



***The World's Largest Open Access Agricultural & Applied Economics Digital Library***

**This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.**

**Help ensure our sustainability.**

Give to AgEcon Search

AgEcon Search  
<http://ageconsearch.umn.edu>  
[aesearch@umn.edu](mailto:aesearch@umn.edu)

*Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.*

*No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.*



# **Overlapping Environmental Policies and the Impact on Pollution**

Kevin Novan

Contributed presentation at the 60th AARES Annual Conference,  
Canberra, ACT, 2-5 February 2016

## Overlapping Environmental Policies and the Impact on Pollution

Kevin Novan

UC Davis, Agricultural and Resource Economics

# Overlapping Policies

## **Electricity generators emit many pollutants (CO<sub>2</sub>, NO<sub>X</sub>, etc.)**

- Prices have been established for a subset of pollutants
- Almost exclusively using cap-&-trade programs (not pollution taxes)

# Overlapping Policies

## **Electricity generators emit many pollutants (CO<sub>2</sub>, NO<sub>x</sub>, etc.)**

- Prices have been established for a subset of pollutants
- Almost exclusively using cap-&-trade programs (not pollution taxes)

## **Emission caps are being combined with additional policies:**

- e.g., Subsidies for renewable electricity or energy efficiency

# Overlapping Policies

## **Electricity generators emit many pollutants (CO<sub>2</sub>, NO<sub>x</sub>, etc.)**

- Prices have been established for a subset of pollutants
- Almost exclusively using cap-&-trade programs (not pollution taxes)

## **Emission caps are being combined with additional policies:**

- e.g., Subsidies for renewable electricity or energy efficiency

## **Combined with a binding cap, increasing renewable output...**

- Will not affect emissions of capped pollutant
- **What happens to the unregulated pollutants?**

## **Introduce a simple model of an electricity market:**

- Two pollutants: one regulated, one unregulated
- ▶ Increasing renewable output can increase pollution

## **Introduce a simple model of an electricity market:**

- Two pollutants: one regulated, one unregulated
- ▶ Increasing renewable output can increase pollution

## **Application to U.S. EPA's NO<sub>X</sub> cap-and-trade program:**

- How would renewable expansions affect CO<sub>2</sub> and SO<sub>2</sub>?
- ▶ SO<sub>2</sub> emissions will increase
- ▶ CO<sub>2</sub> falls – but by much less than previously thought

# Single-Period Model

**Two Forms of Conventional Generation:**  $X_1$  (coal) and  $X_2$  (gas)

$c_i(X_i)$  = convex private costs

$(\mu_1, \mu_2)$  = emission rates of regulated pollutant (i.e. NO<sub>x</sub>)

$(\rho_1, \rho_2)$  = emission rates of unregulated pollutant (i.e. CO<sub>2</sub>)

# Single-Period Model

**Two Forms of Conventional Generation:**  $X_1$  (coal) and  $X_2$  (gas)

$c_i(X_i)$  = convex private costs

$(\mu_1, \mu_2)$  = emission rates of regulated pollutant (i.e. NO<sub>x</sub>)

$(\rho_1, \rho_2)$  = emission rates of unregulated pollutant (i.e. CO<sub>2</sub>)

**Demand and Renewables:**

$D$  = demand (perfectly inelastic w.r.t. wholesale price)

$r$  = renewable generation

# Single-Period Model

**Two Forms of Conventional Generation:**  $X_1$  (coal) and  $X_2$  (gas)

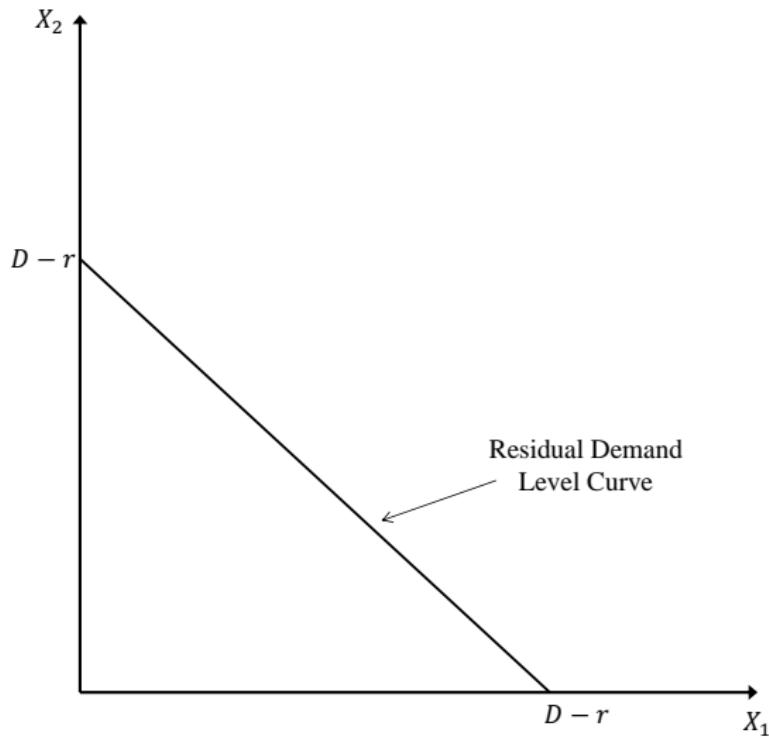
$c_i(X_i)$  = convex private costs

$(\mu_1, \mu_2)$  = emission rates of regulated pollutant (i.e. NO<sub>x</sub>)

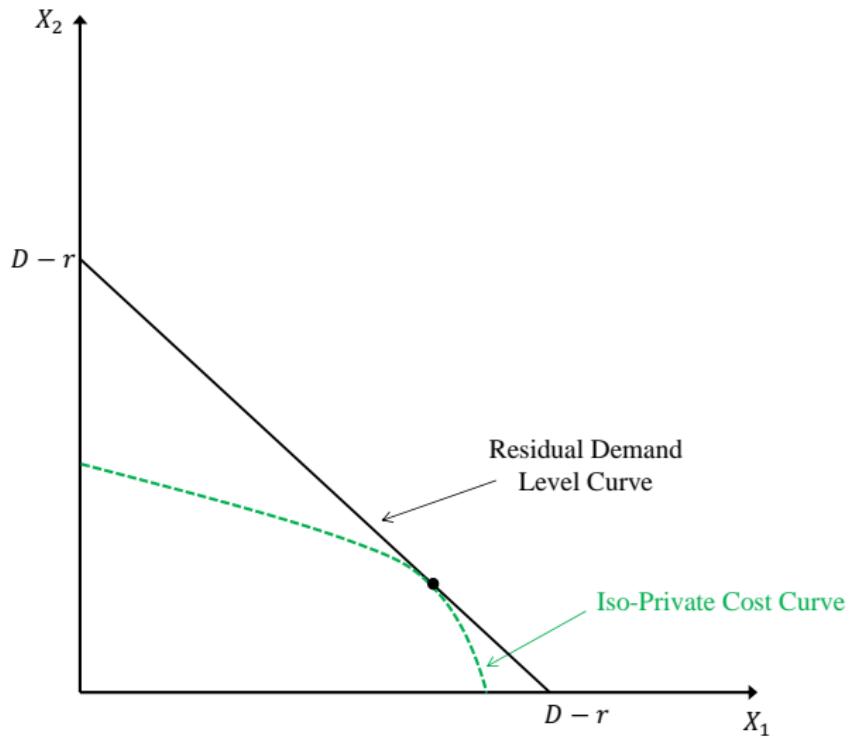
$(\rho_1, \rho_2)$  = emission rates of unregulated pollutant (i.e. CO<sub>2</sub>)

**Demand and Renewables:**

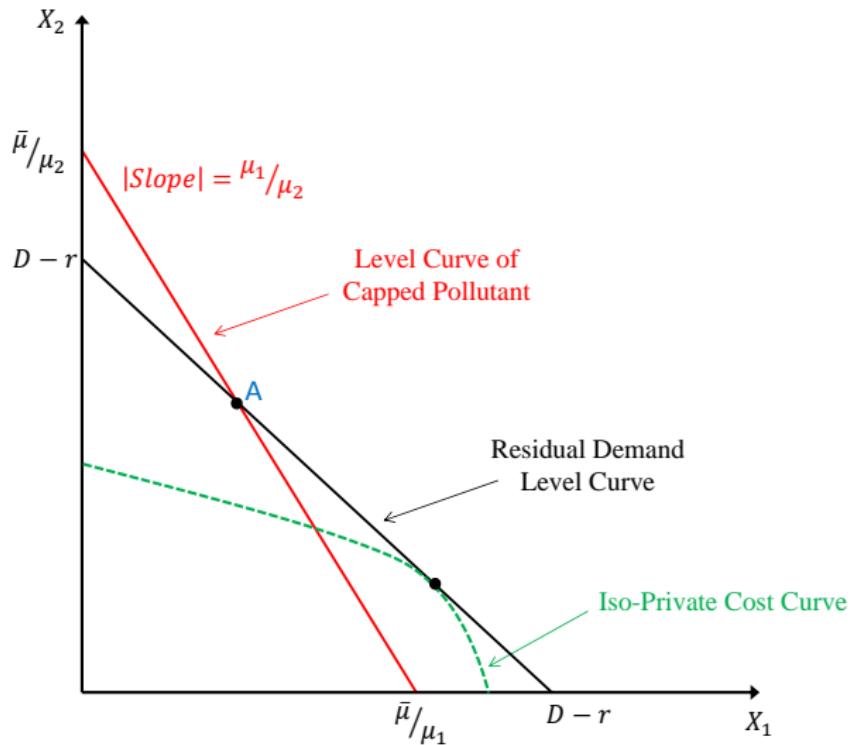
$D$  = demand (perfectly inelastic w.r.t. wholesale price)


$r$  = renewable generation

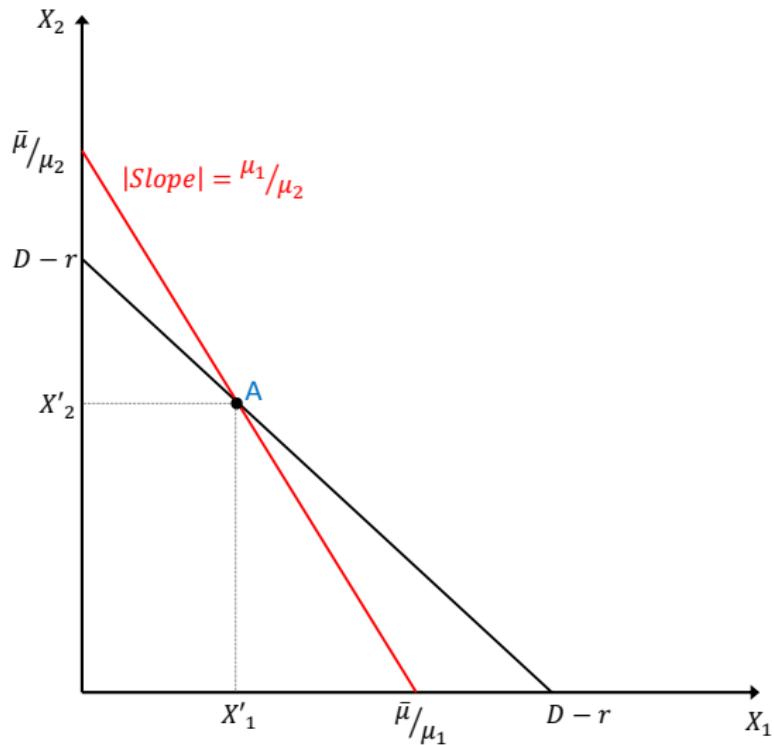
**Market Clearing Conditions:**


$$(1) \quad D - r = X_1 + X_2$$

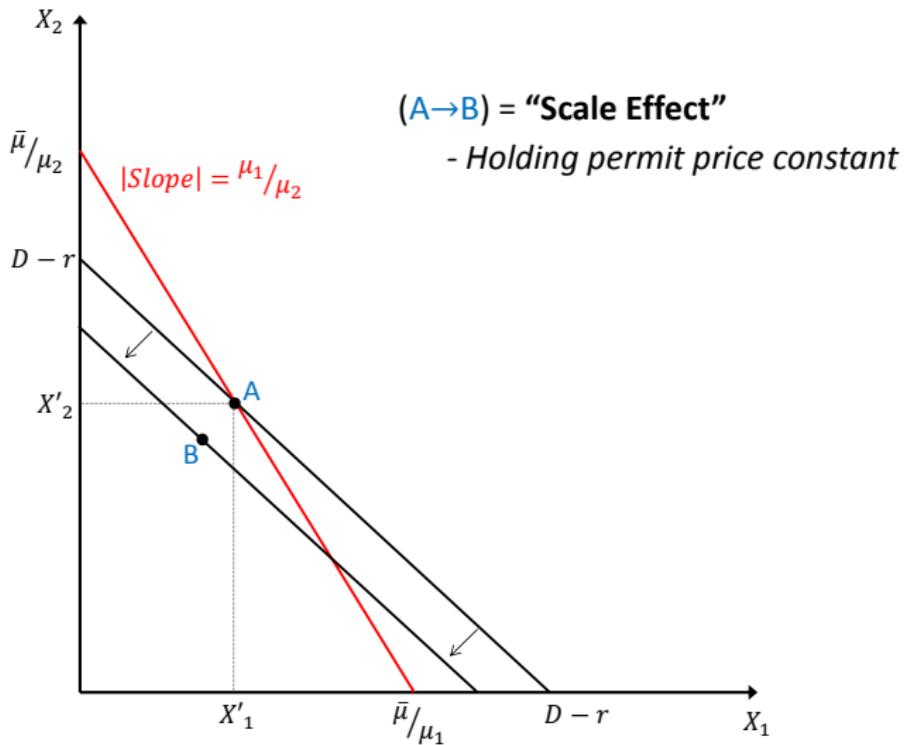
$$(2) \quad \mu_1 \cdot X_1 + \mu_2 \cdot X_2 = \bar{\mu} \quad (\bar{\mu} \text{ is binding pollution cap})$$


# Binding Emission Cap

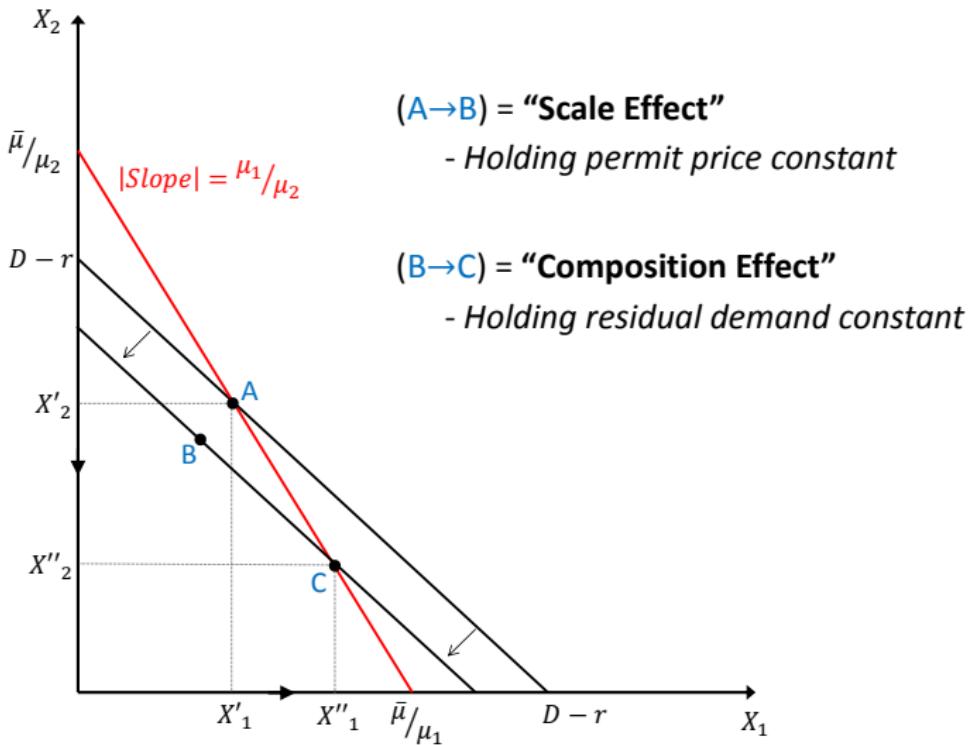



# Binding Emission Cap

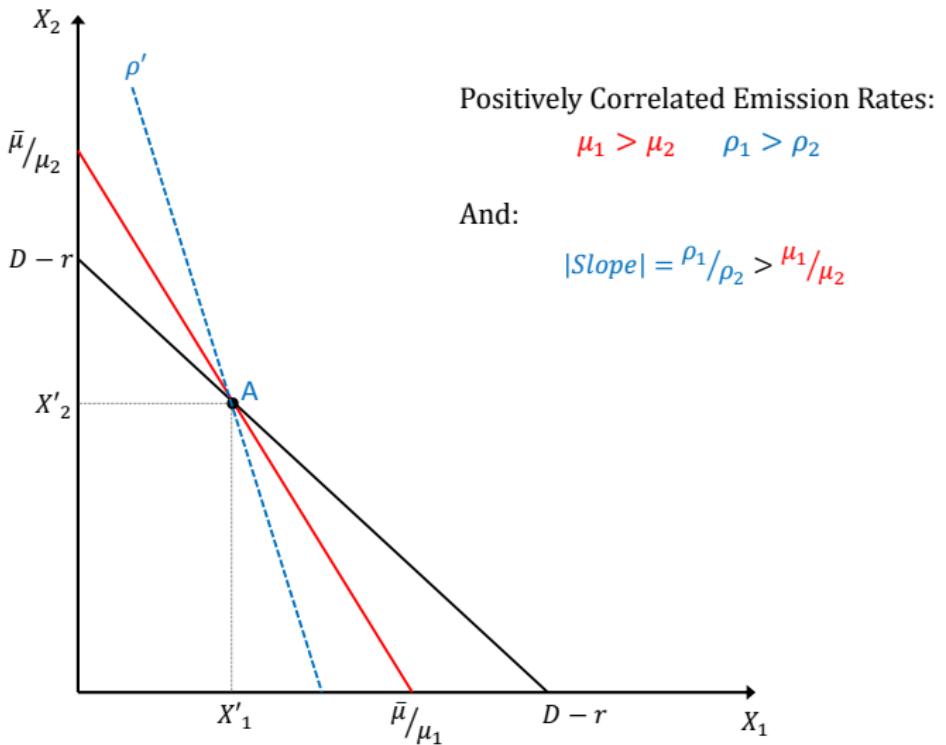



# Binding Emission Cap

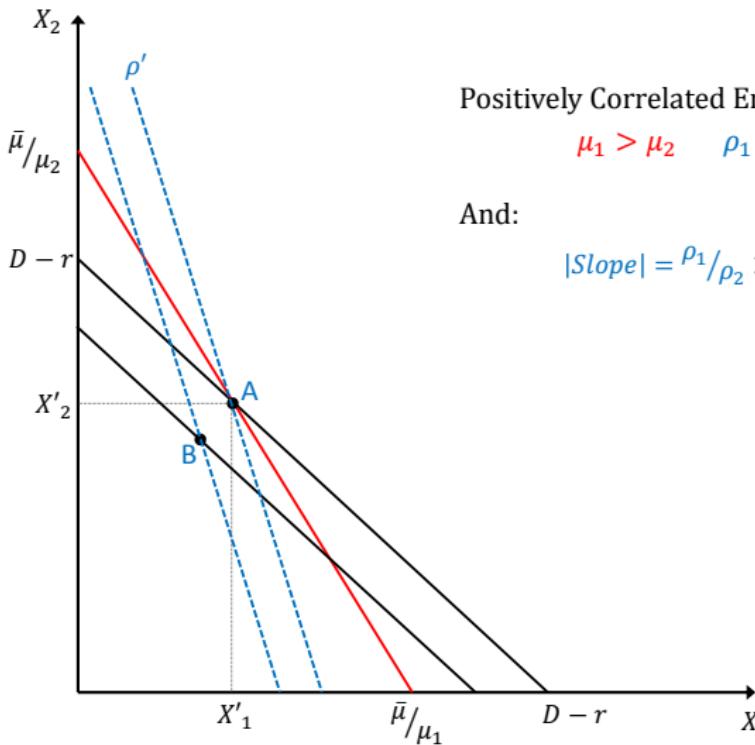



# Binding Emission Cap




# Increase in $r$ or Decrease in $D$




# Increase in $r$ or Decrease in $D$

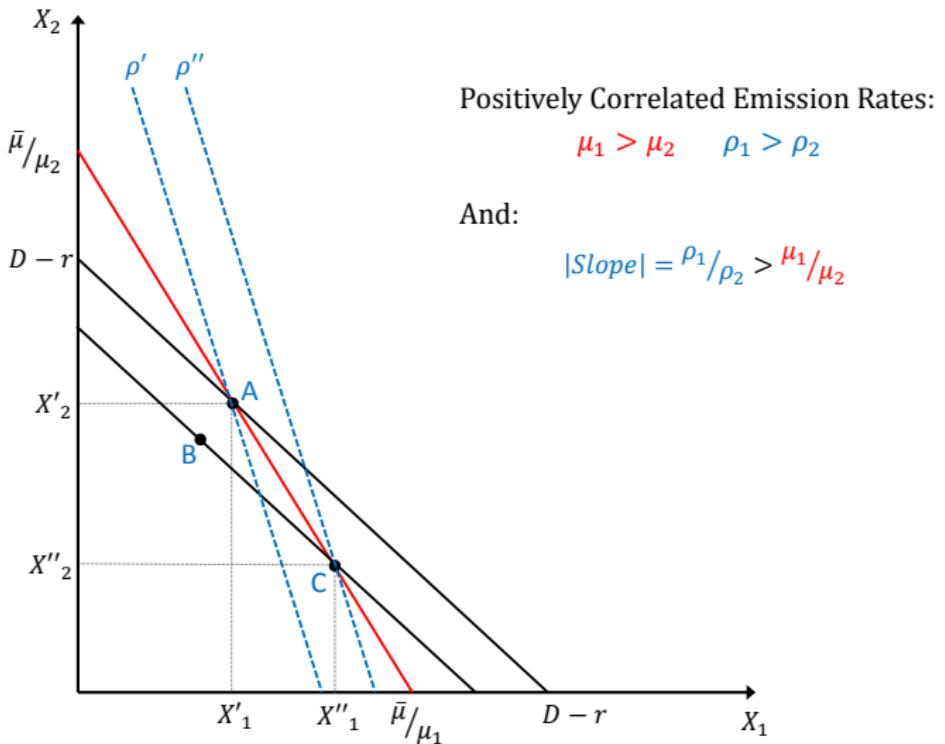


# Unregulated Pollution Increases



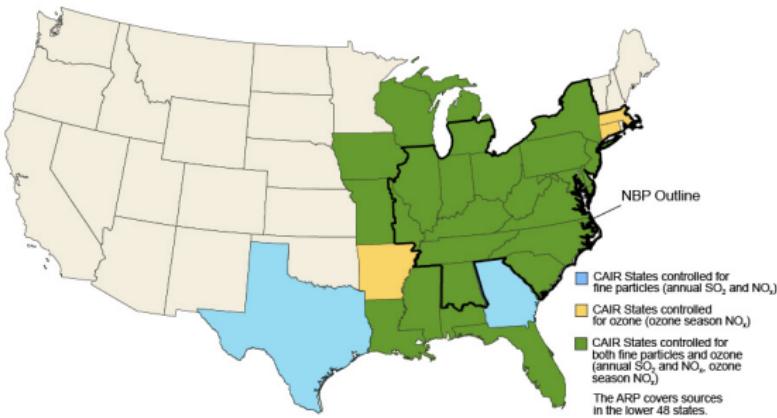
# Unregulated Pollution Increases




Positively Correlated Emission Rates:

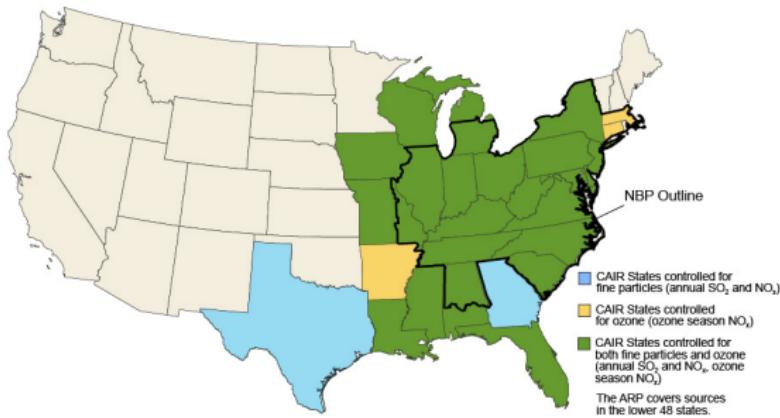
$$\mu_1 > \mu_2 \quad \rho_1 > \rho_2$$

And:


$$|Slope| = \rho_1/\rho_2 > \bar{\mu}_1/\bar{\mu}_2$$

# Unregulated Pollution Increases




## Thought experiment: Assuming annual NO<sub>x</sub> cap is binding...

- Add 1,000 MW of solar capacity
- How do annual CO<sub>2</sub> and SO<sub>2</sub> emissions change?



## Thought experiment: Assuming annual NO<sub>x</sub> cap is binding...

- Add 1,000 MW of solar capacity
- How do annual CO<sub>2</sub> and SO<sub>2</sub> emissions change?



NO<sub>x</sub> price will fall until net  $\Delta$ NO<sub>x</sub> = 0

- Total fossil generation falls, but ratio of coal to gas increases
- In the end, CO<sub>2</sub> falls (slightly) and SO<sub>2</sub> increases

# Conclusions

## **With overlapping cap on a subset of pollutants:**

- External benefit of renewables/conservation is small
- Subsidies are a very poor substitute for missing prices

# Conclusions

## **With overlapping cap on a subset of pollutants:**

- External benefit of renewables/conservation is small
- Subsidies are a very poor substitute for missing prices

## **With overlapping tax on a subset of pollutants:**

- “Composition Effect” doesn’t occur
- Subsidies serve as imperfect substitute for missing prices

# Conclusions

## With overlapping cap on a subset of pollutants:

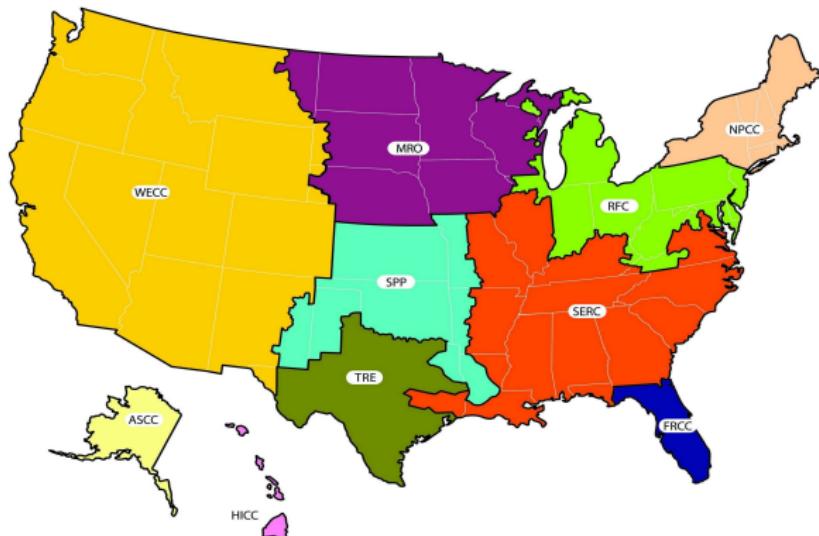
- External benefit of renewables/conservation is small
- Subsidies are a very poor substitute for missing prices

## With overlapping tax on a subset of pollutants:

- “Composition Effect” doesn’t occur
- Subsidies serve as imperfect substitute for missing prices

## Policy recommendations:

- (1) Just price pollution already!
- (2) If we can't – then combine subsidies with taxes (not caps)
- (3) If we can't use taxes:
  - ▶ Set tight price collars / Update caps / Expand 'set-aside' programs


**Thank You**

Comments/Questions: [kovan@ucdavis.edu](mailto:kovan@ucdavis.edu)

## EPA's Continuous Emissions Monitoring System (2009-2012)

$G_t$  = Hourly fossil generation

$E_t$  = Hourly NO<sub>x</sub>, CO<sub>2</sub>, and SO<sub>2</sub>



**EPA's Continuous Emissions Monitoring System (2009-2012)** $G_t$  = Hourly fossil generation $E_t$  = Hourly  $\text{NO}_x$ ,  $\text{CO}_2$ , and  $\text{SO}_2$ **Emission Rates by Technology**

|                                                 | Combined Cycle | Coal  | Other |
|-------------------------------------------------|----------------|-------|-------|
| N                                               | 535            | 1,911 | 1,029 |
| Median $\text{CO}_2$ Rate ( $\text{tons/MWh}$ ) | 0.44           | 1.06  | 0.71  |
| Median $\text{SO}_2$ Rate ( $\text{lbs/MWh}$ )  | 0.01           | 6.79  | 0.01  |
| Median $\text{NO}_x$ Rate ( $\text{lbs/MWh}$ )  | 0.12           | 2.85  | 0.95  |

## EPA's Continuous Emissions Monitoring System (2009-2012)

$G_t$  = Hourly fossil generation

$E_t$  = Hourly  $\text{NO}_x$ ,  $\text{CO}_2$ , and  $\text{SO}_2$

**Emission Rates by Technology**

|                                                 | Combined Cycle | Coal  | Other |
|-------------------------------------------------|----------------|-------|-------|
| N                                               | 535            | 1,911 | 1,029 |
| Median $\text{CO}_2$ Rate ( $\text{tons/MWh}$ ) | 0.44           | 1.06  | 0.71  |
| Median $\text{SO}_2$ Rate ( $\text{lbs/MWh}$ )  | 0.01           | 6.79  | 0.01  |
| Median $\text{NO}_x$ Rate ( $\text{lbs/MWh}$ )  | 0.12           | 2.85  | 0.95  |

**To simulate hourly output from 1,000 MW of solar:**

- Observe hourly solar capacity factors in Texas
- ▶ Capacity factor $_t$  = ( $\text{Generation}_t$ )/(Installed Capacity)

$$r_t = (1,000 \text{ MW}) \cdot (\text{Capacity Factor}_t)$$

## (1) Estimate Scale Effect

[◀ Model](#)

- Predict which fossil generators on the margin each hour
- Estimate how much CO<sub>2</sub>, SO<sub>2</sub>, and NO<sub>x</sub> would be reduced by solar
- ▶ A MWh of solar reduces: 0.7 tons CO<sub>2</sub>, 2.4 lbs SO<sub>2</sub>, 1.3 lbs NO<sub>x</sub>

## (1) Estimate Scale Effect

[◀ Model](#)

- Predict which fossil generators on the margin each hour
- Estimate how much CO<sub>2</sub>, SO<sub>2</sub>, and NO<sub>x</sub> would be reduced by solar
- ▶ A MWh of solar reduces: 0.7 tons CO<sub>2</sub>, 2.4 lbs SO<sub>2</sub>, 1.3 lbs NO<sub>x</sub>

## (2) Estimate Composition Effect

[◀ Strategy](#)

- NO<sub>x</sub> price will fall until net  $\Delta NO_x = 0$
- Estimate how NO<sub>x</sub> permit price decline impacts CO<sub>2</sub> and SO<sub>2</sub>

## (1) Estimate Scale Effect

[◀ Model](#)

- Predict which fossil generators on the margin each hour
- Estimate how much CO<sub>2</sub>, SO<sub>2</sub>, and NO<sub>x</sub> would be reduced by solar
- A MWh of solar reduces: 0.7 tons CO<sub>2</sub>, 2.4 lbs SO<sub>2</sub>, 1.3 lbs NO<sub>x</sub>

## (2) Estimate Composition Effect

[◀ Strategy](#)

- NO<sub>x</sub> price will fall until net  $\Delta NO_x = 0$
- Estimate how NO<sub>x</sub> permit price decline impacts CO<sub>2</sub> and SO<sub>2</sub>
- Find evidence that NO<sub>x</sub> permit decrease will increase CO<sub>2</sub> and SO<sub>2</sub>
  - Total fossil generation falls, but ratio of coal to gas increases
  - CO<sub>2</sub> falls by 0.4 tons/MWh, SO<sub>2</sub> increases by 4.8 lbs/MWh

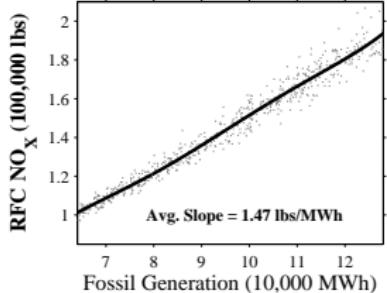
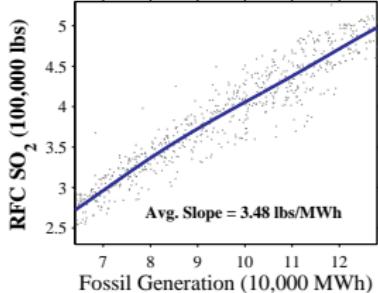
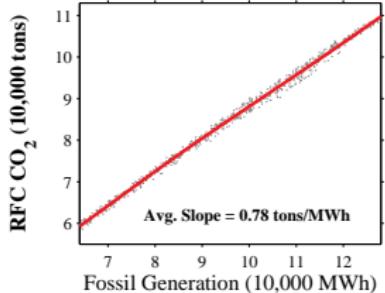
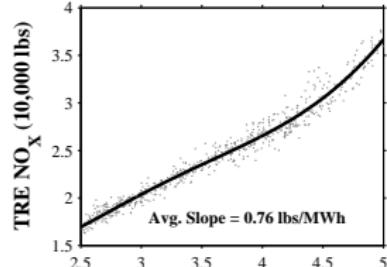
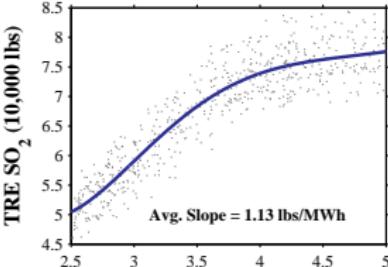
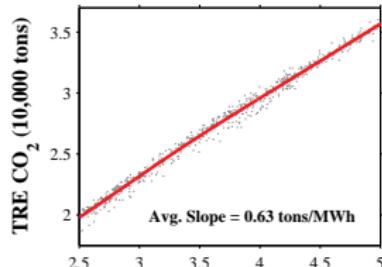
# Predicting the “Scale Effect” (for 2009)

◀ Return

$$E_t = f_m(G_t) + \delta_{m,y} + \varepsilon_t$$

$E_t$  = Aggregate hourly NERC NO<sub>x</sub>, CO<sub>2</sub>, or SO<sub>2</sub>

$G_t$  = Aggregate hourly NERC fossil fuel generation (MWh)







# Predicting the “Scale Effect” (for 2009)

[◀ Return](#)

$$E_t = f_m(G_t) + \delta_{m,y} + \varepsilon_t$$

$E_t$  = Aggregate hourly NERC NO<sub>x</sub>, CO<sub>2</sub>, or SO<sub>2</sub>

$G_t$  = Aggregate hourly NERC fossil fuel generation (MWh)



$$E_t = f_m(G_t) + \delta_{m,y} + \varepsilon_t$$

$E_t$  = Aggregate hourly NERC NO<sub>x</sub>, CO<sub>2</sub>, or SO<sub>2</sub>

$G_t$  = Aggregate hourly NERC fossil fuel generation (MWh)

**Scale effect of adding renewable capacity:**

$$\Delta(\text{Annual Emissions}) = \sum_{2009} \left[ \hat{f}(G_t - r_t) - \hat{f}(G_t) \right]$$

$$E_t = f_m(G_t) + \delta_{m,y} + \varepsilon_t$$

$E_t$  = Aggregate hourly NERC NO<sub>x</sub>, CO<sub>2</sub>, or SO<sub>2</sub>

$G_t$  = Aggregate hourly NERC fossil fuel generation (MWh)

## Scale effect of adding renewable capacity:

$$\Delta(\text{Annual Emissions}) = \sum_{2009} \left[ \hat{f}(G_t - r_t) - \hat{f}(G_t) \right]$$

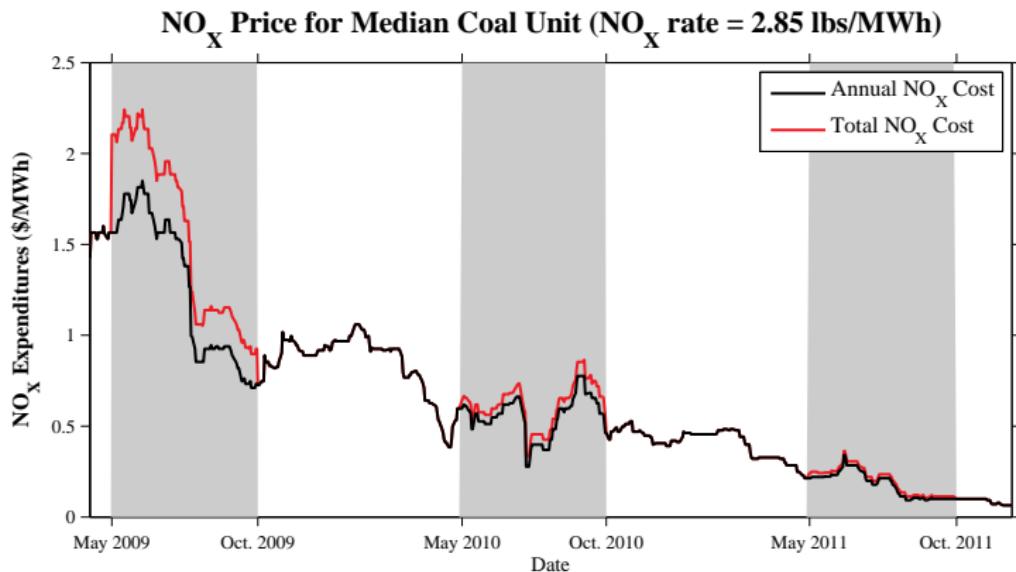
- ▶ Hourly fossil generation falls from  $(G_t)$  to  $(G_t - r_t)$
- ▶ Hourly emissions fall from  $f(G_t)$  to  $f(G_t - r_t)$

$$E_t = f_m(G_t) + \delta_{m,y} + \varepsilon_t$$

$E_t$  = Aggregate hourly NERC NO<sub>x</sub>, CO<sub>2</sub>, or SO<sub>2</sub>

$G_t$  = Aggregate hourly NERC fossil fuel generation (MWh)

## Scale effect of adding renewable capacity:


$$\Delta(\text{Annual Emissions}) = \sum_{2009} \left[ \hat{f}(G_t - r_t) - \hat{f}(G_t) \right]$$

**Key assumption:**  $f(\cdot)$  does not change as  $r$  increases

- ▶ The dispatch order is unchanged
- ▶ The input prices are unchanged (i.e.  $\Delta \text{NO}_x$  price = 0)

To estimate  $\partial(\text{Emissions})/\partial(\text{NO}_X \text{ Price})$

- Need exogenous variation in NO<sub>X</sub> Price
- My approach: exploit discontinuity caused by Ozone Season



## Event study:

- 20-day window around start of Spring 2009 Ozone Season
- Estimate change in hourly Eastern Interconnection emissions ( $\alpha$ )

$$E_t = \alpha \cdot Ozone_t + f(G_t) + \delta_{h,w} + \theta \cdot Date_t + \varepsilon_t$$

## Event study:

- 20-day window around start of Spring 2009 Ozone Season
- Estimate change in hourly Eastern Interconnection emissions ( $\alpha$ )

$$E_t = \alpha \cdot Ozone_t + f(G_t) + \delta_{h,w} + \theta \cdot Date_t + \varepsilon_t$$

$E_t$  = Aggregate hourly NO<sub>x</sub> (lbs), CO<sub>2</sub> (tons), or SO<sub>2</sub> (lbs)

$G_t$  = Aggregate hourly fossil fuel generation (MWh)

$Ozone_t$  = Indicator variable for Ozone Season

**Event study:**

- 20-day window around start of Spring 2009 Ozone Season
- Estimate change in hourly Eastern Interconnection emissions ( $\alpha$ )

$$E_t = \alpha \cdot Ozone_t + f(G_t) + \delta_{h,w} + \theta \cdot Date_t + \varepsilon_t$$

|                | NO <sub>X</sub> (lbs) | CO <sub>2</sub> (tons) | SO <sub>2</sub> (lbs) |
|----------------|-----------------------|------------------------|-----------------------|
| $\alpha$       | -16,809**<br>(3,803)  | -2,582**<br>(735)      | -90,629**<br>(18,754) |
| N              | 480                   | 480                    | 480                   |
| R <sup>2</sup> | 0.98                  | 0.99                   | 0.97                  |

Newey-West standard errors reported (72-hour lag).

\*\* = significant at the 1% level.

$$E_t = \alpha \cdot Ozone_t + f(G_t) + \delta_{h,w} + \theta \cdot Date_t + \varepsilon_t$$

*Ozone<sub>t</sub>* = Indicator variable for Ozone Season

*E<sub>t</sub>* = Aggregate hourly TRE NO<sub>x</sub> (lbs), CO<sub>2</sub> (tons), or SO<sub>2</sub> (lbs)

*G<sub>t</sub>* = Aggregate hourly TRE fossil fuel generation (MWh)

|                | NO <sub>x</sub> (lbs) | CO <sub>2</sub> (tons) | SO <sub>2</sub> (lbs) |
|----------------|-----------------------|------------------------|-----------------------|
| $\alpha$       | 11                    | -93                    | -3,004                |
|                | (543)                 | (312)                  | (5,467)               |
| N              | 480                   | 480                    | 480                   |
| R <sup>2</sup> | 0.91                  | 0.99                   | 0.50                  |

Newey-West standard errors reported (72-hour lag).

\*\* = significant at the 1% level.

# Change in Generation by Technology

◀ return

$$G_{i,t} = \alpha \cdot Ozone_t + f(G_t) + \delta_{h,w} + \theta \cdot Date_t + \varepsilon_t$$

*Ozone<sub>t</sub>* = Indicator variable for Ozone Season

*G<sub>i,t</sub>* = Aggregate hourly generation from fuel source *i* (coal, cc, gt)

*G<sub>t</sub>* = Aggregate hourly fossil fuel generation (MWh)

|                | Coal (MWh)        | Combined Cycle (MWh) | Other (MWh)    |
|----------------|-------------------|----------------------|----------------|
| $\alpha$       | -2,361**<br>(870) | 2,164**<br>(696)     | 197<br>(1,035) |
| N              | 480               | 480                  | 480            |
| R <sup>2</sup> | 0.99              | 0.98                 | 0.97           |

Newey-West standard errors reported (72-hour lag).

\*\* = significant at the 1% level.