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Systematic Non-Response in Stated Preference Choice Experiments: 

Implications for the Valuation of Climate Risk Reductions 

 

Abstract 

Discrete choice experiments (DCEs) addressing adaptation to climate-related risks may be 

subject to response biases associated with variations in risk exposure across sampled 

populations.  Systematic adjustments for such biases are hindered by the absence of rigorous, 

standardized selection-correction models for multinomial DCEs, together with a lack of 

information on non-respondents.  This paper illustrates a systematic approach to accommodate 

risk-related non-response bias in DCEs, where variations in risk exposure may be linked to 

observable landscape characteristics.  The approach adapts reduced form response-propensity 

models to correct for survey non-response, capitalizing on the fact that indicators of risk 

exposure may be linked to the geocoded locations of respondents and non-respondents.  An 

application to coastal flood adaptation in Connecticut, USA illustrates implications for welfare 

estimation.  Results demonstrate that the proposed approach can reveal otherwise invisible, 

systematic effects of survey response patterns on estimated WTP.  
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Introduction 

Discrete choice experiments (DCEs) are increasingly used to draw inferences regarding 

population preferences and willingness to pay (WTP) for environmental outcomes. The 

representativeness of the realized sample of respondents determines the validity of these 

inferences (Edwards and Anderson 1987; Messonnier et al. 2000; Whitehead 1991; Whitehead et 

al. 1993). Systematic differences between respondents and non-respondents that influence both 

decisions to respond and preferences elicited by the survey, or “non-passive” sample non-

representativeness, is a source of potential bias in welfare estimation (Messonnier et al. 2000).  

Sample non-representativeness is recognized as an increasing problem for most types of survey 

research given declining response rates to household surveys (de Leeuw and de Heer 2002; 

Groves 2006; Groves and Petycheva 2008; National Research Council 2013). 

Although the challenges of survey response bias are well-known and the properties of 

stated preference samples rarely match those of target populations1, the possibility of non-

response bias is overlooked by the substantial majority of published DCEs in environmental 

economics. Adjustments for non-response biases in DCEs—where made at all—rely primarily 

on demographic information (e.g., Cameron et al. 2005, 2013; Johnston et al. 2002). Approaches 

such as these are known to be inadequate when response biases are independent of these 

indicators (Groves 2006).  Consider the example of programs to reduce climate-related hazards, 

such as the risk of coastal flooding due to sea level rise and coastal storms.  It is possible that 

individuals whose homes are at greater risk of flooding may have higher WTP for flood risk 

reductions (relative to those with homes at lower risk), and may also be more likely to respond to 

a DCE addressing WTP for flood risk reductions.  In such cases, individuals with higher WTP 

                                                           
1 For example, see Edwards and Anderson (1987), Loomis (1987), Bockstael et al. (1990), Whitehead (1991), 

Whitehead et al. (1993), Cameron et al. (1996), Messonnier et al. (2000) and Cameron and DeShazo (2005). 
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may be over-represented in the final sample, leading to empirical estimates that (unless adjusted 

for systematic non-response) will not represent preferences of the broader population. Biases 

such as these can occur regardless of response rates (<100%) or demographic similarities or 

differences between the survey sample and broader population (Curtin et al. 2000; Groves 2006).   

Concerns such as these are rarely addressed by DCEs in environmental economics. One 

reason for the lack of attention is the absence of a closed-form, Heckman-type corrections 

(Heckman 1979) for multinomial, multi-response discrete choice models, such as the mixed 

multinomial logit models commonly applied in stated preference DCEs (Cameron and DeShazo 

2005). Another reason is that information on non-respondents sufficient for response bias 

corrections is rarely available; this is a common challenge for non-response correction methods 

across the spectrum of survey research (National Research Council 2013).  Given these 

challenges, much of the DCE literature proceeds according to the implied but likely incorrect 

assumption that non-response biases are (a) not present, (b) inconsequential, or (c) 

accommodated using simple weighting approaches that rely on demographic data alone. 

This paper illustrates a practical approach to assess and correct for non-response bias in 

multinomial DCEs.  The method is developed for cases in which survey response may be 

modeled as a function of observable landscape characteristics.  We illustrate the approach using 

a DCE on coastal flood adaptation, where survey response is hypothesized to be correlated with 

observable indicators of household flood exposure such as location within a flood zone. The 

proposed methods build upon the reduced form, two-step (or two-stage) approach of Cameron 

and DeShazo (2005, 2013).  The first stage models the propensity to respond conditional on 

observable characteristics of respondents and non-respondents. The second stage incorporates 

fitted response propensities into a random utility model estimated over the realized sample.   
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Two additional contributions distinguish the approach developed here.  First, given a 

paucity of data for non-respondents, prior applications rely primarily on demographic indicators 

in the first stage selection equation, typically proxied over geographic areas rather than 

individual households.  This limits applicability to cases in which the likelihood of survey 

response can be adequately modeled using such proxies. In contrast, the illustrated models 

incorporate observable data available for both respondent and non-respondent households, drawn 

from GIS data layers linked to geocoded respondent and non-respondent addresses. Although we 

illustrate an application to coastal flood risk, parallel approaches could be applied in any policy 

context for which response propensity is related to observable environmental indicators that may 

be linked to geocoded addresses.   Second, prior applications of such models note that the use of 

predicted regressors in the second stage leads to inaccurate standard errors, but nonetheless draw 

(admittedly suggestive) inferences from these results (Cameron and DeShazo 2005).  To address 

this, we illustrate the use of a semi-parametric two-step bootstrap to evaluate the robustness of 

results to empirically corrected standard errors.   

The result is reduced form approach to test and adjust for sample selection in multinomial 

DCEs that accounts for response propensity associated with multiple environmental indicators 

and corrects for inaccurate standard errors associated with the use of predicted regressors.  

Methods and results are illustrated using an application to coastal flood adaptation in Old 

Saybrook, Connecticut, USA.  Results find significant and sometimes unexpected effects of 

response propensity on WTP that would remain invisible in the absence of an approach such as 

that illustrated here.  The illustrated methods provide a means to correct for these patterns, 

thereby providing more representative welfare estimates. 
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Response Bias in Stated Preference Valuation 

A relatively small number of studies have examined the issue of non-response bias in stated 

preference valuation, and most of these have been conducted within the context of open-ended or 

discrete choice contingent valuation (Edwards and Anderson 1987; Whitehead et al. 1993).  In 

contrast to the multinomial models typical of contemporary DCEs, contingent valuation analyses 

are often conducted using simpler binomial or linear regression models for which Heckman or 

other standard corrections are available (e.g., Whitehead et al. 1993).  However, even when 

corrections of this type are possible in principle, they are rarely applied, often due to the lack of 

sufficient data on non-respondents (Cameron et al. 1996; Messonnier et al. 2000).   

More common in the stated preference literature are approaches that diagnose/discuss but 

do not correct for non-response bias, provide suggestive evidence based on demographic 

comparisons between samples and populations, or seek to correct for these differences via the 

incorporation of demographic or other interactions directly in utility functions or using 

observation weights (e.g., Johnston et al. 2002; Loomis 1987; Olsen 2009; Whitehead 1991). 

Rigorous treatments of non-response bias are even more unusual in applied environmental 

DCEs.  Standard procedures for non-response correction (e.g., Dubin and Rivers 1989; Heckman 

1979) are not directly applicable to the multinomial discrete choice models typically used for 

DCE data (Cameron and DeShazo 2005).  In the absence of such corrections, most published 

DCEs fail to consider the possibility of response bias of any type. 

Although rigorous Heckman-type corrections have not yet been developed for 

multinomial DCEs, Cameron and DeShazo (2005, 2013) illustrate a reduced form correction 

using a two-step modeling approach adapted to a multinomial model (cf. Greene 2003, pp. 183-

186).  This approach directly models the effect of estimated response propensity on the 
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coefficients of interest, capitalizing on the observation that non-response bias is caused by a 

systematic relationship between response propensity and the measures under study (Groves 

2006). The first stage uses a non-linear model to estimate the propensity of survey response, 

using data from both respondents and non-respondents.  The propensity to respond is predicted 

using a binary probit model built around sociodemographic variables proxied (for non-

respondents) using aggregate population data (Cameron and DeShazo 2005).  The resulting 

propensity scores are incorporated into a second stage random utility model estimated over the 

realized sample.  This approach enables the analyst to assess whether the predicted likelihood of 

survey response is influenced by variables included in the first stage model, and subsequently 

whether the predicted response propensity influences parameters estimated in the second stage.   

Econometricians have routinely favored Heckman approaches to reduced form, 

structurally ad hoc corrections such as this (Cameron and DeShazo 2005; Cuddeback et al. 

2004). The reason is obvious; where assumptions of the model hold and selection equations are 

correctly specified, it can be formally demonstrated that Heckman approaches eliminate bias due 

to systematic survey non-response.  Outside of economics, the survey literature treats Heckman 

corrections with more caution, given the low likelihood that selection equations are correctly 

specified in practice (National Research Council 2013).  When selection equations are not 

correctly specified, the ideal properties of Heckman corrections no longer hold, and these models 

can magnify rather than reduce bias (Cuddeback et al. 2004).  The direct use of predicted 

response propensities (as illustrated here, e.g., to test and adjust statistical models in various 

ways) is more common outside of economics.  Moreover, given the advantages and 

disadvantages of all non-response mitigation methods, the survey literature increasingly 

advocates the use of multiple approaches to diagnose and correct for these biases (Groves 2006; 
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National Research Council 2013; Schouten et al. 2009).  The presented model is developed with 

this intent, as a feasible (if theoretically ad hoc) means to identify and adjust for non-response 

bias in multinomial DCEs, when formal Heckman-type approaches are unavailable.  

 

The Theoretical Model 

To develop the model, we begin with a random utility framework similar to those that underlie 

most environmental DCEs (Hanemann 1984). We assume that the utility of household n  is 

determined by the choice of a multi-attribute coastal flood adaptation plan from a set of j 

alternatives (j = A, B, N). These include two multi-attribute adaptation options (A, B), and a 

status quo option (N) with no adaptation and zero cost. The household’s utility, 𝑈𝑛𝑗(∙) is 

decomposed into a deterministic and stochastic component. The deterministic component, 𝑉𝑛𝑗(∙), 

includes observable attributes 𝑋𝑛𝑗 and  𝐶𝑛𝑗, where njX is a vector of adaptation outcomes and 𝐶𝑛𝑗 

is monetary cost.  The resulting utility function can be represented 

𝑈𝑛𝑗(∙) = 𝑈𝑛𝑗(𝑋𝑛𝑗, 𝐶𝑛𝑗) = 𝑉𝑛𝑗(𝑋𝑛𝑗, 𝐶𝑛𝑗) + 𝜀𝑛𝑗,                                           (1) 

where 𝜀𝑛𝑗 represents the stochastic component of the utility function, modeled as a random error.    

Common specifications assume that (1) may be estimated using an additively separable, linear-

in-the-parameters function such as 

             𝑈𝑛𝑗(𝑋𝑛𝑗, 𝐶𝑛𝑗) = 𝛽1𝑋𝑛𝑗 + 𝛽2𝐶𝑛𝑗 + 𝜀𝑛𝑗                                                       (2) 

where 𝛽1 is a vector of parameters on policy outcomes and 𝛽2 is the parameter on household 

cost. When making a choice between policy alternatives (j = A, B, N) the household is assumed 

to choose the alternative that provides the greatest anticipated utility. Utility parameters may be 

estimated using a variety of the maximum likelihood models for discrete dependent variables, 

with likelihood functions determined by assumptions regarding such factors as the unobservable 
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components of utility and preference heterogeneity among respondents (Train 2009).  If 

estimated in preference space as implied above (in contrast to WTP space, see Train and Weeks 

2005), the estimated parameters represent measures of attribute marginal utilities.  

 

Incorporating Response Propensity 

Non-response bias occurs in stated preference analysis when the preferences of respondents 

differ systematically from those of non-respondents.  This may be due to self-censoring behavior 

of non-respondents or active culling by researchers, e.g., to remove outliers (Edwards and 

Anderson 1987).  To illustrate the effect on the model developed above, we adapt prior examples 

such as Edwards and Anderson (1987) and Messonnier et al. (2000). Although these were 

developed for contingent valuation with WTP as the dependent variable, parallel approaches 

apply to random utility models (additional estimation challenges notwithstanding; see below).   

The model begins with an observation that equation (2) can only be estimated for those 

who provide usable data in response to the DCE, or survey respondents.  Hence, the estimated 

utility equation is 

𝑈𝑛𝑗(𝑋𝑛𝑗, 𝐶𝑛𝑗) = 𝛽1𝑋𝑛𝑗 + 𝛽2𝐶𝑛𝑗 + 𝜀𝑛𝑗   (𝑛 = 1 … 𝑁𝑅 < 𝑁)                                     (3) 

where 𝑁𝑅 is the number of respondents providing usable data and 𝑁 is the total set of 

respondents and non-respondents (assumed to be a true random sample of the population).   

Although equation (3) is linear in the parameters, it is estimated within DCEs using a non-linear 

model (e.g., conditional or mixed multinomial logit).  We further assume that the latent 

propensity that household n responds to the survey may be specified 

𝑃𝑛
∗ = 𝛼1𝑍𝑛 + 𝑒𝑛,                                                                           (4) 

where 𝑍𝑛 is a vector of exogenous variables determining the individual’s response propensity, 𝛼1 
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is a conforming vector of parameters, and 𝑒𝑛 is an independently and identically distributed 

equation error. Although 𝑃𝑛
∗ is unobservable, the observable counterpart is  𝑃𝑛 is a discrete 

variable taking on a value of 1 if the individual responds to the survey and 0 if the individual 

does not respond, such that 𝑃𝑛 = 1 when 𝑃𝑛
∗ ≥ 0 and 𝑃𝑛 = 0 otherwise (Messonnier et al. 2000). 

Equation (4) may be estimated using common approaches such as binary logit or probit, and is 

interpreted as the sample selection rule (SSR). 

 Combining (3) and (4),  

𝐸(𝑈𝑛𝑗(∙)|𝑋𝑛𝑗, 𝐶𝑛𝑗, 𝑆𝑆𝑅) = 𝛽1𝑋𝑛𝑗 + 𝛽2𝐶𝑛𝑗 + 𝐸(𝜀𝑛𝑗|𝑆𝑆𝑅)                                           (5) 

where  𝐸(∙) is expected value.  Given (5), if 𝜀𝑛𝑗 is conditional on the decision rule (e.g., if 

individuals who are more/less likely to respond have systematically different preferences, such 

that 𝜀𝑛𝑗 and 𝑒𝑛 are not independent), then 𝐸(𝜀𝑛𝑗|𝑆𝑆𝑅) ≠ 0, leading to potential bias in the 

estimation of model parameters. If, in contrast, 𝐸(𝜀𝑛𝑗|𝑆𝑆𝑅) = 0, then non-response is “passive” 

and does not influence welfare estimation (Messoniere et al. 2000). 

Heckman approaches may be used to mitigate non-response biases of this type when the 

primary estimating equation is linear, but parallel approaches are unavailable for non-linear, 

multi-attribute, multinomial response models such as those applicable to most DCEs.  In the 

absence of rigorous Heckman corrections, the approach illustrated by Cameron and DeShazo 

(2005, 2013) takes the form of a two-step (or two-stage) nonlinear regression (Greene 2003, p. 

183; Murphy and Topel 1985) that directly estimates the effect of response propensity (the SSR) 

on utility parameters.2 

Within this model, the first stage estimates (4) using data on respondents and non-

                                                           
2 One may also use the (inverse of) estimated response propensity as an observation weight prior to estimation of the 

second stage model (Groves 2006). 
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respondents (e.g., via a binary logit model) to obtain 

�̂�𝑛 = 𝐸(𝑃𝑛|𝑍𝑛) = 𝑓(�̂�1𝑍𝑛) =
𝑒�̂�1𝑍𝑛

1 + 𝑒�̂�1𝑍𝑛
.                                              (6) 

The resulting �̂�𝑛 represent estimates of individuals’ response propensities conditional on 

observable characteristics 𝑍𝑛.  Note that this requires suitable data on 𝑍𝑛 for both respondents 

and non-respondents.  The �̂�𝑛 are then incorporated as alternative invariant covariates into utility 

function (3) via interactions with 𝑋𝑛𝑗 and  𝐶𝑛𝑗. This second-stage specification enables marginal 

utilities associated with policy outcomes to vary directly according to individuals’ predicted 

response propensities,  

𝑈𝑛𝑗(𝑋𝑛𝑗, 𝐶𝑛𝑗) = 𝛽1𝑋𝑛𝑗 + 𝛽2𝐶𝑛𝑗 + 𝛽3�̂�𝑛𝑋𝑛𝑗 + 𝛽4�̂�𝑛𝐶𝑛𝑗 + 𝜀𝑛𝑗  (𝑛 = 1 … 𝑁𝑅 < 𝑁)      (7)    

with 𝛽3 and 𝛽4 representing conforming vectors of parameters to be estimated.  Within (7), the 

marginal utilities of vector 𝑋𝑛𝑗 are given by (𝛽1 + 𝛽3�̂�𝑛) and the marginal utility of income is 

given by (𝛽2 + 𝛽4�̂�𝑛),  such that they are a linear function of response propensity.  If 𝛽3 ≠ 0 or 

𝛽4 ≠ 0, then variation in the predicted likelihood of being in the sample is associated with 

variations in marginal utility within the estimation sample, allowing the presence of response 

bias to be inferred (Cameron and DeShazo 2005).  One can subsequently adjust marginal utilities 

and WTP to mitigate this bias by setting �̂�𝑛 equal to either the mean or median from the entire 

sample of respondents and non-respondents (Cameron and DeShazo 2013).   

Implementation of this model faces two additional challenges not addressed by the extant 

literature, and for which we propose practical solutions.  First, data required to predict response 

propensity (𝑍𝑛) are required, and sufficient data of this type are rarely observable for non-

respondents.   Second, although the use of �̂�𝑛 as a predicted regressor in (7) leads to consistent 

estimates of coefficients in the second stage utility equation, the estimated standard errors are 
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inaccurate (Cameron and DeShazo 2005; Greene 2003, p. 183-186).  To address the first 

challenge, we illustrate an approach whereby 𝑍𝑛 may be quantified by linking geocoded 

addresses of respondents and non-respondents to GIS data layers that quantify primary variables 

affecting survey response.   This provides a means to obtain directly relevant and observable 

information on non-respondents unavailable in prior efforts.  To address the second concern, we 

develop a two-step semi-parametric bootstrap that empirically corrects standard errors for the use 

of predicted regressors in (7), thereby allowing more reliable inference.  The goal is a broadly 

applicable and reliable reduced-form means to identify and offset WTP variations associated 

with differences in response propensity across respondents and non-respondents. 

 

Empirical Application 

The model is illustrated using a DCE addressing coastal flood adaptation in the town of Old 

Saybrook, Connecticut, USA.  The DCE questionnaire, Adapting to Coastal Storms and 

Flooding, elicited preferences for measures to protect physical and ecological assets such as 

homes, tidal marshes and beaches from loss due to coastal flooding and erosion (Johnston et al. 

2015).  The DCE was developed over more than two years in a process that engaged economists, 

coastal ecology experts, engineers, municipal official, and other stakeholders. Thirteen focus 

groups were held with town residents to inform and test the questionnaire and model, employing 

ethnographic methodology as described by Johnston et al. (1995).  Survey language and graphics 

were subject to extensive pretesting in focus groups and cognitive interviews (Kaplowitz et al. 

2004), including the use of verbal protocols to gain insight into respondents’ comprehension and 

decision processes (Schkade and Payne 1994).   
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The data used to inform DCE scenarios were obtained from sources including Columbia 

University’s Center for Climate Systems Research, NASA’s Goddard Institute for Space Studies, 

The Nature Conservancy (TNC), and the National Oceanic and Atmospheric Administration 

(NOAA), as reflected in coastal flooding scenarios for TNC’s Coastal Resilience platform 

(www.coastalresilience.org).  Choice attributes were selected based on a conceptual model 

combining input from focus groups; scientists with expertise in sea level rise and coastal 

resilience; coastal flooding scenarios; and interviews with municipal officials and stakeholders.   

Following the theoretical model outlined above, each choice question allowed the 

respondent to choose among three possible multi-attribute adaptation plans (j = A, B, N), 

including two multi-attribute adaptation options (A, B) and a status quo (N) with no new 

adaptation and zero household cost. Prior to administration of choice questions, the survey 

provided information describing  tradeoffs associated with alternative approaches to coastal 

adaptation and projected inundation scenarios in the mid-2020s and baseline (status quo) effects 

with no new adaptation. This and other information was conveyed via a combination of text, 

custom graphics, geographic information system (GIS) maps and photographs. Detailed 

instructions were also provided, including reminders to consider budget constraints and specific 

statements highlighting consequentiality (Carson and Groves, 2007; Johnston, 2006). 

Choice options are characterized by six attributes: (1) the percentage and number of 

homes expected to flood in a Category 3 storm, (2) wetland acreage lost, (3) beach and dune 

acreage lost, (4) the length of coastline that is hard-armored, (5) the general emphasis of 

adaptation efforts (whether there is additional emphasis on hardened coastal defenses), and (6) 

unavoidable household cost (Table 1). All outcomes are forecast as of the mid-2020s.  Following 

the general approach of Johnston et al. (2012), attributes represent each adaptation method and 

http://www.coastalresilience.org/
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effect in relative (percentage) terms with regard to upper and lower reference conditions (i.e., 

best and worst possible in Old Saybrook) as defined in the survey. Scenarios also present the 

cardinal basis for relative levels where applicable.  Table 1 provides summary statistics and 

definitions of each attribute. Table 2 illustrates attribute levels, chosen based on feasible 

adaptation outcomes identified using the data sources identified above.  

Grounded in these attributes and levels, a fractional factorial experimental design was 

generated using a D-efficiency criterion (Ferrini and Scarpa 2007; Sándor and Wedel 2001, 

2002; Scarpa and Rose 2008) for main effects and selected two-way interactions, yielding 72 

profiles blocked in 24 booklets. Although optimized for D-efficiency, other measures of 

efficiency were also reviewed, e.g., S-efficiency, to evaluate potential sample sizes required for 

assumed utility specifications (Bliemer et al. 2009, Rose and Bliemer 2008; Scarpa and Rose 

2008).  Design efficiency was reevaluated using alternative assumptions for utility structure.  

Each respondent was provided with three choice questions and was instructed to consider each as 

independent and non-additive.  A sample choice question is illustrated in Figure 1.  

The DCE was implemented from May-June 2014 over a random sample of Old Saybrook 

households. The self-administered questionnaire was distributed via U.S mail, with follow-up 

mailings to increase response rates (Dillman et al. 2009).  Three different versions of the DCE 

were implemented, distinguished by slight variations in the attribute set provided to 

respondents.3  As these minor intra-version variations are assumed to have no substantive impact 

on response propensity, data from all versions were used to estimate the response propensity 

model in equation (6). However, to ensure the direct comparability of all attributes, the random 

utility model in equation (7) is estimated using data from the single, primary survey version. For 

                                                           
3 These variations were used to test hypotheses unrelated to non-response bias. 
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all versions combined, 1,729 surveys were mailed, from which 1,489 were deliverable.  Of these, 

489 were returned, for a 32.8% response rate, with 423 providing sufficient data for the response 

propensity model. For the survey version used for random utility modelling, 576 surveys were 

mailed, 488 were deliverable and 163 were returned, for a 33.4% response rate. Returned surveys 

yielded 408 complete choice responses, from which the random utility model is estimated. 

 

Data for Response Propensity Modeling 

As noted above, development of the response propensity model requires data for respondents and 

non-respondents. Given the focus of the DCE on coastal flooding, we expect that variables 

influencing response propensity would include indicators of each household’s flood exposure, 

e.g., distance from the shoreline, property elevation, and whether the home is in a flood hazard 

zone. Multiple indicators of this type may be extracted from readily accessible GIS data layers, 

combined with geocoded home location of both respondents and non-respondents (from their 

physical mailing addresses).4 Maps showing the approximate geocoded location of homes for all 

targeted households, respondents and non-respondents are shown in Figure 2.  

This approach enabled the extraction of multiple characteristics related to each 

household’s flood risk exposure, such that the response propensity model can be populated with 

multiple exposure indicators observable for each household. We also include the gender of 

respondents/non-respondents, with the gender of non-respondents inferred using the first name 

and gender prefix in the mailing list. The gender of respondents is available from survey 

responses. Table 3 summarizes variables included in the response propensity model. 

 

                                                           
4 Surveys were only mailed to physical addresses, not including post office boxes. 
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Model and Welfare Estimation 

As a precursor to estimation of the response propensity model, Table 4 compares risk exposure 

variables (Table 3) across respondent and non-respondents, and tests for the equivalence of 

means across the two groups.  A significant difference between respondents and non-respondents 

across these variables would provide a preliminary though not definitive suggestion that response 

propensity is related to these variables. As shown in Table 4, we fail to reject the null hypothesis 

of equal means (for all risk indicators) across the two groups.  This result suggests that the 

univariate risk-exposure properties of respondents are similar to those of non-respondents.  

However, these initial results must be treated with caution, as comparisons based on univariate t-

tests cannot identify variations in response propensity based on multivariate patterns.   

The first-stage response propensity model follows equations (4) and (6), with 𝑍𝑛 

(including the exposure variables in Table 3) as main effects and interactions. The model is 

estimated using data on respondents and non-respondents to all survey versions.5  Parameters are 

estimated using a binomial logit model, with results used to generate fitted response probabilities 

for each respondent in the realized sample. These fitted response propensities are incorporated 

into structural estimation of the utility function in the second stage, following equation (7).6  

Predicted propensities enter the model via multiplicative interactions with policy attributes 𝑋𝑛𝑗. 

The model does not include an interaction with cost, 𝐶𝑛𝑗 because the resulting coefficient 

estimate is highly insignificant, and doing so hence leads to undefined welfare estimates.7  

                                                           
5 Slight variations in attributes between survey versions are not expected to influence response propensity patterns. 
6 Fitted response propensities are scaled up by 100 before incorporation into the second stage model. 
7 This interaction, when included, leads to an insignificant coefficient estimate with a large standard error.  Given a 

random coefficient on Cost in the mixed logit model (here, bounded triangular), this large standard error on the 

interaction causes a portion of the estimated distribution of the marginal utility of income (𝛽2 + 𝛽4�̂�𝑛) to overlap 

zero.  As discussed by Daly et al. (2012) and Hole (2007), the result is an undefined mean welfare estimate for the 

sample.  To avoid this problem, we do not include the interaction between the response propensity and program cost 

in the random utility model.  The exclusion of this interaction has no significant effect on other aspects of the model. 
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The random utility model is estimated using a simulated-likelihood mixed logit (ML) in 

preference-space with 2000 Halton draws, using data from the realized sample of respondents to 

the primary survey version.8 The final model was chosen based on the results of preliminary 

models with varying specifications. Except for the coefficient on Seawalls, which is specified as 

fixed, coefficients on all main effects are specified as random and independent. We assume a 

normal distribution for coefficients on Neither, Hard, Homes, Wetlands, and Beaches.  The 

coefficient on Cost is specified with a bounded triangular distribution, with the sign reversed 

prior to the estimation to ensure a positive marginal utility of income (Hensher and Greene 2003; 

Campbell et al. 2008; Johnston et al. 2012; Johnston and Ramachandran 2014). Coefficients on 

the interactions with response propensities are specified as fixed.  

Estimates on the response propensity interactions capture the variability in mean 

marginal utilities of policy attributes associated with variations in the predicted likelihood of 

being in the realized sample, as a function of flood exposure indicators. Here, the null hypothesis 

of interest is whether the marginal utilities of 𝑋𝑛𝑗 vary as a function of response propensity, or 

whether 𝛽3 = 𝜕2𝑈𝑛𝑗 (. ) 𝜕𝑋𝑛𝑗⁄ 𝜕�̂�𝑛  = 0. Rejecting the null would imply that the variation in the 

likelihood of completing and returning the survey questionnaire explains at least some of the 

heterogeneity around the mean estimate of marginal utility. Consequently, the unadjusted utility 

estimates would likely not reflect the true preference parameters in the targeted population. 

However, the presence or absence of response bias in marginal utilities does not 

necessarily imply corresponding impacts on WTP, and it is often these estimates that are of 

greatest policy relevance (Johnston et al. 2005). Hence, we continue the analysis through the 

                                                           
8 Parallel WTP–space models would not converge with the response propensity interactions, hence all models are 

estimated in preference space.  Models were tested with alternative numbers of Halton draws to evaluate stability. 
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estimation of implicit prices using the welfare simulation approach described by Johnston and 

Duke (2007), following Hensher and Greene (2003). We first conduct a parameter simulation 

following Krinsky and Robb (1986), with R=1000 draws taken from the mean parameter vector 

and associated covariance matrix. For each of these R draws, the resulting parameters 

characterize asymptotically normal empirical densities for fixed and random coefficients. For 

each draw, a coefficient simulation is conducted for each random coefficient (capturing 

preference heterogeneity), with S=1000 draws taken from simulated empirical densities.  Welfare 

measures are calculated for each draw, resulting in a combined distribution of R×S observations 

from which summary statistics are derived (Hensher and Greene 2003). Statistical significance is 

determined by the percentiles on these empirical distributions (Poe et al.  2005). 

The resulting estimates may be used in a variety of different ways to evaluate and 

potentially adjust for the effect of response propensity on WTP.  First, we evaluate the marginal 

effect of response propensity on the implicit price for each attribute, here given by 

𝜕𝑊𝑇𝑃
𝜕�̂�𝑛

⁄ = �̂�3 �̂�2⁄  (recall that �̂�3 is a vector of estimated coefficients associated with the 

interaction of �̂�𝑛 and the various 𝑋𝑛𝑗).  The result indicates whether and to what extent, on 

average, response propensity influences WTP for different coastal adaptation attributes.  

These results indicate the effect of a unit change in �̂�𝑛 on implicit prices, or the predicted 

difference in marginal WTP associated with a one percentage point increase in response 

propensity. However, of greater policy relevance is the effect on mean welfare estimates reported 

over the entire realized sample, reflecting the potential effect of non-response bias.  That is, to 

what extent are WTP estimates influenced by the variation in response propensities between the 

realized sample (of respondents), and the combined sample of both respondents and non-

respondents (with the latter assumed to reflect the broader population)?   To answer this 
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question, we calculate differences between implicit prices evaluated at the mean value of 

predicted response propensities for the entire sample (both respondents and non-respondents) 

and analogous implicit prices evaluated at the mean value of response propensity for the realized 

sample of respondents (Cameron and DeShazo 2013). This is calculated 

𝑊𝑇𝑃𝑑𝑖𝑓𝑓 =
�̂�1 +  �̂�3 �̂�𝑚𝑎

�̂�2

  −  
�̂�1 +  �̂�3 �̂�𝑚𝑟

�̂�2

  =  
�̂�1 +  �̂�3  (�̂�𝑚𝑎 − �̂�𝑚𝑟)

�̂�2

,                        (8) 

where �̂�𝑚𝑎 is the mean of fitted values of response probabilities calculated over the entire sample 

of respondents and non-respondents, and  �̂�𝑚𝑟 is the corresponding mean calculated using the 

realized sample (respondents).  This difference (𝑊𝑇𝑃𝑑𝑖𝑓𝑓) is a reduced form estimate of the 

extent to which implicit prices differ between the realized sample and the population, based on 

risk-related variations in response propensity. 

 

Standard Error Corrections 

A well-known consequence of the use of fitted (or predicted) regressors in (7) is biased estimates 

of coefficient standard errors (Cameron and DeShazo 2005; Greene 2003; Murphy and Topel 

1985).  This leads to the potential for incorrect statistical inferences regarding the effect of 

response propensities.  In cases such as this, bootstrapping can provide an empirical means to 

estimate corrected standard errors without the assumptions implied by alternative approaches 

(Davidson and Mackinnon 1999; Guan 2003; King and Roberts 2015; Skrondal and Rabe-

Hesketh 2009).  In the present case, however, the application of a simple two-stage non-

parametric bootstrap is complicated by (1) the use of different samples to estimate the first- and 

second-stage models 9, and (2) the use of a complex and computationally intensive mixed logit 

                                                           
9 Recall, the first stage is estimated using data on respondents and non-respondents from all survey versions.  The 

second stage is estimated using data on respondents to a single survey version. 
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estimator in the second stage that may not converge over all iterations of the bootstrap.   

To address these complications, we develop an iterative, semi-parametric bootstrap, 

applied to a simplified version of the two-step model with a conditional rather than mixed logit 

model as the second stage.  This enables us to evaluate the extent to which standard errors are 

affected by the use of predicted response propensities, for a simplified model over which 

bootstrapping is feasible. To develop the illustrated approach, the first-stage response propensity 

model is estimated in identical fashion to that above, leading to parameter estimates �̂�𝑖 and an 

associated covariance matrix which reflects the statistical precision of these estimates. Drawing 

from these first-stage estimates, we implement a parametric bootstrap to account for sampling 

variation in �̂�𝑛. The procedure begins by repeatedly taking c random draws of  �̂�𝑖  (c=1000 or 

10,000 draws) using the mean parameter vector and the associated covariance matrix.  Each cth 

draw of the parameters (�̂�𝑖𝑐) is used to calculate �̂�𝑛𝑐 for each respondent, leading to an empirical 

distribution of c estimates of predicted response propensity for each respondent, reflecting 

sampling variation in the underlying parameters.   

The second-stage then draws c independent non-parametric bootstrap samples from the 

second-stage model data, reflecting DCE responses from realized sample of respondents.  The cth 

bootstrap sample of the DCE data is then paired with �̂�𝑛𝑐 from first stage parametric draws, with 

a conditional logit model estimated over the resulting data. Identical to the specification in our 

original mixed logit model, we incorporate predicted propensities into the model through 

interaction with all attributes except the Cost.  The result is c bootstrap estimates of the 

conditional logit model, each estimated over a unique bootstrap sample of the DCE data and a 

different parametric bootstrap draw of �̂�𝑛𝑐 for each respondent.  These estimates are used to 

generate robust, semi-parametric bootstrap standard errors for each of the coefficients (estimated 
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marginal utilities) in the random utility model, that account for the fact that response propensity 

is predicted rather than observed. For comparison, we estimate the model using c=1000 and 

10,000 bootstrap replications.   The resulting robust standard errors are compared to the original 

(uncorrected) standard errors from the conditional logit model, providing insight on the extent to 

which standard errors are influenced by the use of a predicted regressor in the second-stage. 

 

Results 

Results of the first stage selection model are presented in Table 5.  As expected based on initial 

findings in Table 4, logit model results suggest that observable indicators of flood exposure 

explain a relatively small proportion of the variation in response propensity.  This is a positive 

finding in terms of non-response bias, as it suggests that response likelihood is not heavily 

influenced by the household’s flood exposure.   

Three variables have a statistically significant impact, however.   Results for these 

variables suggest at least some patterns that may defy prior expectations.  Coefficients on 

Distance×Elevation and Distance×SFHZ are statistically significant and positive.  The former 

suggests that households that are both at greater distance from the coastline and at higher 

elevation—and hence at lower flood risk—are more likely to respond to the survey.  (Coefficient 

estimates associated with the main effects Distance and Elevation are negative, but not 

statistically significant.)  The positive and significant coefficient estimate for Distance×SFHZ 

further implies that for households in a special flood hazard zone, greater distance to the 

coastline implies a greater propensity to respond.  Both of these lead to the conclusion that 

survey recipients whose homes are less vulnerable to flood risks are more likely to respond, 

although the magnitude of these effects are relatively small.  These results are robust across 
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multiple specifications of the response propensity model.  The estimate on Male also indicates 

that men are more likely to respond than others (Table 3). 

Although these results might seem unexpected, focus group results suggest an intuitive 

explanation.  Within Old Saybrook, many current and potential adaptation solutions involve 

restrictions placed on those whose properties are at high risk of flooding—for example, 

restrictions that prevent rebuilding of homes subject to repeated and extensive flood damage 

(Town of Old Saybrook 2015).  As a result, focus group results suggest that those at higher risk 

of flooding may be more skeptical of community-level coastal adaptation decisions and may 

distrust in the policy process.  Such lack of trust can have significant effects on stated preference 

survey responses (Johnston et al. 1999).  In the present case, it may cause homeowners at higher 

risk (and with potentially less trust in the policy process) to be less likely to return the DCE. 

The estimated model is used to predict response propensity scores for both respondents 

and non-respondents, a summary of which is provided in Table 6. These predicted propensities 

are incorporated into the second-stage random utility model estimated over the realized sample 

of respondents.  The mean of predicted propensity scores for the entire sample (respondents and 

non-respondents to all survey versions) is 24.46%. This mean is approximately one percentage 

point lower than the parallel response propensity calculated over the realized sample of 

respondents for the main survey (25.23%).  Hence, in the present case, there is a difference in the 

predicted response propensity of respondents and non-respondents, but this difference is small. 

 

Second Stage: Estimated Utility Functions 

Table 7 reports the results of the estimated random utility model.  Two specifications are 

illustrated.  The first is a restricted model that omits interactions with response propensities—this 
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is akin to standard, non-corrected models reported in the literature.  The second model is an 

unrestricted model that includes interactions between non-cost choice attributes and predicted 

response propensities for each respondent in the realized sample.  Specification of the main 

effect coefficients in both models is identical.  Estimated coefficients are jointly significant at p < 

0.0001 for both models, with Pseudo R2s of 0.19 and 0.21 for restricted and unrestricted model, 

respectively.  A likelihood ratio test rejects the null hypothesis that the joint effect of response 

propensity interactions is zero (𝜒2 = 23.08, df. 6, p<0.001), implying that estimated marginal 

utilities vary as a function of fitted response propensities. 

As noted above, although the second stage model provides consistent estimates of mean 

coefficient values (and hence implied effects of response propensity on marginal utilities), 

estimates of standard errors are inaccurate.  Hence, inferences regarding statistical significant 

should be interpreted with caution.  Below we present estimates of semi-parametric bootstrap-

corrected standard errors for simpler conditional logit model, suggesting that most inferences 

drawn from the primary model are robust.  Prior to presenting these results, however, we discuss 

initial results of the unrestricted mixed logit model with uncorrected standard errors. 

For the unrestricted model, coefficients on all attribute main effects are statistically 

significant except for those on Beaches and Seawalls. The signs of statistically significant 

coefficient estimates match prior expectations and are identical to the corresponding estimates in 

the restricted model.10  All estimated standard deviations/spreads of random parameter 

distributions are statistically significant at p < 0.10 or better in both models. 

 

                                                           
10 Magnitudes of main effect coefficients cannot be compared across the two models, because (1) the effect of each 

attribute in the unrestricted model includes both the main effect coefficient and the coefficient on the response 

propensity interaction, and (2) scale confounds parameter magnitudes in mixed logit models (Fiebig et al. 2010). 
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Response Bias in Estimates of Marginal Utilities 

Results of the unrestricted model suggest that simple comparisons between respondents’ 

and non-respondents’ characteristics (Table 4) may lead to misleading conclusions about the 

potential presence of response bias.  Here, parameters on response propensity interactions may 

be interpreted as the deviation in mean marginal utilities associated with one percentage point 

change in the predicted likelihood of response. In contrast to the implications of simple 

difference-in-means tests (Table 4), results of the unrestricted model (Table 7) indicate the 

presence of statistically significant effects of response propensity on marginal utilities, 

suggesting the presence of non-response bias.  Initial (uncorrected) standard errors suggest 

statistically significant (p<0.05) coefficients on Score×Neither, Score×Hard and Score×Wetlands.   

The positive sign on (Score×Neither) implies that the baseline disutility from no action 

(Neither, the ASC on the status quo) is lower for those who have a higher predicted response 

propensity, conditional on risk exposure (those with higher response propensities are more likely 

to choose the status quo). The estimate on Score×Hard indicates that the marginal disutility from 

an emphasis on hard adaptation (Hard) is lower for those with higher predicted response 

propensities (those with higher response propensities are more likely to support plans that focus 

on Hard or engineered adaptation).  The estimate on (Score×Wetlands) implies that those who are 

more likely to respond obtain less utility from wetlands protection (respondents with higher 

response propensity lose less utility when wetlands losses increase).  

Taken together with the first-stage response propensity model, these results provide an 

intuitive perspective on survey non-response patterns.  As noted above (Table 5), those with 

greater physical exposure to flood risks are less likely to respond to the survey. Hence, it is not 

surprising that those who are more likely to respond (and are both further from the coast and less 
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vulnerable to flood risks): (1) are more likely to choose the no-action status quo, (2) are less 

likely to have negative preferences for hardened shoreline structures and (3) have lower values 

for the protection of coastal wetlands.  The latter two findings are intuitive based on distance 

decay intuition (Bateman et al. 2006), assuming that households that are more distant from the 

coast are less effected by the (negative) amenities of hardened shoreline structures and the 

(positive) amenities of coastal wetlands. 

These findings suggest the presence of significant non-response bias in marginal utility 

estimates.  These results correspond to focus group results, but are not of a type that might be 

initially expected in the context of environmental hazards. That is, those who are less vulnerable 

to flood risks are more likely to return the survey, and are hence slightly over-represented in the 

sample. Combined with the effect of response propensity on marginal utilities, this tends to 

reduce the magnitude of certain marginal utilities (positive or negative) related to coastal 

adaptation outcomes. We emphasize, however, the conclusions regarding the statistical 

significance of these and other estimates in the second-stage model are subject to further 

verification in models that correct for inaccurate standard errors. 

 

Response Bias in WTP Estimates 

Implicit price estimates simulated from mixed logit results are shown in Tables 8. Risk-related 

response bias in marginal WTP estimates is reported in the second column, measured as the 

WTP difference associated with a unit change in the predicted response propensity.  As expected, 

these differences show similar patterns to those found in marginal utility estimates (Table 7), 

with higher (less negative) WTP for Neither, Hard and Wetlands. 

Results indicate that, holding all other adaptation attributes fixed, a household WTP to 
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avoid the status quo (Neither) is $21.39 less than a comparable household with one point lower 

predicted response propensity. The estimate on Hard indicates that a one point increase in 

predicted propensity is associated with $30.90 lower WTP to avoid a flood protection plan that 

emphasizes hard defenses relative to the status quo. Finally, the estimate on Wetlands indicates 

that per household annual WTP to avoid the loss of one percentage point of currently existing 

wetland acres is $2.60 lower for a household with a one point higher response propensity. 

Interestingly, despite the fact that the response propensity score is constructed based on the 

exposure of individuals’ homes to flood risks, the difference in WTP for Homes is insignificant. 

Table 8 also presents mean implicit prices evaluated at the mean propensity score for 

respondents only (column 4), and at the mean score for all sampled individuals (column 5). The 

differences between these estimates may be interpreted as bias in mean implicit prices related to 

survey non-response.  Results indicate that per household WTP to avoid the status quo (Neither) 

is $140.79 when evaluated using the mean propensity of the realized sample. This increases by 

$16.35 (to $157.14) when evaluated using mean predicted propensity of both respondents and 

non-respondents. The parallel difference in WTP for Hard is $23.62. Implicit price estimates for 

Wetlands indicate that annual WTP to prevent the loss of one percentage point of wetland acres 

is $7.47 when evaluated using mean propensity of respondents, and not statistically significant. 

This estimate increases to $9.45 and becomes statistically significant (p<0.06) when evaluated at 

mean of predicted propensity of the entire sample.  

Taken together, these results suggest that estimates of WTP for coastal flood adaptation 

outcomes are influenced by response propensity, and that uncorrected estimates may lead to 

misleading conclusions regarding these values. The direction and magnitude of these effects, 

although consistent with focus group results, may not always match prior expectations.   This 
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observation highlights the importance of obtaining empirical estimates of these patterns. 

 

Accuracy of Statistical Inferences  

To evaluate the extent to which standard errors are influenced by the use of predicted rather than 

observed response propensities in the second-stage, Table 9 illustrates results of the semi-

parametric bootstrap over conditional logit estimates.  Results for both 1,000 and 10,000 

bootstrap iterations are reported.  Results of the conditional logit model are generally consistent 

with those of the mixed logit model (Table 7). Hence, we focus our discussion on interactions 

with predicted propensities and the resulting coefficient standard errors. As found in the mixed 

logit model, estimates on Score×Hard  and Score×Wetlands are positive and statistically 

significant at p < 0.01 based on the conditional logit coefficient estimates and uncorrected 

standard errors.  Semi-parametric bootstrap-corrected standard errors on these coefficients 

increase as expected, but these estimates remain statistically significant, albeit at a reduced level 

of p < 0.05.  Other standard errors from the model show similar patterns, with modest differences 

(generally increases as expected) between the uncorrected and corrected standard errors, but 

general inferences and significance remaining unchanged. The coefficient on the interaction 

Score×Neither is not significant in the conditional logit, based on either the uncorrected or 

corrected standard errors.  Results are robust over both 1,000 and 10,000 bootstrap samples. 

These results suggest that inferences regarding the effect of response propensity continue 

to hold when standard errors are adjusted for the use of predicted regressors in the second-stage.  

Semi-parametric bootstrap results suggest that the degree of inaccuracy in the original 

(uncorrected) standard errors is generally of small magnitude, such that inferences from the 

uncorrected model can still provide useful insights into the potential for non-response bias. 
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Conclusions 

This paper presents a systematic, two-step modeling approach to accommodate risk-related 

response bias in DCEs addressing climate risk reductions. The approach diagnoses and corrects 

for response bias attributable to systematic differences in risk exposure between respondents and 

non-respondents, where indicators of climate-related risks may be extracted from readily 

available GIS data layers, combined with geocoded home locations of both respondents and non-

respondents.  A simplified version of this model is then coupled with a semi-parametric 

bootstrap approach to generate corrected standard errors in the second-stage model. 

Results demonstrate the ability of the proposed approach to illuminate otherwise invisible 

biases in preference and welfare estimates related to risk-related response propensity. Effects on 

welfare estimates, while intuitive, may not always conform to prior expectations. In contrast to 

ex ante expectations, present results suggest that individuals who are more exposed to climate-

related risks (and presumably have higher levels of awareness and interest in the topic) are less 

likely to respond to the survey. These findings illustrate a case in which confounding factors 

(here, trust in the policy process) can lead to patterns in which people who may be less interested 

in a survey topic may be more likely to respond—a possibility that is generally unacknowledged 

within the past literature on non-response bias. 

We emphasize that all reported empirical results pertain to our case study, and must be 

viewed within this context. Results, for example, might differ across different intensities and/or 

types of environmental hazards.  Moreover, there may be other causes of non-response bias in 

DCE results that are not modeled here. We also reiterate that the proposed corrections are 

reduced form and empirical, in contrast to the formal Heckman corrections available for other 
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types of models. These and other caveats aside, model results highlight the potential of the 

illustrated approach to detect and correct for otherwise invisible response patterns in 

environmental valuation results, ameliorating potential biases in welfare analysis.  They also 

illustrate that uncorrected DCE results can lead to misleading inferences regarding WTP for 

climate-risk reductions—a concern not widely appreciated in the applied valuation literature. 
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Table 1. Variables and Descriptive Statistics* 

Variable Description 
Mean 

(Std.Dev)** 

Neither 

 

Alternative specific constant (ASC) associated with no new action, 

or a choice of neither protection plan. 

  

0.33  

(0.47) 

Hard 

 

Binary (dummy) variable indicating whether the protection plan 

place more emphasis on hard defenses relative to the omitted 

condition (similar emphasis on hard and soft defenses).  

 

0.23  

(0.42) 

Homes 

 

Number of homes expected to flood in a Category 3 storm in the mid-

2020s; presented as a percentage of the total number of homes in the 

town (Range 0-100%). 

 

48.97  

(7.27) 

Wetlands 

 

Number of acres of wetlands expected to be lost by the mid-2020s 

due to flooding or erosion; presented as a percentage of the total 

number of acres of the town coastal marshes (Range 0-100%). 

 

4.71  

(2.62) 

Beaches 

 

Number of acres of beaches and dunes expected to be lost by the mid-

2020s due to flooding or erosion; presented as a percentage of the 

total acres of the town beaches and dunes that currently exist (Range 

0-100%). 

 

9.46  

(4.05) 

Seawalls 

 

Mileage of the town coast shielded by hard defenses by the mid-

2020s; presented as a percentage of the total mileage of the town 

coastline (Range 0-100%). 

 

24.99  

(6.11) 

Cost 

 

Household annual cost, presented as unavoidable increase in taxes 

and fees required to implement the coastal protection plan. A choice 

of neither protection plan is associated with zero cost (Range 0-

$155). 

 

62.16  

(55.84) 

*   Reported statistics are drawn from the realized sample of respondents to the survey version used in random utility modelling. 

** Means and standard deviations include status quo option of no new action. 
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Table 2. Attribute Levels in Choice Experiment Design 

Attribute Levels 

Homes 

36% of 5034 homes expected to flood in a Category 3 storm. 

43% of 5034 homes expected to flood in a Category 3 storm. 

51% of 5034 homes expected to flood in a Category 3 storm*. 

59% of 5034 homes expected to flood in a Category 3 storm. 

 

Wetlands 

2% of 497 wetland acres expected to be lost due to flooding or erosion.  

5% of 497 wetland acres expected to be lost due to flooding or erosion*. 

10% of 497 wetland acres expected to be lost due to flooding or erosion. 

 

Beaches 

4% of 30 beach acres expected to be lost due to flooding or erosion.  

10% of 30 beach acres expected to be lost due to flooding or erosion*.  

16% of 30 beach acres expected to be lost due to flooding or erosion.  

 

Seawalls 

15% of 50 miles of coast armored. 

24% of 50 miles of coast armored*. 

35% of 50 miles of coast armored. 

 

Cost 

$0 (cost to household per year) *. 

$35 (cost to household per year). 

$65 (cost to household per year). 

$95 (cost to household per year). 

$125 (cost to household per year). 

$155 (cost to household per year). 

* Status quo value. 
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Table 3.  Summary of Variables in the Response Propensity Model 

Variable Description 
Mean / %* 

(Std. Dev) 

 

Distance 

Distance (in feet) of geocoded property centroids 

to the nearest coastline. 

886.80 

(793.84) 

 

Elevation 

Elevation (in feet) of geocoded property centroids 

relative to the sea level. 

39.41 

(35.60) 

 

Flood Zone 

Binary variable indicating whether the property 

centroid lies within U.S. Federal Emergency 

Management Agency zones  A, AE, V, VE or X 

(default is a centroid not within one of these 

zones). 

85.71% 

(0.35) 

SFHZ 

Binary variable indicating whether the property 

centroid lies within a U.S. Federal Emergency 

Management Agency Special Flood Hazard Zone, 

defined as zones A, AE, V or VE (default is a 

centroid not located in a special flood hazard 

zone).  

17.29% 

(0.38) 

Male 

Binary variable indicating whether the subject is a 

male.  For respondents, this is determined by 

responses to a question requesting the gender of 

the respondent.  For non-respondents, this is 

inferred based on the individual to which the 

survey was mailed (default is females and those 

whose gender is not identifiable or is ambiguous 

based on the mailing address prefix and name).   

52.98% 

(0.50) 

* Summary statistics are based on the entire sample of both respondents and non-respondents (N= 1729). 
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Table 4.  Comparison of Flood Risk Exposure Variables:  Respondents versus Non-

respondentsa 

Variable 
Respondents Non-respondents Test statistic 

(P-value) Mean/ % Std. Dev Mean/ % Std. Dev 

Distance 920.13 841.27 876.01 778.89 t = -0.99 (0.32) 

Elevation 40.32 37.35 39.11 35.02 t = -0.61 (0.54) 

Flood Zone 0.84 - 0.86 - χ2 =  1.05 (0.29) 

SFHZ 0.17 - 0.17 - χ2 =  0.17 (0.87) 

Obs. (N) 423 1306   

a Comparisons of means are made between respondents and non-respondents to all survey versions (see main text). 
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Table 5. Response Propensity Model (Binomial Logit) 

Variables Coefficient Std. Error 

Distance -0.0005 0.0004 

Elevation -0.0064 0.0260 

Distance × Elevation 0.0000004* 0.0000002 

Flood Zone -0.4845 0.5612 

SFHZ 0.1055 0.3955 

Male 0.2115* 0.1136 

Distance × Flood zone 0.0003 0.0004 

Distance × SFHZ 0.0008** 0.0004 

Elevation ×Flood zone 0.0028 0.0262 

Elevation ×SFHZ -0.0260 0.0186 

Constant -0.6540 0.5451 

Observations 1729 

Pseudo R2 0.008 

**, & * indicate 5%, and 10% significance level respectively. 
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Table 6. Summary of Predicted Propensity Scores 

Sample/Sub-sample 
Number 

of Cases 

Mean 

(%) 

Min 

(%) 

Max 

(%) 

Entire sample of respondents and non-respondents 1729 24.46 9.97 44.90 

Non-respondents. 1306 24.25 9.97 44.90 

Respondents 423 25.14 13.51 41.45 

Respondents to the analysis version 142 25.23 17.07 41.45 
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Table 7.  Mixed Logit Results: Preference-Space Model with Response 

Propensity Interactions 

Attributes and 

Interactions 

Restricted Unrestricted 

Coefficient 

(Std. Error) 

Std. Dev or 

Spread  

(Std. Error) 

Coefficient  

(Std. Error) 

Std. Dev or 

Spread  

(Std. Error) 

Random Parameters: 

Neither -1.5556*** 

(0.4858) 

3.0943*** 

(0.4692) 

-7.4029** 

(2.9866) 

3.6339*** 

(0.6695) 

Homes -0.1362*** 

(0.0311) 

0.1494*** 

(0.0396) 

-0.3521** 

(0.1790) 

0.1627*** 

(0.0436) 

Hard -1.0311*** 

(0.3709) 

1.3255** 

(0.6403) 
-9.4468*** 

(2.7920) 

1.3866** 

(0.6615) 

Wetlands -0.0877 

(0.0549) 
0.2333** 

(0.0952) 

-0.7940** 

(0.3170) 

0.2161* 

(0.1208) 

Beaches -0.0998*** 

(0.0370) 

0.1854*** 

(0.0602) 

-0.1583 

(0.2097) 
0.1861*** 

(0.0642) 

Costb 
0.0159*** 

(0.0044) 

0.0159*** 

(0.0044) 

0.0167*** 

(0.0048) 

0.0167*** 

(0.0048) 
Non-random Parameters: 

Seawalls -0.0264 

(0.0255) 

0.0020 

(0.1546) 
Interactions: 

Score×Neither  
0.2291**   

(0.1116) 

Score×Homes  
0.0083  

(0.0067) 

Score×Hard  
0.3341***  

(0.1075) 

Score×Wetlands  
0.0279**  

(0.0122) 

Score×Beaches  
0.0020  

(0.0081) 

Score×Seawalls  
-0.0014  

(0.0061) 
 

𝜒2 166.627*** 189.703*** 

Pseudo R2 0.186 0.212 

Respondents.(N)  136 136 

Choice responses 408 408 

Observations 
1224  

(408 questions × 3 options per 

question) 

1224 
(408 questions × 3 options per 

question) 
a Except for cost, parameters are specified as random with a normal distribution. 
 b Cost coefficient is specified with bounded triangular distribution with the sign inversed prior to estimation. 
***, **, & * indicate 1%, 5%, and 10% significance level respectively. 
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Table 8.  Estimates of WTP Differences Associated with One 

Percent Change in Response Propensity Score, and 

Estimates of Mean WTP  

Attributes 
WTP 

Difference 

Mean WTP  

Restricted 
Unrestricted 

Respondents 

Unrestricted 

All 

Neither 

 

21.39** 

(0.02) 

 

-140.99*** 

(<0.01) 

 

-140.79*** 

(<0.01) 

 

-157.14*** 

(<0.01) 

Homes 

 

0.74 

(0.20) 

 

-12.66*** 

(<0.01) 

 

-12.71*** 

(<0.01) 

 

-13.28*** 

(<0.01) 

Hard 

 

30.90*** 

(<0.01) 

 

-99.97*** 

(<0.01) 

 

-96.15*** 

(<0.01) 

 

-119.77*** 

(<0.01) 

Wetlands 

 

2.60** 

(0.02) 

 

-7.43 

(0.16) 

 

-7.47 

(0.14) 

 

-9.45* 

(0.06) 

Beaches 

 

0.16 

(0.86) 

 

-9.05*** 

(<0.01) 

 

-9.57*** 

(<0.01) 

 

-9.69*** 

(<0.01) 

Seawalls 

 

 

-0.14 

(0.80) 

 

 

-2.42 

(0.32) 

 

 

-3.02 

(0.24) 

 

 

-2.91 

(0.28) 

 
***, **, and * indicate 1%, 5%, and 10% significance levels, respectively. P-values in parentheses.  
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Table 9. Semi-Parametric Bootstrap Results: Conditional Logit Model  

Attributes and 

Interactions 
Coefficient 

Uncorrected 

Standard 

Errors 

Bootstrap Standard 

Errors 

1000 

Samples 

10,000 

Samples 

Neither -0.8614 0.7999 0.8810 0.8695 

Homes -0.0991 0.0763 0.0710 0.0730 

Hard -4.9006*** 1.2407 1.6759*** 1.6701*** 

Wetlands -0.4406*** 0.1565 0.1808** 0.1805** 

Beaches -0.0575 0.1059 0.1252 0.1243 

Seawalls 0.0621 0.0877 0.0947 0.0967 

Cost -0.0077*** 0.0022 0.0020*** 0.0020*** 

Interactive terms:     

Score×Neither 0.0117 0.0309 0.0347 0.0344 

Score×Hard 0.1694 0.0483*** 0.0670** 0.0666** 

Score×Homes 0.0008 0.0030 0.0030 0.0028 

Score×Wetlands 0.0159 0.0060*** 0.0071** 0.0071** 

Score×Beaches 0.0002 0.0041 0.0050 0.0050 

Score×Seawalls -0.0030 0.0035 0.0038 0.0039 

     

𝜒2 76.56*** 

Pseudo R2 0.085 

Respondents(N) 136 

Choice responses 408 

Observations 1224 

***, **, and * indicate 1%, 5%, and 10% significance levels, respectively. 
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Figure 1. Sample Choice Question 
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Figure 2: Spatial Distribution of Respondents and Non-respondents Based on Geocoded Locations of Homes 

 


