
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


1 

Modeling Temperature and Precipitation Influences on Yield Distributions of 
Canola and Spring Wheat in Saskatchewan 

Ting Meng1, Richard Carew2, Wojciech. J. Florkowski3 and Anna. M. Klepacka4

1 Department of Urban Studies and Planning Massachusetts Institute of Technology (MIT); E-
mail: tmeng@mit.edu 

2Agriculture and Agri-food Canada, Pacific Agri-food Research Centres, Summerland, British 
Columbia (Retired); E-mail: rcarew.carew3@gmail.com 

3 Department of Agricultural and Applied Economics, University of Georgia, Griffin Campus, 
Georgia, United States of America; E-mail: wojciech@uga.edu 

4 Department of Production Engineering, Warsaw University of Life Sciences, Warsaw, Poland; 
E-mail: anna_klepacka@sggw.pl

Selected Paper prepared for presentation at the 2016 Agricultural & Applied Economics 
Association Annual Meeting, Boston, Massachusetts, July 31-August 2 

Copyright 2016 by Ting Meng, Richard Carew, Wojciech. J. Florkowski and Anna. M. Klepacka. 

All rights reserved. Readers may make verbatim copies of this document for non-commercial 
purposes by any means, provided that this copyright notice appears on all such copies. 

Published as: Meng, T., Carew, R., Florkowski, W. J., and Klepacka, A. M. 
Analyzing Temperature and Precipitation Influences on Yield Distributions of 
Canola and Spring Wheat in Saskatchewan. Journal of Applied Meteorology 
and Climatology, January 2017; DOI: 10.1175/JAMC-D-16-0258.1

DRAFT Do Not Cite

mailto:tmeng@mit.edu
mailto:rcarew.carew3@gmail.com
mailto:wojciech@uga.edu
mailto:anna_klepacka@sggw.pl


2 
 

ABSTRACT 

Warmer temperatures and variable rainfall are likely to affect Saskatchewan’s production of 

canola and spring wheat. This study employs moments-based approaches (full- and partial-

moments) to estimate the impact of precipitation and temperature changes on canola and spring 

wheat yield distributions.  Environment Canada weather data and Statistics Canada crop yield, 

planted area, and summer fallow area are employed for 20 crop districts over the 1987-2010 

period. Our results show that the average crop yields are positively associated with the growing 

season degree days (GDD), and pre-growing season precipitation, while negatively affected by 

extremely high temperatures. Furthermore, the climate measures have asymmetric effects on the 

higher moments of crop yield distribution.  

Keywords: Climate effect, full-moment function, partial-moment function, variance, Pesaran’s 

test   

JEL: Q54, Q16 
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INTRODUCTION 

The latest Intergovernmental Panel on Climate Change (IPCC) (2014) report indicates that, 

without adaptation measures, global mean temperature increases of 2ºC or more above 

preindustrial levels are expected to have negative effects on agricultural crops such as wheat, 

corn, and rice in both temperate and tropical regions of the world. Warmer temperatures 

associated with decreasing moisture conditions can lead to severe drought and affect yield 

potential and impact crop production. Canadian climate model projection studies indicate a 

gradual decline in annual precipitation in the prairie province of Saskatchewan (Price et al. 2011) 

which is likely to affect agricultural crops (Lemmen and Warren 2004). Not only is unreliable 

precipitation likely to be a climate constraining factor, but the reduction in frost days is expected 

to influence the crop growing season in Saskatchewan (Grisé 2013). 

 The aim of this paper is to estimate the effect of precipitation and temperature on crop 

yield distributions by a full- and partial-moment-based approach. This study contributes to the 

earlier work by Antle (2010, 2013) and Schlenker and Roberts (2009) by treating precipitation 

and temperature as separable inputs consistent with the estimation approach by Ortiz-Bobea and 

Just (2013), who argue that monthly temperature and precipitation variables have different 

production effects on the output distribution. The full- and partial-moments-based approach is 

applied to canola and spring wheat yield in the province of Saskatchewan to illustrate its 

flexibility to capture the risk and skewness effects of climate and non-climate variables on the 

positive and negative yield distributions. Saskatchewan is considered Canada’s breadbasket, 

having some of the richest soils, and is a major producer of wheat and canola. Wheat and canola 
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are Saskatchewan’s leading crops. In 2014, Saskatchewan’s production of spring wheat and 

canola totalled respectively 9.1 and 7.9 million tonnes or 43% and 48% of Canada’s spring 

wheat and canola production (Statistics Canada, 2015). Saskatchewan is the leading Canadian 

field crop exporter with $2.2 billion and $2.5 billion, respectively, of non-durum wheat and 

canola exports in 2014 (Government of Saskatchewan, 2015). 

In the next section we present a literature review which is followed by the theoretical 

framework and data description in the third and fourth sections, respectively. In the fifth and 

sixth sections the estimation strategy and results are presented. The final section summarizes our 

conclusions and identifies areas for future research.  

LITERATURE REVIEW 

Over the past eighty years, there have been multiple econometric modeling approaches adopted 

in the empirical literature to study the effects of climate change on crop production. One of the 

earlier Canadian climate studies looked at the impact of weather conditions on wheat yields in 

western Canada (Hopkins 1935). Most of the earlier climate crop yield studies were by 

agronomists and meteorologists who analyzed how weather/crop yield effects varied over the 

crop growth life cycle. The two basic approaches adopted by agronomists included 

simulation/crop growth models (Jones et al. 2003; Lobell and Ortiz-Monasterio 2007; Qian et al. 

2009a; Qian et al. 2009b; Lobell and Burke 2010; Asseng et al. 2011; Wang et al 2011; Özdoğan 

2011; Urban et al. 2012; Potgieter et al. 2013) and regression/correlation analyses (Robertson 

1974; McCaig 1997; Kutcher et al. 2010; He et al. 2013). Crop growth models required detailed 

plant physiological data, and in combination with simulated weather data from global circulation 

models were able to predict how crop yields such as wheat responded to climatic weather 

conditions. 
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The economic literature adopted the Just-Pope (2009) production function (Chen et al. 

2004; Isik and Devadoss 2006; McCarl et al. 2008; An and Carew 2015) and hedonic models 

(Deschênes and Greenstone 2007; Mendelsohn and Reinsborough 2007;Wang et al. 2009) to 

analyse the impact of climate change on agricultural output and profit. Because of unreasonable 

restrictions in the Just-Pope modelling approach, recent empirical studies have adopted flexible 

moment-based approaches (Antle 1983; Antle 2010) to analyse the effect of climate on crop 

output yield distributions (Antle et al. 2013; Tack et al. 2014).  

In general, the multiple empirical approaches adopted to study the effects of climate 

change on agricultural output have provided mixed results attributed partly to model 

specifications, weather data employed, and country location.  In terms of temperature effects, 

global warming is expected to have a negative impact on global yields of wheat and maize 

(Lobell and Field 2007), with wheat and maize yields declining, respectively, by 5.5% and 3.8% 

(Lobell et al. 2011). These temperature yield reduction effects may offset some of the crop yield 

improvements achieved from technological progress. Employing a regression model that allows 

for spatial dependence in crop yields across counties, Chen et al. (2013) show that Chinese maize 

and soybean yields are expected to be adversely affected by higher temperatures by the end of 

the century with larger yield reductions for soybean than for maize. Flexible regression models 

employing finer scale weather data reveal that temperature thresholds above 29ºC (maize), 30ºC 

(soybeans), and 32ºC (cotton) can have harmful effects on crop yields (Schlenker and Roberts 

2009). Apart from crop yield reductions, variability of crop yields is likely also to be impacted 

by warmer temperatures. Urban et al. (2012) find that, without adaptation, U.S. maize yield 

variability is expected to increase as a result of projected changes in temperature. Schlenker et al. 

(2006), employing a hedonic approach and a nonlinear transformation of the temperature 
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variables, conclude that different warming temperature scenarios will result in a 10%-25% 

decrease in U.S. farmland values. 

While quite a number of studies have concentrated on the adverse effects of global 

warming on crop yields or agricultural profits, a few studies employing cumulative growing 

season weather variables have examined the combined effects of temperature and precipitation 

on agricultural output. Climate model projections of future changes in temperature and 

precipitation suggest that uncertainties in growing season temperatures will have a greater impact 

on crop production relative to the changes in precipitation (Lobell and Burke 2008).  Chen et al. 

(2004) found increases in precipitation decreased yield variability for U.S. wheat, maize, and 

cotton, while increasing sorghum production risk. Conversely, higher temperatures decreased 

cotton and sorghum yield variability but showed mixed results for wheat depending on the 

functional form employed.  

High-latitude countries like Canada are likely to benefit from global warming, especially 

in the northern regions and the southern and central prairies (Agriculture and Agri-Food Canada 

2014). While drier weather is projected to have the greatest impact on the Canadian prairies, in 

terms of expanding the growing season and the production of higher value crops such as 

soybeans (Weber and Hauer 2003), the major climate change challenges will be changes in water 

availability in the summer season, greater frequencies of droughts, and developing crop 

adaptation strategies (Sauchyn and Kulshreshtha 2008).  

Our study employs Statistics Canada (2013) Saskatchewan crop yield and production 

data for 20 crop districts that differ in soil and climate characteristics. We employ partial-

moments functions to test for asymmetric input effects on output and analyze how yield 

distributions for different crops (canola, spring wheat) respond to pre-growing season 
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precipitation and monthly temperature and precipitation over the crop growing season. Our 

estimation procedure corrects for autocorrelation and tests for spatial correlation in weather 

variables, an issue that has been neglected in many climate change studies. The benefits of this 

study will help policymakers and scientists develop improved adaptation strategies to lower yield 

variance and mitigate yield risk of unpredictable weather events. 

THEORETICAL FRAMEWORK 

Consider a stochastic production function given by y  = g(x, v), where y = crop yield, x = non-

climate variables, and v = random weather variables that influence crop yield. The production 

function is described as  

𝑔(𝑥, 𝑣) = 𝑓1(𝑋, 𝛽) +  𝜖,                                                                                                      (1) 

where X represents observed characteristics for climate and non-climate variables, 𝑓1(𝑋, 𝛽) ≡

𝐸[𝑔(𝑥, 𝑣)] is the mean function, and 𝜖 ≡ 𝑔(𝑥, 𝑣) − 𝑓1(𝑋, 𝛽) is a random disturbance term with 

the variance and skewness given as 𝑓2 (X, 𝛽2 ) > 0; and 𝑓3(𝑋, 𝛽3 ) (Di Falco and Chavas 2009).  

 Following Antle (2010, 2013), crop district average crop yields follow a distribution 

𝜑(𝑌𝑖𝑡|𝑋𝑖𝑡), where Yit equals crop yield in crop district i and period t, and 𝑋𝑖𝑡 represents observed 

climate and non-climate variables in crop district i and period t. According to Tack et al. (2012), 

various functional forms of 𝜑() are related to different types of moment. Antle (1983) utilized 

the identity function 𝜑(𝑌𝑖𝑡) = 𝑌𝑖𝑡 and the model conditions the raw moment on explanatory 

variables. In contrast, Schlenker and Roberts (2006 and 2009) utilized the natural logarithm 

function 𝜑(𝑌𝑖𝑡) = ln (𝑌𝑖𝑡) and this model conditions the natural logarithm moment on 𝑋𝑖𝑡, while 

Tack et al. (2012) utilized the higher-power function 𝜑𝑗(𝑌𝑖𝑡) = 𝑌𝑖𝑡
𝑗
, j ∈ N  and models the higher-

order raw moments. In our study, the crop yield’s elasticity is our major interest, thus the natural 
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logarithm function is adopted in this study. The mean function, which is transformed prior to 

estimating the higher-moment functions, is described as: 

𝐿𝑛(𝑌𝑖𝑡) = 𝑋𝑖𝑡 𝛽 + 𝜖𝑖𝑡 , 𝐸(𝜖𝑖𝑡 |𝑋𝑖𝑡) = 0, 𝑖 = 1, … , 𝑁,

𝑡 = 1, … , 𝑇,                                                                           (2) 

where the moments are assumed to be linear functions of the exogenous variables, while 𝜖𝑖𝑡 is a 

random error with mean zero. Equation (2) can be very flexible in terms of incorporating 

quadratic and interaction terms. Employing equation (2), the higher moment function for crop 

yields is given as: 

𝜖𝑖𝑡
𝑗

=  𝑋𝑖𝑡 𝛽𝑗 +  𝑢𝑗𝑖𝑡 , 𝐸(𝑢𝑗𝑖𝑡|𝑋𝑖𝑡) = 0, 𝑓𝑜𝑟 𝑗 = 2, 3, … , 𝑖 = 1, … , 𝑁, 𝑡

= 1, … , 𝑇,                                                                           (3) 

where the errors (𝑢𝑗𝑖𝑡) are correlated across all equations and require correction for 

heteroskedasticity using weighted least squares or a heteroskedastic-consistent estimator (Antle 

2010). One advantage of the moments-based model (2) is that it contains a different parameter 

vector, 𝛽𝑗, for each moment equation. According to Antle (2010), specification of the mean 

function is important to the properties of the higher-order-moments estimated residuals. 

However, one disadvantage of equation (3) is that it limits the effects that conditioning variables 

have on asymmetry related to the negative and positive deviations from the mean (Antle et al. 

2013). To address the asymmetric limitations of the full-moments model, Antle (2010, 2013) 

employed equation (3) to derive the partial-moments model which is described as: 

|𝜖𝑖𝑡|𝑗 = 𝑋𝑖𝑡𝛽𝑗𝑛 +  𝑢𝑗𝑖𝑡𝑛 , 𝐸(𝜇𝑗𝑖𝑡𝑛 |𝑋𝑖𝑡) = 0, 𝑓𝑜𝑟 𝑗 = 2, 3, … , 𝑖 = 1, … , 𝑁, 𝑡 = 1, … , 𝑇 𝑓𝑜𝑟 𝜖𝑖𝑡

< 0                                                                                                                         (4) 

|𝜖𝑖𝑡|𝑗 = 𝑋𝑖𝑡𝛽𝑗𝑝 + 𝑢𝑗𝑖𝑡𝑝 , 𝐸(𝑢𝑗𝑖𝑡𝑝|𝑋𝑖𝑡 ) = 0, 𝑓𝑜𝑟 𝑗 = 2, 3, … , 𝑖 = 1, … , 𝑁, 𝑡 = 1, … , 𝑇   𝑓𝑜𝑟 𝜖𝑖𝑡

> 0.                                                                                                                        (5) 
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 The empirical model for the full-moments model is described as: 

𝜖𝑖𝑡
𝑗

= 𝛽𝑗0 + 𝛽𝑗1𝑆𝐷𝐴𝑖𝑡 + 𝛽𝑗2𝑆𝐹𝐴𝑖𝑡 + 𝛽𝑗3𝑇𝐸𝑀𝑖𝑡 + 𝛽𝑗4𝑃𝑃𝑅𝐸𝑖𝑡 + 𝛽𝑗5𝑃𝑅𝐸𝑖𝑡 + 𝛽𝑗6𝑋𝐻𝑇𝑖𝑡 +

𝛽𝑗7𝑇𝐼𝑀𝑖𝑡+𝑢𝑗𝑖𝑡 , 𝑗 = 2, 3, …,                                                                                                               (6)  

where 𝜖𝑖𝑡
𝑗

 is the j
th 

moment function for average crop yield (canola, spring wheat) in crop district 

i and period t, 𝑆𝐷𝐴𝑖𝑡  equals the seeded area (canola, spring wheat), 𝑆𝐹𝐴𝑖𝑡 is the share of summer 

fallow area or management measure to conserve soil moisture for the following year’s crop, 

𝑇𝐸𝑀𝑖𝑡 equals temperature or growing degree days during the growing season (May-September), 

𝑃𝑃𝑅𝐸𝑖𝑡 equals precipitation during the pre-growing season (October-April) which captures 

moisture previously stored in the soil from snowfall, 𝑃𝑅𝐸𝑖𝑡 equals precipitation during the 

growing season (May-September), 𝑋𝐻𝑇𝑖𝑡 equals the number of excessive heat days during the 

growing season with temperatures greater than 30ºC, and 𝑇𝐼𝑀𝑖𝑡 is a time trend variable that 

captures technological (e.g., new varieties adopted) and agronomic management improvements. 

DATA DESCRIPTION AND SOURCES 

The agriculture sector in Saskatchewan is sensitive to the effects of climate change with the 

southern region of the province more susceptible to fluctuations in summer precipitation (Grisé 

2013). Agriculture production in Saskatchewan has changed over the years with diversified 

cropping systems and larger planted areas devoted to pulses (peas, lentils) and canola. This has 

been facilitated in part by the adoption of zero or minimum tillage technological practices. By 

2008, about 65% of the seeded area in Saskatchewan was devoted to zero tillage (Nagy and Gray 

2012). While the adoption of zero tillage practices offers several environmental and agronomic 

benefits (e.g., soil conservation), it has contributed partly to the reduction in soil moisture 

conserving practices, like summer fallow, which declined from 5.9 million ha in 1987 to 1.1 

million ha in 2014 (Statistics Canada 2015). In the 1980s, summer fallow as a conservation 
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practice typically occurred in the drier areas of the province to increase soil water reserves and 

was used primarily by wheat producers (Williams et al. 1988). 

This study is based on a comprehensive field crop data set collected by Statistics Canada 

(2013) on the total annual crop area seeded/harvested, summer fallow area, yield, and production 

of all the major crops grown in Canada by province at the crop district level (Figure 1). The time 

period coverage selected for this study was based on the availability of comparable spring wheat 

and canola yield, planted area, and summer fallow area data for the 20 crop districts over the 

1987-2010 period. Saskatchewan’s crop districts are located in three distinct agro-climatic zones 

(sub-humid, semi-arid, and arid) which correspond to the Black/Gray, Dark Brown, and Brown 

soils (Mkhabela et al. 2011). Because of lower annual precipitation in the Brown soil zones 

located primarily in the southwestern part of the province, crop yields tend to be lower than 

yields in the Black/Gray or Dark Brown soil zones (Table 1). Generally, crop districts in the 

southern areas of the province experience the warmest winter and summer months, while the 

northern part of the province receives the highest annual precipitation (Grisé 2013). By 2100, 

increases in maximum temperature in the semiarid zone of the prairies are projected to increase 

from 2.5ºC to 4.5ºC, coupled with increases in inter-annual variation in annual precipitation 

(Price et al. 2011). Saskatchewan’s agriculture production vulnerability is attributed to extreme 

environmental variations from such unpredictable climatic conditions. 

Figure 2 shows how canola and spring wheat yield and seeded area have varied over the 

last twenty-nine years. Crop yields have increased over time which may be attributed to a 

combination of improved genetics, better agronomic management practices, and favourable 

climatic conditions. Despite the significant positive spring wheat yield trends, seeded area 

decline has been much more precipitous than canola. The spring wheat seeded area decrease over 
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the last three decades has been attributed, in part, to the introduction of new crops like pulses and 

canola into crop rotations coupled with higher relative commodity prices (Grisé 2013).  

The climate of Saskatchewan can be characterized as consisting of long cold winters, 

warm summers, and insufficient precipitation during the growing season (Williams et al. 1988). 

Summary weather statistics for the 20 crop districts are shown in Table 2. Weather data from 

Environment Canada meteorological weather stations included actual daily observations and 

modeled data (gridded data). The nearest grid points from 10km gridded data were used to fill 

any missing observations. The weather data for crop districts provided by Agriculture and Agri-

Food Canada was for the following weather data categories: daily temperature, minimum 

temperature, maximum temperature, and daily precipitation (Chipanshi 2013). 

Apart from pre-growing season precipitation, cumulative growing season precipitation, 

and cumulative growing season growing degree days (GDD), intraseasonal weather variables for 

growing season precipitation and GDD were constructed since studies (e.g., Robertson 1974; 

Kutcher et al. 2010) have shown that canola and spring wheat phenological crop growth stages 

respond differently to seasonal weather conditions. Since the development and growth stages of 

spring wheat follow a monthly pattern, Robertson (1974) considered the monthly averages of 

weather in measuring the response of Saskatchewan spring wheat to seasonal weather climatic 

patterns using field-plot experimental conditions. Moisture from growing season precipitation 

and the amount of rainfall in the months preceding the growing season are the principal climatic 

factors influencing wheat production in the prairies (Ash et al. 1992; Van Kooten 1992). In our 

study, GDD is calculated as the sum of positive values of the average [(maximum + 

minimum)/2] daily air temperatures minus the minimum temperature (5°C) required for growth 
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(Campbell et al. 1997). Crops like canola and wheat with lower threshold growth temperatures 

(5ºC) tend to have lower spatial variability throughout the eastern prairies (Ash et al. 1993). 

GDD measures the combined effects of temperature and growing season length and 

provides a useful approach for estimating wheat phenological development (Saiyed et al. 2009). 

Since GDD does not adequately account for the effects of extreme temperatures, we constructed 

another weather variable (number of days in the growing season with temperatures > 30ºC) to 

capture extreme heat days. It is suggested that summer daytime temperatures exceeding 30ºC can 

adversely affect flowering and reproductive growth of crops in the Canadian prairies (Bueckert 

and Clarke 2012).  

ESTIMATION STRATEGY 

As part of our estimation strategy, prior to estimating the full- and partial-moments model we 

undertook several diagnostic tests. First, we tested for stationarity of the variables in the mean 

equation employing the Im-Pesaran-Shin (IPS) (2003) unit root test. The IPS test allows for 

unbalanced panel data where the null hypothesis is that the panels contain a unit root. Table 3 

shows the results of the IPS unit root test for canola and spring wheat which indicates that all the 

variables are stationary or integrated of order zero ((I(0)). This implies that the null hypothesis of 

a unit root is rejected. Second, we tested for autocorrelation by employing the Woodridge test 

where the null hypothesis is that there is no first order autocorrelation in the panel data. The F-

stat (p-value) in Table 4 indicates the null hypothesis is rejected and therefore the moments-

based model is applied to the autocorrelation-transformed data. 

 Another test undertaken was to determine if the panel data has fixed or random regional 

effects. The Sargan-Hansen statistics test (Table 5) rejects the null hypothesis that the 

coefficients from the random effects are consistent with the coefficients from the fixed effects 

DRAFT Do Not Cite



13 
 

model. The test result indicates the existence of fixed effects which were used in the estimation 

of the mean function. We tested for heteroscedasticity prior to estimating the mean function. The 

modified Wald test results (Table 6) rejected the null hypothesis of groupwise homoscedasticity 

in the fixed effects regression. Consequently, the heteroskedasticity-consistent standard errors 

are estimated in the mean equation. 

The Pesaran’s test employed rejected the null hypothesis of cross-sectional independence 

(Table 7) which indicates the standard errors in the mean equation are adjusted in estimating for 

cross-sectional dependence. Furthermore, in the model specification of the mean function, 

nonlinear quadratic weather terms and interaction weather terms were tried but contributed to 

multicollinearity (Table 8), and were subsequently deleted. The estimates reported in Tables 9-12 

are the parameter elasticities 

 

RESULTS AND DISCUSSION 

As discussed in the theoretical framework section, the full-moments model captures how factors 

have different effects on the major moments of crop yield distribution (i.e., mean, variance, and 

skewness), while the partial-moments model extends the full-moments approach by allowing the 

asymmetric effects of factors on the two tails of yield distribution (positive and negative 

deviations from the mean). It is notable that this study utilized the natural logarithm function 

(discussed in the theory section above), thus full- and partial-moments discussed in the following 

section are actually the natural logarithm moments of crop yield. Results of both the full-

moments model and partial-moments model are displayed in Tables 9-12, with two model 

specifications (cumulative vs. intra-seasonal weather effects). 

 (i) Full-Moments Model 
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Full-moment function (mean, variance, skewness) results for canola and spring wheat are shown 

in Tables 9 (model 1) and 10 (model 2) for two alternative weather variable definitions. In model 

1, weather pertains to the cumulative growing season, while weather in model 2 pertains to 

intraseasonal weather events. The full-moment results have a good fit and include significant 

climate variables, except the third order full-moment functions for canola and spring wheat 

(Table 9). The odd order full-moment functions often have a bad fit (Antle et al. 2013). As 

shown in Table 9, higher growing degree days or heat units during the growing season increases 

the average yield of both canola and spring wheat, with a larger effect on canola yields. 

Specifically, a 10% increase in GDD enhances the mean yield of canola and spring wheat by 

4.3% and 3.4%, respectively. Increasing GDD reduces canola yield variability but with little 

significant effect on the variance of spring wheat yield. Our results are in agreement with an 

earlier study, which reported that higher mean temperature increases winter wheat yield in the 

Pacific Northwest with an elasticity effect of 0.45 at the sample mean (Antle et al. 2013). Our 

results indicate the temperature stress variable (the number of days with growing season 

temperatures greater than 30ºC) reduces both canola and spring wheat average yield and 

increases spring wheat yield variability. A 20% increase in the number of days with extremely 

high temperature (about three additional days) decreases average yields by 0.6% for canola (8 

kg/ha) and spring wheat (11.7 kg/ha). 

Pre-growing season precipitation increases both canola and spring wheat average yields 

(with elasticity effects of 0.10 and 0.12, respectively) and lowers their yield variance. These 

results are consistent with the findings of an earlier study (William et al. 1988) that found 

conserved soil moisture in the winter season was correlated with wheat yield in the Canadian 

prairies. Precipitation during the pre-growing season has a significant positive effect on the 
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skewness of spring wheat yield but this is not the case for canola yield. Therefore, increases in 

pre-growing season precipitation reduce downside risk vulnerability for spring wheat yield and 

helps avoid crop failure.  

Effects of the crop seeded or planted area differs for canola and spring wheat yield. An 

increase in canola seeded area lowers yield since more marginal land is cultivated as canola 

seeded area expanded over the years. The positive effect of spring wheat seeded area on average 

yield is consistent with results from previous Canadian studies for Ontario soybeans (Cabas et al 

2010). The share of summer fallow in total cropped area is significant and negatively affects the 

mean and variance of canola yield but positively influences yield skewness. The combination of 

adopting soil conservation technologies, diversified rotational cropping systems, and new 

cultivars appears to have displaced summer fallow as a moisture conserving measure since the 

mid-1960s (Smith and Young 2000). Mearns (1988), employing a similar technology variable 

(ratio of fallowed area to total sown area), found it impacts year to year variability of wheat 

yields in the U.S. Great Plains. 

 The time trend variable as a measure of technical improvements from improved crop 

genetics, fertilization, and management practices statistically increases the mean yields of both 

crops and lowers yield variance of canola with little significant effect on spring wheat yield 

variance. The increases in canola yield may be consistent with the rapid number of herbicide- 

tolerant canola varieties adopted in the prairies since the mid-1990s (Canola Council of Canada, 

2015). 

Table 10 shows the full-moment functions with a more detailed specification of weather 

variables to coincide with major stages of the crop growth cycle during the growing season. 

Overall, September GDD increases the average yield and reduces the yield variance for both 
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canola and spring wheat; conversely, higher July GDD decreases the mean yield and increases 

the yield fluctuation for both crops; June GDD has a mixed effect on the mean of canola 

(positive) and spring wheat yield (negative); the positive effect of May and August GDD on the 

average yield is only significant for canola and spring wheat, respectively. In elasticity terms, a 

10% increase of September GDD enhances the mean yield of canola and spring wheat by 2.8% 

and 3.3%, respectively. The negative effects of July GDD on crop yields are relatively large, 

with elasticity effects of 0.92 and 0.54 for canola and spring wheat, respectively. Our study 

results correspond to the observations from a previous study which showed that high 

temperatures in the month of July adversely affect the flowering period and consequently impact 

canola seed quality (Kutcher et al. 2010). For wheat, the month of July is associated with the 

flowering period stage of growth or kernel development (Robertson 1974). Increases in June 

GDD bolster the mean yield of canola by 2.1%, while decreasing the average yield of spring 

wheat by 3.0%. Meanwhile, GDD in June has a positive effect on the yield variability with a 

negative effect on the skewness of spring wheat output. May GDD significantly increases the 

average yield of canola (elasticity of 0.23) with a modest positive effect on the skewness 

(elasticity of 0.03) of wheat output. In contrast, the effects of August GDD are significant only 

on the mean yield (elasticity of 0.33) and variability of spring wheat, but not for canola.  

 Extreme weather conditions, where the cumulative number of days in the growing season 

exceeded 30ºC, affect negatively and significantly both canola and spring wheat yields. This 

result is consistent with a previous Mexican study where they found a similarly defined heat 

stress variable negatively affected mean wheat yields (Nalley et al. 2010). Warmer temperatures 

affect the growth pattern of wheat during the growing season because as temperature increases 
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there is a consequential reduction of soil moisture available for plant crop growth (Van Kooten 

1992) 

Precipitation in the early part of the growing season affects the mean, variance, and 

skewness differently for both canola and spring wheat. In general, positive effects of 

precipitation during pre-growing (October-April) and growing seasons (May-September) on the 

average crop yields have been confirmed. A 10% increase in pre-growing season precipitation 

increases the average yield of canola and spring wheat by 0.7% and 0.9%, respectively. May 

precipitation increases the average yield (elasticity of 0.09) and skewness for both crops, while 

decreasing their yield variance. June precipitation increases the average yield of both canola and 

spring wheat but has little significant effect on the variance or skewness. Wheat experiences 

rapid development growth in June, which is the month with the highest precipitation, and is 

generally in the stem elongation and head emergence stage of growth by the end of June 

(Robertson 1974).  

The positive effect of July precipitation on canola in mitigating yield loss is in agreement 

with the results of an earlier Saskatchewan study (Kutcher et al. 2010). Van Kooten (1992) found 

similar results to our study where the months of May and June precipitation positively affected 

spring wheat yield in southwestern Saskatchewan. September precipitation only has a significant 

positive effect on the variance and skewness of canola yield.  

(ii) Partial-Moments Model 

The second and third partial-moment functions for model 1 and model 2 are shown in Tables 11 

and 12. The partial-moment functions are defined in absolute terms (parameter signs are opposite 

to full-moments for the odd order negative moments) and are based on deviations above 

(positive) and below (negative) the mean (Antle  2010). Likelihood ratio test statistics show 
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symmetry restrictions are rejected for both second and third partial-moment functions. This 

result shows that, unlike the full-moment functions, the partial-moment functions provide a 

better specification for estimating higher-order moments. The partial-moment function results 

(Table 11) differ with respect to climate and non-climate effects on canola and spring wheat 

yield distributions. In general, the impacts of climate changes such as cumulative growing season 

GDD and extreme temperatures on the yield distribution of canola are only significant in the 

positive partial moments. The temperature stress (> 30ºC) variable increases the positive 

variability and skewness of canola and the negative variability of spring wheat yield, while 

cumulative GDD during the growing season reduces the positive variance and skewness of 

canola yield. For spring wheat yield, pre-growing season precipitation and temperature stress 

variable also have asymmetric effects on two tails of the yield distribution, but unlike canola, the 

impacts are only significant on the deviation below the mean yield (negative moments). Pre-

growing season precipitation reduces the negative second and third order partial-moment 

functions for spring wheat. Increasing the number of extremely high temperature days increases 

the yield variability of spring wheat, especially significantly at the deviation below the mean 

level. Combining the results from both full-moments and partial-moments function estimation 

indicates that increased GDD during the crop growing season reduces the overall fluctuation of 

canola yield (full-moments) while such a significant impact originates from decreasing the 

variance of the deviation above the mean level of the yield distribution. In addition, the 

correlation between the extreme high temperature and the overall variance of canola yield is not 

significant but such a relationship is confirmed on the upper tail of the distribution.  

The partial-moment function results with intraseasonal weather variables to coincide with 

the crop growth stages are shown in Table 12. Overall, the partial-moment functions present 
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similar results as the full-moment functions, but the effects of climate on the negative tail of both 

crop yield distributions is more significant and with a larger magnitude than the positive tail. 

Temperature variance effects on yield distributions are more significant in the earlier part of the 

canola growing season when compared to spring wheat. GDD in May reduces the variability of 

both the positive and negative tail of yield distribution for canola, and the effect on the negative 

tail is slightly larger. Conversely, GDD in June and July increases the second positive and 

negative moments of spring wheat yield distributions. GDD in September reduces the variance of 

spring wheat yield distribution on both tails, and this is similarly the case for canola yield, but 

only significant on the negative tail. May precipitation reduces the negative variance for both 

crop (canola, spring wheat) yield distributions, and also reduces the positive variance of spring 

wheat yield. Precipitation in the pre-growing season decreases the variability of spring wheat 

yield on the negative tail. Unlike spring wheat, temperature stress parameters are significant 

weather factors affecting the variance of canola yield distributions. Regarding the effects of 

weather parameters on the skewness of yield distribution, May GDD has a negative effect on the 

positive skewness of canola yield as well as on the negative skewness of spring wheat yield. 

Unlike canola, GDD in June and July increases both the positive and negative skewness of spring 

wheat, while GDD in September decreases the skewness of spring wheat in both positive and 

negative tails. Similarly, May precipitation decreases the negative skewness of both canola and 

spring wheat yield, while pre-growing season precipitation reduces the negative skewness of 

spring wheat yield.  

CONCLUSIONS 

Global warming is expected to affect the productivity of Saskatchewan agriculture and influence 

how agricultural producers adapt to the adverse effects. This study employed a flexible 
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moments-based approach over the 1987-2010 period to analyze how canola and spring wheat 

yield distributions respond to changes in precipitation and temperature.  

Results obtained from the full-moment functions with alternative specification of the 

weather variables show different effects of non-climate and climate variables with the latter 

dissimilarities particularly distinct. For specifications with alternative weather variables, the non-

climate variables for both canola and spring wheat have roughly similar results in terms of the 

statistical significance, directional effect, and size of coefficients. Full-moment functions show 

that the model where climate variables are disaggregated provides detailed insights about GDD 

and precipitation effects on the yield distribution that are not captured in the model with weather 

variables cumulated over the growing season.  

The incorporation of the monthly GDD and monthly precipitation during the growing 

season in the full-moment function discerns the effects throughout the crop growth cycle. For 

canola, GDD has both positive and negative effects, respectively, on the mean in May, June, and 

September and on the variance in May and September. However, the effect of July GDD lowers 

the mean and increases the variance which offsets the positive outcomes in the other months of 

the growing season. Similarly, the effect on variance is positive and by far larger than the 

decreasing effect in May and September. Changing weather patterns and more frequent 

occurrences of hot weather in July likely have a strong negative effect on average canola yields, 

while increasing its variance.  

The disaggregation of GDD on average spring wheat yield and risk provided even more 

discerning weather insights than for canola output. The aggregated effect of GDD suggested an 

increase in the average wheat yield and a decrease in variance as the number of GDD increases 

during the growing season. By contrast, the model specification with five monthly GDD figures 
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shows no discernable effect of GDD in May, but hot weather in June and July hurts the average 

spring wheat yield and increases its variance. Only after the initial plant growth has been 

completed, does warm weather contribute to an increase of average yield, while lowering its 

variance as indicated by the GDD effect in August and September.  

The partial-moment functions provide further insights into the non-climate and climate 

change variables. Specifically, the effects are made with respect to the average canola and spring 

wheat yields with the emphasis on the upside and downside influence. Overall, the model with 

aggregate climate variables explains canola yield better than spring wheat yield.    

Among the climate change variables, the number of growing degree days has the only 

sizable significant effect and reduces the positive variance and skewness of canola yield. The 

effect of hot weather has a similar directional effect, but of very small magnitude. For spring 

wheat, pre-growing season precipitation reduces the positive yield variance, while hot weather 

increases the positive yield variance by a small amount, which is twice the size of a similar effect 

on canola yields.   

Clearly the partial-moment functions of the canola and wheat models that include 

disaggregated climate change variables provide far more insights than the version with 

aggregated climate change measures. GDD reduces the positive and negative variance of canola 

yield by similar amounts when such days occur in May. In subsequent months of the growing 

season, only the GDD in September reduces the negative variance and skewness of canola yield. 

Growing season precipitation reduces the negative variance of canola yield if it rains in May, but 

has the opposite (although minimal) effect in September. The number of exceedingly hot days 

and the time trend has similar effects on canola as in the model with aggregated climate 

variables.  
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The weather effects on spring wheat are far more acute. The monthly GDD in June and 

July increases both variances, but the negative variance is effected far more than the positive 

variance, especially in July, showing asymmetrical effects and consequences for wheat yields. 

However, GDD in September reduces both variances, especially the negative variance and 

skewness. In terms of precipitation, May precipitation decreases both variances and the reduction 

of negative variance is particularly large given the critical role of moisture in this stage of crop 

growth. In addition, pre-growing season precipitation also reduces the negative variance.  

In summary, results of the current study are focused on canola and spring wheat produced 

in Saskatchewan, Canada. Despite the regional nature of data used in the study, results contribute 

to the global literature on the effects of climate change. First, the study results support the use of 

highly disaggregated temperature and precipitation data. Second, the application of the full- 

moment and partial-moment functions to discern the effects on average yields and their variance 

suggests the use of the partial-moment function in future studies. The specific outcomes of this 

study also suggest considerably stronger effects of changing temperatures than precipitation, 

supporting findings of Lobell and Burke (2008). The effects of higher temperatures measured by 

the monthly GDD broaden insights of earlier studies of other regions suggesting a decrease in 

wheat yields (Lobell and Field 2007; Lobell et al. 2011), while also confirming results of earlier 

studies focused on Saskatchewan, but using a different methodological approach (Kutcher et al. 

2010). The current study finds that pre-growing season precipitation and precipitation in the 

early stages of plant growth are particularly relevant, supporting previous studies showing 

general effect of precipitation on wheat yield variability reduction in other regions (Chen et al. 

2004) and specific field experimental studies on spring wheat in the Canadian prairies (He et al. 

2013). 
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Figure1. Crop districts in Saskatchewan 
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Figure 2. Saskatchewan canola and spring wheat yield and seeded area, 1985-2014 

Source: Statistics Canada (2015) 
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Table 1.  Average canola and spring wheat yield (kg/ha) by crop districts (CDs)  

                                     Canola     Spring wheat 

CDs Soil zone Mean  Std. Dev. Freq. Mean  Std. 

Dev. 

Freq. 

1A Dark  Brown 1269.57 329.51 23 1820.83 343.86 24 

1B Black/Gray 1350.00 347.66 24 2062.50 352.40  24 

2A Brown 1237.50 431.19 24 1654.17 378.76 24 

2B Dark Brown 1362.50 373.95 24 2029.17 349.51 24 

3A-N Brown 1304.17 435.87 24 1716.67 382.97 24 

3A-S Brown 1191.30 411.11 23 1804.17 439.84 24 

3B-N Brown 1440.00 388.52 20 1852.17 403.25 24 

3B-S Brown 1220.83 464.36 24 1821.74 458.21 23 

4A Brown 1221.74 334.33 23 1733.33 348.50 23 

4B Brown 1422.73 419.67 22 1849.79 616.92 24 

5A Black/Gray 1354.17 309.25 24 2079.17 337.48 24 

5B Black/Gray 1350.00 310.68 24 2216.67 376.10 24 

6A Dark Brown 1300.00 331.01 24 1904.17 422.70 24 

6B Dark Brown 1400.00 358.74 24 1983.33 523.92 24 

7A Brown 1275.00 437.63 24 1895.65 556.35 23 

7B Dark Brown 1316.67 382.97 24 2012.50 474.86 24 

8A Black/Gray 1391.67 311.96 24 2382.04 593.70 23 

8B Black/Gray 1383.33 317.14 24 2195.83 563.74 24 

9A Black/Gray 1312.50 361.53 24 2143.48 496.19 23 

9B Black/Gray 1370.83 428.83 24 2127.27 625.78 22 

Brown 

Statistic 

 0.748  1.0752 

P-value   0.768  0.373 

Note: Brown’s test suggests that we cannot reject the equality of variances between areas.  
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Table 2. Descriptive statistics of climate and non-climate variables for canola and spring wheat 

                                                                                                                               Canola                                                                                       Spring wheat 

Variable Mean Std Min Max Mean Std Min Max 

 Yield (kg/ha) 1,322.93  375.85 200.00    2,400.00 1962.96 448.31 400 3200 

    Non-climate variable 

Seeded area (ha) 111,452.7   99,472.4 100.00  412,100.0 236,090.2 116,613.8 48,100 710,200 

Fallow share (%) 23.17  12.31 2.70   56.80 34.71 24.04 2.8 131.7 

    Climate variable 

GDD in growing season 1,507.81  173.68 1,019.70  2,043.60 1510.46 174.04 1019.7 2043.6 

May GDD 184.31  47.70  48.10   331.70 184.97 47.99 48.1 331.7 

June GDD  319.71   53.65  196.40   557.50 320.84 53.88 196.4 557.5 

July GDD  409.23   50.50  295.10   578.40 409.53 50.28 295.1 578.4 

August GDD  381.53   57.87 245.90   532.00 381.93 58.32 245.9 532.0 

September GDD 213.12  49.85 107.50   369.50 213.28 49.68 107.5 369.5 

Precipitation in growing season (mm)  272.58   87.92 88.60 609.20 272.41 87.69 88.6 609.2 

Precipitation in pre-growing season  

(mm) 

 122.01    47.36  11.00   355.60 121.96 47.27 11.0 355.6 

May Precipitation (mm) 45.99  30.11 1.50  163.80 46.02 30.07 1.5 163.8 

June Precipitation (mm) 76.11 40.02  9.00  328.80 76.65 40.36 9.0 328.8 

July Precipitation (mm)  63.97  36.70 3.80   216.20 63.81 37.22 3.8 217.4 

August Precipitation (mm) 53.31   34.33  0.00  180.20 53.19 34.22 0 180.2 

September Precipitation (mm) 33.47  25.78  0.00  196.60 33.02 25.22 0 196.6 

Temperature stress, >30 ºC (no of days) 12.77   9.29  0.00   50.00 12.87 9.25 0 50.0 

Number of observations 471         473 
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Table 3. Im-Pesaran-Shin (2003) panel unit-root test results for canola and spring wheat yields, climate 

and non-climate variables   

Crop type                Canola 

 

       Spring wheat 

 

Variable  Z-t-tilde-bar 

statistic  

P-value  Z-t-tilde-

bar statistic  

P-value 

Yield   -9.3880  0.0000   -9.8572 0.0000 

Seeded area    -2.7081  0.0034   -2.1483  0.0158 

Fallow share (%)   -3.6803   0.0001   -3.0709  0.0011 

GDD in growing season   -8.2204  0.0000   -8.2204 0.0000 

May GDD -10.6191  0.0000 -10.6191 0.0000 
June GDD -10.6633  0.0000 -10.6633 0.0000 
July GDD   -9.8994  0.0000   -9.8994  0.0000 
August GDD   -9.6772   0.0000   -9.6672 0.0000 
September GDD -10.2126  0.0000 -10.2126  0.0000 
Precipitation in growing season  -10.8896   0.0000 -10.8896 0.0000 
Precipitation in pre-growing season     -9.3443  0.0000   -9.3443 0.0000 
May Precipitation   -10.9424  0.0000 -10.9424 0.0000 
June Precipitation   -11.7218  0.0000 -11.7218  0.0000 
July Precipitation   -11.5406  0.0000 -11.5406 0.0000 
August Precipitation   -10.2986  0.0000 -10.2986 0.0000 
September Precipitation   -10.0503  0.0000 -10.0503 0.0000 
Temperature, >30 degrees (no of days)  -10.5947  0.0000 -10.5947 0.0000 
Note: Im-Pesaran-Shin allows unbalanced panel data and the Z-t-tilde-bar Statistic is employed because 

of fixed time period. Cross sectional mean is removed. The null hypothesis is all panels contain unit roots.  

 

Table 4. Test for autocorrelation in the panel data model 

Model \ F-stat (P-value) Canola Spring wheat 

Model 1   9.489 (0.0062)  10.956 (0.0037) 

Model 2  11.006 (0.0036)  20.481 (0.0002) 

Note: Woodridge test (df1=1, df2=19). The null hypothesis is no first-order autocorrelation exists in the 

panel data.  

Table 5. Test of fixed effect vs random effect in the panel data model 

                      Canola               Spring wheat 

 Statistic DF P-value Statistic DF P-value 

Model 1  75.898 7 0.0000 240.644 7 0.0000 

Model 2  396.122 15 0.0000 322.500  15 0.0000 

Note: Sargan-Hansen statistic is reported. The null hypothesis is that coefficients from random effect are 

consistent to coefficients from the fixed effect.   
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Table 6. Modified Wald test of groupwise heteroskedasticity for crop yield 

                        Canola               Spring wheat 

 Chi.sq  

Statistic 

DF P-value Chi.sq 

Statistic 

DF P-value 

Model 1  123.56 20  0.0000 172.73 20  0.0000 

Model 2   147.01 20  0.0000 63.48 20  0.0000 

Note: the null hypothesis is groupwise homoskedasticity in fixed effects regression model.   

 

Table 7. Pesaran’s Test of cross section correlation for crop yield 

                Canola      Spring wheat 

 Statistic P-value Statistic P-value 

Model 1    17.572  0.0000 20.780  0.0000 

Model 2    10.862  0.0000 15.448  0.0000 

Note: the null hypothesis is cross-sectional independence.    

 

Table 8. Test for multicollinearity in the panel data model 

Model \ Mean VIF Canola Spring wheat 

Model 1  2.47  2.13 

Model 2  2.14  1.96 

Note: since all of the variable VIF and mean VIF are all smaller than 10, thus there is no multicollinearity.  
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Table 9. Full moment functions (1
st
, 2

nd
, 3

rd
) results: canola and spring wheat yield (Model 1) 

 Canola  Spring wheat 

Variable  Mean Variance Skewness Mean Variance Skewness 

Constant -17.7894***  5.4257** -3.0847* -29.5361***  1.8164 -.5007 

 (6.3135) (2.1333) (1.7648) (7.0390) (3.0284) (2.3858) 

 

 Non-climate variable 

Seeded area (ha) -.0546*** -.0196*** .0116 .2068*** .0124 -.0106 

 (0.0183) (0.0064) (0.0072)  (0.0484) (0.0150) (0.0135) 

Fallow share (%)  -.0053** -.0022*  .0028* -.0006 -.0001 .0005 

 (0.0023) (0.0012) (0.0015) (0.0009) (0.0004) (0.0003) 

 Climate variable 

GDD Growing 

season .4303** -.0936** .0016 .3404**  -.0452 .0374 

 (0.1852)  (0.0422) (0.0512) (0.1662) (0.0696) (0.0420) 

Precipitation 

Growing season  .0290 

  

-.0284 .0549 

 

-.0240 -.0050 .0238 

 (0.0481)  (0.0461)  (0.0727) (0.0428) (0.0393)  (0.0467) 

Precipitation 

Pre-growing 

season .1013*** 

  

-.0376** 

 .0465 

 

.1230*** 

 -.0580*** .0441* 

 (0.0306) (0.0215) (0.0291) (0.0281)  (0.0185) (0.0224) 

Temperature 

stress, >30 degrees 

C  -.0285*** .0019 .0004 -.0264*** .0025* -.0013 

 (0.0030) (0.0012) (0.0014) (0.0026) (0.0014) (0.0012) 

Time trend  .0112*** -.0021*  .0012 .0160*** -.0007  -.0000 

 (0.0031) (0.0010)  (0.0008) (0.0031) (0.0013) (0.0010) 

District fixed 

effects Yes No No Yes No No 

Observations 471 471 471 473 473 473 

R-squared   0.4727    0.5017   

F-stat (P-value)   3.99(0.0076)  0.92(0.5099)   5.09(0.0022) 2.72(0.0390) 

Note: Prais-Winsten regression, heteroskedastic panels corrected standard errors (PCSEs) in parentheses for mean equation.  

 *** p<0.01, ** p<0.05, * p<0.1 
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Table 10. Full moment functions (1
st
, 2

nd
, 3

rd
) results: canola and spring wheat yield (Model 2) 

                                               Canola  Spring wheat 

Variable  Mean Variance Skewness Mean Variance Skewness 

Constant -27.0846*** 

 

3.1813 .2858 

  

-21.1265*** 1.0876 -.1313 

 (6.0328)           (1.8777) (1.7806) (6.5038) (1.7260) (1.2475) 

 

 Non-climate variable 

Seeded area (ha) -.0481*** -.0152** .0107 .1755*** -.0124 .0075 

 (0.0178) (0.0062) (0.0064) (0.0461) (0.0103) (0.0084) 

Fallow share (%)  -.0062*** -.0002  .0008  .0001  .0003*  -.0001 

 (0.0022) (0.0007) (0.0006)  (0.0009) (0.0002) (0.0001) 

 Climate variable 

May GDD .2306*** -.0854***  .0265  -.0032 -.0372 .0309* 

 (0.0576) (0.0264) (0.03266)  (0.0503) (0.0237) (0.0158) 

June GDD  .2092** .0716 -.0597 -.2966*** .0956** -.0595* 

 (0.1035) (0.0528) (0.0567)  (0.0869) (0.0395) (0.0320) 

July GDD -.9225*** .2183*  -.1988  -.5374*** .1346** -.0994* 

 (0.1460) (0.1199)  (0.1232) (0.1247) (0.0571) (0.0518) 

August GDD .0648 -.0160  .0032 .3351*** -.0461* .0134 

 (0.1041) (0.0321) (0.0352) (0.0857) (0.0252) (0.0206) 

September GDD  .2763*** -.0734** .0691* .3264***  -.0583***  .0398** 

 (0.0588) (0.0285) (0.0337) (0.0512) (0.0197) (0.0155) 

May precipitation .0888***  -.0311**  .0257* .0875***  -.0275***  .0184** 

 (0.0170) (0.0114) (0.0141) (0.0148) (0.0083) (0.0066) 

June precipitation .0581**  -.0316 .0401 .0606*** -.0175 .0176 

 (0.0232) (0.0266) (0.0378) (0.0198)  (0.0146)  (0.0165) 

July precipitation .0534** -.0078 .0080  -.0128  .0059  -.0041 

 (0.0217) (0.0107) (0.0086)  (0.0175) (0.0072) (0.0058) 

August precipitation -.0156 .0063 -.0047 -.0154  .0038  -.0043 

 (0.0162) (0.0063) (0.0069) (0.0127) (0.0036) (0.0029) 

September 

precipitation .0008 .0080** .0046* -.0013 -.0000 .0009 

 (0.0125) (0.0030) (0.0024) (0.0105) (0.0045) (0.0040) 

Precipitation Pre-

growing season .0695** -.0182 .0195 .0897*** -.0242** .0173* 

 (0.0300) (0.0160) (0.0167) (0.0270)  (0.0104) (0.0090) 

Temperature stress, 

>30 degrees -.0191***  -.0002 .0020  -.0171*** .0005 -.0001 

 (0.0030) (0.0016) (0.0019) (0.0025)  (0.0011)  (0.0009) 

Time trend   .0177***  -.0017* .0001 .0135** -.0006 .0002 

 (0.0030) (0.0009) (0.0008) (0.0030) (0.0007) (0.0005) 

District fixed effects Yes No No Yes No No 

Observations 471 471 471 473 473 473 

R-squared  0.5868   0.5991   

F-stat (P-value)   8.00(0.0000) 1.94(0.0863)  11.88(0.0000) 5.47(0.0004) 

Note: Prais-Winsten regression, heteroskedastic panels corrected standard errors (PCSEs) in parentheses for mean equation.   

*** p<0.01, ** p<0.05, * p<0.1 
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Table 11. Partial Moment Functions (2
nd

 and 3
rd

): canola and spring wheat (Model 1) 
 Canola  Spring wheat 

Variable  Variance_Pa 
Variance_Nb 

Skewness_P Skewness_N Variance_P Variance_N Skewness_P Skewness_N 

Constant 3.2677** 6.0575 1.8405** 5.0280  1.5528  .0314 .3313 -9.9786 

 (1.2420) (4.7972)  (0.6605) (5.6136) (2.0942) (4.3628) (0.9187) (4.1343) 

 

 
Non-climate variable 

Seeded area (ha) -.0102** -.0251* -.0054** -.0232 .0014 .0190 .0006 .0174 

  (0.0047) (0.0127) (0.0025) (0.0142) (0.0080)  (0.0264) (0.0035) (0.0281) 

Fallow share (%) -.0004 -.0036 -.0002 -.0052 .0003 -.0008 .0001 -.0012 

 (0.0006) (0.0023)  (0.0003) (0.0030) (0.0003) (0.0008) (0.0001) (0.0009) 

 Climate variable 

GDD Growing season -.1149*** -.0343 -.0579** .0120 -.0235 -.0571 -.0030 -.0357 

 (0.0356) (0.0968) (0.0217) (0.1070) (0.0542) (0.0996) (0.0219) (0.0792) 

Precipitation Growing 

season 

 

 

-.0080 -.0344 -.0042 -.0900 

 

 

.0043 .0079 .0019 -.0217 

 (0.0170) (0.0848) (0.0092) (0.1335) (0.0101) (0.0746)  (0.0036) (0.0893) 

Precipitation Pre-

growing season -.0047 -.0885 -.0006 -.1133 -.0164 -.1258*** -.0077 -.1332** 

 (0.0071) (0.0565) (0.0039) (0.0765)  (0.0109)  (0.0441) (0.0051)  (0.0538) 

Temperature stress, 

>30 degrees .0022*** .0013 .0012** -.0005 .0009 .0053*** .0002 .0035 

  (0.0008) (0.0023) (0.0004) (0.0032) (0.0008) (0.0027)  (0.0003) (0.0026) 

Time trend  -.0011* -.0024 -.0007 -.0018 -.0007 .0004 -.0001 .0009 

 (0.0006) (0.0023) (0.0003) (0.0028) (0.0009) (0.0019) (0.0004) (0.0018) 

Observations 265 206 265 206 261 212 261 212 

F test (P-value) 3.96(0.0079) 2.11(0.0928) 3.47(0.0145) 1.53(0.2161) 5.12(0.0021) 5.29(0.0018) 3.66(0.0115) 2.01(0.1073) 

LR test (P-value) 

459.04 

(0.0000) 

882.76 

(0.0000) 

573.71 

(0.0000) 

1063.85 

(0.0000) 

Note: Clustered robust standard errors in parentheses  the mean equations report the Driscoll-Kraay standard errors adjusted for spatial dependence.  
a Positive residual from the mean equation.  
bNegative residual from the mean equation. 

*** p<0.01, ** p<0.05, * p<0.1;
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Table 12. Partial moment functions (2
nd

 and 3
rd

) : canola and spring wheat (Model 2) 
 Canola  Spring wheat 

Variable  Variance_P Variance_N Skewness_P Skewness_N Variance_P Variance_N Skewness_P Skewness_N 

Constant 3.3832**  2.3751  1.5533**  0.1980 -.5245 5.1095** -.3415 3.0199 

 (1.2038) (3.1266) (0.6096)  (3.4145) (1.9224) (2.3279) (0.7393)  (1.8805) 

 

 
Non-climate variable 

Seeded area (ha) 

 -.0040 -.0213** -.0016 -.0167** -.0000 -.0464* -.0003 -.0367 

 (0.0044) (0.0080) (0.0022) (0.0798) (0.0080) (0.0235) (0.0028) (0.0218) 

Fallow share (%) .0005- -.0005 .0002 -.0007 .0003 .0005 .0001 .0003 

 (0.0005) (0.0010) (0.0002) (0.0009) (0.0002) (0.0004) (0.0001) (0.0004) 

 Climate variable 

May GDD -.0634*** -.0894* -.0314*** -.0749 -.0053 -.0750 -.0003 -.0754* 

 (0.0177) (0.0484) (0.0090) (0.0441) (0.0126) (0.0533) (0.0049) (0.0417) 

June GDD -.0070 .1662 -.0038 .1528 .0422* .1369* .0158** .1145* 

 (0.0250) (0.1056) (0.0121) (0.1013) (0.0227) (0.0783) (0.0076) (0.0595) 

July GDD .0552 .3688 .0216 .3982 .0471** .2315* .0140* .2134* 

 (0.0425) (0.2183) (0.0175) (0.2351) (0.0211) (0.1137) (0.0076) (0.1052) 

August GDD -.0158 -.0871 -.0036 -.0624 -.0240 -.0532 -.0042 -.0033 

 (0.0317) (0.0805) (0.0132) (0.0772) (0.0287) (0.0803) (0.0106) (0.0635) 

September 

GDD -.0178 -.1110** .0028 -.1206** -.0257* -.0862** -.0074* -.0758* 

 (0.0164) (0.0455) (0.0073) (0.0553) (0.0133) (0.0329) (0.0042) (0.0374) 

May 

precipitation -.0086 -.0477** -.0022 -.0479* -.0092* -.0449*** -.0028 -.0363** 

 (0.0068) (0.0197) (0.0031) (0.0241) (0.0045) (0.0157) (0.0016) (0.0137) 

June 

precipitation -.0042 -.0546 -.0012 -.0754 -.0041 -.0260 -.0011 -.0328 

 (0.0095) (0.0458) (0.0043) (0.0629) (0.0032) (0.0283) (0.0011) (0.0288) 

July 

precipitation -.0043 -.0089 -.0045 -.0112 .0021 .0103 .0006 .0087 

 (0.0055) (0.0172) (0.0027) (0.0163) (0.0037) (0.0131) (0.0013) (0.0115) 

August 

precipitation .0005 .0051 .0004 .0055 -.0026 .0092 -.0008 .0083 

 (0.0046) (0.0117) (0.0024) (0.0115) (0.0033) (0.0074) (0.0011) (0.0058) 

September 

precipitation .0021 .0140* -.0009 .0105 -.0004 -.0029 -.0002 -.0034 

 (0.0053) (0.0071) (0.0033) (0.0063) (0.0023) (0.0071) (0.0008) (0.0057) 

Precipitation 

Pre-growing 

season -.0023 -.0199 -.0003 -.0251 -.0052 -.0491* -.0016 -.0419** 

 (0.0088) (0.0333) (0.0041) (0.0300) (0.0072) (0.0241) (0.0025) (0.0196) 

Temperature 

stress, >30 

degrees .0016** -.0017 .0008* -.0032 .0001 -.0003 -.0001 -.0009 

 (0.0074) (0.0025) (0.0004) (0.0031) (0.0006) (0.0017) (0.0002) (0.0016) 

Time trend  -.0016** -.0016 -.0007** -.0006 .0002 -.0025** .0001 -.0016* 

 (0.0006) (0.0015) (0.0003) (0.0015) (0.0008) (0.0011) (0.0003) (0.0009) 

Observations 247 224 247 224 256 217 256 217 

F-stat (P-value) 23.68(.0000) 5.7(.0003) 10.10(.0000) 5.22(.0005) 3.98(0.0000) 7.89(0.0000) 3.10(0.0109) 3.19.(0.0095) 

LR test (P-value) 

277.03 

(0.0000) 

608.12 

(0.0000) 

404.72 

(0.0000) 

833.27 

(0.0000) 

Note: Clustered robust standard errors in parentheses   

*** p<0.01, ** p<0.05, * p<0.1. 
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