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ABSTRACT
Warmer temperatures and variable rainfall are likely to affect Saskatchewan’s production of
canola and spring wheat. This study employs moments-based approaches (full- and partial-
moments) to estimate the impact of precipitation and temperature changes on canola and spring
wheat yield distributions. Environment Canada weather data and Statistics Canada crop yield,
planted area, and summer fallow area are employed for 20 crop districts over the 1987-2010
period. Our results show that the average crop yields are positively associated with the growing
season degree day: @ nd pre-growing season precipitation, while negatively affected by
extremely high temperatures™Furthermore, the climate measures have asymmetric effects on the
o)
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INTRODUCTION
The latest Intergovernmental Panel on Climate Change (IPCC) (2014) report indicates that,
without adaptation measures, global mean temperature increases of 2°C or more above
preindustrial levels are expected to have negative effects on agricultural crops such as wheat,
corn, and rice in both temperate and tropical regions of the world. Warmer temperatures
associated with de oisture conditions can lead to severe drought and affect yield
potential and impact crc@uc jon. Canadian climate model projection studies indicate a
gradual decline in annual prﬂ in the prairie province of Saskatchewan (Price et al. 2011)

which is likely to affect agricultural crgps (Lemmen and Warren 2004). Not only is unreliable

precipitation likely to be a climate constractor, but the reduction in frost days is expected
to influence the crop growing season in Saskat an (Grisé 2013).

The aim of this paper is to estimate the effec&( ipitation and temperature on crop
yield distributions by a full- and partial-moment-based ap ﬁThis study contributes to the
earlier work by Antle (2010, 2013) and Schlenker and Roberts (2009 /treating precipitation
and temperature as separable inputs consistent with the estimation app @)y Ortiz-Bobea and
Just (2013), who argue that monthly temperature and precipitation variables have different
production effects on the output distribution. The full- and partial-moments-based approach is
applied to canola and spring wheat yield in the province of Saskatchewan to illustrate its
flexibility to capture the risk and skewness effects of climate and non-climate variables on the

positive and negative yield distributions. Saskatchewan is considered Canada’s breadbasket,

having some of the richest soils, and is a major producer of wheat and canola. Wheat and canola



are Saskatchewan’s leading crops. In 2014, Saskatchewan’s production of spring wheat and
canola totalled respectively 9.1 and 7.9 million tonnes or 43% and 48% of Canada’s spring
wheat and canola production (Statistics Canada, 2015). Saskatchewan is the leading Canadian
field crop exporter with $2.2 billion and $2.5 billion, respectively, of non-durum wheat and
canola exports in 2014 (Government of Saskatchewan, 2015).

In the next section we present a literature review which is followed by the theoretical

framework and data description in the third and fourth sections, respectively. In the fifth and

sixth sections the ; strategy and results are presented. The final section summarizes our

conclusions and identifies s for future research.
; IRERATURE REVIEW

Over the past eighty years, there have béen multiple econometric modeling approaches adopted
in the empirical literature to study the eﬁelimate change on crop production. One of the
earlier Canadian climate studies looked at the ir@t of \weather conditions on wheat yields in
western Canada (Hopkins 1935). Most of the earlier cli crop yield studies were by
agronomists and meteorologists who analyzed how weath yield effects varied over the
crop growth life cycle. The two basic approaches adopted by agr@nomists included
simulation/crop growth models (Jones et al. 2003; Lobell and Ortiz-M/r@io 2007; Qian et al.
20093a; Qian et al. 2009b; Lobell and Burke 2010; Asseng et al. 2011; Wang et al 2011; Ozdogan
2011; Urban et al. 2012; Potgieter et al. 2013) and regression/correlation analyses (Robertson
1974; McCaig 1997; Kutcher et al. 2010; He et al. 2013). Crop growth models required detailed
plant physiological data, and in combination with simulated weather data from global circulation
models were able to predict how crop yields such as wheat responded to climatic weather

conditions.



The economic literature adopted the Just-Pope (2009) production function (Chen et al.
2004; Isik and Devadoss 2006; McCarl et al. 2008; An and Carew 2015) and hedonic models
(Deschénes and Greenstone 2007; Mendelsohn and Reinsborough 2007;Wang et al. 2009) to
analyse the impact of climate change on agricultural output and profit. Because of unreasonable
restrictions in the Just-Pope modelling approach, recent empirical studies have adopted flexible
moment-based approaches (Antle 1983; Antle 2010) to analyse the effect of climate on crop
output yield distributions (Antle et al. 2013; Tack et al. 2014).

In general, t' le empirical approaches adopted to study the effects of climate
change on agricultural @a provided mixed results attributed partly to model
specifications, weather data em Wnd country location. In terms of temperature effects,
global warming is expected to have a negative impact on global yields of wheat and maize
(Lobell and Field 2007), with wheat and m @ elds declining, respectively, by 5.5% and 3.8%
(Lobell et al. 2011). These temperature yield re@on ects may offset some of the crop yield
improvements achieved from technological progress. E ing a regression model that allows
for spatial dependence in crop yields across counties, Che@(zom) show that Chinese maize
and soybean yields are expected to be adversely affected by high te}eratures by the end of
the century with larger yield reductions for soybean than for maize. Fléxi egression models
employing finer scale weather data reveal that temperature thresholds above 29°C (maize), 30°C
(soybeans), and 32°C (cotton) can have harmful effects on crop yields (Schlenker and Roberts
2009). Apart from crop yield reductions, variability of crop yields is likely also to be impacted
by warmer temperatures. Urban et al. (2012) find that, without adaptation, U.S. maize yield
variability is expected to increase as a result of projected changes in temperature. Schlenker et al.

(2006), employing a hedonic approach and a nonlinear transformation of the temperature



variables, conclude that different warming temperature scenarios will result in a 10%-25%
decrease in U.S. farmland values.

While quite a number of studies have concentrated on the adverse effects of global
warming on crop yields or agricultural profits, a few studies employing cumulative growing
season weather variables have examined the combined effects of temperature and precipitation
on agricultural output. Climate model projections of future changes in temperature and
precipitation suggest that uncertainties in growing season temperatures will have a greater impact
on crop productioe 0 the changes in precipitation (Lobell and Burke 2008). Chen et al.
(2004) found increases @pi tion decreased yield variability for U.S. wheat, maize, and
cotton, while increasing sorg’hj tion risk. Conversely, higher temperatures decreased
cotton and sorghum yield variability bug'showed mixed results for wheat depending on the
functional form employed. O

High-latitude countries like Canada are @/ to benefit from global warming, especially
in the northern regions and the southern and central praiti€s (Agriculture and Agri-Food Canada
2014). While drier weather is projected to have the greate ct on the Canadian prairies, in
terms of expanding the growing season and the production of higher yue crops such as
soybeans (Weber and Hauer 2003), the major climate change challeng! be changes in water
availability in the summer season, greater frequencies of droughts, and developing crop
adaptation strategies (Sauchyn and Kulshreshtha 2008).

Our study employs Statistics Canada (2013) Saskatchewan crop yield and production
data for 20 crop districts that differ in soil and climate characteristics. We employ partial-
moments functions to test for asymmetric input effects on output and analyze how yield

distributions for different crops (canola, spring wheat) respond to pre-growing season



precipitation and monthly temperature and precipitation over the crop growing season. Our
estimation procedure corrects for autocorrelation and tests for spatial correlation in weather
variables, an issue that has been neglected in many climate change studies. The benefits of this
study will help policymakers and scientists develop improved adaptation strategies to lower yield
variance and mitigate yield risk of unpredictable weather events.
THEORETICAL FRAMEWORK

Consider a stochastic production function given by y = g(x, v), where y = crop yield, x = non-
climate variables, a 4@ random weather variables that influence crop yield. The production
function is described as

9(x,v) = f1(X,B) +’e,y/<\ (1)
where X represents observed characte’é for climate and non-climate variables, f; (X, ) =
E[g(x,v)] is the mean function, and € = @ — f1(X, B) is a random disturbance term with

the variance and skewness given as f, (X, 5, ) > andgf5 (X, B3 ) (Di Falco and Chavas 2009).

Following Antle (2010, 2013), crop district ave op yields follow a distribution

o (Yi:|Xit), where Yjequals crop yield in crop district i an lod t, and X, represents observed
climate and non-climate variables in crop district i and period t. rdifig to Tack et al. (2012),
various functional forms of ¢ () are related to different types of mome(% le (1983) utilized
the identity function ¢(Y;;) = Y;; and the model conditions the raw moment on explanatory
variables. In contrast, Schlenker and Roberts (2006 and 2009) utilized the natural logarithm

function ¢ (Y;;) = In(Y;;) and this model conditions the natural logarithm moment on X;;, while

Tack et al. (2012) utilized the higher-power function ¢;(Y;;) = Yi{,j € N and models the higher-

order raw moments. In our study, the crop yield’s elasticity is our major interest, thus the natural



logarithm function is adopted in this study. The mean function, which is transformed prior to
estimating the higher-moment functions, is described as:
In(Yy) = Xie B+ €, E(€i¢ |1Xie) =0,i =1,...,N,
t=1,..,T, (2)
where the moments are assumed to be linear functions of the exogenous variables, while €;; is a
random error with mean zero. Equation (2) can be very flexible in terms of incorporating
quadratic and interaction terms. Employing equation (2), the higher moment function for crop

yields is given as:

Ei]t = Xt Bj %E'(uﬁtlxit) =0,forj=2,3,...,i=1,..,N,t
=4/ } (3)
where the errors (u;;.) are correlated a€ross al:equations and require correction for

heteroskedasticity using weighted least sq heteroskedastic-consistent estimator (Antle
2010). One advantage of the moments-based mQ%at it contains a different parameter
vector, g;, for each moment equation. According to An @10), specification of the mean
function is important to the properties of the higher-order-m%e;cgmated residuals.

L 4
ﬂfonditioning variables

have on asymmetry related to the negative and positive deviations from @man (Antle et al.

However, one disadvantage of equation (3) is that it limits the effe

2013). To address the asymmetric limitations of the full-moments model, Antle (2010, 2013)

employed equation (3) to derive the partial-moments model which is described as:
leiel’ = XitBin + Wien, E(Wjien |Xie) = 0, forj=2,3,..,i=1,..,N,t =1,..,T for €
<0 (4)
il = XieBip + Wity » E(Wjiep|Xie ) = 0, for j=2,3,..,i=1,..,N,t=1,..,T fore;

> 0. (5)



The empirical model for the full-moments model is described as:
€] = Bjo + B1SDAy; + Bj2SFAy + BjsTEM;; + BjaPPRE;, + B;sPRE; + BjsXHT;, +
Bi7TIMy+ujie, j = 2,3, ..., (6)
where el’t is the j™ moment function for average crop vyield (canola, spring wheat) in crop district
i and period t, SDA;; equals the seeded area (canola, spring wheat), SFA;; is the share of summer
fallow area or management measure to conserve soil moisture for the following year’s crop,

TEM;, equals tempﬁ or growing degree days during the growing season (May-September),

PPRE;; equals preci ring the pre-growing season (October-April) which captures
moisture previously stored oil from snowfall, PRE;, equals precipitation during the
growing season (May—Septembe&i quals the number of excessive heat days during the
growing season with temperatures greater thas™30°C, and T1M;, is a time trend variable that
captures technological (e.g., new varieties a and agronomic management improvements.
DATA DESCRIPTION OURCES
The agriculture sector in Saskatchewan is sensitive to the f climate change with the
southern region of the province more susceptible to fluctuatig()@mer precipitation (Grisé
2013). Agriculture production in Saskatchewan has changed over t gﬁ} with diversified
cropping systems and larger planted areas devoted to pulses (peas, lentil d canola. This has
been facilitated in part by the adoption of zero or minimum tillage technological practices. By
2008, about 65% of the seeded area in Saskatchewan was devoted to zero tillage (Nagy and Gray
2012). While the adoption of zero tillage practices offers several environmental and agronomic
benefits (e.g., soil conservation), it has contributed partly to the reduction in soil moisture

conserving practices, like summer fallow, which declined from 5.9 million ha in 1987 to 1.1

million ha in 2014 (Statistics Canada 2015). In the 1980s, summer fallow as a conservation
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practice typically occurred in the drier areas of the province to increase soil water reserves and
was used primarily by wheat producers (Williams et al. 1988).

This study is based on a comprehensive field crop data set collected by Statistics Canada
(2013) on the total annual crop area seeded/harvested, summer fallow area, yield, and production
of all the major crops grown in Canada by province at the crop district level (Figure 1). The time
period coverage selected for this study was based on the availability of comparable spring wheat
and canola yield, planted area, and summer fallow area data for the 20 crop districts over the
1987-2010 period. wan’s crop districts are located in three distinct agro-climatic zones
(sub-humid, semi-arid, @ hich correspond to the Black/Gray, Dark Brown, and Brown
soils (Mkhabela et al. 2011)& e'of lower annual precipitation in the Brown soil zones
located primarily in the southwestern pgft of the province, crop yields tend to be lower than
yields in the Black/Gray or Dark Brown ss (Table 1). Generally, crop districts in the
southern areas of the province experience the \/\Qest inter and summer months, while the
northern part of the province receives the highest annu cipitation (Grisé 2013). By 2100,
increases in maximum temperature in the semiarid zone o ﬁairies are projected to increase
from 2.5°C to 4.5°C, coupled with increases in inter-annual varia oni/ﬂnual precipitation
(Price et al. 2011). Saskatchewan’s agriculture production vulnerabilit @ibuted to extreme
environmental variations from such unpredictable climatic conditions.

Figure 2 shows how canola and spring wheat yield and seeded area have varied over the
last twenty-nine years. Crop yields have increased over time which may be attributed to a
combination of improved genetics, better agronomic management practices, and favourable
climatic conditions. Despite the significant positive spring wheat yield trends, seeded area

decline has been much more precipitous than canola. The spring wheat seeded area decrease over
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the last three decades has been attributed, in part, to the introduction of new crops like pulses and
canola into crop rotations coupled with higher relative commaodity prices (Grisé 2013).

The climate of Saskatchewan can be characterized as consisting of long cold winters,
warm summers, and insufficient precipitation during the growing season (Williams et al. 1988).
Summary weather statistics for the 20 crop districts are shown in Table 2. Weather data from
Environment Canada meteorological weather stations included actual daily observations and
modeled data (gridded data). The nearest grid points from 10km gridded data were used to fill
any missing obserT e weather data for crop districts provided by Agriculture and Agri-
Food Canada was for th@wi weather data categories: daily temperature, minimum
temperature, maximum temper M daily precipitation (Chipanshi 2013).

Apart from pre-growing seasongprecipitation, cumulative growing season precipitation,
and cumulative growing season growing ays (GDD), intraseasonal weather variables for
growing season precipitation and GDD were co@Jcte since studies (e.g., Robertson 1974;
Kutcher et al. 2010) have shown that canola and spring heat phenological crop growth stages
respond differently to seasonal weather conditions. SinceQ@&elopment and growth stages of
spring wheat follow a monthly pattern, Robertson (1974) consideged t}monthly averages of
weather in measuring the response of Saskatchewan spring wheat to s{ weather climatic
patterns using field-plot experimental conditions. Moisture from growing season precipitation
and the amount of rainfall in the months preceding the growing season are the principal climatic
factors influencing wheat production in the prairies (Ash et al. 1992; Van Kooten 1992). In our
study, GDD is calculated as the sum of positive values of the average [(maximum +

minimum)/2] daily air temperatures minus the minimum temperature (5°C) required for growth
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(Campbell et al. 1997). Crops like canola and wheat with lower threshold growth temperatures
(5°C) tend to have lower spatial variability throughout the eastern prairies (Ash et al. 1993).

GDD measures the combined effects of temperature and growing season length and
provides a useful approach for estimating wheat phenological development (Saiyed et al. 2009).
Since GDD does not adequately account for the effects of extreme temperatures, we constructed
another weather variable (number of days in the growing season with temperatures > 30°C) to
capture extreme heat days It is suggested that summer daytime temperatures exceeding 30°C can
adversely affect fI d reproductive growth of crops in the Canadian prairies (Bueckert
and Clarke 2012).

ATION STRATEGY

As part of our estimation strategy, prigpto stlmatlng the full- and partial-moments model we
undertook several diagnostic tests. First, for stationarity of the variables in the mean
equation employing the Im-Pesaran-Shin (IPS) 3) uRit root test. The IPS test allows for
unbalanced panel data where the null hypothesis is that anels contain a unit root. Table 3
shows the results of the IPS unit root test for canola and s heat which indicates that all the
variables are stationary or integrated of order zero ((1(0)). This ir@h&t the null hypothesis of
a unit root is rejected. Second, we tested for autocorrelation by emplo r@ Woodridge test
where the null hypothesis is that there is no first order autocorrelation in the panel data. The F-
stat (p-value) in Table 4 indicates the null hypothesis is rejected and therefore the moments-
based model is applied to the autocorrelation-transformed data.

Another test undertaken was to determine if the panel data has fixed or random regional
effects. The Sargan-Hansen statistics test (Table 5) rejects the null hypothesis that the

coefficients from the random effects are consistent with the coefficients from the fixed effects
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model. The test result indicates the existence of fixed effects which were used in the estimation
of the mean function. We tested for heteroscedasticity prior to estimating the mean function. The
modified Wald test results (Table 6) rejected the null hypothesis of groupwise homoscedasticity
in the fixed effects regression. Consequently, the heteroskedasticity-consistent standard errors
are estimated in the mean equation.

The Pesaran’s test employed rejected the null hypothesis of cross-sectional independence
(Table 7) which indicates the standard errors in the mean equation are adjusted in estimating for
cross-sectional dee Furthermore, in the model specification of the mean function,
nonlinear quadratic weathef termgs and interaction weather terms were tried but contributed to

multicollinearity (Table 8), sequently deleted. The estimates reported in Tables 9-12

O

RESULTS A ISCUSSION

are the parameter elasticities

As discussed in the theoretical framework section, the ful#moments model captures how factors
have different effects on the major moments of crop yielngsution (i.e., mean, variance, and
skewness), while the partial-moments model extends the full-moRgents‘approach by allowing the
asymmetric effects of factors on the two tails of yield distribution (po i&d negative
deviations from the mean). It is notable that this study utilized the natural logarithm function
(discussed in the theory section above), thus full- and partial-moments discussed in the following
section are actually the natural logarithm moments of crop yield. Results of both the full-
moments model and partial-moments model are displayed in Tables 9-12, with two model
specifications (cumulative vs. intra-seasonal weather effects).

(i) Full-Moments Model
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Full-moment function (mean, variance, skewness) results for canola and spring wheat are shown
in Tables 9 (model 1) and 10 (model 2) for two alternative weather variable definitions. In model
1, weather pertains to the cumulative growing season, while weather in model 2 pertains to
intraseasonal weather events. The full-moment results have a good fit and include significant
climate variables, except the third order full-moment functions for canola and spring wheat
(Table 9). The odd order full-moment functions often have a bad fit (Antle et al. 2013). As
shown in Table 9, higher growing degree days or heat units during the growing season increases
the average yield ola and spring wheat, with a larger effect on canola yields.
Specifically, a 10% inc@ GDD enhances the mean yield of canola and spring wheat by
4.3% and 3.4%, respectivelﬁ Ing GDD reduces canola yield variability but with little
significant effect on the variance of spgfig Wheat yield. Our results are in agreement with an
earlier study, which reported that higher perature increases winter wheat yield in the
Pacific Northwest with an elasticity effect of 0. the sample mean (Antle et al. 2013). Our
results indicate the temperature stress variable (the n4/f days with growing season
temperatures greater than 30°C) reduces both canola and s heat average yield and
increases spring wheat yield variability. A 20% increase in the n by& days with extremely
high temperature (about three additional days) decreases average yieId@G% for canola (8
kg/ha) and spring wheat (11.7 kg/ha).

Pre-growing season precipitation increases both canola and spring wheat average yields
(with elasticity effects of 0.10 and 0.12, respectively) and lowers their yield variance. These
results are consistent with the findings of an earlier study (William et al. 1988) that found

conserved soil moisture in the winter season was correlated with wheat yield in the Canadian

prairies. Precipitation during the pre-growing season has a significant positive effect on the
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skewness of spring wheat yield but this is not the case for canola yield. Therefore, increases in
pre-growing season precipitation reduce downside risk vulnerability for spring wheat yield and
helps avoid crop failure.

Effects of the crop seeded or planted area differs for canola and spring wheat yield. An
increase in canola seeded area lowers yield since more marginal land is cultivated as canola
seeded area expanded over the years. The positive effect of spring wheat seeded area on average
yield is consistent with results from previous Canadian studies for Ontario soybeans (Cabas et al
2010). The share o@e fallow in total cropped area is significant and negatively affects the
mean and variance of c@el but positively influences yield skewness. The combination of
adopting soil conservation tech 18s, diversified rotational cropping systems, and new
cultivars appears to have displaced sumpfmer fallow as a moisture conserving measure since the
mid-1960s (Smith and Young 2000). Mea@%), employing a similar technology variable
(ratio of fallowed area to total sown area), foun@mp ts year to year variability of wheat
yields in the U.S. Great Plains.

The time trend variable as a measure of technical Q@Vements from improved crop
genetics, fertilization, and management practices statistically incfgases the mean yields of both
crops and lowers yield variance of canola with little significant effect @g wheat yield
variance. The increases in canola yield may be consistent with the rapid number of herbicide-
tolerant canola varieties adopted in the prairies since the mid-1990s (Canola Council of Canada,
2015).

Table 10 shows the full-moment functions with a more detailed specification of weather
variables to coincide with major stages of the crop growth cycle during the growing season.

Overall, September GDD increases the average yield and reduces the yield variance for both
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canola and spring wheat; conversely, higher July GDD decreases the mean yield and increases
the yield fluctuation for both crops; June GDD has a mixed effect on the mean of canola
(positive) and spring wheat yield (negative); the positive effect of May and August GDD on the
average yield is only significant for canola and spring wheat, respectively. In elasticity terms, a
10% increase of September GDD enhances the mean yield of canola and spring wheat by 2.8%
and 3.3%, respectively. The negative effects of July GDD on crop yields are relatively large,
with elasticity effects of 0.92 and 0.54 for canola and spring wheat, respectively. Our study
results correspond b ervations from a previous study which showed that high
temperatures in the mo@ul adversely affect the flowering period and consequently impact
canola seed quality (Kutcher et . For wheat, the month of July is associated with the
flowering period stage of growth or kegfel development (Robertson 1974). Increases in June
GDD bolster the mean yield of canola by @ hile decreasing the average yield of spring
wheat by 3.0%. Meanwhile, GDD in June has a@tive ffect on the yield variability with a
negative effect on the skewness of spring wheat out& GDD significantly increases the
average yield of canola (elasticity of 0.23) with a modest ?Rfe effect on the skewness
(elasticity of 0.03) of wheat output. In contrast, the effects of August are significant only
on the mean yield (elasticity of 0.33) and variability of spring wheat, t(( for canola.
Extreme weather conditions, where the cumulative number of days in the growing season
exceeded 30°C, affect negatively and significantly both canola and spring wheat yields. This
result is consistent with a previous Mexican study where they found a similarly defined heat
stress variable negatively affected mean wheat yields (Nalley et al. 2010). Warmer temperatures

affect the growth pattern of wheat during the growing season because as temperature increases
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there is a consequential reduction of soil moisture available for plant crop growth (Van Kooten
1992)

Precipitation in the early part of the growing season affects the mean, variance, and
skewness differently for both canola and spring wheat. In general, positive effects of
precipitation during pre-growing (October-April) and growing seasons (May-September) on the
average crop yields have been confirmed. A 10% increase in pre-growing season precipitation

increases the average yield of canola and spring wheat by 0.7% and 0.9%, respectively. May

precipitation incre@ ;erage yield (elasticity of 0.09) and skewness for both crops, while

decreasing their yield vari . June precipitation increases the average yield of both canola and
spring wheat but has little signific ect on the variance or skewness. Wheat experiences
rapid development growth in June, whigh is the month with the highest precipitation, and is

generally in the stem elongation and head nce stage of growth by the end of June
(Robertson 1974). O

The positive effect of July precipitation on c@mitigaﬂng yield loss is in agreement

with the results of an earlier Saskatchewan study (Kutche .2010). Van Kooten (1992) found
similar results to our study where the months of May and June precipitation positively affected
spring wheat yield in southwestern Saskatchewan. September precipit@ly has a significant
positive effect on the variance and skewness of canola yield.

(i) Partial-Moments Model

The second and third partial-moment functions for model 1 and model 2 are shown in Tables 11
and 12. The partial-moment functions are defined in absolute terms (parameter signs are opposite
to full-moments for the odd order negative moments) and are based on deviations above

(positive) and below (negative) the mean (Antle 2010). Likelihood ratio test statistics show
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symmetry restrictions are rejected for both second and third partial-moment functions. This
result shows that, unlike the full-moment functions, the partial-moment functions provide a
better specification for estimating higher-order moments. The partial-moment function results
(Table 11) differ with respect to climate and non-climate effects on canola and spring wheat
yield distributions. In general, the impacts of climate changes such as cumulative growing season
GDD and extreme temperatures on the yield distribution of canola are only significant in the
positive partial moments. The temperature stress (> 30°C) variable increases the positive
variability and skef anola and the negative variability of spring wheat yield, while
cumulative GDD durin@o ing season reduces the positive variance and skewness of
canola yield. For spring wheat yie -growing season precipitation and temperature stress
variable also have asymmetric effects @ff two tails of the yield distribution, but unlike canola, the
impacts are only significant on the deviati the mean yield (negative moments). Pre-
growing season precipitation reduces the negat congd and third order partial-moment
functions for spring wheat. Increasing the number of e ely high temperature days increases
the yield variability of spring wheat, especially significanQﬁe deviation below the mean
level. Combining the results from both full-moments and partial-@r?ts function estimation
indicates that increased GDD during the crop growing season reduces @rall fluctuation of
canola yield (full-moments) while such a significant impact originates from decreasing the
variance of the deviation above the mean level of the yield distribution. In addition, the
correlation between the extreme high temperature and the overall variance of canola yield is not
significant but such a relationship is confirmed on the upper tail of the distribution.

The partial-moment function results with intraseasonal weather variables to coincide with

the crop growth stages are shown in Table 12. Overall, the partial-moment functions present
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similar results as the full-moment functions, but the effects of climate on the negative tail of both
crop yield distributions is more significant and with a larger magnitude than the positive tail.
Temperature variance effects on yield distributions are more significant in the earlier part of the
canola growing season when compared to spring wheat. GDD in May reduces the variability of
both the positive and negative tail of yield distribution for canola, and the effect on the negative
tail is slightly larger. Conversely, GDD in June and July increases the second positive and

negative moments of spring wheat yield distributions. GDD in September reduces the variance of

spring wheat yield t;- n on both tails, and this is similarly the case for canola yield, but

only significant on the negatiVe tail. May precipitation reduces the negative variance for both
crop (canola, spring wheat)ﬁ' triQutions, and also reduces the positive variance of spring
wheat yield. Precipitation in the pre-gr@Wing season decreases the variability of spring wheat
yield on the negative tail. Unlike spring @ mperature stress parameters are significant
weather factors affecting the variance of canola@d distributions. Regarding the effects of
weather parameters on the skewness of yield distributi ay GDD has a negative effect on the
positive skewness of canola yield as well as on the negati ness of spring wheat yield.
Unlike canola, GDD in June and July increases both the positive ndyative skewness of spring
wheat, while GDD in September decreases the skewness of spring wh(éoth positive and
negative tails. Similarly, May precipitation decreases the negative skewness of both canola and
spring wheat yield, while pre-growing season precipitation reduces the negative skewness of
spring wheat yield.

CONCLUSIONS

Global warming is expected to affect the productivity of Saskatchewan agriculture and influence

how agricultural producers adapt to the adverse effects. This study employed a flexible
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moments-based approach over the 1987-2010 period to analyze how canola and spring wheat
yield distributions respond to changes in precipitation and temperature.

Results obtained from the full-moment functions with alternative specification of the
weather variables show different effects of non-climate and climate variables with the latter
dissimilarities particularly distinct. For specifications with alternative weather variables, the non-
climate variables for both canola and spring wheat have roughly similar results in terms of the
statistical significance, directional effect, and size of coefficients. Full-moment functions show
that the model whet€ cligate variables are disaggregated provides detailed insights about GDD
and precipitation effects o ield distribution that are not captured in the model with weather
variables cumulated over the growifig'sgason.

The incorporation of the monthl§y GDD and monthly precipitation during the growing
season in the full-moment function discerfects throughout the crop growth cycle. For
canola, GDD has both positive and negative ef , respectively, on the mean in May, June, and
September and on the variance in May and September. ever, the effect of July GDD lowers
the mean and increases the variance which offsets the posQ?&gtcomes in the other months of
the growing season. Similarly, the effect on variance is positive @ ar larger than the
decreasing effect in May and September. Changing weather patterns a e frequent
occurrences of hot weather in July likely have a strong negative effect on average canola yields,
while increasing its variance.

The disaggregation of GDD on average spring wheat yield and risk provided even more
discerning weather insights than for canola output. The aggregated effect of GDD suggested an
increase in the average wheat yield and a decrease in variance as the number of GDD increases

during the growing season. By contrast, the model specification with five monthly GDD figures
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shows no discernable effect of GDD in May, but hot weather in June and July hurts the average
spring wheat yield and increases its variance. Only after the initial plant growth has been
completed, does warm weather contribute to an increase of average yield, while lowering its
variance as indicated by the GDD effect in August and September.

The partial-moment functions provide further insights into the non-climate and climate
change variables. Specifically, the effects are made with respect to the average canola and spring
wheat yields with the emphasis on the upside and downside influence. Overall, the model with
aggregate climate s xplains canola yield better than spring wheat yield.

Among the cIim@n variables, the number of growing degree days has the only
sizable significant effect and re positive variance and skewness of canola yield. The
effect of hot weather has a similar diregtional effect, but of very small magnitude. For spring
wheat, pre-growing season precipitation rhe positive yield variance, while hot weather
increases the positive yield variance by a small unt, wvhich is twice the size of a similar effect
on canola yields.

Clearly the partial-moment functions of the canolQ%eat models that include
disaggregated climate change variables provide far more insights@e version with
aggregated climate change measures. GDD reduces the positive and n @variance of canola
yield by similar amounts when such days occur in May. In subsequent months of the growing
season, only the GDD in September reduces the negative variance and skewness of canola yield.
Growing season precipitation reduces the negative variance of canola yield if it rains in May, but
has the opposite (although minimal) effect in September. The number of exceedingly hot days
and the time trend has similar effects on canola as in the model with aggregated climate

variables.
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The weather effects on spring wheat are far more acute. The monthly GDD in June and
July increases both variances, but the negative variance is effected far more than the positive
variance, especially in July, showing asymmetrical effects and consequences for wheat yields.
However, GDD in September reduces both variances, especially the negative variance and
skewness. In terms of precipitation, May precipitation decreases both variances and the reduction
of negative variance is particularly large given the critical role of moisture in this stage of crop
growth. In addition, pre-growing season precipitation also reduces the negative variance.

In summars f the current study are focused on canola and spring wheat produced
in Saskatchewan, Canada. pite the regional nature of data used in the study, results contribute
to the global literature on the’ei limate change. First, the study results support the use of

highly disaggregated temperature and pfecipitation data. Second, the application of the full-

moment and partial-moment functions to the effects on average yields and their variance

study also suggest considerably stronger effects of cha

suggests the use of the partial-moment function@nurzstudies. The specific outcomes of this

temperatures than precipitation,
supporting findings of Lobell and Burke (2008). The effe@ igher temperatures measured by
the monthly GDD broaden insights of earlier studies of other regigns ygesting a decrease in
wheat yields (Lobell and Field 2007; Lobell et al. 2011), while also co@g results of earlier
studies focused on Saskatchewan, but using a different methodological approach (Kutcher et al.
2010). The current study finds that pre-growing season precipitation and precipitation in the
early stages of plant growth are particularly relevant, supporting previous studies showing
general effect of precipitation on wheat yield variability reduction in other regions (Chen et al.

2004) and specific field experimental studies on spring wheat in the Canadian prairies (He et al.

2013).
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Table 1. Average canola and spring wheat yield (kg/ha) by crop districts (CDs)

Canola Spring wheat
CDs Soil zone Mean Std. Dev. Freq. Mean Std. Freq.
Dev.
1A Dark Brown 1269.57 329.51 23 1820.83 34386 24
1B Black/Gray ~ 1350.00 347.66 24 2062.50 35240 24
2A Brown 1237.50 431.19 24 1654.17  378.76 24
7B Dark Brown  1362.50 373.95 24 2029.17 34951 24
3A-N Brown 1304.17 435.87 24 1716.67  382.97 24
3A-S Brown 1191.30 411.11 23 1804.17  439.84 24
3B-N Brown 1440.00 388.52 20 1852.17  403.25 24
3B-S Brown 1220.83 464.36 24 1821.74 45821 23
AA Brown O 1.74 334.33 23 173333 34850 23
4B Brown 73 419.67 22 1849.79  616.92 24
5A Black/Gray 3 309.25 24 2079.17 33748 24
5B Black/Gray 1350 KBlO.GS 24 2216.67 376.10 24
BA Dark Brown  1300. .01 24 1904.17 42270 24
6B Dark Brown  1400.00 %74 24 1983.33  523.92 24
7A Brown 1275.00 437 24 1895.65  556.35 23
7B Dark Brown  1316.67 382 24 201250 47486 24
8A Black/Gray ~ 1391.67 311.96 O 24 2382.04 593.70 23
8B Black/Gray =~ 1383.33 317.14 219583 563.74 24
9A Black/Gray ~ 1312.50 361.53 24 214348 49619 23
9B Black/Gray =~ 1370.83 428.83 24 O f27.27 625.78 22
.0

Brown 0.748 1
Statistic N
P-value 0.768 0.

Note: Brown’s test suggests that we cannot reject the equality of variances areas.



Table 2. Descriptive statistics of climate and non-climate variables for canola and spring wheat
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Canola Spring wheat
Variable Mean Std Min Max Mean Std Min Max
Yield (kg/ha) 1,322.93 375.85  200.00  2,400.00 1962.96 448.31 400 3200
Non-climate variable
Seeded area (ha) 1,452.7 99,4724  100.00 412,100.0 236,090.2 116,613.8 48,100 710,200
Fallow share (%) 23.17 12.31 2.70 56.80 34.71 24.04 2.8 131.7
Climate variable

GDD in growing season @.8 173.68 1,019.70 2,043.60 1510.46 174.04 1019.7 2043.6
May GDD 47.70 48.10 331.70 184.97 47.99 48.1 331.7
June GDD 319 K 53.65  196.40 557.50 320.84 53.88 196.4 557.5
July GDD 400. 50 295.10 578.40 409.53 50.28 295.1 578.4
August GDD 381.53 87 245.90 532.00 381.93 58.32 245.9 532.0
September GDD 213.12 49, 107.50 369.50 213.28 49.68 107.5 369.5
Precipitation in growing season (mm) 272.58 B@ 88.60 609.20 272.41 87.69 88.6 609.2
Precipitation in pre-growing season 122.01 47. 11.00 355.60 121.96 47.27 11.0 355.6
(mm) O

May Precipitation (mm) 45.99 30.11 163.80 46.02 30.07 1.5 163.8
June Precipitation (mm) 76.11 40.02 : 328.80 76.65 40.36 9.0 328.8
July Precipitation (mm) 63.97 36.70 3. (O 16.20 63.81 37.22 3.8 217.4
August Precipitation (mm) 53.31 34.33 0.00 /€80.20 53.19 34.22 0 180.2
September Precipitation (mm) 33.47 25.78 0.00 J@ 33.02 25.22 0 196.6
Temperature stress, >30 °C (no of days) 12.77 9.29 0.00 0.0 12.87 9.25 0 50.0
Number of observations 471 / X 473
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Table 3. Im-Pesaran-Shin (2003) panel unit-root test results for canola and spring wheat yields, climate
and non-climate variables

Crop type Canola Spring wheat
Variable Z-t-tilde-bar  P-value Z-t-tilde- P-value
statistic bar statistic

Yield -9.3880 0.0000 -9.8572 0.0000
Seeded area -2.7081 0.0034 -2.1483 0.0158
Fallow share (%) -3.6803 0.0001 -3.0709 0.0011
GDD in growing season -8.2204 0.0000 -8.2204 0.0000
May GDD -10.6191 0.0000 -10.6191 0.0000
June GDD -10.6633 0.0000 -10.6633 0.0000
July GDD -9.8994 0.0000 -9.8994 0.0000
August GDD -9.6772 0.0000 -9.6672 0.0000
September GDD -10.2126 0.0000 -10.2126 0.0000
Precipitation in growin -10.8896 0.0000 -10.8896 0.0000
Precipitation in pre-growing on -9.3443 0.0000 -9.3443 0.0000
May Precipitation -10.9424 0.0000 -10.9424 0.0000
June Precipitation -11.7218 0.0000 -11.7218 0.0000
July Precipitation -21.5406 0.0000 -11.5406 0.0000
August Precipitation %986 0.0000 -10.2986 0.0000
September Precipitation -10.0503 0.0000 -10.0503 0.0000
Temperature, >30 degrees (no of days)  -10. @ 0.0000 -10.5947 0.0000
Note: Im-Pesaran-Shin allows unbalanced panel dat&’and the Z-t-tilde-bar Statistic is employed because

of fixed time period. Cross sectional mean is removhe null hypothesis is all panels contain unit roots.

Table 4. Test for autocorrelation in the panel data model O

Model \ F-stat (P-value) Canola Spring wheat
Model 1 9.489 (0.0062) 10.956 (0.00 .
Model 2 11.006 (0.0036) 20.481 (0.000

Note: Woodridge test (df1=1, df2=19). The null hypothesis is no first-order'@é(@elation exists in the
panel data.

Table 5. Test of fixed effect vs random effect in the panel data model

Canola Spring wheat
Statistic DF P-value Statistic DF P-value
Model 1 75.898 7 0.0000 240.644 7 0.0000
Model 2 396.122 15 0.0000 322.500 15 0.0000

Note: Sargan-Hansen statistic is reported. The null hypothesis is that coefficients from random effect are
consistent to coefficients from the fixed effect.
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Table 6. Modified Wald test of groupwise heteroskedasticity for crop yield

Canola Spring wheat
Chi.sq DF P-value Chi.sq DF P-value
Statistic Statistic
Model 1 123.56 20  0.0000 172.73 20 0.0000
Model 2 147.01 20  0.0000 63.48 20 0.0000

Note: the null hypothesis is groupwise homoskedasticity in fixed effects regression model.

Table 7. Pesaran’s Test of cross section correlation for crop yield

Canola Spring wheat
Statisti P-value Statistic P-value
Model 1 174872 0.0000 20.780 0.0000
Model 2 10 0.0000 15.448 0.0000

Note: the null hypothesis i§ ¢ sectional independence.

Y

Table 8. Test for multicollinearity in the %ata model

Model \ Mean VIF Canola Spring wheat
Model 1 2.47 2.13

Model 2 2.14

1.96
Note: since all of the variable VIF and mean VIF ar@smal r than 10, thus there is no multicollinearity.

&
Qz
),
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Table 9. Full moment functions (1%, 2", 3") results: canola and spring wheat yield (Model 1)

Canola Spring wheat
Variable Mean Variance Skewness Mean Variance Skewness
Constant -17.7894*** 5.4257** -3.0847* -29.5361*** 1.8164 -.5007
(6.3135) (2.1333) (1.7648) (7.0390) (3.0284) (2.3858)
Non-climate variable
Seeded area (ha) -.0546%** -.0196%** .0116 .2068*** 0124 -.0106
(0.0183) (0.0064) (0.0072) (0.0484) (0.0150) (0.0135)
Fallow share (%) -.0053** -.0022* .0028* -.0006 -.0001 .0005
(0.0023) (0.0012) (0.0015) (0.0009) (0.0004) (0.0003)
Climate variable
GDD Growing
season 4303** -.0936** .0016 .3404** -.0452 .0374
(0.1852) (0.0422) (0.0512) (0.1662) (0.0696) (0.0420)
Precipitation
Growing season .029 -.0284 .0549 -.0240 -.0050 .0238
(0. (0.0461) (0.0727) (0.0428) (0.0393) (0.0467)
Precipitation
Pre-growing 0376** .1230***
season 1013%** i .0465 -.0580*** .0441*
(0.0306) 15) (0.0291) (0.0281) (0.0185) (0.0224)
Temperature
stress, >30 degrees A
(o -.0285*** .0019 .0004 -.0264*** .0025* -.0013
(0.0030) (0.0012) } (0.0014) (0.0026) (0.0014) (0.0012)
Time trend 0112%** -.0021* 0012 .0160*** -.0007 -.0000
(0.0031) (0.0010) & 008) (0.0031) (0.0013) (0.0010)
District fixed
effects Yes No Yes No No
Observations 471 471 473 473 473
R-squared 0.4727 0.5017
F-stat (P-value) 3.99(0.0076) 0.92(0.50 5.09(0.0022) 2.72(0.0390)

Note: Prais-Winsten regression, heteroskedastic panels corrected standar

CSESs) in parentheses for mean equation.
*** n<0.01, ** p<0.05, * p<0.1

/
O’
//(
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Table 10. Full moment functions (1%, 2", 3) results: canola and spring wheat yield (Model 2)

Canola Spring wheat
Variable Mean Variance Skewness Mean Variance Skewness
Constant -27.0846*** 3.1813 .2858 -21.1265*** 1.0876 -.1313
(6.0328) (1.8777) (1.7806) (6.5038) (1.7260) (1.2475)
Non-climate variable
Seeded area (ha) -.0481*** -.0152** .0107 1755*** -.0124 .0075
(0.0178) (0.0062) (0.0064) (0.0461) (0.0103) (0.0084)
Fallow share (%) -.0062*** -.0002 .0008 .0001 .0003* -.0001
(0.0022) (0.0007) (0.0006) (0.0009) (0.0002) (0.0001)
Climate variable
May GDD -.0854*** .0265 -.0032 -.0372 .0309*
(0.0264) (0.03266) (0.0503) (0.0237) (0.0158)
June GDD .0716 -.0597 -.2966*** .0956** -.0595*
(0.0528) (0.0567) (0.0869) (0.0395) (0.0320)
July GDD 2183* -.1988 -.5374*** .1346** -.0994*
(0.1460) .1199) (0.1232) (0.1247) (0.0571) (0.0518)
August GDD .0648 -0 .0032 .3351*** -.0461* .0134
(0.1041) 2 (0.0352) (0.0857) (0.0252) (0.0206)
September GDD 2763%** 0734 .0691* .3264*** -.0583%** .0398**
(0.0588) (0.0285 (0.0337) (0.0512) (0.0197) (0.0155)
May precipitation .0888*** -.0311 .0257* .0875%** -.0275%** .0184**
(0.0170) (0.0114) 0.0141) (0.0148) (0.0083) (0.0066)
June precipitation .0581** -.0316 .0401 .0606*** -.0175 .0176
(0.0232) (0.0266) 78) (0.0198) (0.0146) (0.0165)
July precipitation .0534** -.0078 80 -.0128 .0059 -.0041
(0.0217) (0.0107) (0.008 (0.0175) (0.0072) (0.0058)
August precipitation -.0156 .0063 -0 -.0154 .0038 -.0043
(0.0162) (0.0063) (0.0069) (0.0127) (0.0036) (0.0029)
September O
precipitation .0008 .0080** .0046* / -.0013 -.0000 .0009
(0.0125) (0.0030) (0.0024) (0. (0.0045) (0.0040)
Precipitation Pre-
growing season .0695** -.0182 .0195 .O@ ¢ 0242%* .0173*
(0.0300) (0.0160) (0.0167) (0.02 V/( (0.0104) (0.0090)
Temperature stress,
>30 degrees -.0191*** -.0002 .0020 -.0171%** .0005 -.0001
(0.0030) (0.0016) (0.0019) (0.0025) (0.0011) (0.0009)
Time trend 0177%** -.0017* .0001 .0135** -.0006 .0002
(0.0030) (0.0009) (0.0008) (0.0030) (0.0007) (0.0005)
District fixed effects Yes No No Yes No No
Observations 471 471 471 473 473 473
R-squared 0.5868 0.5991
F-stat (P-value) 8.00(0.0000) 1.94(0.0863) 11.88(0.0000)  5.47(0.0004)

Note: Prais-Winsten regression, heteroskedastic panels corrected standard errors (PCSES) in parentheses for mean equation.
**%p<0.01, ** p<0.05, * p<0.1
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Table 11. Partial Moment Functions (2™ and 3"): canola and spring wheat (Model 1)

Canola Spring wheat
Variable Variance_P? Variance NP Skewness_P Skewness N Variance P Variance N Skewness_P Skewness N
Constant 3.2677** 6.0575 1.8405** 5.0280 15528 .0314 3313 -9.9786
(1.2420) (4.7972) (0.6605) (5.6136) (2.0942) (4.3628) (0.9187) (4.1343)
Non-climate variable
Seeded area (ha) -.0102** -.0054** -.0232 .0014 .0190 .0006 .0174
(0.0047) (0.0025) (0.0142) (0.0080) (0.0264) (0.0035) (0.0281)
Fallow share (%) -.0004 -.0002 -.0052 .0003 -.0008 .0001 -.0012
(0.0006) (0.0003) (0.0030) (0.0003) (0.0008) (0.0001) (0.0009)
Climate variable
GDD Growing season - 1149%** -.0343 -.0579** .0120 -.0235 -.0571 -.0030 -.0357
(0.0356) (0.0968) Azn) (0.1070) (0.0542) (0.0996) (0.0219) (0.0792)
Precipitation Growing
season -.0080 -.0344 -.(% -.0900 .0043 .0079 .0019 -.0217
(0.0170) (0.0848) (0.0092) (0.1335) (0.0101) (0.0746) (0.0036) (0.0893)
Precipitation Pre-
growing season -.0047 -.0885 -.0006 -.1133 -.0164 -.1258*** -.0077 -.1332%*
(0.0071) (0.0565) (0.0039) (0.0765) (0.0109) (0.0441) (0.0051) (0.0538)
Temperature stress, O
>30 degrees .0022%** .0013 .0012%* .0009 .0053*** .0002 .0035
(0.0008) (0.0023) (0.0004) © (0.0008) (0.0027) (0.0003) (0.0026)
Time trend -.0011* -.0024 -.0007 . -.0007 .0004 -.0001 .0009
(0.0006) (0.0023) (0.0003) (0.0 (0.0009) (0.0019) (0.0004) (0.0018)
Observations 265 206 265 261 212 261 212
F test (P-value) 3.96(0.0079) 2.11(0.0928) 3.47(0.0145) 1.53(0.2161) 5.12(0.0021)  5.29(0.0018)  3.66(0.0115)  2.01(0.1073)
459.04 882.76 573.71 1063.85
LR test (P-value) (0.0000) (0.0000) (©.0000) (0.0000)

Note: Clustered robust standard errors in parentheses the mean equations report the Driscoll-Kraay standard erro for spatial dependence.

#Positive residual from the mean equation.
®Negative residual from the mean equation. @
***p<0.01, ** p<0.05, * p<0.1;



Table 12. Partial moment functions (2" and 3") : canola and spring wheat (Model 2)
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Canola Spring wheat
Variable Variance P Variance N Skewness P Skewness_N Variance P Variance N Skewness_P Skewness N
Constant 3.3832** 2.3751 1.5533** 0.1980 -.5245 5.1095** -.3415 3.0199
(1.2038) (3.1266) (0.6096) (3.4145) (1.9224) (2.3279) (0.7393) (1.8805)
Non-climate variable
Seeded area (ha)
-.0040 -.0213** -.0016 -.0167** -.0000 -.0464* -.0003 -.0367
(0.0044) (0.0080) (0.0022) (0.0798) (0.0080) (0.0235) (0.0028) (0.0218)
Fallow share (%) .0005- -.0005 .0002 -.0007 .0003 .0005 .0001 .0003
(0.0005) (0.0010) (0.0002) (0.0009) (0.0002) (0.0004) (0.0001) (0.0004)
Climate variable
May GDD -.0634*** -.0894* -.0314*** -.0749 -.0053 -.0750 -.0003 -.0754*
(0.0177) (0.0484) (0.0090) (0.0441) (0.0126) (0.0533) (0.0049) (0.0417)
June GDD -.0070 62 -.0038 .1528 .0422* .1369* .0158** .1145*
(0.0250) ) (0.0121) (0.1013) (0.0227) (0.0783) (0.0076) (0.0595)
July GDD .0552 .0216 .3982 .0471** .2315* .0140* .2134*
(0.0425) (0. (0.0175) (0.2351) (0.0211) (0.1137) (0.0076) (0.1052)
August GDD -.0158 -.0871 -.0036 -.0624 -.0240 -.0532 -.0042 -.0033
(0.0317) (0.0805) (0.0132) (0.0772) (0.0287) (0.0803) (0.0106) (0.0635)
September
GDD -.0178 -1110** 0 -.1206** -.0257* -.0862** -.0074* -.0758*
(0.0164) (0.0455) (0-007 (0.0553) (0.0133) (0.0329) (0.0042) (0.0374)
Ma:
precip)i/tation -.0086 -.0477** -.0022 -.0479* -.0092* -.0449*** -.0028 -.0363**
(0.0068) (0.0197) (0.0031) (0.0241) (0.0045) (0.0157) (0.0016) (0.0137)
June
precipitation -.0042 -.0546 -.0012 -.0754 -.0041 -.0260 -.0011 -.0328
(0.0095) (0.0458) (0.0043) O0.0629) (0.0032) (0.0283) (0.0011) (0.0288)
Jul
precigitation -.0043 -.0089 -.0045 - .0021 .0103 .0006 .0087
(0.0055) (0.0172) (0.0027) (0.01 (0.0037) (0.0131) (0.0013) (0.0115)
August
precipitation .0005 .0051 .0004 .0055 O/ -.0026 .0092 -.0008 .0083
(0.0046) (0.0117) (0.0024) (0.0115) (0,0033) (0.0074) (0.0011) (0.0058)
September
precipitation .0021 .0140* -.0009 .0105 -.0004 o -.0029 -.0002 -.0034
(0.0053) (0.0071) (0.0033) (0.0063) %/ (0.0071) (0.0008) (0.0057)
Precipitation
Pre-growing
season -.0023 -.0199 -.0003 -.0251 -.0052 @ -.0491* -.0016 -.0419**
(0.0088) (0.0333) (0.0041) (0.0300) (0.0072) (0.0241) (0.0025) (0.0196)
Temperature
stress, >30
degrees .0016** -.0017 .0008* -.0032 .0001 -.0003 -.0001 -.0009
(0.0074) (0.0025) (0.0004) (0.0031) (0.0006) (0.0017) (0.0002) (0.0016)
Time trend -.0016** -.0016 -.0007** -.0006 .0002 -.0025** .0001 -.0016*
(0.0006) (0.0015) (0.0003) (0.0015) (0.0008) (0.0011) (0.0003) (0.0009)
Observations 247 224 247 224 256 217 256 217
F-stat (P-value) 23.68(.0000) 5.7(.0003) 10.10(.0000) 5.22(.0005) 3.98(0.0000) 7.89(0.0000) 3.10(0.0109)  3.19.(0.0095)
608.12 404.72 833.27
LR test (P-value) (0.0000) (0.0000) (0.0000)

Note: Clustered robust standard errors in parentheses
***n<0.01, ** p<0.05, * p<0.1.





