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Introduction

U.S. farmland has achieved total returns of 10%-13% over the past decade with

volatility of only 4%-5% (NCREIF Farmland Index). In addition, farmland returns

have had low or negative correlation with traditional asset classes. These character-

istics make farmland an attractive asset class for investors. Farmland, as a real asset,

can also provide a hedge against inflation because farmland returns exhibit positive

correlation with inflation. Over the past decade, annual U.S. farmland total return

exceeds U.S. inflation rate by 3.55% (NCREIF Farmland Index and Consumer Price

Index - Urban). With growing global demand for agricultural commodities and lim-

ited land to expand capacity, some investors expect that farmland will continue to

generate superior returns for the foreseeable future.

Efficient risk management and portfolio management are critical to create optimal

risk/return profile for all investments. An essential issue in portfolio risk management

is how marginal time series and the correlation structure of a large number of asset

returns are treated. Most previous studies on farmland portfolio analysis were per-

formed under the Capital Asset Pricing Model (CAPM) framework (Barry, 1980;

Hennings, Sherrick, and Barry, 2005; Noland, Norvell, Paulson, and Schnitkey, 2011).

The linear correlation assumption implied by the CAPM, however, is not adequate to

capture complex correlation structure such as tail dependence and asymmetry that

potentially exist among farmland asset returns. In addition, the normality assump-

tion of the CAPM for asset returns has proven to be inappropriate in agriculture

(Just and Weninger, 1999). Copula modeling is a suitable alternative. Margins

and dependence can be separated by the copula function. The choice of marginal

distribution is arbitrary and various copula types exhibiting flexible and complex cor-

relation structures are available. Chen, Wilson, Larsen, and Dahl (2014) used the
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Gaussian copula to model joint distribution of agricultural asset returns to account

for non-normal margins. However, the Gaussian copula can only capture symmetric

correlation structure and allows no tail-dependence. Besides, the Gaussian copula, re-

strictions exist for most other multivariate copulas (Student’s t copula, Archimedean

copulas, etc.). This inflexibility issue can be overcome by the pair-copula modeling

proposed by Joe (1996). In particular, the regular vine (R-vines) representation of

pair-wise copulas specifies arbitrary bivariate copulas as building blocks and hence

can model more complicated correlation structure.

This study applies vine copulas to model farmland asset returns. We focus on

annual state-level cropland returns for 24 major U.S. agricultural producing states.

This data set covers the period spanning from 1967 to 2014. Following Brechmann

and Czado (2013), ARMA models with appropriate error distribution are fitted to

each return. R-vine copulas are then used to model the correlation structure of

standardized residuals obtained from the marginal time series models. Given the

high dimensionality of the vine copula modeling, a sequential maximum likelihood

method is applied to specify the R-vine structures and estimate the parameters.

The vine model mitigates the curse of dimensionality and facilitates interpretation of

the correlation structure. This model loosens the restrictive normality and linearity

assumptions under the classical CAPM framework, and allows for complex and flexible

correlation structure such as tail-dependence. We compare this model to relevant

benchmark models using the Gaussian and t copulas. The results show that the vine-

copula based model provides a better a fit as indicated by modeling-fitting criteria.

We show that, farmland portfolio management can benefit in terms of forecasting

tail risk (Value-at-Risk) and constructing optimal portfolio more accurately for both

passive and active portfolio management. Our results show that the model provides

an approach to precisely assessing and allocating risk of the farmland portfolio under
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the modern risk management framework.

Empirical Framework

The copula was first introduced by Sklar (1959). Sklar’s theorem states that if F is

an arbitrary k-dimensional joint continuous distribution function, then the associated

copula is unique and defined as a continuous function C : [0, 1]k → [0, 1] that satisfies

the equation

(1) F (x1, . . . , xk) = C [F1 (x1) , . . . , Fk(xk)] , x1, . . . , xk ∈ R,

where F1(x1), . . . , Fk(xk) are the respective marginal distributions.

In this way, the joint distribution of x1, . . . , xk can be described by the marginal

distributions Fi and the correlation structure captured by the copula C. Note that the

copula function is flexible in the sense that the variables xi can be modeled with any

kind of marginal distributions. In turn, if the marginal distributions are continuous,

a unique copula exists corresponding to the joint distribution. That is,

(2) C(u1, . . . , uk) = F
[
F−11 (u1), . . . , F

−1
k (uk)

]
, u1, . . . , uk ∈ [0, 1] ,

where F−11 (·), . . . , F−1k (·) are the corresponding quantile functions. Therefore, the

copula can be defined as an arbitrary multivariate distribution on [0, 1]k with all

marginal distributions being uniform.

Let c denote the density function of the copula C, which can be described as

(3) c(u1, . . . , uk) =
∂kC(u1, . . . , uk)

∂u1 · · · ∂uk
,

The corresponding joint density function of x1, . . . , xk can then be written as

(4) f(x1, . . . , xk) = c [F1(x1), . . . , Fk(xk)]
k∏

i=1

fi(xi).

where f1(x1), . . . , fk(xk) are marginal density functions.

Basic copula families are generally composed of parametric and nonparametric
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copulas. Empirical studies typically use parametric copulas because of their superi-

ority in simulation. There are a large number of different parametric copula families.

The most frequently used are elliptical copulas and Archimedean copulas. Despite the

effectiveness of basic copulas for modeling low dimentional such as pair-wise correla-

tion, they have strict restrictions in terms of the correlation structure. For example,

elliptical copulas imply symmetric correlation structure in the tails. Archimedean

copulas, while allowing for asymmetric tail dependence, imply symmetry of the per-

mutation of variables and represent multivariate correlation structure with only one

single parameter.

Vine copulas, introduced by Aas et al. (2009), overcome the restrictions imposed

by basic copulas and exploit the usefulness of basic copulas in bivariate case as well.

For a set of k random variables with density function f(x1, x2, . . . , xk), it holds that

(5) f(x1, . . . , xk) = fk(xk)f(xk−1 | xk)f(xk−2 | xk−1, xk) . . . f(x1 | x2, . . . , xk).

Joe (1996) shows that each of the components in equation (5) can be decomposed

into the product of a pair-wise copula and a conditional marginal density:

(6) f(x | v) = cx,vk|v−k
(F (x | v−k), F (vk | v−k))f(x | v−k).

Following this composition, the joint density f(x1, x2, . . . , xk) can be represented

in terms of only pair-wise copulas. In the case of three random variables, for example,

the density can be written as
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(7) f(x1, x2, x3) = f1(x1)f2(x2)f3(x3)c1,2(F1(x1), F2(x2))

c1,3(F1(x1), F3(x3))c2,3|1(F (x2 | x1), F (x3 | x1)).

The pair-wise copulas C1,2,C1,3,and C2,3|1 are chosen independently so that a wide

range of correlation structures can be modeled. The constrution can be generalized in

essentially the same way for correlation structures with higher dimensions. Vines are

used to represent this pair-wise copula construction graphically. Kurowicka and Cooke

(2006) show that a regular vine (R-vine) on k random variables consists of a sequence

of linked trees T1, . . . , Tk−1. The copula density function is uniquely determined by

(8) c(F1(x1), . . . , Fk(xk)) =
k−1∏
i=1

∏
e∈Ei

cj(e),k(e)|D(e)(F (xj(e) | xD(e)), F (xk(e) | xD(e))),

where each edge e = j(e), k(e) | D(e) in Ei is associated with a bivariate copula

density cj(e),k(e)|D(e) and xD(e) represents the subvector of (x1, x2, . . . , xk) indicated by

the indices contained in D(e). Figure 1 shows an example of the trees in the case of

three variables.
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Figure 1. Three-dimensional R-vine trees

Many different combinations of pair-wise copulas are possible for a vine copula

specification. In the case of k random variables, there are k!
2
· (k−2)!

2!
different R-vines.

Following Aas et al. (2009), a heuristic method is used to specify the R-vine trees.

This approach, while captures the strongest dependencies in the lowest level trees,

avoids numerical errors in higher level tress as well (Joe et al., 2010). For the lowest

level tree in a R-vine, we select a tree on all nodes that leads to the maximum for

the sum of pairwise dependencies. Kendall’s τ is used as a measure of association

between the dependency and the copula parameter since it is indifferent to nonlinear

transformation. Therefore, the lowest level tree is selected by solving the following

optimization problem
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(9) max
∑

edges e={i,j} in the tree

| τij |,

where τij is the Kendall’s τ associated with the edge e = {i, j} in the tree. Given

the specified tree, the pair-wise copulas are selected from a range of copula families

using the Akaike information criterion (AIC). This procedure is iterated sequentially

for higher level trees until the whole vine structure has been determined. Commonly

used Gaussian and t copulas are selected as benchmarks for model-fitting comparison.

Application

Our data set consists of state-level average cash rents and land values in 24 US states

spanning from 1967 to 2014. All the data are taken from the USDA databases. Cash

rents are used as an approximation for the net income of land assets. Annual land

asset return is calculated as the sum of income return and capital appreciation for

each of the states. This creates a 24-dimentional time series data set of land asset

returns.

We investigate the correlation structure of the land asset returns using R-vine

copulas. A commonly used two-step procedure is adopted to estimate the parameters

of the copula model. The method is called inference for margins (IFM) (Joe and

Xu, 1996). Individual land asset returns are first modeled by univariate time series

models. ARMA(1,1), AR(1), MA(1), and white noise models with Student’s t error

distribution are first used to account for potentially heavy tails. The standardized

residuals are tested using Kolmogorov-Smirnov goodness-of-fit test and the model

with the highest p-value is selected if the p-value is greater than 5%. If the p-value is

less than 5%, we stepwisely increase the terms in the ARMA model until the p-value
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from the respective Kolmogorov-Smirnov test on the standardized residuals is greater

than 5%. Also, the degree of freedom of the Student’s t error distribution is greater

than ten, a normal distribution is used if the corresponding p-value is greater than

5%.

The standardized residuals are then modeled by the R-vine copula using the max-

imum likelihood method. The vine copula model is compared with the Gaussian

copula and Student’s t copula in terms of model fit. The Gaussian copula and Stu-

dent’s t copula are also estimated using the maximum likehood method. Table 1

shows the results for the three alternative models. It is obvious that the vine copula

model provides a superior fit than the other two benchmark models, indicating the

correlation structure among land asset returns is more complicated than what the

standard models imply.

Table 1. Goodness-of-fit Statistics of Alternative Copula Models for

Farmland Asset Returns

Log-lik. # of Par. AIC BIC
R-vine 1204.61 443 -1523.22 -694.28

Gaussian 647.88 276 -743.76 -227.31
Student’s t 658.40 277 -764.80 -248.34

Optimal Portfolio Construction

With the estimated R-vine copula model and marginal time series of the farmland

asset returns, the optimal portfolio is constructed by the following procedure:

(1) A sample of the standardized residuals is simulated from the R-vine copula model.

(2) Forward looking asset returns are projected using the simulated residuals and the

estimated marginal time series.

(3) Portfolio return is the weighted average of individual asset return in the portfolio.
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The portfolio return is maximized with respect to a risk measure (standard deviation,

value-at-risk, etc.)

Table 2 reports the risk/return characteristics of the minimum variance portfolio

according to the R-vine copula model as well as tobtained from the mean-variance

optimization. The results show that the both the expected return and standard

deviation are higher using mean-variance optimization based on historical data than

those obtained from copula models with a forward-looking point of view. This might

indicate the farmland market is going to experience downward trends in the near

future. Investors therefore should be alerted on the declining rate of return from

this alternative asset type. The R-vine copula model identifies less risky portfolio

with a higher expected return compared to the Gaussian or Student’s t copula model.

This shows the superiority of R-vine copulas in modeling potentially complicated

correlation structure among farmland asset returns.

Table 2. Risk/return Profile of the Minimum Variance Portfolio Based

on Alternative Models

Expected Return Standard Deviation
R-vine 8.09% 4.75%

Gaussian 7.57% 4.92%
Student’s t 7.64% 5.05%

Mean-variance 10.20% 6.60%

Conclusions

The vine-copula based model used in this study can serve as an initiative for more

elaborate models for farmland portfolio management. One direction for future re-

search would be to explore dynamic vine-copula structures to take into account the

dynamics of correlations among farmland asset returns for forward-looking portfo-
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lio management. Another direction could be the consideration of estimation risk to

account for the uncertainty of correlation parameters in the vine-copula model.
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