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Abstract

We examine how reducing subsidies for federal crop insurance affects the risk man-
agement portfolios of US soybean producers. We apply the portfolio optimization
approach of Das and Statman (2013) to model how producers risk management port-
folios change as subsidies for federal crop insurance premiums change, and examine
how the changes to the risk management portfolios impact farmers on-farm income
and exposure to downside risk. We optimize farmers risk management portfolio by
adjusting the budget shares dedicated to each of four risk management tools: returns
on production, forward contracting, savings, and crop insurance.

1 Introduction

This paper examines the impact of crop insurance premium subsidies on the risk man-

agement strategies producers use to manage their on-farm income. Crop insurance

premiums are offered to farmers at subsidized rates in order to encourage them to

proactively purchase federally-backed crop insurance and thus reduce the need for ad-

hoc disaster assistance. However, the level of subsidies to offer has been a subject of

debate in Congress leading up to the Agricultural Act of 2014, also known as the 2014

Farm Bill, as well as during the 2016 federal budget negotiations.

In recent years, crop insurance has become the second largest agriculture support

program in the US. Currently, 80 percent of cropland is covered by some form of fed-

eral crop insurance. The most popular form of crop insurance, Revenue Protection,

accounts for approximately 70 percent of all crop insurance policies. Revenue Protec-

tion insures revenue losses caused by unexpected low yields or low prices1. Subsidy

levels decrease as the to insurance coverage level increases. The largest subsidies are

offered for the largest revenue losses, and taper off for smaller revenue losses from

insured revenue levels.

The current subsidies rates were set in 2000 under the Agricultural Risk Protection

Act (ARPA) of 2000, at a time when revenue insurance uptake levels were lower. Table

(1) shows premium subsidy levels for buy-up coverage on Basic units before and after

ARPA2. At current subsidy rates, farmers have to pay roughly one-third of the total

cost of insuring large revenue losses. At most, farmers have to pay 62% of the premium

cost for insuring losses below 15% of expected revenue. The key policy question is to

understand how farmers would shift their production and risk management decisions

in responses to changes in these subsidy rates.

1Payments from Revenue Protection are based on the higher of the projected price and harvest price.
2Realized revenues of less than 50% of insured revenue are covered through a separate catastrophic

coverage policy. Catastrophic coverage is offered for only a nominal administrative fee.
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Table 1: Subsidies rates for crop insurance premiums before and after the Agricultural Risk
Protection Act of 2000 for Basic units (O’Donoghue, 2014)

Coverage Level (%) 50 55 60 65 70 75 80 85
Pre-ARPA subsidy 55 46 38 32 32 24 17 13
Post-ARPA subsidy 67 64 64 59 59 55 48 38

Since the early 1990’s agricultural economists have been investigating the demand

for crop insurance, both exploring the patterns for purchases and possible behavioral

reasons for their choices. Under the assumption that the premiums calculated by the

federal government are actuarially fair, the standard expected utility model, suggest

that risk averse farmers should purchase crop insurance. There is evidence that subsidy

rates influence farmers’ insurance purchase decisions. Goodwin (1993) first explored

the effect of loss-risk on the demand elasticity and found evidence of adverse selection.

He found that producers with greater loss-risk have a more inelastic demand for crop

insurance, while producers who have a small loss-risk have an more elastic demand for

crop insurance.

However, very few farmers purchase crop insurance at the full actuarially fair pre-

mium. Recent work by O’Donoghue (2014) uses panel data collected by the Economic

Research Service and concludes that changes in subsidies significantly affect the cover-

age level selected by farmers (i.e. percent of expected revenue or yield that the farmer

chooses to guarantee under the crop insurance policy).

While the empirical support for price sensitivity is well established, the literature

has had less success in establishing the behavioral foundations for insurance demand.

Studies on different producer populations and at different points in time have not always

estimated parameters consistent with risk aversion (Moschini and Hennessy, 2001).

These studies were also not always designed to differentiate the effect of risk preferences

from the effect of technology, phuysical constraints, or financial asymmetries (Just and

Pope, 2003). Babcock (2015) looks at the demand for crop insurance through the lens

of cumulative prospect theory3. Under cumulative prospect theory, individuals tends

to overweight the probability of extreme events and underweight “average” events.

Babcock’s analysis shows that individuals tend to treat crop insurance payments as a

lottery and from decouple the realized crop revenue.

The contradiction between insurance demand and risk aversion has also received

much attention in the finance literature. In 1948, Friedman and Savage observed

3Cumulative prospect theory was first developed by Kahneman and Tversky (1979) and later extended
the theory (Tversky and Kahneman, (1992)).

2



that individuals who purchase insurance may purchase lottery tickets as well, i.e. an

individual can show both risk averse and risk seeking behavior (Friedman and Sav-

age, 1948). This paradox has caused problems for mean-variance portfolio theory

(Markowitz, 1952). Mean-variance portfolio theory maximizes the mean return of the

portfolio, while minimizing the variance of the total return. The main criticism of

this popular method is that mean-variance portfolio theory does not solve Friedman

and Savage’s puzzle. Shefrin and Statman (2000) offered at theoretical solution to this

issue with the development of behavioral portfolio theory, which satisfies the Friedman

- Savage puzzle by allowing agents to optimize over a combination of secure and risky

assets. Das and Statman (2013) extended Shefin and Statman’s model to include port-

folios with complex derivatives. Das and Statman’s application is especially useful for

agricultural risk management because returns from federal crop insurance and forward

contracting are both derivatives of a producer’s crop revenue.

In this paper, we apply a behavioral portfolio theory approach to study farmers’

responses to changes in crop insurance subsidies within the context of their portfolio of

risk management tools. We construct a simple portfolio model for on-farm income for

producers - which includes crop sales, crop insurance, forward contracting, and savings

- and solve for the optimal allocation given a farmer’s risk profile, preferences, budget

constraint, and insurance subsidy levels. We solve the model for representative soybean

producer in three counties with widely different yield risk profiles: Champaign County,

IL; Robeson County, NC; and Minnehaha County, SD. Then we conduct sensitivity

analysis to examine the crop insurance purchases of farmers under different subsidy

levels and budget constraints. We find that the level of revenue risks affects producers’

sensitivity to changes in crop insurance subsidies. Without subsidies, producers across

all risk levels prefer to self-insure rather than purchase actuarially fair insurance.

2 Theory

We model farmers’ approach to risk management as if farmers are allocating assets

across a portfolio of risk management options. Each risk management option has a

profit that depends jointly on realized yields and prices. Farmers allocate their avail-

able budget across the available risk management options with the goal of maximizing

expected on-farm income while ensuring that the probability of realizing an overall

operating loss for the season is within a specified limit.
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2.1 Optimization Problem

Following the approach of Das and Statman (2013), we construct the following portfolio

optimization problem:

V = max
{qi}

∫
u∈U

[
n∑

i=1

πi(qi, u)] · p(u)du (1)

s.t.

n∑
i=1

Cost(qi) = B, qi ≥ 0 ∀ i = 1, 2, . . . , n (2)

∫
e∈E

p(e)de ≤ α, E = [u|
n∑

i=1

πi(u, qi) ≤ H] (3)

where u indexes the state of the world, i indexes the available risk management options,

qi is the quantity purchased for risk management option i, and πi(qi, u) is the profit

margin for the risk management option i in each state of the world. Parameters H and

α define key behavioral parameters for the model. H is the critical threshold for profit

across all risk management options. α is the critical theshold of probability of earning

a profit below H. E is the subset of all states of the world U where the total return

from all risk management strategies is less than H. B is the total available budget the

farmer can devote to all risk management options.

Equation (1) says that farmers choose quantities for each available risk manage-

ment strategies in order to maximize the expected profit across all states of the world.

Equation (2) constraints all quantities to be individually non-negative, and collectively

exhaust the available budget. Equation (3) constrains the allocation across all risk

management strategies such that the cumulative probability of earning a profit less

than H is less than or equal to α. In this set up, farmers can choose to an allocation

that allows for the possibility of earning profit less than H in some states of the world

E, provided the total probability of those states occurring is less than α.

With this set-up, we are assuming farmers are risk neutral for gambles above the

critical threshold H. We could introduce risk aversion by changing the objective func-

tion to embed the profit into a concave utility function, such as a power-expo utility

function. Loss aversion enters the model as the shadow value on the risk constraint

(Equation 3). Farmers who are more loss averse, have smaller values of α, which

increases the extent to which the constraint impacts the optimal portfolio allocation.

Because we have assumed risk neutral farmers, the objective function is linear over

the feasible set defined by the two constraints. Depending on the parameters of the
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budget and risk constraints, it is possible to have a null feasible set. If the cost of

producing a crop and purchasing risk management tools is high enough, and the risks

faced by the farmer are sufficiently large, then the farmer may not be able to afford

to purchase enough risk management in enough possible states of the world to ensure

that his probability of earning profit less than H is below α. In that case, the farmer

would optimally choose not to produce that crop (i.e. exit the market).

We consider two models with different sets of risk management options. In the first

model, we allow for three risk management options: savings, forward contracting, and

insurance. This model treats on-farm production decisions as fixed, such as if farmers’

decide input and management decisions following some sort of best practice guidance.

With production decisions fixed, farmers’ ex-ante risk profiles are determined outside

the model. The risk management decision is then to allocate their residual budget

between savings, forward contracting, and insurance in order to mitigate risk of an

operating loss given this pre-determined risk profile.

In the second model, we include on-farm production decisions as a fourth risk

management option with the model. This assumes farmers factor risk considerations

into their production choices. By comparing optimal portfolio allocations in model

1 and model 2, we can estimate the impact of changes in insurance subsidy rates on

production choices such as fertilizer and pesticide application levels, labor inputs, and

irrigation.

2.2 Calculation of Profit for Each Risk Management Op-

tion

To operationalize our models, we calculate the distribution of profit margins for each

risk management option: savings, forward contracting, and insurance.

Savings. We calculate the profit margin for savings as πs(qsave, u) = qsave · (1 + ρ),

where ρ is the risk-free return rate. Savings has the same profit in all states of the

world, and the total cost of savings is simply Cost(qsave) = qsave.

Sales. We calculate the profit margin for forward contracting as:

πforw(qf , u) =


qf · Pf − [qf − Yactual(u)] · Pm(u)− Cost[Y (T )] if qf > Yactual(u)

qf · Pf + [Yactual(u)− qf ] · Pm(u)− Cost[Y (T )] if qf ≤ Yactual(u)

(4)
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where qf is the quantity forward contracted, Pf is the forward contract price, Pm(u) is

the spot market price, Yactual(u) is the harvested quantity, and Y (T ) is the expected

yield given the farm production plan T . Forward contract quantities and prices do

not depend on the realized state of nature, u, but market prices and actual yields do.

Similarly, costs of planting are incurred for a given production plan before the state

of nature is revealed. Cost[Y (T )] is calculated as the total cost of production for plan

T with associated expected yield Y (T ). Production costs are independent of realized

state of the world, but depend on on-farm decisions made, T . In model 1, we treat

T as given, which specifies the probability distribution of u and determines Y (T ). In

model 2, we allow farmers to choose T endogenously within the model.

Profit from forward contracting is a piece-wise function that depends on how the

quantity forward contracted compares to realized yields at harvest time. In the case

of a bad yield where qf > Yactual(u), the farmer has to purchase the shortfall from

the spot market. In the case of a good harvest, the farmer has additional output to

sell on the spot market in excess of his forward contracted amount. If qf = 0, then

all production is sold on the spot market and the profit is simply the net return to

production.

Insurance. We restrict our analysis to revenue-based crop insurance, and assume

insurance covers the full acreage planted. Farmers choose a coverage rate qins, where

100% corresponds to full insurance and 0% means no insurance is purchased. Insurance

provides a payment to farmers whenever the actual revenue is below a specified percent

of expected revenue:

Payment(qins, u) = max[[0, qins · Y (T ) ·max[Pins, Pm(u)]− Yactual(u) · Pm(u)]] (5)

The right-hand side of Equation (5) takes the larger of 0 and the difference between

the insured revenue level and actual revenue. Actual revenue depends on the revealed

state of the world. Insured revenue also depends on the state of the world because of

the second maximum operation. max[Pins, Pm(u)] allows for expected revenue to be

based on whichever is larger: a pre-set price, Pins, or the actual market price.

The profit margin for insurance is:

πins(qins, u) = Payment(qins, u)− (1− s)Cost(qins) (6)

where s is a government subsidy on the cost of insurance, and (1− s)Cost(qins) is the

premium paid by farmers for insurance.
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3 Methodology

We construct a stochastic programming problem to compute the optimal portfolio

allocation of a representative farmer for a given county. We use Monte Carlo sampling

and a Sample-Average Approximation (SAA) Method to construct distributions of

yield risk and price risk for the representative farmer based on historical yield and

price data. Then we draw a large sample of yields and prices from these distrubtions,

and use these values to solve the programming program described in Equations (1) - (3)

for the optimal portfolio allocations across the available risk management strategies.

We take advantage of the discrete nature of insurance coverage and forward contracting

to simplify the computational complexity of searching for optimal portfolio allocations.

3.1 Parameters Used in Model 1

To parameterize the model, we follow these procedures:

Distribution of prices. We assume prices are uncorrelated with yields and follow

a log-normal distribution. We use the projected price and variance estimate provided

by RMA to parameterize the price distribution used for our analysis.

Distribution of yields. To generate a distribution for county average yields, we

use 40 years of county average yields for each county, detrend the data using a loess

regression, and then fit a kernal density function to the detrended data. To generate a

distribution for a representative farmer’s idiosyncratic risk, we follow the methodology

of Coble and Dismukes (2008). We pick a candidate standard deviation of idiosyncratic

risk for the representative farmer and compare the implied expected premium rate for

the candidate standard deviation to the actual average effective premium rate published

by RMA for the given county. Then we conduct a grid search over a range of candidate

standard deviations to find an optimal candidate standard deviation that minimizes

the difference between implied expected premium rate and actual average effective

premium rate.

The distribution of yield risk for a representative farmer is then the sum of system-

atic and idiosyncratic risk. We assume idiosyncratic risk is normally distributed with

mean zero and standard deviation equal to the optimal candidate standard deviation

fromt he Coble and Dismukes procedure. Systematic risk is modeled as the kernal

density function generated from the detrended county average yields. We draw from

each of these distributions 10,000 times, adding the draw of county and idiosyncratic

yields each time, to create the yield distribution used for our analysis.

Behavioral parameters. We assume the threshold value for farmers is zero eco-
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nomic profit, H = 0. For α we explore a large range of possible value to determine the

impact of α on diversification.

3.2 Parameters Used in Model 2

In order to incorporate on-farm production decisions as a risk management strategy, we

need to construct an empirical distribution of yield risk based on observed county av-

erage yields, individual farm yields, and farm inputs. Using data from the Agricultural

Resource Management Survey, we estimate the following regression model:

ln(Yj) = β0 + β1 · ln(Y county) +
∑
i

αi · ln(xi) + εj (7)

where j is the set of all sampled farmers, i is the set of all inputs xi, Yj is observed

ex-post yields, and εj is the residual error term. We use the estimated αi parameters

in our model where production decisions are determined endogenously. εj provides a

measure of yield risk. The empirical application of this model is not included at this

time.

4 Data

We model the risk management allocation for a representative soybean producer in

three different US counties. To generate the yield risk distribution for a representative

farmer in each location, we use NASS county yield data for soybean production from

1975-2014. County base premium rates for different coverage levels are taken from

RMA published figures. We use RMA’s published daily prices and price volatility to

generate the price risk distribution.

Subsidy rates and farmer premiums come from RMA. RMA offers insurance cov-

erage levels from 50% - 85% in 5% increments. Forward contract prices are calculated

as the project price plus a transaction cost. Following Etienne et al (2016), we set the

transaction cost at $0.16 per bushel.

For the empirical application we examine three counties with significant soybean

production: Champaign County, IL; Minnehaha County, SD; and Robeson, County.

Champaign County harvests over a quarter of a million acres of soybeans every year.

This area has low yield risk and high yields for soybeans. Although soybeans are widely

produced in Minnehaha County, the yield risk is much higher compared to Champaign

County, IL. The coefficient of variation 4 for soybean gross revenue risk in Champaign

4The coefficient of variation is the standard deviation divided by the mean. For these values, we use the
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Figure 1: Historical yield and trend for
soybeans in Champaign County, IL

County, IL is 0.28, while the coefficient of variation for Minnehaha County is 0.38.

Robeson County, NC is the largest soybean producing county on the East Coast of the

United States despite the high coefficient of variation (0.65) for soybean revenue.

Figures (1) - (3) show the historical yields for these three counties along with a

LOESS regression trend line. The historical yields for these three counties display

several differences among their soybean production. Champaign County not only has

the highest average yield, but the variance is smaller than the variance of soybean yields

of Minnehaha or Robeson Counties. Robeson County has both the lowest average yield

and the highest variance among the three counties. Several soybean yield observations

for Robeson County were below 15 bushels per acre, which would be considered a

catastrophic loss.

In this analysis all counties are faced with the same price distribution, which is

shown in Figure 4. This distribution shows the frequency of prices when prices are

simulated for 100,000 draws. The price is centered around the 2015 projected price of

$9.73 per bushel. The 2015 RMA volatility factor of 0.16 is used to create variation in

the distribution.

simulated yields and prices produced by our analysis.
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Figure 2: Historical yield and trend for
soybeans in Minnehaha County, SD

Figure 3: Historical yield and trend for
soybeans in Robeson County, NC
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Figure 4: 2015 Soybean Price Frequency

5 Results

5.1 Yield and Price Risk Distributions

Before delving into the risk management strategies for each representative farm of

the three counties, we observe the simulated soybean revenue for each representative

farm without crop insurance or forward contracting. Each distribution is constructed

from 100,000 independent draws of yields and prices that are then multiplied together

to generate the 100,000 soybean revenue draws. Figures (5) - (7) illustrate the vast

differences in soybean revenue among the representative farms of the three counties.

In Champaign County (Figure 5), average soybean revenue is greater than $550 per

acre, and the probability of complete crop failure is close to zero. The soybean revenue

for the representative farm of Minnehaha County (seen in Figure 6) averages slightly

less than $490, and there is a small but noticeable probability mass a $0 per acre.

Finally, Figure (7) shows the representative farm of Robeson County, NC. Robeson

County has the lowest average soybean revenue and a large probability mass at $0 per

acre. Over 11% of simulated soybean revenue draws result in failed acreage.

Intuitively, these soybean revenue distributions show that a producer in Robeson

County, NC faces a much greater probability of a severe revenue loss compared to

a producer in Champaign County, IL or even Minnehaha County, SD. If farmers in

all three counties had the same budget constraints, soybean production costs, and

tolerance for losses, the farmer living in Champaign would be able to spend less on in-

surance and forward contracting, and have more available for savings, than the farmers

11



Figure 5: Soybean revenue distribution for the representative farmer of Champaign County,
IL

in Minnehaha or Robeson Counties.

5.2 Role of Loss Aversion

Now that the soybean yields and revenues have been described for each county and

representative farmer, we move on to the optimization of the financial risk management

portfolios of representative farm. Since each county is located in a different geographic

area, the representative farm for each county is faced with different costs of production.

For this stage of the analysis, we differentiate between accounting and economic costs.

We assume the total economic cost5 to be equal to the expected values of soybean

revenue of each county as shown in Figures (5) - (7): $560 per acre for Champaign

County, $485 for Minnehaha County, and $310 for Robeson County. If economic total

cost is greater than expected revenue, then the producer will exit in the long run.

If the total economic cost is less than expected revenue, then farming soybeans will

increase in entry and raise the rental rate of the land until economic total cost is equal

to expected revenue. Although the total economic cost can vary substantially across a

country, per acre operating costs for non-irrigated soybeans typically fall between $175

per acre and $200 per acre [Needs source].

One large factor in this analysis is the parameter α, which represents the producer’s

tolerance to losses below a given profit. For some values of α, a solution to the pro-

5Economic cost includes both the explicit operating cost and opportunity costs.
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Figure 6: Soybean revenue distribution for the representative farmer of Minnehaha County,
SD

Figure 7: Soybean revenue distribution for the representative farmer of Robeson County, NC
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ducer’s portfolio does not exist. In other words, a farmer is unable diverse his portfolio

to eliminate a satisfactory amount of risk because his crop production is too variable.

For Champaign County, IL, the representative farmer can have an α that is close to

zero (i.e. no loss aversion) when production costs and risk management expenditures

are within $20 of the expected value of production. Budgets need to be decreased in

order to increase the impact of loss aversion on the optimal portfolio allocation. To

see an impact for α = 0.2, we must work with 25% less budget.

At current parameter levels, however, the representative producers of Minnehaha,

SD and Robeson, NC must be much more tolerant of the potential for losses than

the representative soybean farmer in Champaign County. The representative producer

of Minnehaha, SD and the representative producer of Robeson, NC must have an

α = 0.50 or higher in order to be willing to engage in any soybean production. In other

words, the representative farms of Minnehaha, SD and Robeson, NC must be willing

to accept a 50 percent chance of realizing an economic loss from growing soybeans even

after applying their optimal risk management strategies. Note that if we consider only

accounting profit6 (i.e. opportunity cost not included), then the representative farmer

of Minnehaha County, SD is willing to produce soybeans even with low tolerance for

losses (α close to zero). However, the representative farmer of Robeson County, NC

still has to be willing to accept at least a 30% chance of earning an accounting loss after

applying their optimal risk management strategies in order to be willing to produce

soybeans.

Large-scale differences in loss aversion across the population of US farmers is pos-

sible, but has not heretofore been suggested by the literature. There are a couple

explanations of why this variation in α may be an artefact of our model. First, pro-

ducers in these counties may not have their total economic cost equal to the expected

value of soybean sales. Land and capital values reflect the profitability of all crops

grown in the county, not just soybean returns. As we continue on with this research

and delve deeper into ARMS, this issue may be resolved. Another related hypoth-

esis is that farmers receive additional value from double cropping soybeans in areas

with winter wheat or another crop. Therefore, the producers care less about making

a profit on the soybeans themselves and more on greater potential yield of the wheat

that comes from double cropping with soybeans. Our model does not as yet account

for production of multiple crops.

6Here we use the estimates from the Economic Research Service cost of production for soybeans.
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5.3 Optimal Portfolio Allocations

In Table 2 to Table 4, we examine the optimized risk management portfolio allocations

for the representative farms in Champaign County, IL; Minnehaha County, SD; and

Robeson County, NC. We also examine how the producers reallocate their budgets

under different budget constraints and subsidy levels for crop insurance.

For each representative farmer, we examine the case when the producer has $15

and $20 per acre to dedicate to their financial risk management strategies. We look

at three subsidy scenarios: no subsidies, subsidy levels equal to those used before the

Agricultural Risk Protection Act of 2000 (“Pre-ARPA”), and current subsidy levels

after the Agricultural Risk Protection Act of 2000 (“Post-ARPA”). In each scenario,

the representative farmer choses an optimal coverage level of the Revenue Protection

(RP) insurance between 50-85 percent in 5 percent increments. If the producer does

not select a Revenue Protection policy, then the producer is automatically enrolled in

Catastrophic coverage (“CAT”). Unlike RP, CAT does not have a premium7. Each

table displays the optimal quantity selected as well as the cost of the optimal quan-

tity in parentheses. “Bushels Contracted” is the number of bushels forwarded by the

representative farm along with the cost of forwarding in parentheses.

The portfolios of the three representative farms share several common elements.

Despite allowing for major differences in the tolerance of loss-risk across reprentative

farmers, all three representative farmers do not purchase Revenue Protection when no

premium subsidies are offered. Also farmers are more likely to use forward contracting

under the smaller budget constraint, although this result does depend on the subsidy

regime. Also for all three representative farmers and under the different budget con-

straints, the farms purchase a lower coverage level of Revenue Protection under the

Pre-ARPA subsidy level. Consistent with our a priori expectations, these tables show

that as the premium subsidies increase, the representative farmers are willing to spend

more on Revenue Protection.

The representative farms not only vary in the revenue risk, but how they respond

to changes in subsidies. Table 2 shows that the change in premium subsidies moving

from the Pre-ARPA level to the Post-ARPA level increases the insurance coverage

by a 5 percent increment under both the $15 and $20 budget for the representative

farm of Champaign, IL. The representative farm for Minnehaha County, SD increases

RP coverage by 10 percent and 15 percent under the $15 and $20 budget constraints,

respectively, as the premium subsidy increases from the Pre-ARPA to Post-ARPA

7CAT does have an administrative fee that is not included in this analysis because the fee is negligible
on a per acre basis.
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Table 2: Champaign County, IL

Risk Management Budget: $15 α = 0.20
Coverage Level Bushels Contracted Saved

None CAT 2 ($0.32) 14.68
Pre-ARPA 75 ($9.21) 7 ($1.12) 4.67
Post-ARPA 80 ($9.95) 7 ($1.12) 3.93

Risk Management Budget: $20 α ≈ 0
Coverage Level Bushels Contracted Saved

None CAT 7 ($1.12) 18.88
Pre-ARPA 80 ($15.86) 3 ($0.48) 3.66
Post-ARPA 85 ($17.40) 4 ($0.64) 1.96

Table 3: Minnehaha County, SD

Risk Management Budget: $15 α = 0.5
Coverage Level Bushels Contracted Saved

None CAT 20 ($3.20) 11.80
Pre-ARPA 55 ($4.76) 40 ($6.40) $3.84
Post-ARPA 65 ($6.79) 47 ($7.52) $0.69

Risk Management Budget: $20 α = 0.5
Coverage Level Bushels Contracted Saved

None CAT 0 ($0) 20
Pre-ARPA 65 ($11.22) 47 ($7.36) 1.42
Post-ARPA 80 ($18.80) 0 ($0) 1.20

levels. Finally, for the representative farm of Robeson County, the producer will only

purchase Revenue Protection under the $20 budget constraint with the Post-ARPA

subsidy levels.
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Table 4: Robeson County, NC

Risk Management Budget: $15 α = 0.5
Coverage Level Bushels Contracted Saved

None CAT 5.76 9.24
Pre-ARPA CAT 40 ($6.40) 8.60
Post-ARPA CAT 43 ($6.88) 8.12

Risk Management Budget: $20 α = 0.5
Coverage Level Bushels Contracted Saved

None CAT 27 ($4.32) 15.68
Pre-ARPA CAT 16 ($2.56) 17.44
Post-ARPA 55 ($12.64) 43 ($6.88) 0.48

5.4 Comparison of Actual Insurance Enrollments and Model

Predictions

Figure (8) shows the total premiums and farmer-paid premiums from 1998 to 2014.

All three counties show a general increase in both total premiums and farmer-paid

premiums consistent with increasing enrollment in crop insurance over time. From 1998

to 2000, producers were faced with lower premium subsidies compared to 2001 to 2014.

Therefore, for all three counties the difference between total premiums and farmer-

paid premiums is smaller between 1998-2000 compared to 2001 to 2014. Since higher

premium subsidies are given to lower coverage levels, a larger difference between the

total premium and the farmer-paid premium indicates a larger percentage of farmers in

the county enrolled in lower coverage levels. Conversely, a smaller difference between

the total premium and the farmer-paid premium indicates more farmers elected to

purchase higher coverage levels of crop insurance.

Robeson County, NC has the greatest difference between total premium and farmer-

paid indicating that soybean farmers in Robeson County tend to enroll in lower coverage

levels. Farmers in Champaign County tend to enroll in higher levels of crop insurance

coverage. The soybean farmers’ crop insurance choices of Minnehaha County, SD more

closely resemble the choices made by Champaign County, IL soybean farmers compared

to those in Robeson County, NC. However, the farmers’ in Minnehaha County tend to

enroll in coverage levels lower than farmers in Champaign County but higher coverage

levels than Robeson County, NC. Overall, the current crop insurance choices for these

counties resemble the outcome of the portfolio optimizations in our model.
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Figure 8: Insurance premiums 1998-2014 for selected counties

6 Conclusion

We examine how reducing subsidies for federal crop insurance affects the risk man-

agement portfolios of US soybean producers. We apply the portfolio optimization

approach of Das and Statman (2013) to model how producers’ risk management port-

folios change as subsidies for federal crop insurance premiums change, and examine

how the changes to the risk management portfolios impact farmers’ on-farm income

and exposure to downside risk. We optimize farmers’ risk management portfolio by

adjusting the budget shares dedicated to each of four risk management tools: returns

on production, forward contracting, savings, and crop insurance.

From this analysis, we find that the level of revenue risk affects the producers

sensitivity to changes in the subsidy levels. In the event of no subsidies, producers

across all risk levels prefer to self-insure rather than purchase actuarially fair insurance,

a result which is consistent with the historical relationship between enrollment in federal

crop insurance and premium subsidies. This paper has novel contributions to the

methodology for simulating demand for crop insurance. Both the methodology and
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results are likely to be of interest for researchers and policy makers concerned with

agricultural risk management.

Our subsequent analysis will include an empirical application with our second model

that incorporates production inputs. This will allow modeling financial risk manage-

ment decision to be made jointly with other input decisions.
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