measures the additional maize yield in kilograms from using one additional kilogram of fertilizer.

By including subjective (farmers’ perceptions), measured (soil analysis), and estimated (AfSIS) soil

variables in separate specifications, we demonstrate how using di↵erent types of available soil infor-

mation changes estimation and explore whether there is a cost to farmers’ or researchers’ potential

misperceptions.

4 Results and discussion

We present and discuss results for each of our four research questions below.

Question one: farmers’ perceptions of soil fertility vs. inputs and yield

Before answering our first research question, we provide three useful descriptive findings that help

to shed light on our main results. First, we note the major di↵erence in distribution of plots across

farmer-perceived good, average, and bad classifications in western Kenya and Tanzania (Table 1).

In Tanzania, only 6 percent of maize plots are classified by their farmers as bad relative to 24

percent in Kenya. In Kenya, over half of all maize plots are regarded as average quality, with a

mostly even split of remaining plots between good and bad. In both countries, a majority of farmers

classify their soil type as loam (although a higher percentage in Tanzania), with the remaining plots

split between clay and sandy.10

Second, the correlations between farmer-perceived soil quality and type are also worth men-

tioning. Farmers distinguish between good and bad soils across all soil types (sandy, loam, and

clay) both in Kenya and Tanzania (Table A1 in the Appendix). For example, 15 percent of sandy

soils are thought to have good soil quality as opposed to 30 percent of loam soils and 23 percent of

clay soils in Kenya. In Tanzania, 43 percent of sandy soils have good soil quality as opposed to 47

percent of loam soils, and 63 percent of clay soils.

Third, it is useful to understand to what extent perceived soil quality measures vary within and

across farms; that is, are farmers ranking their fields’ fertility relative to others on their own farm?

Or do they evaluate their plots relative to the greater context of other farmers in their village or

10For the purposes of our work, we drop all plots classified as other from the farmer-perceived soil type analysis.
There is only a small percentage of plots in this category in both Kenya and Tanzania.
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perhaps further afield? In a decomposition of good, average, and bad perceived soil quality within

and between households and villages/enumeration areas (EAs) (Table A2 in the Appendix), we

find that variation in plot-level soil quality assessment is largely due to di↵erences between farms

within a given village or EA as opposed to within farms.

Table 1 also displays the multiple pairwise comparisons of farmer-reported soil quality and type

against agricultural inputs and maize yield levels. We see that the mean values of maize yield are

highest on good plots and lowest on bad plots in both Kenya and Tanzania. However, only in

Kenya do we find that good plots produce statistically significantly higher yields and only relative

to bad plots. Therefore, farmers seem to base their soil quality perceptions on the yield from their

maize fields. However, the causal direction of this relationship is not clear from the survey data or

our analysis. Loam soils in Kenya have statistically significant higher yield values than do sandy

soils.

When looking at inputs used on maize plots, we find that Tanzanian farmers are far more

likely to apply some amount of chemical fertilizer on their bad plots than on their good or average

ones. This may be an indication that farmers are trying to improve the quality of their bad plots

through chemical fertilizer supplements and/or that farmers believe their good or average plots are

su�ciently fertile. Average fertilizer application rates (column 4) displayed are conditional on use

(column 1). Slightly higher application rates are seen on good and average plots, but the di↵erences

are not statistically significant. We find no di↵erence in binary or continuous chemical fertilizer use

decisions based on farmer-perceived soil quality in Kenya. We find, however, that loam fields are

more likely to receive chemical fertilizer than sandy fields, likely because loamy soils have higher

clay and CEC contents and therefore tend to be more responsive to fertilizer use than sandy soils

(Lal 2006). We also note that far more farmers in Kenya use chemical fertilizer than do farmers in

Tanzania and, therefore, may feel less constrained in their decision to use fertilizer on any of their

plots.

With respect to other agricultural inputs, we find that in Kenya good quality plots are more

likely to receive herbicide or pesticide than bad plots, but this is not the case in Tanzania. In some

parts of Kenya herbicides are often used to prepare land for planting (rather than engaging in more

time-consuming human-powered tilling), which could help to explain this finding. Most strikingly,

we find that farmers do not vary their organic resources application based on perceptions of soil
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quality in either Kenya or Tanzania. Only with respect to farmer-reported soil type in Tanzania do

we find any statistically significant di↵erence; loam soils are more likely to receive organic resources

than clay soils, perhaps because soils high in clay already have relatively high nutrient contents. As

organic soil amendements help to rebuild degraded soils, we find it somewhat troubling that farmers

do not appear to di↵erentiate their organic resources based on perceived soil quality, especially since

most organic resources are generated from on-farm sources (not market-purchased).

Question two: farmers’ perceptions vs. objective measures of soil fertility

Table 2 provides results of statistical tests comparing estimated (AfSIS) data to subjective farmers’

perceptions of soil quality. Similar to Marenya et al. (2008), we find limited correspondence between

farmer-perceived soil quality and estimated (AfSIS) soil data. While plots with good soils have

slightly higher organic soil carbon and total nitrogen content and higher pH and CEC than do

plots with average or bad soils, the di↵erences between the means are not statistically significant.

These soil characteristics, however, vary significantly across the farmer-reported soil types. Soil

pH, for example, is lowest (less acidic) on plots with clay soils: 5.72 relative to 5.82 on plots with

sandy soils. The pattern is similar for the measurements of soil organic carbon, total nitrogen, pH,

and CEC from the soil analysis (AfSIS) data (Table A4 in the Appendix).

We also create an indicator for fertile soils in Kenya based on the three objective measurements

and find statistically significant relationships only for soil type. Eighty one percent of plots with

fertile soils correspond to plots with farmer-perceived clay soils while only 52 percent of plots with

fertile soils correspond to plots with farmer-perceived sandy soils. Soil texture, thus, appears to be

the main criteria for soil fertility classification in Kenya.

The picture is somewhat di↵erent in Tanzania (Table 2), where we only have objective mea-

surements of soil organic carbon, total nitrogen, pH, and CEC from the AfSIS data. While farmer-

perceived soil type remains the main predictor of the di↵erences in objective measurements, plots

with better soil quality, as reported by farmers, also have statistically significantly higher carbon

content and CEC. Average soil organic carbon content on plots with good soil quality, for example,

is 1.67% (w/w) versus 1.57% (w/w) for plots with average soil quality and 1.46% (w/w) for plots

with bad soil quality. As the variability between the means is relatively small (as it is in Kenya),

the bigger sample perhaps increases statistical significance.
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While there are few statistically significant correlations between farmer-perceived and measured

or estimated soil fertility indices, especially in Kenya, there are consistent trends in the mean values.

With no exceptions, farmer-perceived bad soil is ranked as the lowest measured value across all

metrics. Likewise, farmer-perceived good soil is consistently ranked the highest value among all the

individual metrics. Similar trends are also found for soil type. Farmer-perceived sandy soils mostly

have the lowest measured soil values and the farmer-perceived clay soil mostly have the highest

measured values. The notable exceptions include pH and CEC. This is consistent with the known

soil chemical characteristics between sandy and clay soils. Although there are few statistically

significant di↵erences in measured indicators between farmer-perceived categories, the di↵erences

in the means of the measured or estimated metrics are relatively small. This suggests that there

are very few di↵erences in empirical soil properties within the study soil (which can also be seen

in Figure 2 for Kenya) and, on average, farmer perceptions of soil fertility are sensitive enough to

predict subtle changes in soil chemistry.

Moving to multivariate analysis, Tables 3 and 4 show the coe�cients after a sequence of the

ordered probit estimations. The first column in each table relates farmers’ perception to the

estimated soil organic carbon and CEC from the AfSIS data; the subsequent columns add covariates

by grouping. In Kenya (Table 3), coe�cients on soil organic carbon and CEC are not significant,

strengthening the results in Table 2. Farmers’ perceptions in Kenya do not statistically correspond

to the chemical measurements of soil fertility indicators. Coe�cients on maize yield, on the other

hand, are positive and statistically significant across all the specifications. This indicates that

farmers seem to form perceptions of soil fertility based on maize yield (similar result seen in Table

1). Adding other covariates—first inputs then plot and household characteristics—does not change

this result. Farmers are also less likely to apply chemical fertilizer on plots perceived to have higher

soil quality, and plots with (farmer reported) soil erosion are predictably perceived to have lower

soil quality.11 Farmers’ perceptions or misperceptions of soil quality, therefore, do not look clearly

targetable based on observed plot or household characteristics (apart from soil erosion). Very

similar results are observed in Table 4, the ordered probit estimation for the Tanzanian sample.

The main di↵erence is in the sign and significance of the coe�cient on soil organic carbon across

11Same results hold if we use soil organic carbon and CEC from the measured soil analysis data instead. The
results are reported in Table A6 in the Appendix.
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all specifications, consistent with the results in Table 2.

Farmers’ perceptions of soil quality, therefore, seem to be strongly associated with soil erosion

and, as seen above, farmer-observed yields across the two samples. As indicated above, the direction

of the soil quality and yield relationship cannot be determined from the data we have available.

Farmers may observe yields and conclude that their plots have bad, average, or good soil quality

or they may know that their plots have a certain soil quality and then appropriately adjust inputs

and other practices to maximize expected yields. This indeterminate causal relationship poses

endogeneity concerns for the estimation of agricultural production or profit functions. Therefore,

absent more information or an exogenous instrument, one must exercise caution when including

farmers’ perceptions of soil quality in the estimation of yields.

Question three: high resolution, publicly available soil data vs. researcher-

collected plot-level soil data

We find significant di↵erences at the household, village, and sample levels between the two soil

data sets for Kenya: the estimated AfSIS soil data and the measured soil analysis data (Table 5).12

By construction, the AfSIS data show less variation than the soil analysis data, they also suggest

di↵erent summary statistics than the soil analysis data. While most coe�cients are statistically

significant (P<0.05), they are only high for the two stable indicators of soil fertility (0.68 for soil

pH and 0.55 for soil CEC). The two indicators that can vary over time due to both exogenous

variables and endogenous management decisions, organic carbon and total nitrogen, have much

lower correlation coe�cients.

The correlation pattern is also readily observed graphically (Figure 2). The AfSIS data track

the soil analysis data, with the soil analysis data showing more variation overall. However, the

di↵erences are significant enough to reject most (52 of 64) t-tests of the equivalence of means

between the two data sets at the full sample and village levels (Table 6). The notable exceptions

are again the more stable soil fertility indicators—soil pH and CEC—where, in each case, 4 of 16

t-tests show that the equivalence of means cannot be rejected. The di↵erences observed across the

two samples in terms of average soil organic carbon and total nitrogen content at both the village

12We also calculate correlation coe�cients between soil quality indicators within the AfSIS data in Tanzania, results
for which are found in Table A5 in the Appendix.
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and sample level may be partially explained by the di↵erences in sampling periods, as these soil

characteristics are subject to change. However, pH and CEC, more stable indicators of soil fertility,

are also di↵erent for 13 and 12 (out of 15), respectively, villages in the survey and across the full

sample for soil pH. The only metric not statistically distinguishable between data sets at the sample

level is CEC.

The AfSIS and soil analysis data do, however, exhibit similar patterns when broken down by

subjective soil fertility measures (Tables 2 and A4). We find in both the AfSIS and soil analysis

data statistically significant di↵erences in soil type (texture) by soil chemistry. However, in moving

from the general pattern to the details of the analysis, we again find serious di↵erences between the

AfSIS and soil analysis data. In particular, the di↵erence in CEC by soil texture is not observed in

the AfSIS data, and the statistically significant discernments of soil texture by soil chemistry di↵er

between the two data sets.

We conclude that these statistically su�cient di↵erences at the household, village, and sample

levels justify collection of plot-level soil laboratory analysis data despite the availability of AfSIS

data when precise plot-level soil data are important for the analysis at hand (e.g., providing context-

specific recommendations to farmers). However, we note that our findings in no way undermine

the immense quality and value of the AfSIS data for evaluating landscape-scale soil assessments.

Question four: value of soil information

Finally, and perhaps most important, we consider the value of having specific and accurate soil

fertility information. Is soil fertility information necessary to the research that informs policy and

programmatic interventions aimed at increasing agricultural productivity and breaking the cycle

of rural poverty?

The type of microeconomic analysis that most typically includes soil data is the estimation

of production or profit functions. We therefore estimate a series of production functions, starting

with specifications that contain no soil information then swapping in the three soil data information

types available to us. Tables 7 and 8 show the results of estimating Cobb-Douglas maize production

functions for Kenya and Tanzania, respectively. The first two columns of the two tables show

estimated coe�cients of specifications without and with control variables, in the absence of any soil

information. The subsequent columns represent the same basic model but add soil information:
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first subjective soil data (farmers’ perceptions), then measured data (soil organic carbon and CEC

from the soil analysis data in Kenya) and then estimated data (soil organic carbon and CEC from

the AfSIS data). We assess the value of the soil information in three ways: (1) changes in the

magnitude of coe�cients when soil variables are included, (2) changes in predicted maize yield, and

(3) changes in predicted marginal physical products (MPP) of fertilizer.

The coe�cients on three input variables (land, labor, and fertilizer) are positive, statistically

significant, and stable across all specifications. The relative magnitudes and significance levels of

the control variables are similarly unchanged. The addition of soil variables does not alter the

magnitude of the coe�cients on these input variables considerably or increase the models’ fit, as

represented by the pseudo R-squared values. Predicted maize yields using the estimated coe�cients

and calculated marginal physical products of fertilizer, conditional on use, are reported in the bot-

tom two rows for all specifications. In neither Kenya nor Tanzania does including soil information

of any type change the mean of predicted yields or the magnitude of the standard deviations. A

very similar story holds for the estimated average MPP of fertilizer across both samples. Di↵erences

in estimated MPP values are better observed in Figure 3, where the distribution within Kenya is

explored for each model. The left panel shows the MPPs across the four specifications with control

variables at the maize plot level across the full sample, while the right panel zooms in on three

villages in the Mid Yala region. For most households, the plot-specific MPP is nearly the same

across the models; for some households, measured (soil analysis) soil variables increase the MPP of

fertilizer, while estimated (AfSIS) soil variables decrease the value of MPP.

These results perhaps are not surprising. Estimation of the Cobb-Douglas production function

o↵ers regression to the mean. While most soil fertility indicators (perceived, measured, and esti-

mated) are positive and statistically significant for both Kenya and Tanzania, they are small in

magnitude and correspond to soils with low empirical variation. Therefore, the addition of any soil

variables is unlikely to result in vast di↵erences in estimates derived from the underlying models,

at least with the methods currently employed and when analyzing in similar contexts (good soils,

low empirical variation, and when prediction focuses on sample averages).

The caveats to this discussion are considerable, however. We pursue only one functional form

of the production function, do not observe variation across time, and are unable to control for

unobserved household or plot-level heterogeneity that could bias our estimates. It is, therefore,
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conceivable that we could find statistically significant di↵erences in estimated coe�cients, yields,

or MPPs under somewhat di↵erent circumstances. Therefore, when the focus is on specific plots

or households, and when heterogeneity across these observations is large, having detailed and

accurate soil data still matters. Using data from western Kenya that display a greater degree

of soil fertility variation13 Marenya and Barrett (2009b), for example, find that crop production

functions can exhibit von Liebig-type responses. Maize yield response to nitrogen fertilizer in their

sample depends on the state of soil fertility, and below some threshold the input applications are

not profitable.

While the soil data did not significantly add to the accuracy of estimating maize production

functions in our two data sets, it does not suggest that there is not a place for fine-grained soil data

in agricultural research. The fine-grained detail provided in plot-level soil analysis data is needed

to perform mechanistic and processes-based research at the plot or individual farm scales, whereas

high spatial resolution estimated soil data, such as that provided by AfSIS, may be su�cient to

meet the needs of those interested in production functions on the country-wide or regional scales.

And while farmers’ perceptions or misperceptions of soil fertility may not alter the conclusions of

a production function analysis, this information can be incredibly informative to extension e↵orts

that seek to identify and correct information gaps.

5 Conclusion

With a renewed appreciation for soil fertility in the international development community, partic-

ularly in Sub-Saharan Africa, this paper aimed to take stock of the soil information data currently

available to researchers and their analytical limitations. In summary, we find that farmers’ percep-

tions of soil fertility are more correlated with maize yields than with agricultural inputs. We do

uncover clear, though not statistically significant, patterns between subjective soil quality assess-

ments and objective scientific measures of soil fertility from laboratory soil analysis and AfSIS data.

Although the estimated AfSIS data track the locally collected soil analysis data in Kenya, there

are statistically su�cient di↵erences between the two data sets to merit collection of soil samples

for the purpose of household and village-level analysis. At the same time, the value of having any

13Farms in the data set are sampled based on plot age (time since conversion from forest to agriculture) to capture
cultivation time and, therefore, the degree of soil fertility degradation.
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soil information in the estimation of simple agricultural production functions appears limited when

focusing on average yields and when analyzing in similar context (good soils with low empirical

variation).

Overall, we conclude that researchers should not replace objectively observed measures of soil

fertility with farmers’ perceptions, often collected with household survey data, if one seeks relatively

accurate local soil fertility measures and is concerned with the analysis that goes beyond estimation

of average yields and returns. But we should not stop asking these questions of farmers either. Many

questions remain regarding the role of soil fertility and farmers’ response to true or supposed soil

fertility. Our analysis has also only considered cross-sectional evidence and described statistical

associations. However, given that farmers’ perceptions can be learned and that even objective

measures vary over time, particularly when and where nutrients are not added back to the soil, a

dynamic analysis of any of these correlations could provide even more utility to our disciplines.

As some results from Kenya and Tanzania diverge with respect to farmers’ perceptions, the

questions remain regarding how farmers make judgments about their soil fertility. We cannot rely

on single experiment data or small samples. We need a major research e↵ort to understand how

farmers value and use soil information. There is continued need for survey modules that dig deeper

into how subjective soil fertility perceptions are formed. Investments should be simultaneously

made in (1) understanding the actual learning process farmers use to arrive at their soil fertility

distinctions and (2) educating/informing farmers about soil fertility and helping them make their

input and other management decisions using this knowledge. As time goes on, we hope to see a

better convergence of farmer knowledge with objective soil fertility metrics.

Additionally, questions remain on whether information on soil fertility (such as a soil chemistry

information treatment) would alter farmers’ behavior in terms of inputs and cropping decisions. In

other words, is soil information a limiting constraint to farm management in Sub-Saharan Africa?

Investigation into such a question will also enable us to study what farmers do with soil knowledge—

does it help improve their farm decisions and, ultimately, yields and welfare measures? Or are

farm management decisions informed via some other process? Experimental or quasi-experimental

studies could help identify the causal linkages between farmers’ perceptions, their management

practices, and actual soil fertility to start addressing the soil and human poverty dynamics.
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Figures and Tables

Figure 1: AfSIS soil pH with the Kenyan soil analysis study households represented by circles.
X and Y-axes are latitude and longitude in UTM WGS84.
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Figure 2: Question 3: Measured (soil analysis) vs. estimated (AfSIS) data by household across
the four soil characteristics in Kenya: organic carbon, total nitrogen, pH, and CEC.
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Figure 3: Question 4: Increase in maize yield in response to one additional kilogram of fertilizer
(estimated MPP of fertilizer) after the Cobb-Douglas production function with no soil variables,
subjective (farmers’ perceptions), measured (soil analysis), and estimated (AfSIS) soil variables
for all households in the Kenya sample and for households in the three villages in Mid Yala.
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Table 1: Question 1: Subjective soil data (farmers’ perceptions) vs. inputs, yield.

Variable Chemical Herbicides, Organic Conditional Maize
fertilizer pesticides resources fertilizer yield
1=yes 1=yes 1=yes kg/ha t/ha

KENYA
Soil quality, mean (st.dev.)
Good (n=124) 0.50 (0.50)a 0.19 (0.40)a 0.64 (0.48)a 137.97 (113.24)a 2.07 (1.70)a
Average (n=262) 0.56 (0.50)a 0.14 (0.34)ab 0.66 (0.48)a 144.08 (136.84)a 1.73 (1.51)ab
Bad (n=123) 0.55 (0.50)a 0.08 (0.27)b 0.67 (0.47)a 120.37 (127.59)a 1.38 (1.30)b

Soil type, mean (st.dev.)
Clay (n=88) 0.57 (0.50)ab 0.17 (0.38)a 0.65 (0.48)a 149.49 (119.37)a 1.85 (1.41)ab
Loam (n=283) 0.60 (0.49)a 0.14 (0.35)a 0.67 (0.47)a 128.07 (125.15)a 1.83 (1.60)a
Sandy (n=124) 0.42 (0.50)b 0.10 (0.30)a 0.64 (0.48)a 149.45 (154.40)a 1.44 (1.45)b

TANZANIA
Soil quality, mean (st.dev.)
Good (n=1152) 0.17 (0.38)b 0.09 (0.29)a 0.15 (0.36)a 146.90 (158.32)a 1.18 (1.35)a
Average (n=1050) 0.18 (0.38)b 0.09 (0.29)a 0.14 (0.35)a 146.29 (143.73)a 1.11 (1.35)a
Bad (n=158) 0.26 (0.44)a 0.10 (0.30)a 0.15 (0.35)a 97.04 (96.78) a 0.94 (1.19)a

Soil type, mean (st.dev.)
Clay (n=379) 0.21 (0.40)a 0.10 (0.30)a 0.10 (0.31)a 129.90 (112.93)a 1.10 (1.34)a
Loam (n=1536) 0.17 (0.38)a 0.10 (0.29)a 0.15 (0.36)b 147.11 (160.79)a 1.15 (1.33)a
Sandy (n=422) 0.20 (0.40)a 0.07 (0.25)a 0.16 (0.37)ab 133.46 (127.32)a 1.01 (1.34)a

Common letters indicate values are not statistically di↵erent at the 95% confidence level
using a Tukey-Kramer test.
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Table 2: Question 2: Subjective (farmers’ perceptions) vs. estimated (AfSIS) soil data.

Variable Organic Total pH CEC Fertile
carbon nitrogen 1–7 (meq/100g) soil**=1
(% w/w) (% w/w)

KENYA
Soil quality, mean (st.dev.)
Good (n=67) 2.24 (0.52)a 0.25 (0.06)a 5.74 (0.26)a 24.42 (7.23)a 0.75 (0.44)a
Average (n=173) 2.30 (0.52)a 0.24 (0.06)a 5.75 (0.21)a 24.49 (6.79)a 0.73 (0.44)a
Bad (n=68) 2.27 (0.48)a 0.24 (0.06)a 5.78 (0.23)a 23.35 (6.88)a 0.66 (0.48)a

Soil type, mean (st.dev.)
Clay (n=57) 2.34 (0.51)a 0.25 (0.06)ab 5.72 (0.21)b 25.79 (6.55)a 0.81 (0.40)a
Loam (n=166) 2.33 (0.43)a 0.25 (0.06)b 5.73 (0.23)b 23.63 (7.10)a 0.79 (0.41)a
Sandy (n=75) 2.12 (0.63)b 0.23 (0.07)a 5.82 (0.24)a 24.17 (6.73)a 0.52 (0.50)b

TANZANIA
Soil quality, mean (st.dev.)
Good (n=1152) 1.67 (0.92)a 0.12 (0.06)a 6.12 (0.41)a 14.50 (6.68)a
Average (n=1050) 1.57 (0.90)b 0.12 (0.07)a 6.12 (0.44)a 14.32 (6.72)a
Bad (n=158) 1.46 (0.75)b 0.12 (0.08)a 6.06 (0.36)a 12.69 (5.63)b

Soil type, mean (st.dev.)
Clay (n=379) 1.80 (0.97)a 0.13 (0.07)a 6.08 (0.38)b 14.48 (6.43)a
Loam (n=1536) 1.62 (0.92)b 0.12 (0.07)a 6.15 (0.45)a 14.74 (6.88)a
Sandy (n=422) 1.36 (0.71)c 0.11 (0.07)b 6.04 (0.33)b 12.11 (5.35)b

**Fertile soil in Kenya is defined as soil with C�2, N�0.2, and pH�5.2.
Common letters indicate values are not statistically di↵erent at the 95% confidence level

using a Tukey-Kramer test.
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Table 3: Question 2: Factors a↵ecting farmers’ soil fertility perceptions in Kenya.

(1) (2) (3) (4) (5)
VARIABLES Parsimonious Yield Inputs Plot Household

characteristics characteristics

AfSIS soil organic carbon (% w/w) -0.112 -0.199 0.0202 -0.0798 -0.104
(0.139) (0.142) (0.163) (0.184) (0.187)

AfSIS soil CEC (meq/100g) 0.0123 0.00684 0.00601 0.0107 0.0109
(0.0101) (0.0103) (0.0133) (0.0140) (0.0145)

Maize grain yield (kg/ha) 0.000179*** 0.000206*** 0.000180*** 0.000179***
(4.86e-05) (5.11e-05) (5.48e-05) (5.51e-05)

Chemical fertilizer: 1=yes -0.470*** -0.467*** -0.472***
(0.167) (0.176) (0.177)

Herbicides, pesticides: 1=yes 0.192 0.202 0.212
(0.203) (0.219) (0.221)

Organic resources: 1=yes -0.0532 -0.119 -0.159
(0.140) (0.145) (0.148)

Improved seeds: 1=yes -0.0818 -0.106 -0.151
(0.195) (0.198) (0.202)

Maize plot (ha) -0.0122 -0.0172
(0.0426) (0.0445)

Own plot: 1=yes 0.547* 0.584*
(0.323) (0.326)

Soil erosion: 1=yes -0.290** -0.283*
(0.144) (0.145)

Slope: 1=gentle 0.0519 0.0659
(0.141) (0.142)

Slope: 1=steep 0.211 0.191
(0.467) (0.474)

Distance from home (m) 5.01e-05 4.09e-05
(0.000169) (0.000171)

Plot altitude (m) 0.000194 0.000198
(0.000293) (0.000301)

Intercropped: 1=yes 0.0147 0.0202
(0.163) (0.165)

Household head female: 1=yes -0.118
(0.193)

Household head age -0.00186
(0.00482)

Household head years of education 0.00566
(0.0170)

Household size 0.0230
(0.0296)

Herd size (TLU) 0.00620
(0.0272)

Observations 307 307 307 307 307
LR �2 1.61 15.48 25.60 32.47 34.99
Prob > �2 0.447 0.001 0.001 0.006 0.020
Pseudo R2 0.003 0.026 0.042 0.053 0.057

Ordered probit (coe�cients). Dependent variable = Perceived soil quality (1=bad, 2=average, 3=good).
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Estimation includes only plots with measured soil data.
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Table 4: Question 2: Factors a↵ecting farmers’ soil fertility perceptions in Tanzania.

(1) (2) (3) (4) (5)
VARIABLES Parsimonious Yield Inputs Plot Household

characteristics characteristics

AfSIS soil organic carbon (% w/w) 0.0788*** 0.0717** 0.0789*** 0.101*** 0.107***
(0.0295) (0.0297) (0.0300) (0.0323) (0.0327)

AfSIS soil CEC (meq/100g) 0.00398 0.00353 0.00125 0.00297 0.00231
(0.00399) (0.00399) (0.00409) (0.00415) (0.00421)

Maize grain yield (kg/ha) 0.0000870** 0.000101*** 0.000135*** 0.000138***
(0.0000352) (0.0000360) (0.0000374) (0.0000379)

Chemical fertilizer: 1=yes -0.165** -0.0883 -0.0901
(0.0669) (0.0686) (0.0696)

Herbicides, pesticides: 1=yes 0.00282 0.0476 0.0418
(0.0872) (0.0887) (0.0894)

Organic resources: 1=yes 0.0110 0.0755 0.0511
(0.0694) (0.0709) (0.0723)

Improved seeds: 1=yes 0.0870 0.0686 0.0924
(0.0776) (0.0782) (0.0800)

Maize plot (ha) 0.0192 0.0193
(0.0128) (0.0134)

Own plot: 1=yes -0.0751 -0.0678
(0.0764) (0.0775)

Soil erosion: 1=yes -0.188*** -0.184***
(0.0682) (0.0685)

Slope: 1=gentle 0.0417 0.0497
(0.0535) (0.0538)

Slope: 1=steep -0.108 -0.0976
(0.128) (0.129)

Distance from home (m) 0.00000134 0.00000137
(0.00000114) (0.00000114)

Plot altitude (m) -0.000307*** -0.000308***
(0.0000545) (0.0000551)

Intercropped: 1=yes -0.0607 -0.0468
(0.0503) (0.0507)

Household head female: 1=yes 0.0916
(0.0612)

Household head (HH) age -0.000190
(0.00183)

HH education: 1=some primary or adult -0.0268
(0.0735)

HH education: 1=completed primary -0.0899
(0.0681)

HH education: 1=more than primary 0.185
(0.114)

Household size (adult equivalents) -0.0145
(0.0114)

Crop income (USD) 0.0000960
(0.0000841)

Herd size (TLU) 0.00575
(0.00438)

Observations 2360 2360 2360 2360 2360
LR �2 12.68 18.79 25.69 77.14 91.48
Prob > �2 0.002 0.000 0.001 0.000 0.000
Pseudo R2 0.003 0.005 0.006 0.018 0.022

Ordered probit (coe�cients). Dependent variable = Perceived soil quality (1=bad, 2=average, 3=good).
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Question 3: Pairwise correlation coe�cients between measured (soil analysis) and
estimated (AfSIS) soil data for the four soil characteristics in Kenya: organic carbon (C), total
nitrogen (N), pH, and CEC.

Soil analysis data AfSIS data
C N pH CEC C N pH CEC

Soil analysis data

C 1.00
N 0.96* 1.00
pH 0.13 0.07 1.00
CEC 0.80* 0.75* 0.43* 1.00

AfSIS data

C 0.30* 0.23* -0.48* 0.06 1.00
N 0.37* 0.29* -0.29* 0.25* 0.82* 1.00
pH 0.11 0.10 0.68* 0.33* -0.47* -0.35* 1.00
CEC 0.47* 0.37* 0.26* 0.55* 0.39* 0.58* 0.31* 1.00

*Bonferroni-adjusted significance levels of 0.05 or less. N=307 maize plots.

Table 6: Question 3: Test of equivalence of means between measured (soil analysis) and
estimated (AfSIS) soil data in Kenya.

Organic carbon Total nitrogen Soil pH CEC
Village N t-stat p-value t-stat p-value t-stat p-value t-stat p-value

Bumira B 21 8.49 0.00 21.77 0.00 6.09 0.00 14.98 0.00
Chamakanga 20 18.68 0.00 45.08 0.00 0.99 0.34 56.53 0.00
Chepkitin B 21 6.41 0.00 13.57 0.00 4.05 0.00 14.61 0.00
Jeveleli 21 3.22 0.00 8.58 0.00 4.74 0.00 18.28 0.00
Kagai 21 -1.82 0.08 2.94 0.01 -5.34 0.00 -2.46 0.02
Kanyibana A 17 -4.38 0.00 3.01 0.01 -10.62 0.00 -6.69 0.00
Kanyilaji B 21 6.35 0.00 14.80 0.00 -7.01 0.00 2.26 0.04
Kasagoma B 21 -3.09 0.01 3.25 0.00 2.36 0.03 -3.52 0.00
Kures 21 -4.36 0.00 8.98 0.00 -1.88 0.08 -1.99 0.06
Lelmolok A 20 3.09 0.01 7.94 0.00 2.35 0.03 6.09 0.00
Nyangera B 21 0.08 0.94 2.67 0.01 -1.96 0.06 0.46 0.65
Ogwedhi B 20 2.72 0.01 18.41 0.00 -2.60 0.02 4.99 0.00
Ratunwet 21 -6.70 0.00 -2.18 0.04 -6.80 0.00 -3.26 0.00
Tabet B 21 -0.70 0.49 5.53 0.00 0.38 0.71 0.36 0.72
Tulwet West 21 -3.78 0.00 1.88 0.07 -3.55 0.00 -3.41 0.00

All villages 308 -2.24 0.03 15.44 0.00 -2.65 0.01 -0.17 0.87

Highlighted values indicate failure to reject statistical di↵erence between soil analysis and AfSIS data.
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Table 7: Question 4: Maize Cobb-Douglas production function in Kenya.

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES No soil No soil Subjective Subjective Measured Measured Estimated Estimated

Ln(Land (ha)) 0.824*** 0.731*** 0.810*** 0.727*** 0.826*** 0.743*** 0.773*** 0.752***
(0.0792) (0.0805) (0.0750) (0.0782) (0.0797) (0.0800) (0.0806) (0.0787)

Ln(Labor (days)) 0.227** 0.308*** 0.231*** 0.302*** 0.213** 0.289*** 0.253*** 0.305***
(0.0889) (0.0919) (0.0854) (0.0895) (0.0858) (0.0881) (0.0894) (0.0909)

Ln(Fertilizer (kg)) 0.199*** 0.0861** 0.211*** 0.103*** 0.183*** 0.0845** 0.140*** 0.0690*
(0.0313) (0.0385) (0.0297) (0.0371) (0.0304) (0.0380) (0.0334) (0.0386)

Plot altitude (m) 0.000654*** 0.000601*** 0.000519*** 0.000516**
(0.000184) (0.000179) (0.000184) (0.000209)

Herd size (TLU) 0.0335** 0.0302* 0.0319* 0.0376**
(0.0170) (0.0176) (0.0174) (0.0170)

Intercropped: 1=yes -0.0328 -0.0174 -0.0402 -0.0686
(0.120) (0.117) (0.119) (0.123)

Improved seeds: 1=yes 0.389*** 0.390*** 0.416*** 0.428***
(0.121) (0.118) (0.124) (0.139)

Household head female: 1=yes 0.0458 0.0547 0.0498 0.0734
(0.126) (0.125) (0.124) (0.129)

Household head age 0.000362 0.000348 0.00181 0.000983
(0.00321) (0.00321) (0.00325) (0.00331)

Household head years of education 0.0203* 0.0187* 0.0269** 0.0225*
(0.0112) (0.0110) (0.0112) (0.0120)

Perceived soil quality: 1=average 0.282** 0.157
(0.112) (0.106)

Perceived soil quality: 1=good 0.584*** 0.468***
(0.143) (0.137)

Measured soil organic carbon (% w/w) 0.263*** 0.242***
(0.0773) (0.0741)

Measured soil CEC (meq/100g) -0.0170*** -0.0188***
(0.00574) (0.00560)

AfSIS soil organic carbon (% w/w) 0.334** 0.244
(0.141) (0.157)

AfSIS soil CEC (meq/100g) 0.0173** -0.00937
(0.00791) (0.00899)

Constant 4.215*** 2.666*** 3.896*** 2.554*** 4.065*** 2.690*** 3.072*** 2.537***
(0.330) (0.479) (0.325) (0.478) (0.340) (0.459) (0.449) (0.528)

Observations 307 307 307 307 307 307 307 307
R-squared 0.632 0.680 0.651 0.692 0.651 0.696 0.653 0.684

Maize yield (kg) (in data = 590) 485 (641) 502 (677) 494 (661) 507 (688) 484 (614) 501 (654) 485 (610) 501 (674)
MPP fertilizer (kg) (conditional on use) 5.87 (7.84) 2.54 (3.40) 6.24 (8.32) 3.05 (4.07) 5.40 (7.20) 2.50 (3.33) 4.13 (5.51) 2.04 (2.72)

Dependent variable = Ln(Maize grain (kg)). Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The last two rows are means
(standard deviations) of predicted maize yields and marginal physical products of fertilizer. Columns 3 and 4 (with and without controls) include subjective

soil fertility indicators, columns 5 and 6 include measured soil fertility indicators, and columns 7 and 8 include estimated soil fertility indicators.
Estimation includes only plots with measured soil data.
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Table 8: Question 4: Maize Cobb-Douglas production function in Tanzania.

(1) (2) (3) (4) (5) (5)
VARIABLES No soil No soil Subjective Subjective Estimated Estimated

Ln(Land (ha)) 1.458*** 1.392*** 1.449*** 1.384*** 1.489*** 1.410***
(0.0467) (0.0470) (0.0465) (0.0468) (0.0463) (0.0477)

Ln(Household size (adult equivalents)) 0.275*** 0.109** 0.279*** 0.111** 0.266*** 0.100**
(0.0479) (0.0487) (0.0476) (0.0483) (0.0460) (0.0487)

Ln(Fertilizer (kg)) 0.142*** 0.136*** 0.144*** 0.136*** 0.154*** 0.143***
(0.0124) (0.0126) (0.0124) (0.0126) (0.0122) (0.0130)

Plot altitude (m) 0.0000177 0.0000358 -0.00000645
(0.0000436) (0.0000440) (0.0000441)

Herd size (TLU) 0.0234*** 0.0229*** 0.0235***
(0.00334) (0.00336) (0.00342)

Intercropped: 1=yes 0.103** 0.106*** 0.106***
(0.0410) (0.0408) (0.0409)

Improved seeds: 1=yes 0.285*** 0.286*** 0.254***
(0.0646) (0.0642) (0.0656)

Household head female: 1=yes -0.127** -0.128** -0.130***
(0.0501) (0.0500) (0.0500)

Household head (HH) age -0.00758*** -0.00751*** -0.00750***
(0.00146) (0.00144) (0.00146)

HH education: 1=some primary or adult 0.0514 0.0543 0.0636
(0.0570) (0.0569) (0.0563)

HH education: 1=completed primary 0.0404 0.0475 0.0506
(0.0566) (0.0561) (0.0561)

HH education: 1=more than primary -0.107 -0.118 -0.0811
(0.0922) (0.0914) (0.0921)

Perceived soil quality: 1=average 0.128 0.101
(0.0844) (0.0826)

Perceived soil quality: 1=good 0.258*** 0.247***
(0.0856) (0.0841)

AfSIS soil organic carbon (% w/w) 0.0139 0.0385
(0.0241) (0.0261)

AfSIS soil CEC (meq/100g) 0.0140*** 0.00985***
(0.00347) (0.00374)

Constant 3.728*** 4.383*** 3.516*** 4.162*** 3.594*** 4.151***
(0.224) (0.289) (0.242) (0.302) (0.0904) (0.269)

Observations 2360 2360 2360 2360 2360 2360
R-squared 0.480 0.513 0.484 0.517 0.444 0.517

Maize yield (kg) (in data = 454) 367 (1,065) 382 (1,199) 368 (1,086) 381 (1,181) 367 (1,149) 385 (1,242)
MPP fertilizer (kg) (conditional on use) 2.02 (4.71) 1.92 (4.49) 2.04 (4.78) 1.93 (4.51) 2.18 (5.09) 2.02 (4.73)
Dependent variable = Ln(Maize grain (kg)). Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. All regressions
include enumeration area level fixed e↵ects to control for unobserved di↵erences in weather and other growing conditions. The last
two rows are means (standard deviations) of predicted maize yields and marginal physical products of fertilizer. Columns 3 and 4
(with and without controls) include subjective soil fertility indicators, columns 5 and 6 include estimated soil fertility indicators.
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A Appendix: Additional Figures and Tables

Table A1 shows the correlations between farmer-perceived soil quality and soil type. Farmers

distinguish between good and bad soils across all soil types both in Kenya and Tanzania. For

example, 15 percent of sandy soils are thought to have good soil quality as opposed to 30 percent

of loam soils and 23 percent of clay soils in Kenya. In Tanzania, 43 percent of sandy soils have

good soil quality as opposed to 47 percent of loam soils and 63 percent of clay soils.

Table A1: Correlations in subjective soil quality and type (farmers’ perceptions).

Soil type
Sandy Loam Clay Other

Kenya, 509 plots

Soil quality
Good 19 85 20 –
Average 68 136 50 8
Bad 37 62 18 6

Tanzania, 2,360 plots

Soil quality
Good 180 722 239 11
Average 186 732 124 8
Bad 56 82 16 4

Table A2 shows the variation between good, average, and bad perceived soil quality within and

between plots, households, and villages in Kenya and enumeration areas (EAs) in Tanzania.

The first panel of Table A2 indicates the number and percentage of plots that have been desig-

nated by their farmers as good, average, or bad in Kenya and Tanzania. In Kenya we see that little

over half (51 percent) of the total plots in the sample are perceived as average while there is an

even split between good and bad (24 percent each). In Tanzania, nearly half the plots are perceived

as good (49 percent) and 44 percent are perceived as average. Only seven percent are perceived as

bad. To better understand the source of the variation in perception, the next panels decompose

soil quality designation by between and within di↵erences among households and villages/EAs. We

observe much greater variation within villages/EAs rather than within households in both Kenya

and Tanzania. For example, of the households that report at least one maize plot with good quality

in Tanzania, 92 percent of plots within the same household are also deemed to have good soil. On

the other hand, of the EAs where someone has declared their soil as good, 57 percent of plots

within that same EA have plots with good soil quality. The same applies to the average and bad
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classifications too.

Table A2: Within vs. between variation in subjective soil quality (farmers’ perceptions):
Household and village for Kenya and household and enumeration area (EA) for Tanzania.

Plots Households Villages/EAs
Soil quality Number % Number % between % within Number % between % within

Kenya
312 households, 15 villages
Good 124 24 98 32 75 15 100 25
Average 262 51 201 64 85 15 100 51
Bad 123 24 91 29 75 15 100 24

Total 509 100 390 125 80 45 400 33

Tanzania
1,566 households, 292 EAs
Good 1,152 49 839 54 92 258 88 57
Average 1,050 44 764 49 91 258 88 57
Bad 158 7 126 8 81 93 32 23

Total 2,360 100 1,729 110 91 592 203 49

There are 1.63 maize plots per average household and 33.93 maize plots per average village in Kenya (Berazneva,
2015 data). There are 1.51 maize plots per average household and 8.08 maize plots per average enumeration area
(LSMS-ISA data).

Table A3: Number of plots with di↵erent farmer-perceived soil quality for 15 villages in Kenya
(full sample) and randomly chosen 15 villages in Tanzania.

Kenya Soil quality Tanzania Soil quality
village Good Average Bad village Good Average Bad

1 9 6 12 1 4 7 –
2 7 19 8 2 4 3 –
3 8 18 8 3 3 8 –
4 12 12 6 4 1 – –
5 9 19 5 5 8 – –
6 8 13 8 6 4 4 –
7 6 17 12 7 6 6 1
8 9 16 4 8 8 3 –
9 10 13 5 9 9 7 1
10 10 17 5 10 4 12 6
11 8 20 5 11 7 6 1
12 7 22 3 12 – 1 1
13 4 28 12 13 – 3 2
14 5 25 12 14 3 7 –
15 12 17 18 15 5 3 –

For Tanzania, 15 villages were chosen using the random number generator at https://www.random.org/.
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Table A4: Kenya: Subjective (farmers’ perceptions) vs. measured (soil analysis) soil data.

Variable Organic Total pH CEC Fertile
carbon nitrogen 1–7 (meq/100g) soil**=1
(% w/w) (% w/w)

Soil quality, mean (st.dev.)
Good (n=67) 2.56 (1.54)a 0.17 (0.12)a 5.85 (0.54)a 25.26 (18.56)a 0.22 (0.42)a
Average (n=173) 2.42 (1.19)a 0.16 (0.08)a 5.81 (0.49)a 24.29 (14.13)a 0.19 (0.39)a
Bad (n=68) 2.32 (0.98)a 0.15 (0.06)a 5.78 (0.54)a 23.59 (14.24)a 0.18 (0.38)a

Soil type, mean (st.dev.)
Clay (n=57) 2.86 (1.41)b 0.19 (0.09)a 5.90 (0.50)a 30.65 (18.23)b 0.40 (0.49)a
Loam (n=166) 2.34 (1.04)a 0.16 (0.08)ab 5.68 (0.49)b 21.89 (14.28)a 0.16 (0.36)a
Sandy (n=75) 2.27 (1.41)a 0.15 (0.09)b 6.02 (0.50)a 24.23 (12.72)a 0.12 (0.33)b

Common letters indicate values are not statistically di↵erent at the 95% confidence level
using a Tukey-Kramer test.

Table A5: Pairwise correlation coe�cients of estimated (AfSIS) soil data for the four soil
characteristics in Tanzania: organic carbon (C), total nitrogen (N), pH, and CEC.

AfSIS data
Carbon Nitrogen pH CEC

AfSIS data

C 1.00
N 0.89* 1.00
pH -0.28* -0.29* 1.00
CEC 0.47* 0.49* 0.49* 1.00

*Bonferroni-adjusted significance levels of 0.05 or less.

Table A6 repeats the estimation of the sequence of the ordered probit estimations of Table 6

to explore whether there exists heterogeneity in farmers’ perceptions of soil quality in Kenya but

using soil organic carbon and CEC from the measured soil analysis data. The dependent variable

is farmers’ perceptions: 1=bad, 2=average, 3=bad. The first column relates farmers’ perception to

the estimated soil fertility indicators; the subsequent columns add covariates.
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Table A6: Kenya: Factors a↵ecting farmers’ soil fertility perceptions (measured soil analysis
data).

(1) (2) (3) (4) (5)
VARIABLES Parsimonious Yield Inputs Plot Household

characteristics characteristics

Measured soil organic carbon (% w/w) 0.0878 0.0237 0.0676 0.0500 0.0632
(0.0863) (0.0884) (0.0903) (0.0925) (0.0949)

Measured soil CEC (meq/100g) -0.00295 0.000379 -0.00365 0.000203 -0.000796
(0.00698) (0.00706) (0.00737) (0.00766) (0.00771)

Maize grain yield (kg/ha) 0.000166*** 0.000201*** 0.000176*** 0.000174***
(4.78e-05) (5.16e-05) (5.53e-05) (5.56e-05)

Chemical fertilizer: 1=yes -0.483*** -0.504*** -0.512***
(0.152) (0.166) (0.169)

Herbicides, pesticides: 1=yes 0.207 0.209 0.224
(0.202) (0.219) (0.222)

Organic resources: 1=yes -0.0621 -0.116 -0.157
(0.139) (0.143) (0.146)

Improved seeds: 1=yes -0.0291 -0.0623 -0.106
(0.161) (0.172) (0.178)

Maize plot (ha) -0.00835 -0.0150
(0.0416) (0.0439)

Own plot: 1=yes 0.508 0.530
(0.321) (0.323)

Soil erosion: 1=yes -0.299** -0.287*
(0.146) (0.147)

Slope: 1=gentle 0.0488 0.0613
(0.140) (0.141)

Slope: 1=steep 0.268 0.229
(0.466) (0.473)

Distance from home (m) 4.96e-05 4.48e-05
(0.000169) (0.000170)

Plot altitude (m) 0.000169 0.000151
(0.000267) (0.000272)

Intercropped: 1=yes 0.0123 0.0102
(0.162) (0.164)

Household head female: 1=yes -0.101
(0.192)

Household head age -0.000878
(0.00487)

Household head years of education 0.00872
(0.0173)

Household size 0.0235
(0.0296)

Herd size (TLU) 0.00829
(0.0266)

Observations 307 307 307 307 307
LR �2 1.45 13.76 25.91 32.62 35.14
Prob > �2 0.485 0.003 0.001 0.005 0.019
Pseudo R2 0.002 0.023 0.043 0.054 0.058

Ordered probit (coe�cients). Dependent variable = Perceived soil quality (1=bad, 2=average, 3=good).
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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