

The World's Largest Open Access Agricultural & Applied Economics Digital Library

### This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.



#### Transforming Agricultural System under Socioeconomic Change, Climate Change and Ecosystem Change

Hirotaka Matsuda<sup>1)</sup>, Yuka Ogata<sup>2)</sup>, Akira Takagi<sup>3)</sup> and Hisashi Kurokura<sup>4)</sup>

1) Project Associate Professor / Ph.D, Graduate School of Frontier Sciences, The University of Tokyo (e-mail:matsuda@k.u-tokyo.ac.jp)

2) Niigata Prefectural Government Inland Fisheries Experimental Station

3) Ministry of Education, Culture, Sports, Science and Technology; MEXT

4) Graduate School of Agriculture and Life sciences, The University of Tokyo

#### Contributed presentation at the 60th AARES Annual Conference, Canberra, ACT, 2-5 February 2016

*Copyright 2016 by Author(s). All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.* 

### **Transforming Agricultural System under Socio-economic Change, Climate Change and Ecosystem Change**

<u>Hirotaka Matsuda</u><sup>1)</sup>, Yuka Ogata<sup>2)</sup>, Akira Takagi<sup>3)</sup> and Hisashi Kurokura<sup>4)</sup>

 Project Associate Professor / Ph.D, Graduate School of Frontier Sciences The University of Tokyo (e-mail:matsuda@k.u-tokyo.ac.jp)
Niigata Prefectural Government Inland Fisheries Experimental Station
Ministry of Education, Culture, Sports, Science and Technology; MEXT
Graduate School of Agriculture and Life sciences, The University of Tokyo

### I. Introduction

#### Definition of Resilience

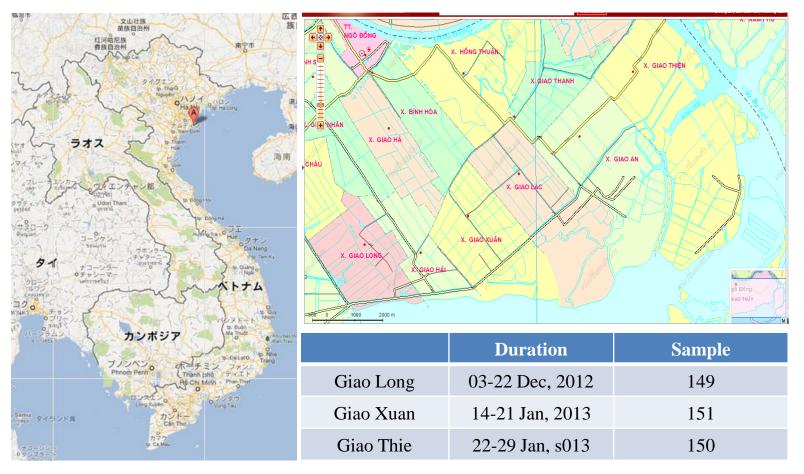
 Resilience is the capacity of a system to absorb disturbance and reorganize while undergoing change so as to still retain essentially the same function, structure, identity, and feedbacks (Walker et al (2004)).

#### • Strategy of farmers in developing country

- Combining traditional system with modern system
  - VAC system in Vietnam: Vuon-Ao-Choung (VAC) system, which is gardenpond-livestock pen in the Red River delta and the midlands of northern Vietnam

VAC system in Vietnam

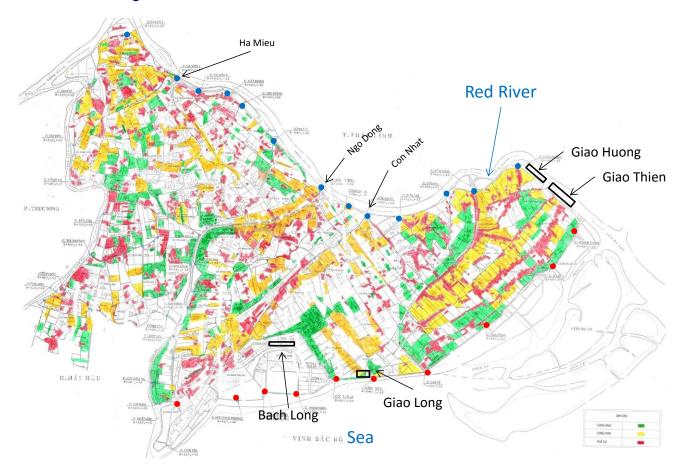



Currently, structure of the combination has been changed in order to respond to introducing market economy.

It is difficult to adopt risks including climate change and loss of economical benefit because of loss of those diversity.

tudy investigates behaviors of farmers who are much vulnerable in developing countries to enhance their resilience to respond to Socio-economic change, Climate change and Ecosystem change.

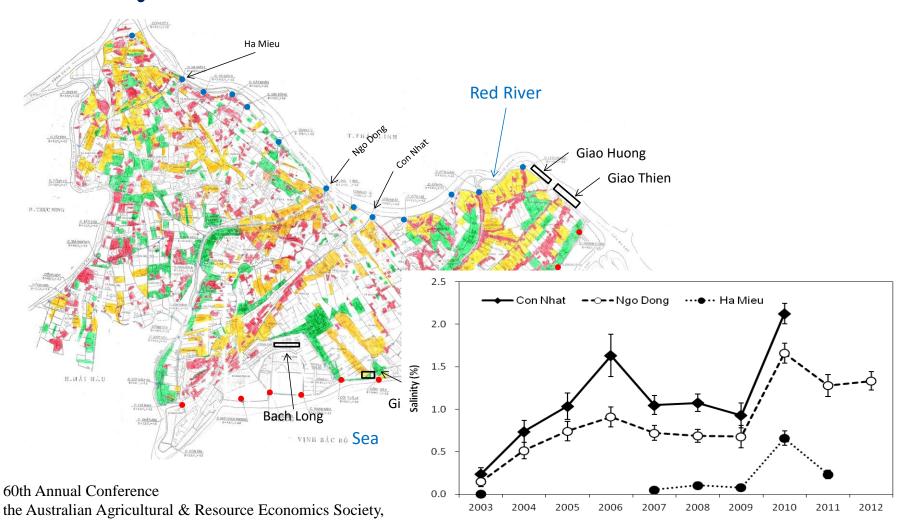
### **II**. Agriculture in Research Area, Vietnam


#### Research Area

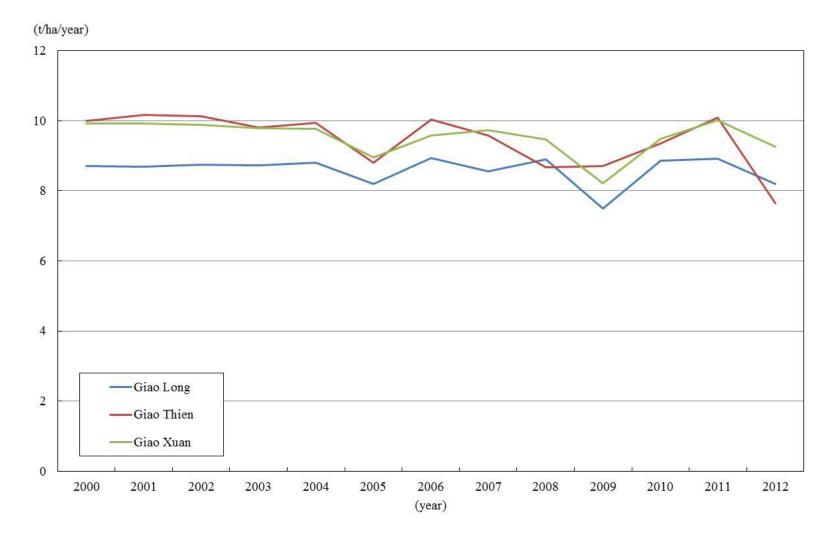


60th Annual Conference the Australian Agricultural & Resource Economics Society,

### **Impact of climate change for Agriculture**


#### salinity intrusion




60th Annual Conference the Australian Agricultural & Resource Economics Society,

### **Impact of climate change for Agriculture**

#### salinity intrusion



#### **Trend of Paddy Yield in Research Area**



60th Annual Conference the Australian Agricultural & Resource Economics Society,

Fremantle, 2-5 February 2016

### **Question for capturing risk behaviour**

- Q. If you were to choose a business with different returns, which one of the following would you choose?
  - Game 1. Initial investment cost is: 2000 VND
  - Game 2. Initial investment cost is: 10000 VND

|               | <u> </u> | 101 mvesti |         |         |           |
|---------------|----------|------------|---------|---------|-----------|
| Business Type | 1        | 2          | 3       | 4       | 5         |
| Fail          | 100,000  | 80,000     | 60,000  | 40,000  | 0         |
| Succeed       | 100,000  | 240,000    | 300,000 | 320,000 | 6,000,000 |

Payoff for Investment Game 1 & 2

- Game 3. Initial investment cost is: 20000 VND
- Game 4. Initial investment cost is: 200000 VND

| Business Type | 1       | 2       | 3       | 4       | 5         |
|---------------|---------|---------|---------|---------|-----------|
| Fail          | 200,000 | 160,000 | 100,000 | 40,000  | 0         |
| Succeed       | 200,000 | 340,000 | 500,000 | 680,000 | 1,000,000 |
|               |         |         |         |         |           |

Payoff for Investment Game 3 & 4

60th Annual Conference

the Australian Agricultural & Resource Economics Society,

Fremantle, 2-5 February 2016

### **Question for capturing risk behaviour**

- Q. If you were to choose a business with different returns, which one of the following would you 1: Extreme Risk Averter
  - Game 1. Initial investment cost is: 2000 VNI
  - Game 2. Initial investment cost is: 10000 VN

Payoff for Investment Ga

| Business Type | 1       | 2       | 3   | with 3. However, variance is        |
|---------------|---------|---------|-----|-------------------------------------|
| Fail          | 100,000 | 80,000  | 60  | larger.<br>5: Risk neutral or lover |
| Succeed       | 100,000 | 240,000 | 300 |                                     |

- Game In case of fail: 80,000 VND is received

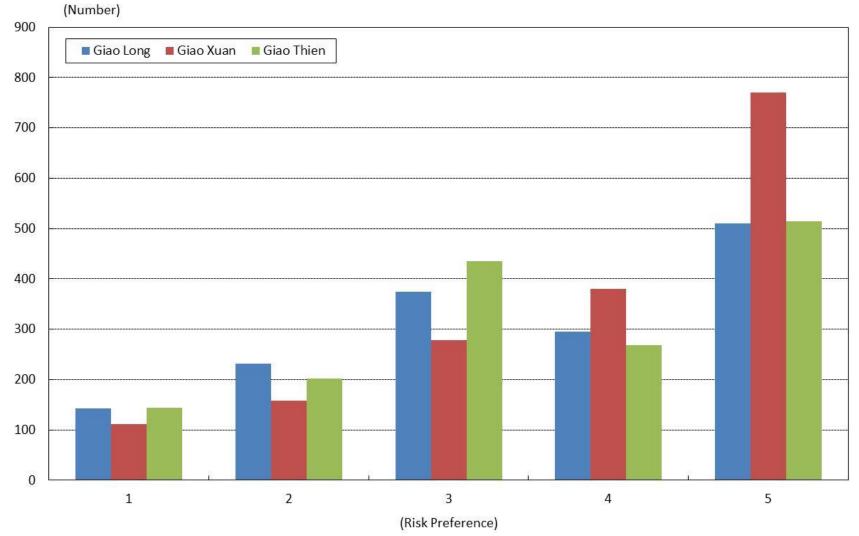
- Game 4 In case of success: 240,000VND is received

Payoff for Investment Game 3 & 4

| В      | usiness Type | 1       | 2       | 3       | 4       | 5         |
|--------|--------------|---------|---------|---------|---------|-----------|
|        | Fail         | 200,000 | 160,000 | 100,000 | 40,000  | 0         |
| 58th / | Succeed      | 200,000 | 340,000 | 500,000 | 680,000 | 1,000,000 |

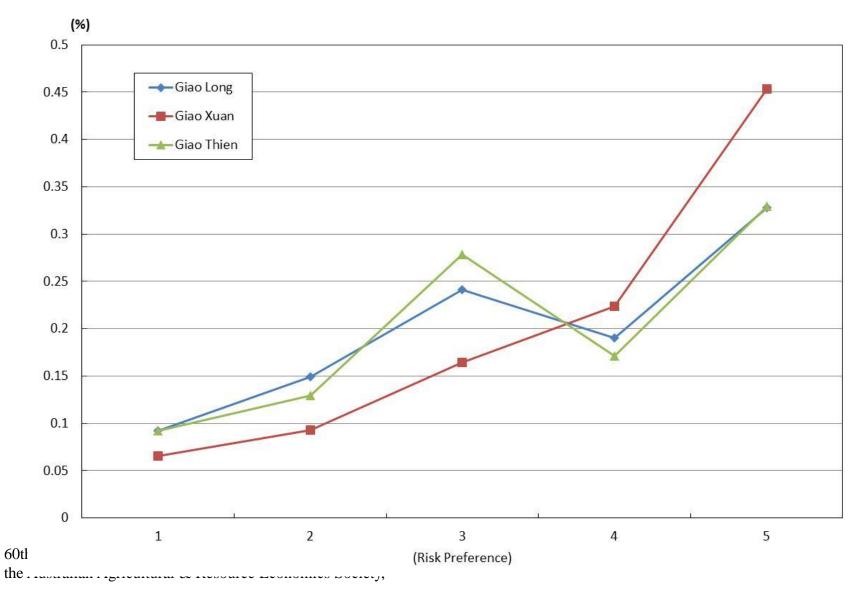
the Australian Agricultural & Resource Economics Society,

Fremantle, 2-5 February 2016


2: Severe Risk Averter

3: Moderate Risk Averter

4: Inefficient Risk Averter


Expected payoff of 4 is same

### **Distribution of risk preference of farmers**



60t the Australian Agricultural & Resource Economics Society,

#### **Distribution of risk preference of farmers**



# **III.** Estimation of Risk preference, Animal Feeding and **Production change**

Estimation of Risk Behaviour

$$y_i^* = \beta' X_i + \varepsilon_i \text{ with } \beta'(\beta_1, \beta_2, \dots, \beta_k)$$

- $y_i^*$ : respondent's propensity to choose a specific alternative in the Game
- $X_i$ : K-vector of known constants, includes all of household i's characteristics

 $\varepsilon_i \sim (0, \sigma^2)$  iid, mean 0 and variance  $\sigma^2$ 

- The ordered probit model is hired to estimate

 $X_{\kappa}$ : Kth independent variable

 For the jth probability, the marginal effects of change in the independent variables:

$$\frac{\partial P_r(y_i = s_j)}{\partial X_K} = \left[ \emptyset \left( \frac{\mu_{j-1} - \beta' X_i}{\sigma} \right) - \emptyset \left( \frac{\mu_j - \beta' X_i}{\sigma} \right) \right] \frac{\beta_K}{\sigma}$$
  
  $\emptyset(\cdot)$ : the normal density function

Fremantle, 2-5 February 2016 11

#### Estimation of Animal Feeding and Responding to production change

Animal feeding

$$\operatorname{Prob}(y_i = j) = \frac{\exp(\boldsymbol{\beta}'_j \mathbf{x}_i)}{\sum_{k=0}^{J} \exp(\boldsymbol{\beta}'_k \mathbf{x}_i)} \quad \text{for} \quad j = 0, 1, \cdots, J$$

• Responding to production change of rice  $\Delta y = X\beta + \varepsilon$   $\beta = (\beta_1, \beta_2, \dots, \beta_k) \quad \Delta y = (\Delta y_1, \dots, \Delta y_n)^T$   $X = \begin{pmatrix} x_i \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1k} \\ \vdots & \vdots & \vdots \\ 1 & x_{n1} & \dots & x_{nk} \end{pmatrix} \quad \varepsilon = (\varepsilon_1, \dots, \varepsilon_n)^T$ 

> $\Delta y$ : reducing amount of rice yield  $X_i$ : K-vector of known constants, includes all of household i's characteristics  $\varepsilon_i \sim (0, \sigma^2)$  iid, mean 0 and variance  $\sigma^2$

#### MCMC for Estimation of responding to production change

$$p(\boldsymbol{y}|\boldsymbol{\beta},\tau) \sim N\left(\boldsymbol{X}\boldsymbol{\beta},\frac{1}{\tau}\boldsymbol{I}\right)$$
  
$$\tau = \frac{1}{\sigma^{2}}, \quad \frac{e}{v} = \sum_{i=1}^{n} \frac{e_{i}^{2}}{v}, \quad \hat{\sigma}^{2} = S = e \quad df: v = n - k$$

- Conjugate prior distribution of parameter  $\beta$  and  $\tau$  $p(\beta|\tau) \sim N(b_0, (1/\tau)B_0)$  $p(\tau | \mathbf{y}) \sim G\left(\frac{v_0}{2}, \frac{v_0 S_0}{2}\right)$
- Posterior distributions follow normal distribution and Gunma distribution, respectively

 $p(\beta|\tau, \mathbf{y}) \sim N(b_1, B_1)$  $p(\tau|\beta, \mathbf{y}) \sim G\left(\frac{v_1}{2}, \frac{v_1S_1}{2}\right)$  $v_1 = v_0 + v, v_1 S_1 = v_0 S_0 + (v - Xb_1)^T (v - X\beta)$  $b_1 = B_1(B_0^{-1}b_0 + \tau X^T y), B_1^{-1} = B_0^{-1} + \tau B$ 

 $- b_0, B_0, v_o, S_0$  can be defined arbitrary.

b0=0, B0=0.001, c0=0.001, S0=0.001, burn in=1000 Fremantle, 2-5 February 2016

#### **IV. Estimation Results : Risk Behaviour**

| Variable ID    |                                          | Game 1    | Game 2   | Game 3    | Game 4    |
|----------------|------------------------------------------|-----------|----------|-----------|-----------|
| age            | Age of respondent                        | -0.01     | -0.01    | -0.01 *   | -0.01 *   |
|                |                                          | ( -1.57)  | (-1.64)  | (-1.91)   | (-1.71)   |
| sex            | 1 if respondent is female                | 0.34 *    | 0.27     | 0.30      | 0.22      |
|                |                                          | ( 1.83 )  | ( 1.45 ) | ( 1.61 )  | ( 1.18 )  |
| edu            | year of education                        | 0.10 **   | 0.06 *   | 0.07 **   | 0.06      |
|                |                                          | ( 2.81 )  | ( 1.80)  | ( 2.12)   | ( 1.65 )  |
| native         | 1 if respondent born in the              | 0.38 *    | 0.44 **  | 0.49 **   | 0.47 *    |
|                | village                                  | ( 1.72)   | ( 1.97)  | ( 2.13)   | ( 2.01 )  |
| house_area     | Area of household                        | -0.07     | -0.09    | -0.07     | -0.08 **  |
|                |                                          | ( -1.22)  | (-1.54)  | (-1.20)   | ( -1.26 ) |
| paddy_area     | Area of paddy field                      | 0.06 *    | 0.09 *** | 0.05 *    | 0.07      |
|                |                                          | ( 1.81 )  | ( 2.74 ) | ( 1.77)   | ( 2.37 )  |
| network        | Numer of accuitance to ask               | -0.12 **  | -0.13 ** | -0.17 *** | -0.20 *** |
|                | about farming (maximu<br>number is five) | ( -2.07 ) | (-2.27)  | (-2.92)   | (-3.36)   |
| variety_animal | variety of animalsiin the                | -0.04     | -0.11    | -0.13     | -0.11     |
|                | household                                | ( -0.46)  | ( -1.17) | ( -1.37 ) | ( -1.12)  |
| d_gt           | 1 if Gio Thien                           | 0.32      | 0.33     | 0.33      | 0.36      |
|                |                                          | ( 1.50)   | ( 1.55)  | ( 1.53)   | ( 1.61 )  |
| $d_gx$         | 1 if GioXien                             | 0.46 *    | 0.60 **  | 0.68 ***  | 0.77      |
|                |                                          | ( 1.77)   | ( 2.33)  | ( 2.57)   | ( 2.83)   |
| Log likelihood |                                          | 29.73     | 30.4     | 33.4      | 33.7      |
| Psudo R2       |                                          | 0.06      | 0.06     | 0.07      | 0.07      |
| Observation    |                                          | 194       | 194      | 194       | 194       |

Absolute value of z-statistics in parentheses.

\* significant at 10% level; \*\* significant at 5% level; \*\*\* significant at 1% level.

| Variable ID    |                                                                        | Game 1                        | Game 2                         | Game 3                          | Game 4                          |
|----------------|------------------------------------------------------------------------|-------------------------------|--------------------------------|---------------------------------|---------------------------------|
| age            | Age of respondent                                                      | -0.01<br>( -1.57 )            | -0.01<br>( -1.64 )             | -0.01 <sup>*</sup><br>( -1.91 ) | -0.01 <sup>*</sup><br>( -1.71 ) |
| sex            | 1 if respondent is female                                              | 0.34 <sup>*</sup><br>( 1.83 ) | 0.27<br>( 1.45 )               | 0.30<br>( 1.61 )                | 0.22<br>( 1.18 )                |
| edu            | year of education                                                      | 0.10 <sup>**</sup><br>( 2.81) | 0.06 <sup>*</sup><br>( 1.80 )  | 0.07 **<br>( 2.12 )             | 0.06<br>( 1.65 )                |
| native         | 1 if respondent born in the village                                    | 0.38 <sup>*</sup><br>( 1.72 ) | 0.44 <sup>**</sup><br>( 1.97 ) | 0.49 **<br>( 2.13 )             | 0.47 <sup>*</sup><br>( 2.01 )   |
| house_area     | Area of household                                                      | -0.07<br>( -1.22 )            | -0.09<br>( -1.54 )             | -0.07<br>( -1.20 )              | -0.08 **<br>( -1.26 )           |
| paddy_area     | Area of paddy field                                                    | 0.06 <sup>*</sup><br>( 1.81 ) | 0.09 ***<br>( 2.74 )           | 0.05 <sup>*</sup><br>( 1.77 )   | 0.07<br>( 2.37 )                |
| network        | Numer of accuitance to ask<br>about farming (maximu<br>number is five) | -0.12 **<br>( -2.07 )         | -0.13 **<br>( -2.27 )          | -0.17 ***<br>( -2.92 )          | -0.20 **<br>( -3.36 )           |
| variety_animal | variety of animalsiin the<br>household                                 | -0.04<br>( -0.46 )            | -0.11<br>( -1.17 )             | -0.13<br>( -1.37 )              | -0.11<br>( -1.12 )              |
| d_gt           | 1 if Gio Thien                                                         | 0.32<br>( 1.50 )              | 0.33<br>( 1.55 )               | 0.33<br>( 1.53 )                | 0.36<br>( 1.61 )                |
| d_gx           | 1 if GioXien                                                           | 0.46 <sup>*</sup><br>( 1.77)  | 0.60 <sup>**</sup><br>( 2.33 ) | 0.68 ***<br>( 2.57 )            | 0.77<br>( 2.83 )                |
| Log likelihood |                                                                        | 29.73                         | 30.4                           | 33.4                            | 33.7                            |
| Psudo R2       |                                                                        | 0.06                          | 0.06                           | 0.07                            | 0.07                            |
| Observation    |                                                                        | 194                           | 194                            | 194                             | 194                             |

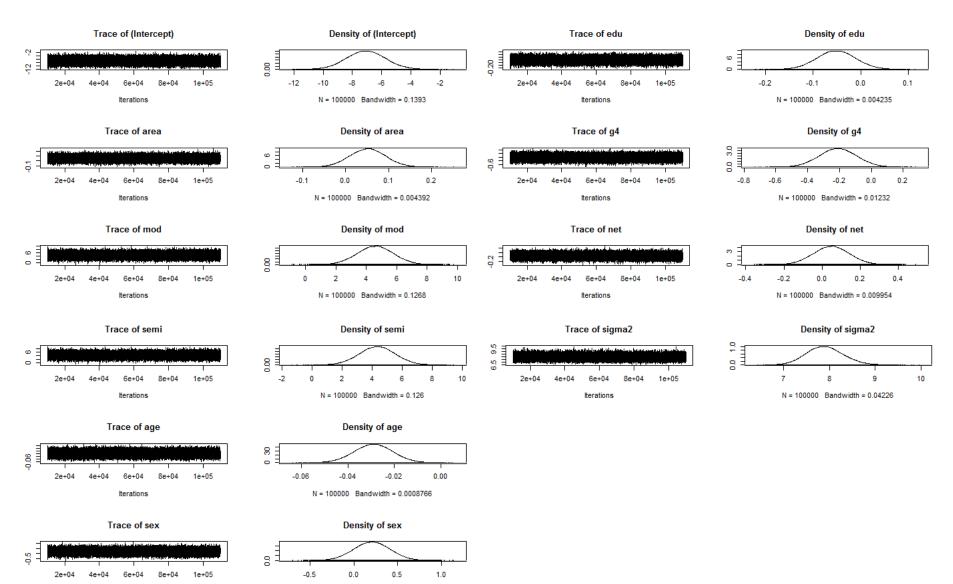
Absolute value of z-statistics in parentheses. \* significant at 10% level; \*\* significant at 5% level; \*\*\* significant at 1% level.

#### **Estimation Results: Animal Feeding**

|                     | Area      | Education | Risk | Network |
|---------------------|-----------|-----------|------|---------|
| Pig                 |           |           | +    |         |
| Chicken             |           |           |      |         |
| Duck                |           |           |      |         |
| Pig+Chi             | Xuan (-)  |           |      |         |
| Pig+Duc             |           | +         |      |         |
| Pig+Oth             |           |           |      |         |
| Chi+Duc             | Xuan (-)  |           | -    | +       |
| Chi+Oth             | Thien (-) | -         |      |         |
| Pig+Chi+Duc         | Xuan (-)  | -         |      |         |
| Pig+Chi+Duc+<br>Oth |           |           |      |         |

58th Annual Conference the Australian Agricultural & Resource Economics Society,

### **Estimation Results: Animal Feeding**


|                     | Area      | Education | Risk | Network                           |
|---------------------|-----------|-----------|------|-----------------------------------|
| Pig                 |           |           | +    |                                   |
| Chicken             |           |           | • Ri | -<br>la lover choose n            |
| Duck                |           |           |      | sk lover choose p                 |
| Pig+Chi             | Xuan (-)  |           |      |                                   |
| Pig+Duc             |           | +         |      |                                   |
| Pig+Oth             |           |           |      |                                   |
| Chi+Duc             | Xuan (-)  |           | -    | <b>)</b> +                        |
| Chi+Oth             | Thien (-) | -         | • Ri |                                   |
| Pig+Chi+Duc         | Xuan (-)  | -         |      | sk averter choose icken and duck. |
| Pig+Chi+Duc+<br>Oth |           |           |      | ienen und duek.                   |

#### **Estimation Results : Production Change (1)**

|                     |                                                                     | Mean   | SD    | 2.5%   | 25%    | 50%     | 75%    | 97.5%  |
|---------------------|---------------------------------------------------------------------|--------|-------|--------|--------|---------|--------|--------|
| (Intercept)         |                                                                     | -7.070 | 1.314 | -9.638 | -7.958 | -17.074 | -6.189 | -4.468 |
| paddy_area          | Area of paddy field                                                 | 0.051  | 0.041 | -0.030 | 0.023  | 0.051   | 0.079  | 0.133  |
| Modern Irrigation   | 1 if modern irrigation system is used                               | 4.589  | 1.196 | 2.236  | 3.786  | 4.594   | 5.395  | 6.923  |
| Semi-Modern Irrigat | ic1 if semi-modern irrigation system is used                        | 4.339  | 1.189 | 2.001  | 3.540  | 4.343   | 5.139  | 6.654  |
| age                 | Age of respondent                                                   | -0.029 | 0.008 | -0.045 | -0.035 | -0.029  | -0.023 | -0.013 |
| sex                 | 1 if respondent is female                                           | 0.206  | 0.209 | -0.205 | 0.066  | 0.206   | 0.348  | 0.616  |
| edu                 | year of education                                                   | -0.052 | 0.040 | -0.130 | -0.079 | -0.052  | -0.025 | 0.027  |
| 5 in the Game       | Choosing 5 in the Game; Risk neutral or lover                       | -0.210 | 0.116 | -0.437 | -0.289 | -0.210  | -0.132 | 0.016  |
| network             | Numer of accuitance to ask about farming<br>(maximu number is five) | 0.048  | 0.094 | -0.136 | -0.015 | 0.048   | 0.111  | 0.231  |
| sigma2              |                                                                     | 7.906  | 0.399 | 7.163  | 7.632  | 7.894   | 8.166  | 8.725  |
| 1 in the Game       | Choosing 1 in the Game; Extreme Risk Averter                        | -0.195 | 0.114 | -0.417 | -0.271 | -0.195  | -0.118 | 0.027  |
| 2 in the Game       | Choosing 2 in the Game; Severe Risk Averter                         | -0.204 | 0.110 | -0.419 | -0.278 | -0.204  | -0.130 | 0.009  |
| 3 or 4 in the Game  | Choosing 3 or 4 in the Game; Moderate Risk<br>Averter               | -0.219 | 0.115 | -0.443 | -0.297 | -0.220  | -0.142 | 0.004  |

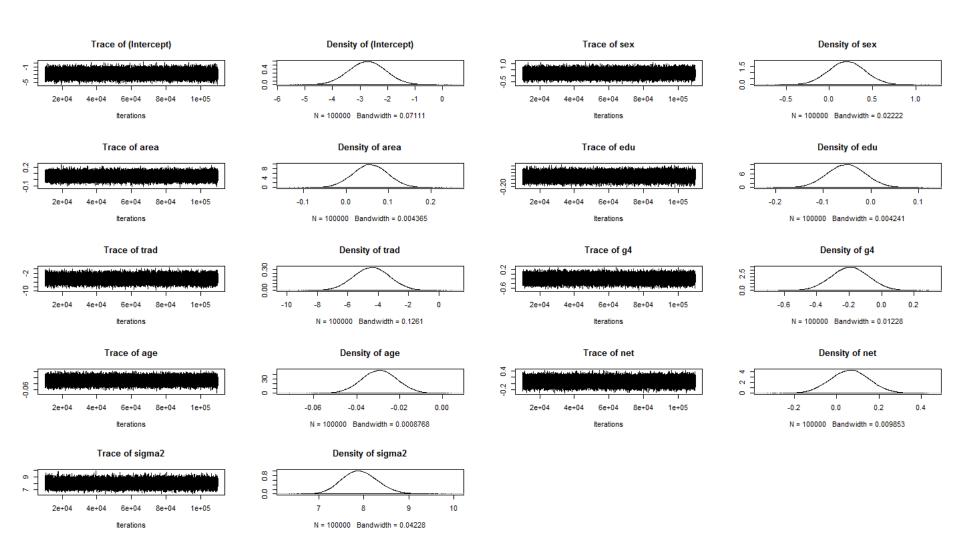
60th Annual Conference the Australian Agricultural & Resource Economics Society,

|                     |                                                                     | Mean   | SD    | 2.5%   | 25%    | 50%     | 75%    | 97.5%  |
|---------------------|---------------------------------------------------------------------|--------|-------|--------|--------|---------|--------|--------|
| (Intercept)         |                                                                     | -7.070 | 1.314 | -9.638 | -7.958 | -17.074 | -6.189 | -4.468 |
| paddy_area          | Area of paddy field                                                 | 0.051  | 0.041 | -0.030 | 0.023  | 0.051   | 0.079  | 0.133  |
| Modern Irrigation   | 1 if modern irrigation system is used                               | 4.589  | 1.196 | 2.236  | 3.786  | 4.594   | 5.395  | 6.923  |
| Semi-Modern Irrigat | ic1 if semi-modern irrigation system is used                        | 4.339  | 1.189 | 2.001  | 3.540  | 4.343   | 5.139  | 6.654  |
| age                 | Age of respondent                                                   | -0.029 | 0.008 | -0.045 | -0.035 | -0.029  | -0.023 | -0.013 |
| sex                 | 1 if respondent is female                                           | 0.206  | 0.209 | -0.205 | 0.066  | 0.206   | 0.348  | 0.616  |
| edu                 | year of education                                                   | -0.052 | 0.040 | -0.130 | -0.079 | -0.052  | -0.025 | 0.027  |
| 5 in the Game       | Choosing 5 in the Game; Risk neutral or lover                       | -0.210 | 0.116 | -0.437 | -0.289 | -0.210  | -0.132 | 0.016  |
| network             | Numer of accuitance to ask about farming<br>(maximu number is five) | 0.048  | 0.094 | -0.136 | -0.015 | 0.048   | 0.111  | 0.231  |
| sigma2              |                                                                     | 7.906  | 0.399 | 7.163  | 7.632  | 7.894   | 8.166  | 8.725  |
| 1 in the Game       | Choosing 1 in the Game; Extreme Risk Averter                        | -0.195 | 0.114 | -0.417 | -0.271 | -0.195  | -0.118 | 0.027  |
| 2 in the Game       | Choosing 2 in the Game; Severe Risk Averter                         | -0.204 | 0.110 | -0.419 | -0.278 | -0.204  | -0.130 | 0.009  |
| 3 or 4 in the Game  | Choosing 3 or 4 in the Game; Moderate Risk<br>Averter               | -0.219 | 0.115 | -0.443 | -0.297 | -0.220  | -0.142 | 0.004  |



N = 100000 Bandwidth = 0.02215

Iterations


#### **Estimation Results : Production Change (2)**

|                       |                                                                     | Mean   | SD    | 2.5%   | 25%    | 50%    | 75%    |
|-----------------------|---------------------------------------------------------------------|--------|-------|--------|--------|--------|--------|
| (Intercept)           |                                                                     | -2.734 | 0.671 | -4.047 | -3.186 | -2.733 | -2.28  |
| paddy_area            | Area of paddy field                                                 | 0.057  | 0.041 | -0.023 | 0.029  | 0.057  | 0.085  |
| Traditional Irrigatio | on 1 if traditional irrigation system is used                       | -4.430 | 1.189 | -6.764 | -5.233 | -4.426 | -3.62  |
| age                   | Age of respondent                                                   | -0.029 | 0.008 | -0.046 | -0.035 | -0.029 | -0.024 |
| sex                   | 1 if respondent is female                                           | 0.201  | 0.210 | -0.207 | 0.061  | 0.201  | 0.343  |
| edu                   | year of education                                                   | -0.052 | 0.040 | -0.130 | -0.079 | -0.051 | -0.02  |
| 5 in the Game         | Choosing 5 in the Game; Risk neutral or lover                       | -0.194 | 0.116 | -0.421 | -0.272 | -0.195 | -0.110 |
| network               | Numer of accuitance to ask about farming<br>(maximu number is five) | 0.062  | 0.093 | -0.119 | -0.001 | 0.062  | 0.12   |
| sigma2                |                                                                     | 7.913  | 0.399 | 7.169  | 7.638  | 7.899  | 8.173  |
| 1 in the Game         | Choosing 1 in the Game; Extreme Risk Averter                        | -0.184 | 0.114 | -0.407 | -0.260 | -0.184 | -0.10  |
| 2 in the Game         | Choosing 2 in the Game; Severe Risk Averter                         | -0.193 | 0.110 | -0.408 | -0.266 | -0.193 | -0.11  |
| 3 or 4 in the Game    | Choosing 3 or 4 in the Game; Moderate Risk<br>Averter               | -0.206 | 0.114 | -0.430 | -0.283 | -0.206 | -0.12  |

60th Annual Conference the Australian Agricultural & Resource Economics Society,

Fremantle, 2-5 February 2016 2

|                       |                                                                     | Mean   | SD    | 2.5%   | 25%    | 50%    | 75%    |
|-----------------------|---------------------------------------------------------------------|--------|-------|--------|--------|--------|--------|
| (Intercept)           |                                                                     | -2.734 | 0.671 | -4.047 | -3.186 | -2.733 | -2.281 |
| paddy_area            | Area of paddy field                                                 | 0.057  | 0.041 | -0.023 | 0.029  | 0.057  | 0.085  |
| Traditional Irrigatio | on 1 if traditional irrigation system is used                       | -4.430 | 1.189 | -6.764 | -5.233 | -4.426 | -3.627 |
| age                   | Age of respondent                                                   | -0.029 | 0.008 | -0.046 | -0.035 | -0.029 | -0.024 |
| sex                   | 1 if respondent is female                                           | 0.201  | 0.210 | -0.207 | 0.061  | 0.201  | 0.343  |
| edu                   | year of education                                                   | -0.052 | 0.040 | -0.130 | -0.079 | -0.051 | -0.025 |
| 5 in the Game         | Choosing 5 in the Game; Risk neutral or lover                       | -0.194 | 0.116 | -0.421 | -0.272 | -0.195 | -0.116 |
| network               | Numer of accuitance to ask about farming<br>(maximu number is five) | 0.062  | 0.093 | -0.119 | -0.001 | 0.062  | 0.125  |
| sigma2                |                                                                     | 7.913  | 0.399 | 7.169  | 7.638  | 7.899  | 8.173  |
| 1 in the Game         | Choosing 1 in the Game; Extreme Risk Averter                        | -0.184 | 0.114 | -0.407 | -0.260 | -0.184 | -0.107 |
| 2 in the Game         | Choosing 2 in the Game; Severe Risk Averter                         | -0.193 | 0.110 | -0.408 | -0.266 | -0.193 | -0.119 |
| 3 or 4 in the Game    | Choosing 3 or 4 in the Game; Moderate Risk<br>Averter               | -0.206 | 0.114 | -0.430 | -0.283 | -0.206 | -0.129 |



## **V.** Summary

- Rather risk lover prefer to feed large animal, pig, which is more difficult to feed. Rather risk averter prefer to feed smaller animals such as chicken.
- Moderate Risk Averter is able to respond to reducing of paddy yield because of natural disaster.
- Impact of network are not found logically.
- Although, perhaps, person who should be targeted to respond to agricultural production variation can be defined in terms of risk behavior, diffusing those strategy among community is difficult because social network is not so tied in the community.
- Strategies including diffusion process to combine agricultural production, animal feeding and aquaculture have to be established based on empirical results.