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Discrete choice models: scale heterogeneity 

and why it matters 
 

Katrina J. Davis, Michael Burton and Marit E. Kragt
 

 

Abstract: Models to analyse discrete choice data that account for heterogeneity in error 

variance (scale) across respondents are increasingly common, e.g. heteroscedastic conditional 

logit or scale adjusted latent class models. In this paper we do not question the need to allow 

for scale heterogeneity. Rather, we examine the interpretation of results from these models. 

We provide five empirical examples using discrete choice experiments, analysed using 

conditional logit, heteroscedastic conditional logit, or scale adjusted latent class models. We 

show that analysts may incorrectly conclude that preferences are consistent across 

respondents even if they are not, or that classes of respondents may have (in)significant 

preferences for some or all attributes of the experiment, when they do not. We recommend 

that future studies employing scale heterogeneity models explicitly state scale factors for all 

samples, choice contexts, and/or latent scale classes, and report rescaled preference 

parameters for each of these groups. 

 

Key words: Discrete choice experiments, heteroscedastic conditional logit models, scale 

adjusted latent class models, interpretation of preferences, best-practice reporting 

JEL classifications: C10, C18, C51, Q51 



1 

Discrete choice models: scale heterogeneity and why it matters 
 

Katrina J. Davis, Michael Burton and Marit E. Kragt 

 

Introduction 

In the discrete choice experiment (Carson and Louviere 2011) literature it is increasingly 

common to use models which account for heterogeneity in error variance. However, there is a 

potential issue in the way that results from these models are reported and interpreted. This 

paper empirically identifies this problem and makes recommendations for best-practice 

reporting of models which allow for heterogeneity in error variance. Discrete choice 

experiments are used to investigate preferences. They are particularly useful when eliciting 

preferences for non-market goods, prospective market goods, or policies which have not yet 

been implemented. In a discrete choice experiment an individual is asked to choose between 

different alternatives which are described by attributes (Adamowicz et al. 1998; Swait and 

Louviere 1993). Choices are then analysed to deconstruct respondents’ preferences based on 

the attributes of the alternatives that they have chosen.  

An identified problem with discrete choice experiments is the need to account for 

heterogeneity when analysing data (Louviere and Eagle 2006). There are two main sources of 

heterogeneity in discrete choice data. The first is in preferences: groups of respondents like or 

dislike different alternatives in a systematic and quantifiable way. This systematic component 

of an individual’s utility may be observed through the characteristics of the alternatives and 

of the individual. Discrete choice experiments aim to measure this preference heterogeneity 

so that individuals’ preferences for policy options or consumer goods can be interpreted in a 

meaningful way. There has been substantial research effort devoted to estimating 

heterogeneity in preferences (for example, Birol et al. 2006; Kragt and Bennett 2011; 

McFadden and Train 2000). The second source of heterogeneity in discrete choice data is due 
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to heterogeneity in the variance of the error process. Error variance is thought to vary 

systematically in response to task complexity and the number of choice alternatives or 

attribute differences (Hensher et al. 1999; Louviere and Eagle 2006).  

To identify heterogeneity in preferences we can use random parameter or latent class models. 

In the former, taste variation amongst individuals is explicitly treated by allowing 

explanatory variables to vary over individuals (Carlsson et al. 2003; Train 1998). The latter 

identifies whether groups or classes of respondents share similar preferences (Burton and 

Rigby 2009). However, both of these models (and all other statistical models in which the 

dependent variable is latent) will confound estimates of model parameters with error variance 

(Louviere and Eagle 2006), and hence confound heterogeneity in preferences with 

heterogeneity in error variance. If error variance is not constant across individuals, then 

marginal utility estimates which do not account for this variation will be incorrect (Louviere 

et al. 2002). This implies a need for models which can separate heterogeneity in preference 

from heterogeneity in error variance so that accurate conclusions about people’s preferences 

can be drawn. 

In response to this need, a number of models that can accommodate heterogeneity in error 

variance have been developed. If two groups of respondents have the same underlying 

preference parameters, but differ in error variance, heteroscedastic conditional logit (HCL) 

models can be estimated (Hensher et al. 1999; Hole 2006). Sources of error heterogeneity in 

these models can include individual or choice task characteristics (Swait and Adamowicz 

2001). Other ways of accounting for heterogeneity in error variance include the use of the 

generalized multinomial logit (G-MNL) model (Fiebig et al. 2010); models for single persons 

(Louviere et al. 2008); and models that decompose random components (Burke and Reitzig 

2007). However, in the context of G-MNL, Hess and Rose (2012) warn that even if 

heterogeneity in both scale and preferences is explicitly modelled, identification may still be 
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an issue. This means that what may be attributed to heterogeneity in scale may be 

indistinguishable from heterogeneity in preferences.  

Other models that can account for heterogeneity in error variance are ‘scale extended’ or 

‘scale adjusted’ latent class (SALC) models (Magidson and Vermunt 2007). These models 

remain a relatively new area of research but feature in an increasing number of studies 

including Burke et al. (2010); Rigby et al. (2015); and Thiene et al. (2014). SALC models 

effectively separate heterogeneity in preferences from heterogeneity in error variance. They 

do this by identifying latent classes of people who differ in their preferences, as well as latent 

scale classes – groups of people who differ by how systematic (or erratic) they are in their 

choices. This difference is described by a scale factor which identifies the amount by which 

the parameter estimates of one group must be rescaled to arrive at the preference parameters 

appropriate to another group (Magidson and Vermunt 2007).  

Scale heterogeneity causes similar issues in best-worst scaling (BWS), a discrete choice 

experiment which has been receiving increasing research attention (Flynn and Marley 2014). 

There are three types of BWS, defined as case 1, 2 or 3 (Flynn 2010). A case 1 BWS, also 

known as the ‘object case,’ contains a number of choice sets which require the respondent to 

choose the “best” and “worst” objects or alternatives from varying sets of three or more 

alternatives (Finn and Louviere 1992). Analysis of the choice data allows each alternative to 

be rank-ordered on a common scale and assessed on the basis of its relative importance 

(Marti 2012). In a case 2 BWS, or ‘profile case,’ respondents are asked to assess the attribute 

levels of a given profile. Case 3 BWS is the closest to a traditional discrete choice 

experiment; respondents select their most and least preferred profile or choice set in which 

levels of attributes are varied (Flynn 2010; Flynn and Marley 2014). Heterogeneity between 

best and worst choices has previously been modelled using the heteroscedastic SALC model, 
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which allows variation in both the error variance of different scale classes and between best 

and worst choices (Rigby et al. 2015).  

Models which identify and allow for heterogeneity in error variance, such as HCL or SALC 

models, address a critical problem in the analysis of discrete choice data – removing the 

confound between preference and scale heterogeneity. If error variance is heterogeneous 

across groups of respondents then models which do not account for this heterogeneity will 

distort utility estimates (Louviere et al. 2002). Scale heterogeneity models therefore offer 

significant advances in the analysis of discrete choice data. However, potential problems 

remain with the interpretation of results from these and other such models which need to be 

fully addressed for the field to advance. This problem is principally linked to the impact that 

scale (heterogeneity in error variance) has on the significance of preference parameters, and 

how that will change the interpretation of individuals’ preferences. Use of HCL or SALC 

models could lead the researcher to conclude that preferences between two or more groups of 

respondents are equivalent if the scale factor is allowed to vary between groups. However, 

interpretation of preferences may change depending on the scale of the group which is being 

reported. Once rescaled, the preferences of certain groups may vary substantially; this can 

lead to misleading conclusions being drawn regarding the significance of whole sample 

preferences. Depending on the impact of the scale factor, the researcher could mistakenly 

conclude that the preferences of one group are significant when they are not, or insignificant 

when they are. In this paper, we contribute to the limited literature on interpreting scale 

parameters to understand heterogeneity in error variance in discrete choice experiments. Our 

findings have important implications for the reporting and interpretation of discrete choice 

experiments when error variance is not uniform over individuals’ choices, or across best and 

worst choices. 
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In this paper we provide five empirical examples which illustrate how preference data and 

scale factors can be misinterpreted. All five are discrete choice experiments with two using 

BWS data. In the next section we provide the theoretical framework for the analysis of 

discrete choice experiments and the theory behind estimating HCL models. Then we describe 

the theory behind analysing BWS data with HCL models and heteroscedastic SALC models. 

In Section 4, we provide a brief description of the methods employed for the analysis of each 

empirical example before describing each example in detail along with the results from its 

analysis. Finally, we provide a discussion of the implications of our findings with particular 

reference to how scale heterogeneity models have been reported in the literature. We 

conclude with recommendations for best practice reporting of results from these models. 

 

Theoretical framework 

Discrete choice experiments 

Discrete choice experiments use Random Utility Theory to draw conclusions regarding 

people’s preferences (McFadden 1974). We define latent utility (U) as a function of the 

vector of attributes (X) and parameters (β) of an alternative m. This expression has a 

deterministic component ��� and a stochastic element captured by the error term ���, which 

varies across individuals (i) and alternatives (m). This error term captures all the factors 

which affect utility and are not captured in the deterministic component, and is assumed to be 

independently and identically distributed (IID) (Train 2009). 

��� =	��� + ���      (1) 

It is well known that there is an identification problem within choice models, such that the 

underlying preference parameters are conflated with the variance (	
�) of the error term 
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(Hensher et al. 1999; Magidson and Vermunt 2007). What are estimated are ‘scaled’ 

preference parameters, where, for the conditional logit model, the scale term λ is defined as 

� = 

��.���
 (Louviere and Eagle 2006). We follow the convention of assuming that λ is 

normalised to unity in estimation, but strictly, one is identifying only the composite of scale 

and preference parameters (Hess and Rose 2012). If the error variance (and hence scale term) 

are not constant across individuals or choices then one runs the risk of confounding 

heterogeneity in preferences with heterogeneity in error variance (Louviere and Eagle 2006).  

If one expects differences in error variance across individuals one can model scale explicitly 

as a function of observable characteristics:  

	
�� ∝ exp	(−��
��) = ��      (2) 

Where  !"	(��
��) is the scale factor (��) which is inversely proportional to the standard 

deviation of the errors, and ��′� is a vector of individual specific characteristics and 

associated parameters (Rigby et al. 2015).  

The probability that alternative m is selected from a set of R alternatives in the choice set is:  

$�� =	 %&'()�*��+

∑ %&'()�*�-+
.
-/0

													1 = 1,4, … , 6    (3) 

Equations (1)-(3) describe a model that can allow for differences in error variance over 

respondents. This model is a heteroscedastic conditional logit model and it assumes 

constancy in preferences across individuals (Hole 2006).  

 

Best-worst scaling 

Analysis of best and worst choices is similarly based on Random Utility Theory. Following 

Rigby et al. (2015) we define the latent utility (7�8�
∗ ), associated with each individual (i) and 

each alternative (m), as having a deterministic component βm, and a stochastic element 
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captured by the error term ��8�. Once again the error term is assumed to be IID. We include 

subscript s, which indicates whether the latent utility is derived in the context of a choice 

which is best or worst, where s = 1 if the choice is best, and s = –1 if it is worst. 

7�8�
∗ =	:� + ���8  (4) 

Heterogeneity is allowed for in the standard deviation of the error component based on 

observable characteristics, and best and worst choices.  

	
�;� ∝ exp	(−��8
� �) = ��  (5) 

Where  !"	(��8
� �) is the scale factor which is inversely proportional to the standard deviation 

of the errors, and ��′� is a vector of individual specific characteristics (Vermunt 2013).  

We assume sequential best worst ranking: respondents first select the best alternative and 

then select the worst alternative from the remaining (M – 1) alternatives (Vermunt 2013). 

Thus the probability that alternative m1 is selected as best (s = 1) from a set of R alternatives 

in the choice set is:  

$�8�0 =	
%&'<)�=�0>

∑ %&'()�=-+.
-/0

													1 = 1,4?, … , 6; 	A = 1  (6) 

The probability that alternative m2 is selected as worst (s = –1) from the m – 1 remaining 

alternatives, conditional upon the choice of best is:  

$�8�B|�0 =	
%&'<D)�=�B>

∑ %&'(D)�=-+.
-E�0

					A = −1    (7) 

In which the sign of the deterministic component is scaled by -1 as it is the least preferred 

(worst) preference being chosen. 

The probability of selecting m1 as the best and m2 as the worst is given by: 

$�,�0,�B =	$�,�0$�,�B|�0       (8) 
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Equations (4)-(8) describe a HCL model that can allow for differences in error variance over 

respondents, and differences in error variance between best and worst choices. Once again 

this model assumes constancy in preferences; both across individuals and best and worst 

choices.  

This model can be extended to a heteroscedastic SALC model in which both latent scale 

classes and preference classes can be accommodated. Given C latent preference classes 

(indexed over j) and D latent scale classes for error variance (indexed over l), the probability 

of selecting best and worst becomes: 

$�8�0|FG =	
%&'<)H=�0I	>

∑ %&'()H=-I+.
-/0

													A = 1    (9) 

And  

$�8�B|�0FG =	
%&'<D)H=�J0I>

∑ %&'(D)H=-I+.
-E�0

													A = −1   (10) 

The probability of selecting m1 as the best and m2 as the worst is given by: 

∑ KFG$�,�0,�B|FG =	∑ KFGFG $�,�0|FG$�,�B|�0,FGFG    (11) 

Where Pcd is the probability that an individual is a member of preference class c and scale 

class d. Membership of scale and preference classes is modelled probabilistically as a 

function of individual specific characteristics using a multinomial logit functional form: 

K�F =
%&'<L�

MNI>

∑ %&'<L�
MNO>

P
O/0

       (12) 

K�G =
%&'<L�

MQH>

∑ %&'<L�
MQR>

S
R/0

       (13) 

Where zi is a vector of individual specific characteristics. 
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Methods 

We present results from a number of empirical examples to illustrate the importance of 

communicating and accounting for the effect of heterogeneity in the scale factor when 

interpreting discrete choice data. The examples for which we estimate conditional logit 

models involve four common steps:  

Step 1: Estimation of separate models for two samples of data.  

Step 2: Estimation of a restricted model, combining both samples, imposing common 

preference parameters and error variance, and testing if this restricted model is 

accepted compared to the models estimated in Step 1.  

Step 3: Estimation of a restricted model, combining both samples, imposing common 

preference parameters but allowing the error variance to differ (i.e. a heteroscedastic 

conditional logit model) and testing if this restricted model is accepted compared to 

the models estimated in Step 1.  

Step 4: Comparing the implications for interpretation of preferences if different 

groups are assumed to have a scale factor of 1 (the ‘baseline’ group) in Step 3.  

To illustrate the issue we first conduct a Monte Carlo simulation to show that one could 

erroneously conclude that two samples have similar preferences as long as they are allowed 

to differ by a scale factor (for brevity, details are not reported here but are available from the 

authors). We generate 5000 replications of simulated data, where one sample is assumed to 

have a linear compensatory utility function and the other sample makes choices at random. 

For each replication we test a series of null hypotheses regarding the randomness of 

responses for each sample and whether both samples have the same preference parameters 

when scale is allowed to vary or not. The number of times that each null hypothesis would be 
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rejected (p<0.05) across the 5000 replications is reported. These results confirm the basic 

argument: preferences can be misinterpreted if scale heterogeneity is not accounted for.  

The first empirical example uses data from a discrete choice experiment where the problem 

of a subsample with fully random preferences is present. Fully random behaviour may be rare 

in real applications, therefore the second empirical example uses a simulated data set where 

in one subsample only a subset of parameters are truly significant, but one may conclude that 

both subsamples have equivalent preferences.  

The third empirical example is from a real case 1 BWS study where models of best and worst 

choices imply that respondents have the same preference parameters once one allows for 

scale heterogeneity. In this example we follow the same analysis outlined above, but instead 

of comparing two subsamples of different individuals, we compare best and worst choices for 

the same individuals. In the fourth empirical example we extend the analysis undertaken in 

example 3 by conducting a SALC analysis on the same data set to evaluate whether there are 

latent classes of respondents with different error variances. Preference parameters are 

rescaled and reported for both best and worst choice models and for all scale classes.  

The fifth empirical example explores the circumstances under which misinterpretation of 

preferences is likely to occur. This example identifies that it is the precision with which one 

estimates scale factors, and not the size of the scale factor, which has the greatest impact on 

the interpretation of preference.  

All conditional logit and heteroscedastic conditional logit models were analysed with Stata 13 

(StataCorp 2013). SALC analyses were performed using Latent GOLD Choice 5.0 (Vermunt 

and Magidson 2005, 2014). Data sets and all model code are available from the authors. 
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Results: Empirical examples  

Empirical example 1: interpretation problems in a real data set 

Our first data set involves a discrete choice experiment which explores the preferences of a 

sample of 318 people regarding a marine biodiversity offset package with multiple attributes. 

This was a forced choice: the framing was that a project would take place. Respondents were 

asked to choose the offset package that they would prefer to see implemented to achieve no-

net ecological loss. Full details of this survey are reported in Rogers et al. (2014). 

Respondents had three alternatives in each choice set (for an example choice set see 

Appendix A). Attributes were the location of the offset, which was either in Western 

Australia (the baseline), Queensland (AU), New Zealand or China; the species of bird being 

protected, which was either the Ruddy Turnstone (baseline) or Eastern Curlew; and the 

proportion of offset that was ‘direct’. For the purpose of the current analysis, individuals 

within the sample are split into two sub-samples A and B (n=250 and 68 respectively). Note 

that this assignment to sub-samples was not part of the original data collection process and 

has been undertaken purely for the purpose of this exposition: individuals who appear to have 

made their choices at random have been identified ex-post and the sample split accordingly. 

The question for the current analysis is whether one would classify the two samples as having 

the same preference structure. 

Table I reports the results for separate conditional logit models for Samples A and B, a 

stacked data set that ignores potential heterogeneity in scale, and two heteroscedastic 

conditional logit models that differ only in which subsample is used as the baseline (scale 

normalised to unity). Note that here, and in all subsequent results, we report the scale factor 

(λ, see Theoretical framework) as opposed to the underlying parameter estimated by the 

software. 
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Table I. Conditional logistic and heteroscedastic conditional logistic regression results for a discrete choice 

experiment eliciting people’s preferences for a marine offset package. 

Attributes
a
 Sample A 

 
Sample B 

 

Stacked A 

and B 

Heteroscedastic: 

Sample A
b
 

Heteroscedastic: 

Sample B
c
 

Queensland -2.51 *** 0.35 * -1.70 *** -2.51 *** -3.45E-05 

New Zealand -0.90 *** -0.04 -0.72 *** -0.90 *** -1.24E-05 

China -1.65 *** 0.27 -1.13 *** -1.65 *** -2.27E-05 

E. Curlew -0.18 *** 0.05 -0.13 *** -0.18 *** -2.41E-06 

Percent of direct offset 0.04 -0.33 -0.08 0.04 5.78E-07 

Scale factors 

Sample A 1 72671.17 ** 

Sample B 2.34E-08
d
 
 

1 

 
Individuals 250 68 318 318 318 

Observations 4452 1182 5634 5634 5634 

Log likelihood -1305.79 -428.68 -1838.98 -1738.65 -1738.65 

LR chi
2
 649.09 8.34 448.43 200.67 200.66 

Prob > chi
2
 0.00   0.14   0.00   0.00   0.00   

*** P>|z| <0.01 
aLocation baseline is Western Australia, and the species’ baseline is to protect the Ruddy Turnstone. 
bNormalised to Sample A, values for Sample B can be calculated by multiplying preference parameters by 2.34E-08. 
cNormalised to Sample B, values for Sample A can be calculated by multiplying preference parameters by 72671.17.  
dIn this case the heteroscedastic conditional logit model can assign any sufficiently small (Sample A) or large (Sample B) 

scale factor to arrive at the alternative preference coefficients, hence there is very poor precision in the estimation of these 

scale factors.  

 

The results of a likelihood ratio test comparing the fit of stacked data for samples A and B, 

with individually estimated models of Samples A and B, roundly reject the null hypothesis 

that sample A and B can be restricted to have equal parameters (χdf=4 = 209.00;  

χ0.05, df=4 = 11.07; p-value < 0.001). The results of a second likelihood ratio test, which 

compared the fit of the stacked data for samples A and B while allowing the scale parameter 

to vary, show that we cannot reject the restriction that the preference parameters are equal 

(χdf=4 = 8.34; χ0.05, df=4 = 9.49; p-value = 0.08).  

It is true that the parameter estimates for sample B are consistent with scaled values of 

sample A, but only if the scaling is so extreme that the parameters become insignificantly 

different from zero. Although this data comes from a real data set, it is unlikely that one 

would conclude that preferences were equivalent if undertaking this analysis: Sample B 
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estimates are clearly not significant, and the scale factor is a very large negative value 

implying a dramatic rescaling (2.34E-08).  

 

Empirical example 2: Simulated dataset where the researcher could erroneously accept 

that samples had equivalent preferences 

Purely random responses like those seen in empirical example 1 may be rare. However, there 

may be data which contains subsamples who are clearly not random in behaviour, and have 

different preferences – but who might be misconstrued as having identical preferences due to 

the variance heterogeneity confound. In this example we use another simulated dataset to 

explore interpretation problems which can arise when comparing two samples with different 

utility functions and one has more systematic preferences. We created two samples: A and B, 

each with 5000 individuals. Both samples chose between three alternatives, each described by 

four attributes: X1, X2, X3 and X4. Sample A was the more systematic group with the 

following latent utility function: 

�T = 0.5W? − 0.5W� + 2WY − 2WZ − 4.5�  (14) 

Sample B was the less systematic group with the following latent utility function: 

�\ = 0W? + 0W� + WY − WZ − 8�  (15) 

Estimation of conditional logit models for each sample individually and for stacked data for 

both samples are shown in Table II. The results for a heteroscedastic conditional logit model 

where stacked data for Samples A and B were allowed to vary by a scale factor are also 

presented.  
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Table II. Conditional logistic and heteroscedastic conditional logistic regression results for a simulated data set with 

two samples: A and B.  

Attributes Sample A 
 

Sample B 
 

Stacked  

A and B 

Heteroscedastic: 

Sample A
a
 

Heteroscedastic: 

Sample B
b
 

X1 0.12 ** 0.03 0.08 * 0.12 ** 0.04 

X2 -0.12 ** -0.04 -0.08 * -0.12 ** -0.04 

X3 0.43 *** 0.14 ** 0.28 *** 0.43 *** 0.14 *** 

X4 -0.41 *** -0.13 ** -0.27 *** -0.41 *** -0.13 *** 

           

Scale factors           

Sample A 1 3.16 *** 

Sample B 0.32 *** 1 

           

Individuals 5000 5000 10000 10000 10000 

Observations 15000 15000 30000 30000 30000 

Log likelihood -5441.26 -5487.79 -10941.14 -10929.05 -10929.05 

LR chi
2
 103.61 10.54 89.97 24.17 24.17 

Prob > chi
2
 0.00   0.03   0.00   0.00   0.00   

*** P>|z| <0.01 
aNormalised to Sample A, values for Sample B can be calculated by multiplying preference parameters by 0.32. 
bNormalised to Sample B, values for Sample A can be calculated by multiplying preference parameters by 3.16. 

 

The results of a likelihood ratio test comparing the fit of stacked data for Samples A and B, 

with Samples A and B when estimated individually roundly reject the null hypothesis that 

sample A and B can be restricted to have equal parameters (χdf=4 = 24.19; χ0.05, df=4 = 9.48; 

p-value = 0.0001). The results of a second likelihood ratio test, which compared the fit of the 

stacked data for samples A and B while allowing the scale parameter to vary, show that we 

cannot reject the restriction that the preference parameters are equal (χdf=3 = 0.02; χ0.05, 3 = 

7.81; p-value = 0.9995).  

What one interprets as significant depends on the normalisation of the scale factor. Where 

this is normalised to Sample A (Heteroscedastic: Sample A) the conclusion would be that all 

preference parameters are significant, but that Sample B is less consistent in their choices 

(λ = 0.32). However, if preference parameters are rescaled to Sample B (Heteroscedastic: 

Sample B), then it becomes apparent that respondents in this sample (B) are not just less 

consistent in their choices, but actually place a zero value upon attributes X1 and X2. 
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Correspondingly, this empirical example demonstrates not only that Sample A’s preferences 

are not equivalent to Sample B’s (despite the apparent ability to stack data sets and model 

them as if they were), but also that the interpretation of the data (statistical significance of 

preference parameters) will depend on whether the model is normalised (and reported) to 

Sample A or Sample B.  

 

Empirical example 3: A best-worst scaling data set where analysis would suggest that 

best and worst choices were the same 

This example uses data from a case 1 BWS survey completed by members of artisanal fisher 

organisations in the central marine region of Chile (Davis et al. 2015). The survey asked 

respondents what they thought was the most important reason not to monitor marine 

management areas. Management areas are geographically specific coastal marine areas where 

territorial user rights for fisheries (TURFs) have been assigned to artisanal fisher 

organisations by the Chilean government for extraction of benthic (bottom-dwelling) 

resources.  

The survey was completed by 52 respondents who were a mixture of management and non-

management members of their fisher organisation. The survey was constructed using a 

balanced incomplete block design (Cochran and Cox 1950). There were seven alternative 

reasons not to enforce, four alternatives shown in each BWS question, and each alternative 

was shown four times throughout the survey (an example BWS question is shown in 

Appendix A). 

Estimation of conditional logit models for best and worst choices and for stacked best and 

worst choice data are shown in Table III. The results for a heteroscedastic conditional logit 
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model where stacked data for best and worst choices were allowed to vary by a scale factor 

are also presented.  

Table III. Conditional logistic and heteroscedastic conditional logistic regression results for best and worst choice 

data from a survey investigating what artisanal fishers in Chile thought were the most and least important reasons 

not to monitor marine management areas. 

Reasons not to 

monitor
a
 

Best 

choices 
  

Worst 

choices 
  

Stacked best & 

worst choices 

Heteroscedastic: Best 

choices
b
  

Heteroscedastic: 

Worst choices
c
  

1 0.11 0.12 0.11 0.13 0.05 

2 0.30 0.26 0.28 * 0.33 * 0.12 

3 -0.15 -0.10 -0.14 -0.17 -0.06 

4 -0.16 0.06 -0.04 -0.11 -0.04 

5 0.69 *** -0.16 0.43 *** 0.62 *** 0.23 *** 

7 -1.46 *** -0.66 *** -0.83 *** -1.56 *** -0.58 *** 

 
Scale Factors           

Best choices 1 
 

2.67 *** 

Worst choices 
      

0.37 *** 1 
 

  

Observations 364 273 637 637 
 

637 
 

Log likelihood -465.17 
 

-386.88 
 

-863.46 
 

-855.25 
 

-855.25 
 

LR chi
2
 78.88 

 
26.03 

 
82.09 

 
16.43 

 
16.43 

 
Prob > chi

2
 0.000   0.000   0.000   0.000   0.000   

*** P>|z| <0.01 
aReason 6 was the baseline. 
bNormalised to best choices, values for worst choices are calculated by rescaling parameter coefficients by a factor of 0.37. 
cNormalised to worst choices, values for best choice are calculated by rescaling parameter coefficients by 2.67. 

 

A likelihood ratio test on the stacked best and worst choice model rejected the null hypothesis 

that the coefficients of models of best and worst choices were the same (χdf=6 = 22.82; χ0.05, 6 

= 12.59; p-value = 0.0009). This implies that marginal utilities differ between best and worst 

choices. 

The heteroscedastic conditional logit model of best and worst choices imposes that marginal 

utilities for both best and worst choices are the same, but allows the error variance between 

best and worst choices to be different. A likelihood ratio test for restricting data did not reject 

the null hypothesis that the coefficients of models of best and worst choices were the same 
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across both decisions (i.e. the model could predict both best and worst choices) (χdf= 5 = 6.39; 

χ0.05, 5 = 11.07; p-value = 0.27). 

The results from Table III would suggest that best and worst choices can be modelled 

together provided that an adjustment in scale is made for worst choices. Rescaling the 

preference parameters of best choices by a scale factor (0.37) returns preference parameters 

for worst choices (Heteroscedastic: Worst choices); these preference parameters are smaller 

than for best choices, but still significant. We could therefore conclude that preferences 

parameters for both best and worst choices are roughly equivalent, but that respondents were 

less consistent when making their worst choices. Although analysis in this example has tested 

for differences in error variance between best and worst choices, it has not explored whether 

groups of respondents were more or less consistent in their choices overall.  

 

Empirical example 4: Preference parameters rescaled to best and worst choices and 

different scale classes may require different interpretations 

We also analysed the data set from example 3 using Latent GOLD Choice 5.0 (Vermunt and 

Magidson 2005, 2014) to assess whether latent scale classes were present in the data
1
 – 

groups of respondents who were or more less similar in their error variance. This analysis 

allowed us to simultaneously model two sources of heterogeneity in error variance: between 

best and worst choices (which was deterministic) and generic choice consistency (which was 

modelled as membership of a latent scale class). 

Results suggested that there were two latent scale classes present (based on CAIC). We 

correspondingly report four different representations of results for the same model (Table 

IV). All models are statistically identical (as indicated by the LL values); the only difference 

                                                 
1
We also tested for differences in preference classes, but these not could be robustly identified. 
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is the normalisation of the error variance for best or worst choices and for different latent 

scale classes. Scale class 1 account for 25% of the sample, and have a larger scale/smaller 

variance, i.e. are more consistent in their choices. 

Table IV. Heteroscedastic scale adjusted latent class model of case 1 best and worst choice data from a survey 

investigating what artisanal fishers in Chile thought was the most and least important reason not to monitor marine 

management areas. 

Reasons not to 

monitor
a
 

4a 
 

4b 
 

4c 
 

4d 
 

5 1.296 *** 0.084 
 

0.001 
 

0.022 
 

4 0.986 ** 0.064 
 

0.001 
 

0.017 
 

2 0.607 
 

0.039 
 

0.001 
 

0.011 
 

3 -0.046 
 

-0.003 
 

0.000 
 

-0.001 
 

1 -0.262 
 

-0.017 
 

0.000 
 

-0.005 
 

7 -73.035 ***
b
 -4.712 *** -0.082 

 
-1.265 *** 

Scale factors             

Best, Scale class 1  1 15.501 *** 895.068 *** 57.743 *** 

Worst, Scale class 1 0.065 *** 1 57.743 *** 3.725 *** 

Worst, Scale class 2 0.001 *** 0.017 *** 1 
 

0.065 *** 

Best, Scale class 2 0.017 *** 0.268 *** 15.501 *** 1 
 

        
Class Membership             

Scale class 1 (25%) 0.000 
 

0.000 
 

-1.054 *** -1.054 *** 

Scale class 2 (75%) 1.054 *** 1.054 *** 0.00 
 

0.000 
 

Observations 637  637  637  637  

Log likelihood -855.250   -855.250   -855.250   -855.250   

LR chi
2
 16.430 

 
16.430 

 
16.430 

 
16.430 

 
Prob > chi

2
 0.0001 

 
0.0001 

 
0.0001 

 
0.0001 

 

*** P>|z| <0.01 

aReason 6 was the baseline. 
bNot well identified by Latent GOLD choice 5.0 (Vermunt and Magidson 2005, 2014) – any sufficiently large negative 

coefficient will ensure that the predicted probability approximates zero; there is consequently very poor precision in the 

estimation of this coefficient. 

 

In Model 4a (Table IV), the choice and scale class normalised to have a scale factor of 1 are 

the “best” choices and latent scale class 1. We note a strong aversion to alternative 7, while 

alternatives 5 and 4 seem to be ranked more highly than 6 (the baseline). Alternatives 2, 3 

and 1 are ranked similarly to 6 (not significantly different from zero).  
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Model 4b (Table IV) is exactly the same statistical model, but normalised so the scale factor 

of 1 relates to scale class 1 and the “worst” choices. All values in Model 4b can be retrieved 

from Model 4a by rescaling by a factor of 0.065. As one would expect, this scale factor 

strongly influences the significance of preference parameters; in Model 4a we know that the 

error variance is much higher for the “worst” answers, and hence the rescaled parameters 

(Model 4b) are closer to and may not be significantly different to zero. Consequently, in 

Model 4b the utility function that underlies the “worst” answer responses looks much more 

like a random process, apart from the strong aversion to alternative 7 which is still significant 

in the “worst” choices as it was in the “best”. 

Model 4c (Table IV) is still normalised so that worst choices have a scale of 1, but now shifts 

the scale class normalisation from scale class 1 to scale class 2, who represent 75% of the 

sample. For this category none of the parameters are significantly different from zero, 

implying that choices are random.  

Model 4d (Table IV) is the final analysis in the set: scale is normalised to equal 1 for the 

“best” choices, and for scale class 2. Here we see no discrimination between alternatives 1-6, 

i.e. respondents are assumed to be indifferent between these alternatives. Once again 

alternative 7 is significantly not preferred. 

Model 4a (parameter estimates normalised to best choices and for scale class 1) presented a 

relatively positive picture: the model seemed to be detecting differences in preference 

ranking, as implied by the significant differences in marginal utility parameters for different 

reasons not to monitor, and there were some interesting effects manifesting themselves in 

terms of error variances. However, a closer inspection of the data suggested that alternative 

interpretations were hidden within this result: for 75% of the sample (scale class 2) there was 

no useful information revealed in their worst choices, and only an aversion to alternative 7 

was significant in their best choices. For the remaining 25% only an aversion to alternative 7 
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was significant in their worst choices and any further differentiation in marginal utility 

parameters was limited to best choices. The implications of these results are that only a small 

proportion (25%) of the population was making systematic choices between different reasons 

not to enforce. However, unless preference parameters were rescaled and reported for both 

best and worst choices and for all latent scale classes, this conclusion may have been 

overlooked.  

Empirical example 5: Under what circumstances may this be an issue?  

In the previous examples we have shown that there is a potential issue with the reporting of 

models that involve heterogeneity in scale: the rescaling implied by the scale parameter may 

not always be inconsequential in the interpretation of the behavioural implications of the 

model for some segments of the population. A relevant question is: when is this likely to be 

an issue? The variable of concern is the degree of precision of the estimated scale parameter. 

Note from equation 3 that the scale parameter λ enters the probability model multiplicatively 

with the preference parameters. Conventionally, one scale class has the scale parameter fixed 

at 1 for identification, and again, by convention, the preference parameters are reported for 

that class. The preference parameters for the other class(es) can be retrieved by multiplying 

by the estimated scale parameter(s). Given that estimates of both preference and scale 

parameters are random variables, the distribution of the scaled preference parameters will be 

given by the distribution of the product of two random distributions. Given the requirement 

that the scale parameter is positive, estimation usually specifies equation (2), so that the 

distribution of the scaled preference parameter will be the product of a normal and log-

normal distribution.  

There is no analytical solution to the moments of this distribution, but some general 

observations can be made. If the scale parameter is identified with absolute certainty, then the 
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significance of the preference parameters for all scale classes will be identical: the application 

of the scaling will alter both the mean and standard error of the parameters equally, leaving 

the z-statistic unchanged. Thus even if the magnitude of those coefficients is changed, the 

behavioural interpretation of which attributes are significant will not be. If one applies the 

convention that the class with the most consistent preferences has a scale normalised to 1 (so 

all other estimated scale values are less than 1), as the standard error of the scale parameter 

increases (i.e. the precision of the estimate of the scale parameter falls) the precision of the 

scaled preferences also falls.  

The implications of these observations are demonstrated below in Table V and Table VI, 

which report results for two (simulated) data sets with a single preference class, but two latent 

scale classes (code available from the authors). For data set 1 (Table V) the scale parameter is 

relatively precisely estimated (z-statistic = -4.07) and there is little change in the implied 

significance of the parameters between Models 1 and 2 despite the rescaling effect. This is 

not the case for data set 2 (Table VI) which has a similar scale parameter (-1.56 in Model 2 

compared to -1.52 in Model 1), but which is less precisely estimated (z-statistic = -3.32). The 

impact of this uncertainty in the estimation of the scale parameter is seen in the difference 

between the significance of Model 3 and Model 4 preference parameters (Table VI). This 

example highlights where issues of interpretation may arise: when the scale parameter is 

relatively imprecisely identified. Table VI emphasises our main conclusion: reporting of 

Model 3 might lead one to conclude “all attributes are significant, and scale class 2 exhibits 

higher scale heterogeneity” when a more accurate evaluation would be “for members of scale 

class 1, all attributes are significant, while for scale class 2 the scale heterogeneity is 

sufficiently large to make choices indistinguishable from random behaviour”.  
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Table V. Results for (simulated) data set 1: one preference class, but two latent scale classes. 

Model 1  Model 2 

Attributes Coeff. z-statistic  Coeff. z-statistic 

X1 -0.66 -5.17  -0.15 -2.12 

X2 0.60 4.48  0.13 2.03 

X3 -1.98 -7.98  -0.43 -2.21 

X4 -1.82 -7.56  -0.40 -2.19 

 

Scale parameters  

Scale class 1 0   1.52 4.07 

Scale class 2 -1.52 -4.07  0  

      

Log likelihood -4092.49   -4092.49  

Table VI. Results for (simulated) data set 2: one preference class, but two latent scale classes. 

 Model 3   Model 4  

Attributes Coeff. z-statistic  Coeff. z-statistic 

X1 -0.65 -5.17  -0.14 -1.76 

X2 0.56 4.39  0.12 1.70 

X3 -1.88 -7.73  -0.40 -1.80 

X4 -1.73 -7.33  -0.37 -1.79 

  

Scale parameters   

Scale class 1 0  1.56 3.32 

Scale class 2 -1.56 -3.32  0  

      

Log likelihood -4098.49   -4098.49  

The impact of uncertainty in the scale parameter estimate on the significance of a scaled 

preference parameter estimate is shown in Figure 1. We assume that we have an estimated 

preference parameter (β) for the scale class with scale normalised to 1, which is normally 

distributed with a mean of 1 and SE of 0.33 (implying a z-statistic of 3.33). We further 

assume that the scale factor has been estimated as a log normal function i.e. λ=exp(z), where 

z is normally distributed, giving an implied mean µ and standard deviation σ of the scale 

factor. The expected value of the scaled preference parameter is given by Sβ= β×λ, i.e. the 

product of a normal and log normal distribution. We evaluate the distribution of Sβ by a 

simulation of 1000 draws from the two distributions, and evaluating the mean and SE of the 

resulting distribution, and its implied z value, for all combinations of 10 values for µ and σ, 



23 

giving us 100 data points showing the relationship between the mean and z-statistic for the 

scale factor, and the implied z-statistic for the scaled preference coefficient. This is replicated 

in a Monte Carlo simulation 1000 times for each data point, and the mean values are reported 

in Figure 1. When the z-statistic of the scale factor is large, then the estimated z-statistic for 

the scaled preference parameter asymptotes to a value of 3.33, as expected. As the precision 

of the scale factor falls, the z-statistic of the scaled preference parameter also falls, 

confirming the results seen in Table V and Table VI. Changing the mean of the scale factor 

has no effect on the relationship. 

 
Figure 1. The relationship between the size of the scale factor, standard error of the scale factor, and the z-statistic of 

an estimated parameter. The symbol ♦ indicates scaled parameter z-statistics <1.96. 

Discussion 

We have demonstrated that preference parameters from discrete choice data can be 

misinterpreted if due care is not taken when communicating the impact of scale factors. The 

importance of the scale parameter has been previously identified (Louviere and Eagle 2006), 
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but its potential to affect the interpretation of discrete choice data has not been empirically 

demonstrated before. We show that interpretation can be a concern when using models which 

allow for scale heterogeneity, such as HCL or SALC models. These models allow 

preferences of two or more groups to be combined into a single model providing the 

preference parameters of different groups are allowed to vary by a scale factor. However, the 

interpretation of preference parameters for this combined model (or their statistical 

significance) may change depending on which group is selected as the baseline. The impact 

of this change is likely to depend on how precisely scale and preference parameters are 

estimated (e.g. z-statistic). We illustrated the potential for preference data to be 

misinterpreted in five empirical examples which were analysed with HCL and 

heteroscedastic SALC models. These examples illustrate how it is possible to draw 

misleading conclusions regarding respondent’s preferences if the estimated parameters and 

their significance are not explicitly considered for all scale classes.  

These results have implications for the interpretation of a number of analyses which have 

now been undertaken using SALC models – both in a standard discrete choice context, for 

example Mueller Loose et al. (2013), and when using BWS, for example Rigby et al. (2015). 

Closer examination of how these, and other publications, report and interpret scale factors 

reinforces our conclusions regarding the potential for misinterpretation and the need for best 

practice reporting of models when the error variance of different groups is allowed to vary.  

Of the 15 papers that we reviewed that use SALC models
2
, most report scale factors and scale 

class membership. However, none extend their discussion of the potential impacts of 

heterogeneity in error variance across latent scale classes beyond noting that one latent scale 

class is more or less “consistent” in their choices than the other (see, for example Mueller et 

                                                 
2
Bartczak and Meyerhoff (2013), Burke, et al. (2010), Campbell, et al. (2011), Flynn, et al. (2013), Flynn, et al. 

(2010), Glenk, et al. (2012), Islam (2014), Louviere, et al. (2013), Mueller Loose, et al. (2013), Mueller, et al. 

(2010), Rigby, et al. (2014), Sagebiel and Rommel (2014), Schlereth, et al. (2012), Tapsuwan, et al. (2014), and 

Thiene, et al. (2012. 
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al. 2010). This omission of the impacts of scale heterogeneity is also observed in a BWS 

context. For example, Rigby et al. (2015) conduct a heteroscedastic SALC analysis of BWS 

choice data regarding researchers’ journal preferences. They mention that respondents were 

less consistent when identifying worst choices compared to best choices, but do not rescale 

preference parameters for worst choices to ensure that their interpretation of preferences was 

robust to rescaling.  

It is important to note that heterogeneity in error variance across different samples, choices, 

and/or latent scale classes will not cause interpretation problems in all analyses. For some 

analyses
3
 it is unlikely that the authors’ interpretation of results would change if they rescaled 

preference parameters for the alternate latent scale class. This is likely to be the case where 

the scale and preference parameters are precisely estimated (higher z-statistics). However, 

where scale and preference parameters are less significant (lower z-statistics) interpretation is 

more likely to be sensitive to rescaling. Preference parameters which are significant for one 

scale class may become insignificant once rescaled for the alternate scale class. Despite this 

potential for interpretation to change, none of the 15 SALC papers that we reviewed 

speculate on how their results – or conclusions drawn from those results – might change if 

they rescaled preference parameters for alternate latent scale classes or “worst” choices. 

Some of these papers do not report scale factors or parameters despite using a SALC model 

(e.g. Islam 2014) – for these papers the reader cannot interpret the significance of preference 

parameters or whether the authors’ conclusions would be robust to rescaling.  

We have shown potential problems that can arise when interpreting the significance of 

preference parameters without accounting for scale. If care is not taken to report and interpret 

the impact of scale factors, erroneous conclusions may be drawn regarding individuals’ 

                                                 
3
Re-estimation and rescaling of preference parameters to alternate groups caused only marginal changes to 

interpretation of results presented in Rigby et al. (2015), Tapsuwan et al. (2014), and Bartczak and Meyerhoff 

(2013). The z-statistics for scale factors in these analyses were -11.65, 3.83, and 4.35 respectively. 
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preferences for different alternatives. This potential for misinterpretation will not exist in 

equal measure for all analyses, but cannot be ascertained a priori. Thus future studies should 

explicitly state scale factors for all samples, choice contexts, and/or latent scale classes; and 

report rescaled preference parameters for the same. Otherwise, it is not clear to either authors 

or readers whether preference data is being accurately interpreted or portrayed.  
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Appendix A 

This section provides the choice sets used in empirical examples 1 and 3.  

A.1 

Choice set used for the discrete choice experiment in empirical example 2 regarding 

preferences for a marine biodiversity offset package (Figure A.1). The survey framing was 

that a project would take place, and respondents were asked only for their preferences 

regarding the attributes of the offset package to achieve no-net-loss ecologically. An example 

of the choice question is given below. 

 

Figure A.1. Example of the offsets discrete choice question from empirical example 2. 
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A.2 

Best-worst scaling (BWS) question used for the discrete choice experiment in empirical 

example 4 (Figure A.2). The survey asked respondents what they thought was the most and 

least important reason not to monitor marine management areas, and was completed by 

members of artisanal fisher organisations in the central marine region of Chile (Davis et al. 

2015). Management areas are geographically specific coastal marine areas where territorial 

user rights for fisheries (TURFs) have been assigned to artisanal fisher organisations by the 

Chilean government for extraction of benthic (bottom-dwelling) resources. 

 

What 
MOST 
affects 
your 

decision 

The decision not to monitor 

a management area 

What 
LEAST 
affects 
your 

decision 

✔ 
1. We feel too uncomfortable monitoring 

or denouncing poachers 

 

 2. Government punishments for poachers 
are not effective 

 

 3. Monitoring represents a high personal risk 
for guards 

 

 4. The management area is too far 
from the caleta 

✔ 

Figure A.2. Example of best-worst choice set from empirical example 4. Respondents were asked what they thought 

was the most and least important reasons not to monitor marine management areas. 
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