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On the Evaluation of Probability Forecasts: An Application to Qualitative Choice Models 
 

Abstract 
 Using data from Nielsen HomeScan scanner panel for calendar year 2003, we develop binary 
choice models to focus on the decision made by a sample of U.S. households to purchase various non-
alcoholic beverages. We evaluate the probabilities generated through those qualitative choice models 
using an array of techniques such as expectation-prediction success tables; receiver operating 
characteristics (ROC) curve, Kullback-Leibler Information criteria; calibration; resolution (sorting); the 
Brier score; and the Yates partition of the Brier score. 
 In using expectation-prediction success tables, we paid attention to sensitivity and specificity. 
Use of a naïve 0.50 cut-off to classify probabilities resulted in the over or under estimation of sensitivity 
and specificity values compared to the use of the market penetration value. Area under the ROC curve is 
suggested as an alternative to the use of 0.5 cut-off as well as cut-off at market penetration level to 
classify probabilities, because this method treats a wide range of cut-off probabilities to come up with a 
coherent measure in classifying probabilities. The area under the ROC was highest for coffee for with-in-
sample probabilities while it was highest for fruit juice model for out-of-sample probabilities. Kullback-
Leibler Information Criteria which selects the model with the highest log-likelihood function value 
observed at out-of-sample observations (OSLLF) to evaluate probabilities show “closeness” or deviation 
of model generated probabilities to the true data generating probability overall, although this method 
does not offer classification of probabilities for events that occurred versus that did not. Again, with 
respect to OSLLF value, probabilities associated with fruit juice model outperform all other beverages. 
Forecast probabilities with respect to most of the beverage purchases were well calibrated. All 
resolution graphs were almost flat against a 45-degree perfect resolution graph, indicative of poor 
sorting power of choice models. The Brier score was lowest for fruit juices and the highest for low-fat 
milk. According to the calculated Brier score, probability forecasts for fruit juices outperformed other 
non-alcoholic beverages. 

Although the Brier score gave an overall indication of the ability of a model to forecast 
accurately, the components of the Yates decomposition of the Brier score provided a clearer and 
broader indication of the ability of the model to forecast.  

With-in-sample probabilities generated through logit model for coffee outperforms probabilities 
generated for other beverages based on area under the ROC curve, covariance between probabilities 
and outcome index and slope of covariance. Out-of-sample probabilities generated through logit model 
for fruit juice performs better than any other beverage category based on area under the ROC curve, 
Brier Score, and OSLLF value. 
 In the event where researchers are confronted with alternative models that issue probability 
forecasts, the accuracy of probability forecasts in determining the best model can be measured through 
myriad of metrics. Even though traditional measures such as expectation-prediction success tables, 
calibration and log-likelihood approaches are still used, ROC charts, resolution, the Brier score and the 
Yates partition of the Brier score to evaluate probabilities generated through alternative models are 
highly recommended. 
 
JEL Classification: C25, C52, D12 
 
Keywords: Qualitative choice, probability forecasts, forecast evaluation, calibration, resolution, Brier 

score, Yates partition, receiver operating characteristics curve, log-likelihood  
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Background 

Discrete choice models are widely used in economic modeling when the dependent 

variable corresponds to discrete outcomes. They are used to model choices of decision-makers. 

Decision-makers can be individual persons, households, or firms. Choice alternatives available 

might represent competing products, different actions, such as to buy or not to buy a product, 

or any other option or items over which choices must be made (Train, 2003). 

Among a wide range of discrete choice models available to model different situations1, 

dichotomous probit and logit models are important to model choices where the dependent 

variable is set up as a zero-one (0-1) variable. Once appropriately modeled, discrete choice 

models determine the probability of the choice decision. Importantly, these probit and logit 

models are used to identify statistically significant factors that are related to the choice 

decision. 

In addition, with an appropriate decision rule, these models provide predictions of 

various choices. A key question relates to the accuracy of these predictions. Such accuracy can 

be measured using traditional metrics such as expectation-prediction success tables, where the 

percentage of correct (incorrect) predictions are calculated in comparison to the total number 

of predictions based on a predetermined probability cut-off level for success (or not success). 

The expectation-prediction table is limited in its ability to correctly classify and evaluate 

probabilities in the absence of accurate predetermined cut-off levels. Receiver Operating 

Characteristics (ROC) curves (Hsieh and Turnbull, 1996; Reiser and Faraggi, 1997) offer 

somewhat relief for this predetermined cut-off probability levels in classifying probabilities by 

calculating and plotting probability outcomes based on a wide range of cut-off probabilities. 

Alternatively, a log-likelihood function approach which selects models closest to the true data 

generating process based on Kullback-Leibler Information Criteria has been used to assess 

performance of models generating probabilities (Stone, 1977; Shao, 1993; Norwood, Lusk and 

Brorsen, 2004). On the other hand, other techniques such as calibration, calibration graphs, 

resolution, resolution graphs, and optimum scoring rules such as the Brier Score (BS) and the 

Yates partition of the Brier Score (Yates, 1982) can be used to measure accuracy of predictions. 
                                                 
1 Wide range of discrete choice models are available such as probit, logit, mixed logit, ordered probit, generalized extreme 
value, nested logit, multinomial probit, multinomial logit, etc. 
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The expectation/prediction success table perhaps is the standard method to evaluate 

the predictive performance of qualitative choice models (Stock and Watson, 2007). It is 

noteworthy that to our knowledge, Zellner et al. (1991), and Bessler and Ruffley (2004) were 

the only studies so far that have used optimal scoring rules (such as the Brier score and the 

Yates-partition of the Brier score) to evaluate probability forecasts from econometric models. 

According to best of our knowledge, our work is the first such attempt to evaluate within-

sample and out-of-sample probability forecasts developed from qualitative choice models 

(probit and logit) using optimal scoring rules such as the Brier score and the Yates-partition of 

the Brier score for a wide variety of non-alcoholic beverage purchase decisions in the United 

States. We develop binary probit and logit models to focus on the decision made by a sample of 

U.S. households to purchase various non-alcoholic beverages. Then we evaluate the 

probabilities generated through those models both within-sample and out-of-sample using an 

array of probability evaluation techniques. 

 The specific categories of non-alcoholic beverages considered in these analyses are: 

isotonics (sports drinks); regular soft drinks; diet (low-calorie) soft drinks; high-fat milk (whole 

milk and 2% milk); low-fat milk (1% milk and skim milk); fruit drinks; fruit juices; bottled water; 

coffee; and tea. The general objective of the study is to consider and apply methods to evaluate 

probabilities emanating from discrete choice models of non-alcoholic beverage purchase 

decisions in the United States. Specific objectives of the study are, to evaluate within-sample 

and out-of-sample probabilities generated through the respective models using the following 

metrics: (1) expectation-prediction success tables; (2) Receiver Operating Characteristics (ROC) 

curves; (3) Log-Likelihood function approach; (4) probability calibration and calibration graphs 

(Dawid, 1986); and (5) probability resolution and resolution graphs (Dawid, 1986); (6) mean 

probability score (the Brier Score); and (7) the Yates partition of the Brier Score. (Yates, 2008 

and Yates, 2010) 

 

Data 

Nielsen Homescan scanner data for 2003 for at-home purchases of non-alcoholic 

beverages was used in this analysis. Monthly household purchases of these beverages 
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(expenditure and quantity information) are captured over the period January 2003 through 

December 2003 (we have a total of 7642 households). These data are demographically 

representative from various cities and rural markets of the 48 contiguous states of the United 

States. Each household was provided with a scanner machine in which it could scan and record 

all items purchased in different retail trade locations throughout a given time period. Panelists 

recorded the expenditure and quantity of non-alcoholic beverages purchased in that household 

for that time period. 

 For each household in the sample, the expenditure and quantity data are summed over 

12 months to generate an annual value for each non-alcoholic beverages considered in this 

study. The quantity data are standardized in terms of gallons per household per year and 

expenditure data are expressed in terms of dollars per year. It should be noted that some 

households may have not purchased some beverage products, hence an observation 

corresponding to zero for quantity purchased.  

Since all households did not buy all beverages, a weighted average price was generated 

taking the ratio of sum of total expenditures of dry good, frozen and dairy beverages to the sum 

of quantities of dry, dairy and frozen beverages. This weighted average price was used as a 

proxy for the price of each non-alcoholic beverage considered in this study. Demographic 

categories used in this analysis are as follows: age of household head, employment status of 

household head, education status of household head; region; race; Hispanic household; age 

and presence of children; gender of household head; poverty status of household. 

 

Methodology2 and Empirical Results 

To evaluate forecast probabilities, we generated two samples of observations and 

estimated the model using one sample and reserved the data from the second sample to 

perform out-of-sample forecast evaluation analysis. We divided the sample of 7642 

observations in half to generate two random samples of data, each with 3821 household level 

observations using SAS 9.2 Enterprise Minor data mining software (SAS Institute, 2015). We 

called these samples, Sample A and B.  
                                                 
2 It should be noted that we have generated within-sample and out-of-sample probabilities using both probit and logit models 
for all ten non-alcoholic beverage purchases. However, for brevity we present the results associated with only the logit model.  
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Initially, Sample A was used to fit probit and logit models to model the decision to buy a 

non-alcoholic beverage. Subsequently, within-sample forecast probabilities were generated. 

Next, we ran the estimated coefficients from Sample A model, through data from Sample B to 

generate out-of-sample forecast probabilities. To evaluate these within- and out-of-sample 

forecast probabilities, we consider the following performance methods; expectation-prediction 

success tables, ROC charts, Log-Likelihood function estimates, calibration and calibration 

graphs, resolution and resolution graphs, the Brier score and the Yates partition of the Brier 

score. 

 

Expectation-Prediction Success Tables and ROC Curves 

Expectation-prediction success table is a two-way table that shows the relationship 

between the expected outcome and predicted outcome. Expected outcome is known 

beforehand; such as the decision to buy or not-to-buy a beverage expressed using an index (or 

latent) variable. The predicted outcome is generated through the model given the information 

available at hand (exogenous variables) and it is a probability value when dealing with 

dichotomous choice models.  

A two-by-two contingency table based on expected outcome and predicted probabilities 

of purchase decision3 provide the number of y=1 values correctly and incorrectly predicted, and 

the number of y=0 values correctly and incorrectly predicted. For classification purposes, 

conventionally, the 0.5 cut-off probability value was used. Therefore, we predict y=1, if the 

estimated probability of y=1 exceeds 0.5. In other words, if predicted probability is greater than 

0.5, that observation is said to be associated with an event that occurred. The other side of the 

scenario is where if an event actually did not occur, the predicted probability for that event is 

below 0.5. As a result, the cut-off level 0.5 classifies the predicted probabilities for events that 

occurred versus that did not occur.  

Consider the following classification table that shows correct and incorrect predictions 

of an event. One can use 0.5 level of cut-off. There are two events in the example, 0 for not 

                                                 
3 Y being the purchase or non-purchase decision 
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observing the behavior and 1 for observing the behavior. Let a, b, c, and d be number of 

occurrences for an event.  

    Actual  
    0 1 
Predicted 

 
0 a B 
1 c D 

For a predetermined cut-off probability value, the fraction of 1=y observations that are 

correctly predicted is termed “sensitivity” and is depicted as 𝑑 (𝑏 + 𝑑)⁄ . The fraction of 0=y  

observations that are correctly predicted is termed “specificity” and is denoted by𝑎 (𝑎 + 𝑐)⁄ . 

Within-sample and out-of-sample forecast probabilities were generated for probit and 

logit models. Forecast probabilities are evaluated using a conventional 0.5 cut-off value and a 

cut-off value generated using the frequency of purchase of a given non-alcoholic beverage (or 

market penetration level). We center attention to sensitivity and specificity for each beverage 

for each cut-off value (see Table 1). 

For example, isotonics have a low market penetration (about 0.22). We observe an 

under-estimated sensitivity and overestimated specificity if the 0.5 cut-off is used. However, 

when the market penetration is used as the cut-off level to classify probabilities, we observe a 

better sorting of probabilities associated with events that occurred versus events that did not 

occur. All other beverage categories have high market penetrations compared to isotonics (as 

high as 0.94 for fruit juices), hence over estimated sensitivity and under estimated specificity 

are observed if naïve 0.5 cut-off is used to classify probabilities. If respective market 

penetrations are used to classify probabilities, we observe a better sorting of probabilities. We 

do not observe a large difference between sensitivity and specificity values generated for 

within-sample and out-of-sample probabilities. 

If cut-off probability 0.5 is used as the convention for classifying (or sorting) probabilities 

our results show that the sorting for events that occurred versus that did not occur is poor. This 

is too naïve such that a predicted probability value that is close to 0.5 (say 0.51) or 1 (say 0.99) 

is associated with an event actually occurred and a predicted probability values that is close to 

0 (say 0.01) or 0.5 (say 0.49) is associated with an event that did not occur. According to 

preceding argument, choice of probability 0.5 as cut-off value is appropriate for an event that 
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has realized relative frequency value close to 0.5 (event occurs only 50% of the time). 

Therefore, choice of cut-off value that is close to the realized relative frequency (or market 

penetration) value to correctly classify predicted probabilities would be a better way to classify 

probabilities. 

Receiver Operating Characteristics (ROC) curve offers an alternative method to classify 

probabilities based on sensitivity and specificity derived for a range of cut-off probabilities 

(alternatively wide range of threshold probabilities), hence the error of over or under classifying 

probabilities based on a naïve 0.5 cut-off probability is eliminated. In evaluating probabilities 

using ROC curves, we use the area underneath the ROC curve as a measure of accuracy of 

probabilities being classified. That is to say, the larger the area under ROC curve, the better the 

classification of probabilities of events that occurred and did not occur. A ROC curve is a plot of 

sensitivity against specificity (which would results in the downward sloping graph) or in some 

instances plot of sensitivity against 1-specificity (which would results in upward slopping graph. 

In decision making, the model with the largest area underneath the ROC curve is chosen, which 

is referred to as the generalized ROC criterion by Reiser and Faraggi, (1997). Recent advances in 

ROC curves and associated statistical tests for area under the ROC curve were developed by 

Hsieh and Turnbull, (1996), Blume (2002), Reiser and Faraggi (1997), and Vekataraman and 

Begg, (1996). More updated treatment of ROC curves, see Norwood, Lusk and Brorsen (2004). 

According to the results reported in Table 2, area under the ROC curve is generally high 

for all probability forecasts associated with decision to purchase non-alcoholic beverages. 

However the highest with-in-sample ROC area is associated with probabilities associated with 

coffee purchases, which is 0.76. The lowest was reported with purchases associated with low-

fat milk, bottled water and tea, which is 0.63. Also as shown in Table 2, probabilities associated 

with out-of-sample forecasts are sorted relatively well as well, with highest being 0.74 

associated with fruit juice purchases and lowest being 0.63, again associated with bottled water 

and tea. Figure 1 shows the ROC charts generated for with-in-sample probabilities from logit 

model for different types of non-alcoholic beverage purchases. Figure 2 shows ROC charts 

associated with probabilities that are generated through out-of-sample forecasts. These figures 

show and offer confirmation to ROC area under the curve depicted in Table 2. 
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Kullback-Leibler Information Criteria Approach: 

 This approach is based on an information criterion called Kullback-Leibler Information 

Criteria which selects the models closest to the true data generating process, developed by 

Kullback abd Leibler, 1951), and as implemented by Stone (1977), Shao (1993), Norwood et.al., 

(2004), Royston (2006), and Desmarais and Harden (2013). Kullback-Leibler Information Criteria 

calculates distance between two probability distributions, one being the true distribution and 

the other being the model generated probability distribution. One would want to minimize this 

distance to make sure that the data follow the true generating process. This criterion selects 

the model with the highest log-likelihood function value observed at out-of-sample 

observations (Norwood et.al., 2004), hence referred to as out-of-sample log-likelihood function 

(OSLLF)4 by Norwood et.al., (2004). Again, unlike the aforementioned expectation-prediction 

success table method used to classify probabilities based on predetermined cut-off probability 

value, Kullback-Leibler Information Criteria method does not require specification of a 

threshold probability cut-off. For variables that take zero and one values (dichotomous discrete 

choice models, such as probit or logit), the OSLLF is calculated as follows. 

 

𝑂𝑂𝑂𝑂𝑂 = ∑ (1 − 𝐺𝑡) ln[1 − 𝑃𝑡] + ∑ 𝐺𝑡ln [𝑃𝑡]𝑇
𝑡=1

𝑇
𝑡=1      (1) 

 

where G is the 0,1 dichotomous variable and P is the predicted probability associated with G. 

Table 3 shows the average OSLLF values (averaged across 3819 forecasts) for logit model 

generated probabilities for ten nonalcoholic beverages considered in the study. The highest 

OSLLF is calculated for fruit juices, which is -0.2086. The lowest is -0.6182 for low-fat milk. That 

is to say, the logit model generated probabilities from fruit juice model represent the true 

(observed) 0,1, probabilities more accurately than they do for the logit model generated 

probabilities associated with low-fat milk. Although no threshold (or cut-off) probability value is 

                                                 
4 These dichotomous models are estimated by maximizing a log-likelihood function. The likelihood function will be 
higher than its expected value, if with-in-sample observations are used, because, some of the observations are 
used to estimate parameters (Akaike, 1972; Sawa, 1978). Therefore, in this study, we center attention only to out-
of-sample observations to generate log-likelihood function values to compare logit model generated probabilities 
across models.  
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used to find the accuracy of probabilities generated, this method does not look deeply into 

probabilities in such a manner to accurately classify probabilities (which will be shown in 

methods below). 

 

Probability Calibration and Calibration Graphs 

Calibration is a metric of goodness of performance. It is the correspondence between 

the issued probability for an event ex-ante and its long-run realized relative frequency ex-post. 

The calibration criterion is similar to the relative frequency definition of probability. However, 

calibration does not require a background of repeated trials under identical conditions (Dawid, 

1982 and Kling & Bessler, 1989). More formally, for a model to be well-calibrated, for all those 

events where an x percent probability was assessed, the frequency of occurrence must be x 

percent for all x (Bunn, 1984). In graphical terms, a well-calibrated qualitative choice model 

should plot along a 45-degree line with issued probability on x-axis and realized long-run 

relative frequency on the y-axis. This plot is called “calibration graph” or “calibration function”. 

The closer the calibration function is to the 45-degree line, the better the probabilities issued 

from the qualitative choice model. On the other hand, a model can be consistently 

overconfident if it issues high probabilities for events that actually do not occur resulting in a 

calibration curve below the 45-degree line. Also a model can be consistently issuing lower 

probabilities for events that actually have higher relative frequencies after the fact showing 

underconfidence, resulting in a calibration curve that is above the 45-degree line. 

According to Dawid (1984, page 281) and Bunn (1984 page 150), a continuous random 

variable )( nX with a continuous distribution function )( nF , the random fractiles generated 

)( nU are distributed uniform ]1,0[U , i.e. )( nnn XFU = . This result is obtained through the 

probability integral transform method explained in Rosenblatt (1952). In other words, when the 

outcome of the variable )( nX becomes known, we can define )( nU as )(XFU nnn = , which is the 

fractile of the distribution function that was actually realized. Since )( nU is uniformly 

distributed, it takes the values between 0 and 1. For a perfectly calibrated forecaster, the 

probability for a particular value *U would be ** )( UUUP =≤  (implying thatU should have a 

uniform probability density function in the ideal situation of perfect calibration (Bunn, 1984)). 
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Therefore, the cumulative density function forU , which is )(UFu will in this case describe a 

straight line, on a graphical representation whereU is on the horizontal axis and )(UFu on the 

vertical axis. Furthermore, the straight line is UUFu =)( . This graphical representation gives us 

a perfect calibration function for a continuous random variable. For a more realistic situation of 

imperfect calibration, the calibration function is generated as follows. Let us suppose that a set 

of n values of U are available from the realized sequence and they are arranged in the 

ascending order nUUU ...., 21 . To estimate )(UFu  from above data, we can use the following 

relationship,  

n
j(U)FU = for n,1,2,......j =         (2) 

In our analysis of purchase decisions of non-alcoholic beverages, we have a 

discontinuous random variable to begin with, i.e. purchase or do not purchase, 0,1 type 

dichotomous random variable-. When the random variable under consideration is 

discontinuous, the generation of the calibration function takes a slightly different path. Suppose 

the dichotomous random variable isY and the associated cumulative distribution function is

(Y)FY . When the outcome of the variable becomes known, we can define V as (Y)FV Y= . The 

realized fractile in this case is V. According to David and Johnson (1950), such a realized fractile 

from a discontinuous random variable is not uniformly distributed; rather they give rise to 

different moments. In our work on purchase decisions of non-alcoholic beverages, the realized 

fractile is the probability of purchase of a given non-alcoholic beverage by a household. When 

the realized fractile is not uniformly distributed, a calibration function with the realized fractile 

on the horizontal axis and the cumulative probability density function of the realized fractile on 

the vertical axis cannot be generated. Therefore, we take the following approach.  

First, the realized fractiles (in this case probability) are arranged in ascending order and 

discretized, so that they form desired number of discrete class intervals with a desired class 

width. For such class intervals, we need to find out the relative frequency of occurrence of the 

event after the event occurred. One can plot the calibration function for a discrete random 

variable, where, the probability of occurrence is on the horizontal axis and the realized relative 

frequency on the vertical axis.  
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A statistical test for calibration (Dawid, 1984) can be made by testing the observed 

fractiles from a discrete random variable ( nV in this case) from the sequence of probability 

forecasts, that is, probabilities of purchase of a given non-alcoholic beverage. If we have J non-

overlapping probability subintervals5 that exhaust the unit interval, then we can calculate a 

goodness-of-fit statistic 2X as follows; 

∑
=

−
=

J

1j j

2
jj2

nπ
)nπ(a

X          (3) 

In equation (3), ja is the actual number of observed fractiles in the interval j (in our 

study the actual number of observed fractiles is the number of households that did purchase a 

given non-alcoholic beverage), jπ is the length of probability interval j (or the midpoint of 

probability class as stated in Seillier and Dawid, 1993) where )1π(0 ≤≤ (Kling and Bessler, 1989 

and Seillier and Dawid, 1993), n is the frequency or the total number of households that are 

found under each probability class (or n such probability forecasts) and π*n gives us the 

expected number of fractiles under each probability class interval. In establishing the test 

statistic in equation 2, the expected number of fractiles, i.e. jnπ is compared against the actual 

number of observed fractiles, i.e. ja . The number calculated in equation (2) is compared 

against the chi-squared distribution with 1−J degrees of freedom. Seillier and Dawid (1993) 

recently have shown under very weak conditions (not requiring independence) on the 

                                                 
5 Historically, the number of sub intervals that has to be included in calculating a chi-square test has always been a debate amongst researchers. 
One of main reasons for this being the influence on the power of the test by the number of sub intervals that one chooses in calculating the chi-
squared test. Seiller and Dawid (1993) use 11 sub intervals and their justification for that is rather simple, thus, “all forecasts were given to one 
decimal place, thus dividing the unit interval into 11 ranges”, However, Mann and Wald (1942) and Williams (1950) suggest a formula to come 

up with an optimum number of sub intervals as follows: if number of sub intervals in denoted by J, 5
2

2

c
1)2(N*4J −

= where N is the 

total number of observations, and c is the probability of the critical region under the null hypothesis assuming a standard normal distribution, 

i.e. dse
2π
1c

c

/2x2

∫
∞

−= . Furthermore, a similar formula to Mann and Wald (1942) is arrived at by Schorr (1974) using an alternative 

distance norm (see Schorr (1974) page 358 for Mann and Wald (1942) distance norm and page 359 for Schorr (1974) distance norm). 
Nevertheless, Hamdan (1963) states that Mann and Wald (1942) procedure gives too many class intervals and that reduces the power of the 
chi-square test. Therefore, Hadman (1963) argues that optimum number of class intervals that one can take is about 10 to 20 to maintain a high 
power of the test. In our analysis of testing for calibration of probabilities generated through qualitative choice models using the chi-square 
test, we use 11 equally distributed class intervals (uniformly distributed class intervals) within the unit interval. Our results are robust for class 
intervals less than 11 and as high as 22. Therefore, we maintain 11 uniformly distributed class intervals for our analysis. 
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distributions underlying the forecasts and under the null hypothesis of calibration, this test 

statistic is distributed chi-squared asymptotically (Kling and Bessler, 1989).  

Calculation of the goodness-of-fit test statistic takes a slightly different path in Seillier 

and Dawid (1993) compared to for example Kling and Bessler (1989). We used the Seillier and 

Dawid (1993) approach to evaluate probabilities generated using probit and logit models for 

calibration. For each probability class interval, Seillier and Dawid (1993) calculated a test 

statistic which has properties of the asymptotic standard normal distribution irrespective of the 

properties of the joint distribution associated with observed and expected fractiles. It is called a 

Z statistic and is calculated as follows6; 

j

jj
j nπ

)nπ(a
Z

−
= where n.,1,2,......j =        (4) 

Define the observed relative frequency of the probabilities as jρ where
j

j
j n

a
ρ = . For 

probabilities generated through qualitative choice models to be regarded as to be “empirically 

valid” as stated in Seillier and Dawid (1993) or well calibrated, the discrepancy between jρ and

jπ must be tend to zero at least as sample size increases. In other words, if the observed 

relative frequency and expected probabilities were extended to infinity, one might demand that 

for the forecasts to be valid, they have to be perfectly calibrated in the limit: 0πρ jj →− as

∞→n  (Seillier and Dawid, 1993). Therefore, the jZ statistic calculated in equation (4) is a 

normalized measure of discrepancy which attempts to capture deviation from perfect 

                                                 
6 In calculating the Z statistic, Seillier and Dawid, 1993 bring in a small correction for grouping called Sheppard’s correction (see 
Hald, 2001, Sheppard’s second moment correction for grouping) through a weight variable introduced to the denominator of 
equation 3 in the text. The weight variable w is calculated using the n, the number of forecast probabilities and jπ , the width 

of the probability class interval. Hence the weight, )π(1πnw jjj −= . According to Seillier and Dawid, 1993, the equation for 

Z statistic is as follows; 1/2
j

jj
j w

)nπ(a
Z

−
= . However, according to Ferguson (1941) and Davies and Burner (1943), use of 

Sheppard’s correction may introduce a downward bias for the moments of grouped data especially if the underlying 
distribution of the random variable does not taper off at extreme points. In other words for Sheppard’s correction to work, the 
underlying distribution for the random variable concerned must taper-off to zero at extreme points. In our analysis of 
probabilities generated through qualitative choice models for purchase decisions of selected non-alcoholic beverages, we 
observe distributions that do not taper off to zero at extreme points. Therefore, we do not use the Sheppard’s correction to 
adjust for grouping of data in calculating the above Z statistic.  
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calibration (note that we say probabilities are perfectly calibrated if there is no discrepancy 

between observed relative frequency and expected probabilities). This property constitutes our 

null hypothesis. Our null hypothesis states that probabilities are well (perfectly) calibrated. Any 

statistically significant deviation from perfect calibration gives rise to imperfect calibration or 

over or under-calibrated scenarios.  

According to Seillier and Dawid (1993), distribution of the jZ statistic is standard normal 

regardless of the joint distribution between expected probabilities and observed events and 

under such an independence structure; we could simply examine such a test statistic. If the test 

statistic is too far out in the tail of the standard normal distribution, we can regard this case as 

evidence against perfect calibration. Under the same independence structure, we could form a 

“portemanteau” test statistic ∑
−

=
J

1j

2
j

2 ZX , which has an asymptotic chi-squared distribution. This 

calculated number is compared with table chi-squared distribution values with 1−J  degrees of 

freedom. If we fail to reject the null hypothesis, our model generated probability forecasts are 

said to be well calibrated. 

 We have analyzed probabilities generated through probit and logit models (both within-

sample and out-of-sample scenarios) for calibration using graphical and 

mathematical/statistical approaches. Graphical analysis on calibration is focused on over or 

under-calibration (or over and under-confident probabilities issued by the model respectively) 

looking at the deviation of the calibration plot away from a 45-degree perfect calibration line. 

Statistical analysis is performed focusing on the statistical significance of the calculated 2X

statistic which is distributed chi-squared with degrees of freedom 1J− . Notice that we have 

used 11 probability classes in calculating this statistic, hence the degrees of freedom for the chi-

squared test is 10. The critical, 05.0=α , level chi-squared value to test the null hypothesis is 

18.31. Our null hypothesis is “issued probabilities are well calibrated”.  

For brevity, we show only the calibration graphs for probabilities generated through the 

logit model (for both with-in sample and out-of sample scenarios) (see Figure 3). Calculated chi-

squared test statistics for calibration of probabilities generated through logit model are 

depicted in Table 4.  
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For isotonics, model issued probabilities are consistently over calibrated for probabilities 

up to about 0.6 and beyond that, probabilities are under calibrated for the with-in sample 

scenario. For out-of-sample probabilities we observe consistently over-calibrated probabilities. 

According to the calculated chi-squared statistic we observe poorly calibrated probabilities for 

both scenarios for isotonics. 

Within-sample forecast probabilities are consistently over-confident while out-of-

sample forecast probabilities show mixed results for regular soft drinks. Significance of the 

calculated chi-squared statistic testifies well calibrated probabilities. For diet soft drinks, within-

sample probabilities are slightly over-confident and out-of-sample probabilities show very small 

under-confidence around probability 0.30 and a very small over-confidence above probability 

0.40. The calculated chi-squared statistic is indicative of poor calibration of probabilities, 

overall.  

 For both high-fat milk and low-fat milk, within-sample forecast probabilities are slightly 

over-calibrated. Out-of-sample forecast probabilities show mixed results, where they are 

slightly under-calibrated for low probabilities and over-calibrated for high probabilities. 

According to the calculated chi-squared value probabilities are well calibrated for both types of 

milk. For fruit drinks and fruit juices, within-sample model generated probabilities show a slight 

over-calibration. Out-of-sample probabilities show mixed results, where they are under-

calibrated for low probabilities and over-calibrated for higher probabilities. Calculated chi-

squared statistic show well calibrated probabilities, overall.  

 For bottled water, calibration graphs generated for within-sample forecast probabilities 

show slight under calibration for low probabilities and consistent small over calibration for 

higher probabilities. According to the chi-squared test, forecast probabilities generated for 

within-sample data are well calibrated. However, probabilities generated out-of sample are not 

well-calibrated.  

For coffee, calibration graphs generated for within-sample forecast probabilities show 

mixed results indicating a slight under-confidence for probabilities below forecast probability 

0.4 and a small over-confidence in forecast probabilities above 0.4 probability level. According 

to the chi-squared test, within-sample forecast probabilities are well calibrated. Calibration 
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curves for out-of-sample forecast probabilities show consistent under-confident forecast 

probabilities. According to the chi-squared statistic, these probabilities are not well calibrated. 

For tea, within-sample generated forecast probabilities show consistent over-confidence, while 

out-of-sample generated forecast probabilities show some under-confidence for forecast 

probabilities below 0.50 and over-confidence for forecast probabilities above 0.50. According to 

chi-squared test, forecast probabilities are well-calibrated for within-sample as well as out-of-

sample data for tea. 

 

Probability Resolution and Resolution Graphs (Covariance Graphs) 

Resolution is a metric of goodness of sorting power of a forecasting model. In our work, 

this issue corresponds to the ability of the model to sort probabilities into two classes, such as 

probabilities associated with events that occurred versus probabilities associated with events 

that did not occur. Say for example our model is designed to generate probabilities associated 

with an event that occurs (probability of purchase of a given non-alcoholic beverage). We 

would like to see high probabilities associated with the events that occurred (in our study high 

probabilities should be associated with all those events where a purchase of a given non-

alcoholic beverage occurred) and low probabilities associated with all those events that did not 

occur (in our study low probabilities must be associated with all those events where a purchase 

of a given non-alcoholic beverage did not occur). Furthermore, for a perfect sorting model, we 

would like to see probability very close to 1 associated with all those events that occur and 

probability very close to 0 associated with all those events that do not occur. In other words, 

according to Yates (1982), events that are assigned probabilities close to 1 occur frequently, 

whereas those assigned probabilities near 0 occur rarely.  

This information can be used to plot a resolution graph (covariance graph) where 

probabilities are plotted in y-axis and outcome index is on x-axis (outcome index is a zero (0) 

one (1) type index where zero is associated with an event that did not occur and one is 

associated with an event that did occur)7.  Our method first will plot a resolution graph and 

                                                 
7 However, it is imperative to understand that well calibration does not necessarily mean good resolution or sorting power 
(Dawid, 1986). Dawid (1986) further states that it is unreasonable in general to expect for perfect sorting, because, perfect 
sorting is equivalent to absolutely correct or absolutely incorrect categorical forecasting. 
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then regress forecast probabilities on an outcome index to see the statistical validity of the 

resolution graph. 

In our resolution regression (also called covariance regression in the extant literature), 

we would like to see intercept terms that are statistically not different from zero and slope 

coefficients that are statistically not different from one. This finding will correspond with 

perfect resolution. Any deviation of slope from one and intercept from zero would be 

characterized by poorly resolved probabilities. In explaining the goodness of sorting of 

probabilities, we concentrate on the mean values of those forecast probabilities associated 

with outcome index zero and one. Dispersion (variance) of those forecast probabilities also are 

used in the analysis.  

 Figure 2 shows resolution graphs for out-of-sample probability forecasts for each 

beverage category8. According to these graphs, for isotonics, outcome index zero9 is modestly 

associated with low probabilities, even though it shows a large dispersion. The mean forecast 

probability associated with zero outcome index is about 0.20, which is generally speaking low 

enough to say that we observe a good sorting behavior for forecast probabilities that are 

associated with zero outcome index. However, mean of the forecast probability that is 

associated with outcome index 1 is about 0.29. We would like it to be high (close to one) if we 

were to observe good probability sorting behavior.  

For all other non-alcoholic beverages considered in this study, we observe high 

probabilities associated with outcome indexes both zero and one. It should be noted that we 

expected to have high probabilities associated with outcome index one (event where a 

purchase of a beverage occurred). To support that contention we observe relatively high mean 

probability associated with outcome index one. This observation is a positive result where the 

model sorts forecast probabilities associated with events that have outcome index one more 

correctly. However, the models do not sort forecast probabilities associated with outcome 

index of zero well for all non-alcoholic beverages but isotonics. Overall, resolution graphs for all 

                                                 
8 Resolution graphs for within-sample forecast probabilities were found to be very similar to those plotted using out-of-sample 
probabilities, hence not reported in the paper. They are available from authors upon request. 
9 Outcome index zero is associated with events that did not occur (did not purchase a given non-alcoholic beverage 



17 
 

 
 

non-alcoholic beverages considered are upward sloping; nevertheless they are relatively flat 

compared to the 45 degree perfect sorting line. 

Resolution regression results are depicted in the Table 5. The resolution graphs are 

supported by the covariance regressions. Intercept coefficients of covariance regressions show 

the mean probability value associated with events with outcome index zero and they are 

statistically significant at the 5% level for all beverages considered. Also, the calculated slope 

coefficients are significantly different from one indicating poor sorting of probabilities. Overall, 

this result would reject the null hypothesis of perfect sorting of probabilities10.  

 

The Brier Score and the Yates Partition of the Brier Score 

The following discussion on the Brier score (BS) and the Yates partition of the Brier score 

follows from Brier (1950), Yates (1982), Yates and Curley (1985) and Yates (1988).  

Let f represent the probabilistic forecast for an event that the forecaster is trying to 

predict (in our analysis, probabilities are generated using qualitative choice models). Let d 

represent the outcome index where, 1=d if the event occurs and 0=d if the event does not 

occur. As shown in equation (5), the probability score (PS) is formally defined as the squared 

difference between f and d.  
2d)(fd)PS(f, −=          (5) 

The PSis bounded 1PS0 ≤≤ . Over N occasions, indexed by Ni ,.....,1= , the mean of the PS (or

PS or the Brier score) is given by 

 ∑
=

−=
N

1i

2
ii )d(f

N
1d)(f,PS         (6) 

Sanders (1963) and Murphy (1972a, 1972b, 1973) have decomposed the Brier score into 

various components including measures of calibration and resolution. However, Yates (1982), 

Yates and Curley (1985), and Yates (1988) further decomposed the Brier score into its variance 

and covariance components allowing for additional analysis. His formulation called “covariance 

decomposition” is given as follows. 

                                                 
10 Covariance regressions have very low R-squared values (as low as 0.05 for fruit juices and as high as 0.16 for coffee). This 
poor fit also is indicative of poor sorting of probabilities generated through discrete choice models. 
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 d)Cov(f,*2BiasScat(f)MinVar(f)Var(d)d)(f,PS 2 −+++=     (7) 

The various components of PS on the right hand side of equation (7) have following definitions 

and interpretations. Var(d) represents the variance of the outcome index and defined as: 

 )d(1dVar(d) −=          (8) 

where  

 ∑
=

=
N

1i
id

N
1d           (9) 

Equation (8) shows the relative frequency or the “base rate” with which the target event 

occurs, where the target event for our analysis would be the decision to buy a given non-

alcoholic beverage. This decision is completely out of control of the forecaster (in our analysis 

the forecaster is the qualitative choice model), hence the Var(d) is not determined through our 

model. The remaining terms reflect the factors that are under the model’s control. Thus we 

want to minimize, )( fScat and 2Bias , while maximizing d)Cov(f, for an allowable minimum 

variance (MinVar(f) ) to obtain the lowest PS . It should be noted that our objective is to 

minimize the PS in evaluating probabilities, because the lower the Brier score, the higher the 

ability of the model to correctly classify probabilities.  

Bias is defined as follows. 

 )df(Bias −=           (10) 

where 

 ∑
=

=
N

1i
ifN

1f           (11) 

In the equation (10), f is the mean of the probabilities generated from the model. Bias reflects 

the overall miscalibration of the forecast. The square of the bias, which is what actually appears 

in the covariance decomposition (equation 7), reflects the calibration error regardless of the 

direction (+ or -) of the error.  

The d)Cov(f, term is defined as follows. 

 r(d)][slope][Vad)Cov(f, =         (12) 
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The slope is defined as the difference between the means of conditional probability of events 

that actually occurred and conditional probability of events that actually did not occur. 

Algebraically the slope is defined as follows.  

 )ff(Slope 01 −=          (13) 

where 

 ∑
=

=
1N

1j
1j

1
1 f

N
1f           (14) 

 ∑
=

=
0N

1j
0j

0
0 f

N
1f           (15) 

Here 1f represents the conditional mean probability forecast for event under consideration 

over the 1N occurrences for which the event actually occurs; 0f represents the conditional mean 

probability for event under consideration over the 0N occurrences that the event does not 

occur, with 01 NNN += . The maximum value that Slope can have is 1, which occurs when the 

model always reports 1=f when the target event is going to occur and 0=f when it is not. 

Furthermore, Slope is the gradient of the regression line when probabilities generated through 

the model are regressed on outcome indexes. For a perfect forecast, all the probabilities 

associated with events that do not occur must have probabilities equal to zero and all 

probabilities associated with events that did occur must have probabilities equal to one, 

resulting in a slope equal to one. Therefore, it makes sense for Slope to contribute to mean 

probability score negatively. In other words, steeper the Slope, the more appropriate the 

classification of probabilities for events that occurred and that did not occur (high probabilities 

for event that occurred and lower probabilities for events that did not occur, the smaller the 

Brier score the better).  

 Covariance between the probabilities generated through the model and outcome index 

),( dfCov is the heart of the forecasting problem (Yates, 1988). It reflects the ability of the 

model to make distinctions between individual occasions in which the event occurs or does not 

occur. In other words, it represents how responsive the forecast is to information related to the 
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event. Our objective with respect to minimum variance is that the model needs to maximize the 

value associated with the ),( dfCov to achieve a lower Brier score. 

 Scatter is defined as the mean of the weighted variances of probabilities associated with 

events that occurred and that did not occur. The algebraic representation of scatter is depicted 

in equation (16) below. 

 )]Var(fN)Var(f[N
N
1Scat(f) 0011 +=        (16) 

where 

 ∑
=

−=
1N

1i

2
11i

1
1 )f(f

N
1)Var(f         (17) 

and 

 ∑
=

−=
0N

1i

2
00i

0
0 )f(f

N
1)Var(f         (18) 

)Var(f1 is the conditional variance of the probabilities generated from the model associated with 

the events on those 1N occasions when the event actually occurred and )( 0fVar is the 

conditional variance of the probabilities generated from the model associated with the events 

on those 0N occasions when the event actually did not occur. )( 1fVar and )( 0fVar measure 

variability in model generated probabilities which is unrelated to whether or not the target 

event occurs. Scatter can be interpreted as an index of overall noise contained in model 

generated probabilities. It is expected that the Scatter will be minimized to achieve a lower 

mean probability score. 

)( fMinVar is defined as follows. 

 Scat(f)Var(f)MinVar(f) −=         (19) 

where )( fVar is the variance of the entire collection of probabilities generated for the target 

event. Minimum variance can also be shown as follows. 

 )]d(1d[)ff(MinVar(f) 2
01 −−=        (20) 

which contains the elements of the covariance of judgments and outcome indexes (Yates, 

1988). To give more perspective to the relationship between minimum variance and overall 
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variance of the probabilities generated through the models, we can rearrange equation (19) as 

follows. 

 Scat(f)MinVar(f)Var(f) +=         (21) 

Minimum variance can also be defined as the variance of probabilities on top of scatter that 

contributes toward the overall variance, i.e. )( fVar . 

 Since )( fVar contributes to the Brier score positively, one would want to minimize it. 

That is to say, in the equation (21), we have to minimize the components in the right hand side, 

i.e. )( fMinVar and )( fScat . It would make sense to minimize )( fScat of probabilities as lower 

the )( fScat the tighter the distribution of probabilities around conditional means of 

probabilities for events that actually occurred and events that did not occur the better the 

model’s ability to sort probabilities for events that occurred versus events that did not occur. 

However, it would not make sense to minimize the )( fMinVar in trying to minimize the overall 

variance of the probabilities generated. This is clear when one looks at the equation (20). 

)( fMinVar is a function of Slope and variance of index variable, where the latter is not 

determined through the model that we used to generate probabilities. The only manipulatable 

component is the Slope, which is a function of conditional probabilities. What is desired is to 

have a maximum slope of one at the extreme in minimizing the Brier score. However, in trying 

to minimize the )( fVar , if one minimizes the )( fMinVar , it will eliminate the Slope, which is 

not desirable. Therefore, we need to have some Slope, hence some )( fMinVar in the model, in 

minimizing )( fVar and trying to achieve the minimum Brier score. Therefore, )( fMinVar

essentially reflects the maximum allowable model variability (or amount of model variability 

that must be tolerated) which is required to minimize the )( fVar , hence the Brier score. 

 Since ),( dfCov and )( fMinVar are both functions of Slope, )( 01 ff − and Variance of 

outcome index, )1(( dd − , we can establish a relationship between ),( dfCov and )( fMinVar as 

follows. Equation (20) can be rearranged to represent the Slope as follows; 

 
Var(d)

MinVar(f))ff( 01 =−         (22) 
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Substituting (22) into (12) and after simplification we arrive at the following relationship that 

combines Covariance of forecast probabilities, Minimum Variance and Variance of outcome 

index as follows. 

 Var(d)*MinVar(f)d)Cov(f, =        (23) 

According to equation (23), variance of outcome index and Minimum Variance are positively 

related to the covariance of forecast probabilities and outcome index. It is an obvious fact that 

variance of the outcome index, )(dVar is beyond the control of the forecasting model and only 

determined externally by the actual observations. Therefore, the only model generated variable 

that affect the ),( dfCov is )( fMinVar . We can conclude that higher the Slope, the higher the

)( fMinVar , the higher the ),( dfCov . In other words, high )( fMinVar is associated with high

),( dfCov . This result has leverage in explaining the forecasting model’s sorting power 

(resolution) and ),( dfCov . We also can conclude that, high resolution is associated with high

),( dfCov . 

 It is important to note that, although the Brier score gives an overall indication of the  

ability of the model to forecast (the lower the Brier score, the better the forecast), the 

components of the covariance decomposition of the Brier score provides a clearer indication of 

the ability of the model to forecast as well as to sort probabilities.  

Tables 6 and 7 show the Brier score and covariance decomposition of the Brier score for 

forecast probabilities generated using logit model. We have generated both within-sample and 

out-of-sample forecasts and evaluated them using the Brier score and the Yates partition of the 

Brier score.  

The Brier Score 

 Fruit juices show the lowest Brier score (0.06 for within-sample estimates and it is 0.05 

for out-of-sample estimates). The Brier score associated with low-fat milk is 0.22 and 0.21 for 

within-sample and out-of-sample forecasts respectively. Notice that the out-of-sample Brier 

score is lower than the within-sample value. One may sometimes erroneously conclude that 

out-of-sample forecasts are better, because they are associated with a low Brier score value. 

However, one must remember that the Brier score value can be decomposed into it covariance 

parts, which would provide a better explanation to the realized Brier score. Other non-alcoholic 
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beverages have varying values of the Brier score depending on the forecast probabilities and 

outcome index values observed for each observation.  

 Even though the Brier score provides a simple yet rigorous number to compare forecast 

probabilities generated through alternative models, it does not tell anything about the 

calibration or resolution property of forecast probabilities. However, it is a good measure 

independent of cut-off probability values in sorting probabilities which were used in 

expectation-prediction success tables.  

Variance of the Outcome Index (DVar) 

 Variance of the outcome index is a measure that cannot be controlled through the 

model under consideration. It is determined through the behavior of the agent (purchasing 

behavior in our study). Market penetration value for a given non-alcoholic beverage or the 

number of individuals that actually purchased a non-alcoholic beverage has a direct leverage on 

the variance of the outcome index. Figure 3 shows the plot of market penetration value against 

the variance of the outcome index. According that, highest variance value of the outcome index 

(0.25) could be observed for the market penetration value 0.50. Any other market penetration 

value is associated with the variance value less than 0.25. In our study, fruit juices have the 

highest market penetration value, which is 0.93. It is associated with the variance of outcome 

index 0.0651, which is the lowest variance of the outcome index reported. Highest variance of 

the outcome index is 0.23 which is reported for low-fat-milk and it is associated with a market 

penetration value 0.63 (close to 0.50). Therefore, the market penetration value which is outside 

the control of the forecasting model has a direct impact on the value of the calculated variance 

of the outcome index (DVar). Since variance of the outcome index is a component of the 

covariance decomposition of the Brier score, it has a direct influence on the calculated Brier 

score. Therefore, a highly inflated Brier score value may be a result of a contribution coming 

from a large variance of the outcome index. In our study, the highest Brier score value is 

reported for low-fat milk and it also has the highest variance value of the outcome index 

exhibiting the large contribution of the variance of the outcome index toward the Brier score.  
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Minimum Variance and Scatter 

 Unlike the variance of the outcome index, variance of the forecast probabilities i.e. 

)( fVar is something that the forecast model has control of. We would like to have small

)( fVar to be associated with a good probability forecast, hence lower scatter. It was made 

clear earlier that the Minimum Variance is the variability that is tolerated to have a positive 

slope of the covariance graph while minimizing scatter, then in tern minimizing )( fVar . 

 The highest Scatter is associated with coffee within-sample forecasts, which is 0.027. 

Coffee out-of-sample forecasts show slightly high Scatter (0.0283) compared to that of within-

sample forecasts, indicating more spread of the forecast probabilities around their mean 

values. We observe the lowest Scatter with forecast probabilities associated with fruit juices 

within-sample estimates, which is recorded at 0.0029.  

 Minimum Variance has a direct relationship with the Slope (defined as 01 ff − ) where 

higher slope is associated with high Minimum Variance. The highest Slope is observed with 

respect to forecast probabilities associated with coffee, which is 0.16, hence largest Minimum 

Variance 0.0051 for within-sample forecasts. For out-of-sample forecasts we observe a low 

Minimum Variance, 0.0040, hence lower Slope (0.14) compared to within-sample forecasts. All 

other non-alcoholic beverages showed very small Minimum Variance values, hence very small 

slope indicating more flat covariance graphs.  

Bias 

 Bias is the ability of the model to match mean forecasts to relative frequencies. The 

model has to minimize the Bias in evaluating forecast probabilities. It is clear from Tables 4 and 

5 that the Bias associated with the covariance decomposition if very small (almost negligible) 

compared to other part of the covariance decomposition. It must be emphasized that for all 

non-alcoholic beverages considered, the Bias associated with out-of-sample forecasts are 

relatively larger than those of within-sample forecasts. This is indicative of presence of more 

mis-calibration with respect to out-of-sample generated probability forecasts compared to 

those generated within-sample. Overall, we should emphasize that the contribution of the Bias 

toward the Brier score is very small in our analysis. 
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Covariance of Forecast Probabilities and Outcome Index (2cov) 

 Covariance of forecast probabilities and outcome index is the most important part of 

the forecasting property of a model. Covariance enters negatively to the Yates partition of the 

probability score; hence in order to get a low Brier score, we need to maximize the value 

associated with covariance.  

 Highest covariance value is associated with coffee within-sample forecasts. The 

covariance value obtained from out-of-sample forecast probabilities is slightly lower than that 

of within-sample counterpart, indicating better forecasts obtained from within-sample 

forecasts compared to out-of-sample forecasts. Notice that if one considered the covariance of 

forecast probabilities and outcome index to comment on the forecasting ability of a model, 

probability forecasts associated with coffee outperforms forecasts for other beverages. 

However, coffee has a higher Brier score compared to other beverages. On the other hand, fruit 

juices not only have the lowest Brier score but also the lowest covariance of forecast 

probabilities and outcome index. Even though the low Brier score indicates better forecasting 

ability, low covariance of forecast probabilities and outcome index is an indication of poor 

forecasting performance. We also find relatively higher covariance values associated with fruit 

drinks, diet soft drinks and bottled water for both within-sample and out-of-sample forecasts 

even though they were not necessarily associated with low Brier scores. 

Therefore, the use of just the Brier score to comment on the goodness of the probability 

forecasts can be misleading because the results may be different if one had partitioned the 

Brier score into its covariance components. The use of this decomposition introduces more 

accuracy to forecast evaluation and therefore improved decision making. 

According to equation (22), we observe the relationship with ),( dfCov and )( fMinVar  

for forecast probabilities generated for decision to purchase non-alcoholic beverages. Coffee 

has the highest ),( dfCov and highest )( fMinVar . It also has the highest calculated Slope 

(0.16). On the other hand, fruit juices have the lowest ),( dfCov and lowest )( fMinVar hence 

the lowest Slope (0.04). Therefore we can conclude that, in terms of the Yate’s partition of the 

Brier score, models do an excellent job in generating probability forecasts with respect to 

coffee and do a very poor job in generating probability forecasts for fruit juices. Probability 
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forecasts generated for other non-alcoholic beverages lie somewhere in-between the 

probability forecasts generated for coffee and fruit juices. Despite the fact that Yate’s partition 

of the Brier score does an exceptional job in evaluating probability forecasts, we are not in 

position to test the numbers statistically, because sampling distributions of these 

decompositions are yet to be derived. 

 

Summary of Key Findings 

 In using expectation-prediction success tables and a desired cut-off probability level to 

correctly classify probabilities, we paid attention to sensitivity and specificity values. Use of 

naïve 0.50 cut-off value to classify probabilities resulted in over- or under-estimated sensitivity 

and specificity values for all models compared to the use of market penetration value as cut-off 

probabilities.  

 Receiver Operating Characteristics (ROC) charts show the evaluation of probabilities 

over wide range on cut-off probabilities (including 0.05) in determining the model that provide 

the best probability forecasts. The model with the highest calculated area under the ROC chart 

provides evidence for the best model in terms of generated probabilities for events that 

occurred vis-à-vis that did not. For with-in-sample probabilities, logit model associated with 

coffee shows the highest area under the ROC curve, followed by fruit juices. The lowest area 

under the ROC curve for this case is associated the probabilities generated for low-fat milk and 

tea. The highest area under the ROC curve for out-of-sample probabilities is associated with 

logt model generated probabilities for fruit juices followed by coffee.  

 Next we used Kullback-Leibler Information Criteria which selects the model with the 

highest log-likelihood function value observed at out-of-sample observations (OSLLF) to 

evaluate probabilities (and the best model). According to OSLLF approach, we tested for 

“closeness” or deviation of model generated probabilities to the true data generating 

probability distribution using calculated log-likelihood function value for each model. According 

to this criterion, logit model associated with fruit juices gave rise to probabilities that moved 

more closely with true data generating process (true probability distribution) than did 

probabilities generated from other logit models.  
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 Next we used calibration (graphs and chi-squared statistical test) to evaluate 

probabilities. According to the calculated chi-squared statistics of forecast probabilities, 

probabilities generated for most of beverage purchases were well calibrated both with-in- and 

out-of-sample. However, calibration graphs show varying degree of over and under calibrated 

probabilities for all models 

 Next, we used resolution graphs and covariance regressions to evaluate forecast 

probabilities. All resolution graphs were almost flat against a 45-degree perfect resolution 

graph. This result is indicative of poor sorting of forecast probabilities all models. According to 

covariance regressions, we found that for all non-alcoholic beverages, the intercept coefficient 

was statistically different from zero and the slope parameter was statistically different from 

one, indicating weak sorting power of probabilities generated through choice models. 

 Finally, we investigated the forecast probabilities generated through choice models 

using the Brier score and the Yates partition of the Brier score. We expected to have a low Brier 

score for well issued forecast probabilities. In the Yates partition of the Brier score, we 

expected to have a smaller scatter and a bias with a minimally allowed minimum variance. 

More importantly, we expected to have a high Covariance associated with forecast probabilities 

and outcome index. The Brier score was lowest for fruit juices and the highest for low-fat milk. 

According to the calculated Brier score, probability forecasts for fruit juices outperformed other 

non-alcoholic beverages. 

 Although the Brier score gave an overall indication of the ability of a model to forecast 

accurately, the components of the covariance decomposition of the Brier score provided a 

clearer and broader indication of the ability of the model to forecast. Highest variance of the 

outcome index was associated with low-fat milk and also low-fat milk had the highest Brier 

score. This inflated Brier score was primarily due to the large variance of the outcome index 

which has a direct relationship with the market penetration value for a given beverage. Bias 

was almost negligible for all forecast probabilities associated with all non-alcoholic beverages. 

Scatter and minimum variance directly contributed to the variance of the forecast probabilities. 

The lowest scatter was associated with fruit juices for all scenarios, hence the lowest spread of 

forecast probabilities. The highest scatter was associated with coffee, hence the largest spread 
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of forecast probabilities. The highest minimum variance was recorded with coffee; 

consequently the highest slope of the resolution graph. Highest covariance of outcome index 

and forecast probabilities were observed for coffee. Therefore, in terms of the Yates partition 

of the Brier score, coffee outperforms all other beverages in issuing forecast probabilities.  

 

Conclusions 

The choice of cut-off probability level in classifying probabilities was important for all 

non-alcoholic beverages. The market penetration probability level as a cut-off probability value 

to correctly classify probabilities outperformed the naïve 0.50 cut-off probability level. 

Therefore, it is recommended to use market penetration as the appropriate cut-off to classify 

probabilities. This recommendation is consistent with the works by Park and Capps (1997) and 

Briggeman (2002). 

Area under the ROC curve is suggested as an alternative to the use of 0.5 cut-off as well 

as cut-off at market penetration level to classify probabilities, because this method treats a 

wide range of cut-off probabilities to come up with a coherent measure, i.e. area under the 

ROC curve, to offer evidence for better classification of model-generated probabilities. The 

Kullback-Leibler Information criterion measured through OSLLF value offers important 

information in terms of closeness of model-generated probabilities to the true (observed) 

probabilities, although this measure does not offer a classification of probabilities for events 

occurred versus that did not. 

Most calibration graphs with respect to purchase decision of non-alcoholic beverages 

revealed that almost always there was a certain degree of over- and under-calibration with 

respect to probabilities generated. However, forecast probabilities were well calibrated. 

Resolution regression analysis revealed that forecast probabilities generated for the decision to 

purchase all non-alcoholic beverages were not well resolved (or sorted). However, all resolution 

graphs were upward sloping, indicating some degree of sorting power in choice models. Yates 

decomposition of the Brier score offers rich set of measures to speak to the goodness of 

probabilities compared  to other measures, such as bias, scatter, minimum variance, variance of 

outcome index and covariance between outcome index and associated probability in correctly 
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classifying probabilities. With-in-sample probabilities generated through logit model for coffee 

outperforms probabilities generated for other beverage products based on having highest area 

under the ROC curve, highest covariance between probabilities and outcome index (part of 

Yates partition of Brier Score) and highest slope of covariance graph in classifying probabilities. 

On the other hand, out-of-sample probabilities generated through logit model for fruit juice 

performs better than any other beverage category based on having highest area under the ROC 

curve, lowest Brier Score, and highest OSLLF value. 

 In the event where researchers are confronted with alternative models that issue 

probability forecasts, the accuracy of probability forecasts in determining the best model can 

be measured through myriad of metrics. Even though traditional measures such as expectation-

prediction success tables, calibration and log-likelihood approaches are still used, ROC charts, 

resolution, the Brier score and the Yates partition of the Brier score to evaluate probabilities 

generated through alternative models are highly recommended. 
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Table 1: Results from Expectation-Prediction Success Table for Logit Model Generated Probabilities  
  With-in-Sample Out-of-Sample 

  0.5 Cut-off 
Market Penetration Cut-

off 0.5 Cut-off 
Market Penetration Cut-

off 
Beverage Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 
Iostoncis 0.09 0.98 0.58 0.70 0.06 0.98 0.63 0.62 
Regular Soft 
Drinks 1.00 0.01 0.66 0.64 1.00 0.00 0.68 0.64 
Diet Soft Drinks 0.90 0.25 0.72 0.51 0.90 0.19 0.73 0.46 
High-Fat Milk 1.00 0.01 0.58 0.66 1.00 0.00 0.51 0.71 
Low-Fat Milk 0.89 0.27 0.66 0.55 0.87 0.27 0.55 0.67 
Fruit Drinks 0.97 0.10 0.61 0.68 0.99 0.03 0.58 0.67 
Fruit Juices 1.00 0.00 0.67 0.69 1.00 0.00 0.60 0.66 
Bottled Water 0.97 0.12 0.66 0.56 0.98 0.07 0.66 0.54 
Coffee 0.94 0.25 0.69 0.68 0.93 0.27 0.71 0.60 
Tea 0.97 0.07 0.62 0.60 0.98 0.06 0.58 0.60 

 

Table 2: Results from area under the ROC curve for probabilities generated by logit model -  
  With-in-Sample Out-of-Sample 
Beverage         
Iostoncis  0.69     0.67  
Regular Soft Drinks  0.68     0.69  
Diet Soft Drinks  0.65     0.64  
High-Fat Milk  0.67     0.67  
Low-Fat Milk  0.63     0.66  
Fruit Drinks  0.65     0.68  
Fruit Juices  0.72     0.74  
Bottled Water  0.63     0.63  
Coffee  0.76     0.73  
Tea  0.63     0.63  
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Table 3: Logit model generated probability evaluation using out-of-sample log-likelihood 
function value  (OSLLF)  

Beverage  

Average 
OSLLF 
value   

Iostoncis  -0.4698  
Regular Soft Drinks  -0.2801  
Diet Soft Drinks  -0.6182  
High-Fat Milk  -0.4322  
Low-Fat Milk  -0.6189  
Fruit Drinks  -0.5070  
Fruit Juices  -0.2086  
Bottled Water  -0.5848  
Coffee  -0.5268  
Tea  -0.5623  

 

Table 4: Chi-squared test Statistics for calibration for logit model generated probabilities 

Beverage With-in Sample Out-of Sample 
Iostoncis 45.42 86.76 
Regular Soft Drinks 11.34 13.36 
Diet Soft Drinks 18.35 21.21 
High-Fat Milk 11.19 8.29 
Low-Fat Milk 16.63 4.50 
Fruit Drinks 12.62 9.68 
Fruit Juices 9.12 7.22 
Bottled Water 14.89 20.06 
Coffee 15.09 23.50 
Tea 13.09 12.37 
Note: Critical value for chi-squared statistic with degrees of freedom 10 is 18.31 at alpha=0.05 
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Table 5: Covariance Regression of Forecast Probabilities and Outcome Indexes for logit model 
Beverage 

 
Within-sample Out-of-sample 

Isotonics Intercept 0.2028 0.2086 

  
(0.0021) (0.0021) 

 
Slope 0.0845 0.0655 

  
(0.0045) (0.0048) 

Regular Soft Drinks Intercept 0.8391 0.8639 

  
(0.0038) (0.0032) 

 
Slope 0.0692 0.0425 

  
(0.0040) (0.0035) 

Diet Soft Drinks Intercept 0.6063 0.6140 

  
(0.0033) (0.0033) 

 
Slope 0.0714 0.0542 

  
(0.0041) (0.0040) 

High-Fat Milk Intercept 0.7694 0.7785 

  
(0.0034) (0.0034) 

 
Slope 0.0582 0.0444 

  
(0.0037) (0.0037) 

Low-Fat Milk Intercept 0.5737 0.5695 

  
(0.0030) (0.0031) 

 
Slope 0.0602 0.0628 

  
(0.0038) (0.0038) 

Fruit Drinks Intercept 0.6799 0.7060 

  
(0.0041) (0.0034) 

 
Slope 0.0938 0.0620 

  
(0.0048) (0.0039) 

Fruit Juices Intercept 0.8820 0.8904 

  
(0.0035) (0.0036) 

 
Slope 0.0522 0.0446 

  
(0.0036) (0.0037) 

Bottled Water Intercept 0.6570 0.6715 

  
(0.0034) (0.0030) 

 
Slope 0.0680 0.0519 

  
(0.0041) (0.0036) 

Coffee Intercept 0.6162 0.6300 

  
(0.0052) (0.0052) 

 
Slope 0.1629 0.1410 

  
(0.0060) (0.0061) 

Tea Intercept 0.6834 0.6940 

  
(0.0031) (0.0029) 

 
Slope 0.0518 0.0407 

  
(0.0036) (0.0034) 

Note: all coefficients are significant at p-value 0.001 level
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Table 6:The Brier Score and the Yates Partition of the Brier Score: Logit Within-Sample 

  Isotonics 

Regular 
Soft 

Drinks 

Diet 
Soft 

Drinks 

High 
Fat 

Milk 

Low 
Fat 

Milk 
Fruit 

Drinks 
Fruit 

Juices 
Bottled 
Water Coffee Tea 

Brier Score 0.1578 0.0824 0.2102 0.1407 0.2235 0.1701 0.0613 0.1938 0.1631 0.1910 
Dvar 0.1724 0.0887 0.2266 0.1495 0.2378 0.1874 0.0646 0.2080 0.1942 0.2013 

Min Var 0.0012 0.0004 0.0012 0.0005 0.0009 0.0017 0.0002 0.0010 0.0052 0.0005 
Scatter 0.0133 0.0055 0.0148 0.0081 0.0134 0.0162 0.0033 0.0132 0.0270 0.0100 

Bias 9.0E-16 0.0E+00 1.0E-16 0.0E+00 0.0E+00 1.0E-16 4.0E-16 4.0E-16 1.0E-16 0.0E+00 
2Cov 0.0291 0.0123 0.0324 0.0174 0.0286 0.0351 0.0067 0.0283 0.0633 0.0208 

 
 
 
 
 
Table 7:The Brier Score and the Yates Partition of the Brier Score: Logit Out-of-Sample 

  Isotonics 

Regular 
Soft 

Drinks 

Diet 
Soft 

Drinks 

High 
Fat 

Milk 

Low 
Fat 

Milk 
Fruit 

Drinks 
Fruit 

Juices 
Bottled 
Water Coffee Tea 

Brier Score 0.1542 0.0785 0.2164 0.1377 0.2164 0.1684 0.0558 0.1982 0.1778 0.1905 
Dvar 0.1599 0.0815 0.2262 0.1426 0.2307 0.1796 0.0577 0.2092 0.2020 0.1974 

Min Var 0.0007 0.0001 0.0007 0.0003 0.0009 0.0007 0.0001 0.0006 0.0040 0.0003 
Scatter 0.0141 0.0037 0.0140 0.0075 0.0129 0.0103 0.0030 0.0101 0.0286 0.0087 

Bias 4.8E-04 6.2E-05 2.5E-05 1.4E-04 8.6E-04 1.4E-04 3.8E-05 3.4E-05 1.3E-04 3.1E-05 
2Cov 0.0209 0.0069 0.0245 0.0129 0.0290 0.0223 0.0051 0.0217 0.0570 0.0161 
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Figure 1: Receiver Operating Characteristics Curves (ROC) for logit model generated 
probabilities (with-in-sample) 
Isotonics 

 
Regular Soft Drinks 

 

0.
00

0.
25

0.
50

0.
75

1.
00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Area under ROC curve = 0.6829

0.
00

0.
25

0.
50

0.
75

1.
00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Area under ROC curve = 0.7376



38 
 

 

Diet Soft Drinks 

 
 
High-Fat Milk 

 
  

0.
00

0.
25

0.
50

0.
75

1.
00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Area under ROC curve = 0.6501

0.
00

0.
25

0.
50

0.
75

1.
00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Area under ROC curve = 0.6723



39 
 

 

Low-Fat Milk 

 
 
Fruit Drinks 

 
  

0.
00

0.
25

0.
50

0.
75

1.
00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Area under ROC curve = 0.6306

0.
00

0.
25

0.
50

0.
75

1.
00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Area under ROC curve = 0.7200



40 
 

 

Fruit Juices 

 
 
Bottled Water 

 
  

0.
00

0.
25

0.
50

0.
75

1.
00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Area under ROC curve = 0.7196

0.
00

0.
25

0.
50

0.
75

1.
00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Area under ROC curve = 0.6569



41 
 

 

Coffee 

 
 
Tea 

 
  

0.
00

0.
25

0.
50

0.
75

1.
00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Area under ROC curve = 0.7555

0.
00

0.
25

0.
50

0.
75

1.
00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Area under ROC curve = 0.6447



42 
 

 

Figure 2: Receiver Operating Characteristics Curves (ROC) for logit model generated 
probabilities (out-of-sample) 
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Figure 3. Calibration Graphs for Probabilities Generated through Logit Model 

Note: Horizontal axis is the probability and the vertical axis is the realized relative frequency. Red line 
represents the perfect calibration line and blue line represents the model generated calibration line 
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Figure 4: Resolution Graphs for Probabilities and Outcome Index: Logit Model Out-of Sample 
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Note: Horizontal axis refer to the zero (0), one (1) outcome index. Vertical axis is the model 

generated probability 
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Figure 3: Market Penetration Versus Variance of Outcome Index 
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