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On the Demand for Federal Crop Insurance

Federal Crop Insurance

The United States Federal Crop Insurance Program (FCIP) has received signifcant attention

as far as the United States food and agricultural policies are concerned. The program was

created in the 1930s mainly as a risk management tool and has now become one of the major

agricultural support programs in the United States. The coverage of the FCIP was initially

limited but is currently characterized by a mix of many programs. The crop insurance

programs have undergone many periodic modifications through the passage of various federal

Acts and farm bills. 1

The enactment of the 1980 Federal Crop Insurance Act significantly expanded crop in-

surance to many more crops and regions in the country. The Act greatly encouraged partic-

ipation by offering farmers subsidized insurance premiums. Between 1988 and 1994, annual

ad hoc disaster assistance programs were implemented to further provide relief to producers.

Notably, the 1994 “Crop Insurance Reform Act” eliminated annual disaster programs, and

made participation in crop insurance mandatory. This Act instituted catastrophic (CAT)

coverage to protect producers against major losses at no cost to the producers including

greater premium subsidy levels.

In recent years (e.g., the 2000 “Ag. Risk Protection Act”), Congress has even increased

premium subsidy levels, while at the same time the role of the private sector in developing

new insurance products has grown substantially. The current subsidies cover a significant

fraction of insurance premiums. As a result of these changes, the program has experienced

tremendous growth in participation, especially since the 1994 Act (Annan et al. 2014, and

1The various Acts reviewed for this paper were taken from the website of the Risk Management Agency
(RMA) of the USDA (and Wang and Annan 2015): http://www.rma.usda.gov/aboutrma/what/history.html
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Annan and Schlenker 2015). The major subsidy Acts centered on making insurance more

affordable and improving the insurance program’s compliance and integrity. These provide

plausibly exogenous variation in insurance premiums. The construction of our instrument

in the empirical exercise relies on these reforms following Annan (2015).

The FCIP contracts including premium subsidies are administed by the Federal Crop

Insurance Corporation FCIC under the supervision of the Risk Management Agency (RMA)

of the United State Department of Agriculture (USDA). The contracts which are designed

by the RMA are sold and serviced through private insurance providers that are approved by

the FCIC. The FCIC reinsure and approve the terms and conditons of the Federal contracts.

Insurance Plans

The Federal crop insurance program currently provides a mix of both yield-based coverage

and revenue insurance. More generally, indemnity payments are triggered whenever yield

or price realizations fall below certain guaranteed levels.2 The plans may broadly exist

occur either at the farm (individual-based) or county (area-based) levels. Examples of the

policies include the actual production history (APH), actual revenue history (ARH), group

risk income protection (GRIP), group risk plan (GRP) and etc. The most widely used

yield based plan in the Federal crop insurance is the multiple peril crop insurance (MPCI).

The MPCI, which is “individual based”, provides comprehensive protection against various

unavoidable perils including weather related causes.

Next, the GRP, also called area-yield insurance, is based on average county-yields. In-

troduced in 1993, the GRP had an insurance liability of about $2.5 million in its first year

and is available for several crops. Together with its revenue insurance counterpart (that is,

the GRIP), both covered a liability of about $8.5 billion on over 34 million acres insured

2The various insurance plans mentioned here were taken from the website of the Risk Management Agency
of the USDA: http://www.rma.usda.gov/policies/. See this website for details.
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by the year 2008 (Harri et al. 2011). Insured producers are paid indemnities when the

average county yields fall below a county-yield guarantee, where the guarantee is simply the

product of the expected county yields and a selected coverage level. In general, it is rare

for producers to have access to better information about the overall county-yields than an

insurance company. Asymmetric information: adverse selection and moral hazard which

reduce the soundness of an actuarial process are therefore mitigated to a larger extent in

the GRP compared to farm yield-based insurance counterparts. Another advantage is that

insurers or rate makers are able to more accurately rate the county level plan since longer

time series data is available.

The revenue insurance policies protects against revenue or gross income losses due to

yield or price shortfalls. There are different revenue insurance policies which arise based on

how “revenue” is defined and the way in which the coverage is provided. The group revenue

insurance version (GRIP) pays indemnities when the average county revenue for the insured

crop declines below the revenue level selected by the farmer. The adjusted gross revenue

insurance (AGR) insures the revenue of the entire farm, not just the revenue derived from

individual crops. This guarantees a percentage of the producers’ average gross revenue. The

crop revenue coverage (CRC) protects against price and yield losses below a guarantee based

on the higher of either an early season price or harvest price. Modifications of the definiton

of “revenue” lead to other policies, including income protection (IP) and revenue assurance

(RA). While the former protects producers against reductions in gross income when insured

crop’s price or yield falls from early-season expectations, the latter permits farmers to select

a dollar amount of target revenue from a range expressed in term of percentages of expected

revenue. The empirical exercise derives the main outcome of interest by aggregating over

all the various insurance plans. Future work will examine potential heterogeneity along the

lines of individual versus area-based plans.

The remainder of this paper is organized as follows. Section 2 discusses the data used in
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the empirical analysis. Section 3 presents our empirical modelling framework and results. For

illustration, these estimates are comapred with previous work. The final section concludes.

All Tables and Figures are collected in the Appendix.

Data and Measurements

The data is an unbalance panel: covering over 673 counties in the Corn belt3, and spanning

1989 through 2013. To be included in the main analysis, the county must have at least 23

years of available data. Our data come from multiple sources. The yields which are used to

derive a measure of variabilty in production are constructed using data on total production

and total planted acres. These two come from the National Agricultural Statistics Service

(NASS) of the United States Department of Agriculture (USDA).4 Particularly, the yield

series are constructed as production per acre planted, rather than per acre harvested to

better capture extreme productivity events that would typically trigger insurance payments.

The insurance variables which include: premiums, loss ratios, and total insured acres

were obtained from the Risk Management Agency (RMA) of the USDA. These records are

publicly available on the “summary of business” files of RMA. Premiums directly from the

RMA include all Federally paid subsidies. We were careful to isolate the out-of-pocket

premiums for our purposes. We constructed premium rates as out-of-pocket premiums per

insured acreage.

Table 1 in the Appendix reports the moments, the smallest and largest order statistics

of the main outcome variable fraction of planted acreage insured. The Table shows that

considerable variation exist, even at the state level.5 It is not surprising that the top-four

major corn producing states which include Iowa, Illinois, Nebraska and Minnesota have the

3The empirical analysis reflect corn producers. We focus on the Corn belt: together, this region produces
more than 90% of annual United States Corn output.

4Downloaded from http://quickstats.nass.usda.gov.
5This under-states the county level variation in our data.
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largest mean insurance demand over the sample period. The total number of observations

is 16,608, corresponding to the 673 counties.

To examine further the variation in fraction insured, Figure 2 plots the spatial distribution

of average fraction insured while Figure 3 plots the standard deviation of fraction insured at

the county level. To generate Figure 2, we compute the average taken over time realizations

per county. These are then mapped over the entire United States. For Figure 3, we derive

the standard deviation of the fraction of the land insured per county. Similarly, the county

level standard deviations are mapped over the entire United States. Both figures suggest

that there is significance variation in the average fraction insured (SD) across counties over

the period. As in Table 1, large fractions acreage are insured in counties located in the major

corn producing states. Figures 2 and 3 also suggest some positive correlation between the

average fraction insured and the underlying variability (SD). This correlation is about 40%

and it is statistically siginificant at 1%.

Figure 1 further displays the distribution of the fraction of planted acreage insured vari-

able by year. The Figure demonstrates two major patterns. First, there is significant vari-

ation across counties in terms of the program’s expansion. Second, there is tremendous

variation across years and the expansion of the program has been higher in recent years.

There are observable trends (see e.g., movement of the median) in insurance demand. Fi-

nally, our weather data come from Schlenker and Roberts 2009, which has been updated to

include recent years. The weather variables include growing degree days (GDD)6, precipation

and precipation-squared. We briefly discuss Schlenker and Roberts 2009’s data construction

process here.

Schlenker and Roberts 2009 constructed a fine-scale weather data based on the following

6GDD are a measure of heat accumulation used by farmer to predict a crop will reach maturity. GDD
are calculated by taking the average of the daily maximum and minimum temperatures compared to a base
temperature, Tbase, (usually 10 °C). As an equation, GDD = (TMAX + TMIN )/2 − Tbase. For example, a
day with a high of 23 °C and a low of 12 °C (and a base of 10 °C) would contribute 7.5 GDDs.
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procedure. They begin by developing daily predictions of minimum and maximum temper-

ature on a 2.5X2.5-mile grid for the entire United States. Next, the time at which a crop

(here, Corn) is exposed to each one-degree Celsius interval in each grid cell in each day is

derived. The predictions are merged with satellite scan records to restrict attention to grid

cells that has cropland. They derive county aggregates by aggregating the whole distribu-

tion of realizations for all days in the growing season per county. In our empirical exercise,

we rely on cummulative growing degree days cGDD outcomes and precipation records from

Schlenker and Roberts 2009 to control for weather.

Modelling and Estimates

We explore the fraction of planted acreage insured, or simply “insured area”, as our main

outcome of interest. Denote by i a county and t year. We directly follow Annan and Schlenker

2015 in constructing the “insured area” variable. This is simply given by

≡ Total Insured Acresit
Total Planted Acresit

Notice that RMA’s reported total insured area can strangely exceed that of NASS’s reported

total planted area in the data set. In practice, we drop all cases where the fraction of

insured area is larger than 1.0 as these are likely to emanate from data reporting errors.7

Although not reported here, we also fix this object to 1.0 or drop the counties in question

entirely whenever it is larger than 1.0 in the sequel. These alternative constructions did not

significantly change the main empirical results.

7Another hypothesis, aside data reporting errors, will be double cropping and replanted acreage. The
latter is more likely to be the case for sounthern United States. Figure A3 in the online Appendix of Annan
and Schlenker 2015 shows the areas/counties where the fraction is larger than 1. Most of this is however in
the northern part of the United States, eg. North Dakota.
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Panel Estimates

Throughout, our modelling is at the county level. We start by considering commonly used

county panel specification (see e.g., Goodwin 1993). Here “insured area” (in logs) yit is

assumed to linearly depend on the out-of-pocket premium rate (in logs) pit, county-level

fixed effects λi, and potential unobserved idiosyncratic county-specific time-varying factors

εit,

yit = γpit + βXit + α + λi + f(Time) + εit

This formulation also includes literature-relevant covariates Xit. The expected utility

maximization is usually the assumed framework within which the determinants of insurance

purchases are determined (see e.g., Borch 1990). Motivated by this framework and the

related literature, we include the following controls: average loss ratios in past 3 years

(e.g., Goodwin 1993 and recent others), and yields-squared/variabilty in the last year in

the covariates vector Xit. The vector also includes important weather controls and their

nonlinearities in the lagged one year. The burgeoning climate economics literature (e.g.,

see Schlenker and Roberts 2009; Emerick and Burke 2013, Annan and Schlenker 2015, and

etc) have shown that weather is a strong predictor of ag. output – and thus crucial when

thinking about how rational economic producers make insurance purchase decisions. While

contempraneous weather may be of little importance, past/lagged weather can crucial in

farmer insurance decision making processes, eg., via adaptive expectations. We restrict

attention to the role previous weather realizations. Here, weather enters the specifications in

different forms to capture both instantaneous and/or potential dynamic effects. The county-

level fixed effects are important because they soak up potential unobserved heterogeneity

(e.g., risk aversion) that is the same across years. Unlike most previous studies, we include

flexible time controls f(Time), as we believe these are essential. The time controls capture
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trends in the insurance program’s expansion. In practice, we access the robustness of our

main results to different specifications of f(Time) including linear, quadratic and splines.

Our main parameter of interest is γ. This is of important policy interest and provides a

direct measure of insurance price elasticity, with our log-log specification. 8All results are

robust to potential heteroskedascity of any form. In particular, we report robust standard

errors which deals with concerns about normality, heteroscedasticity and outliers.

Results

The first four columns of Figure 4 report parameter estimates and standard errors from a

pooled version of the panel model (equivalent to ignoring the i subscript) –under varying

controls. The first column includes all the variables in the model, including log form of the

premium rate, yield square in one lag, average of the past three years loss ratio, growing

degree days in one lag , growing degree days square in one lag, precipitation in one lag,

precipitation square in one lag, time trends, and the cross effects by premium rate and loss

ratio. The first two columns of Figure 4 report the implied results from the pooled OLS

specification. The second column inculdes the cross effects by premium rate and loss ratio.

9 The insurance price elasticities are -0.222, and -0.216 respectively.10 Next, the last two

columns of Figure 4 report the implied results from the county panel specification. The last

column includes the cross effects by premium rate and loss ratio. The estimated insurance

price elasticities are -0.436, and -0.423 respectively and are statistically significant at the 1%

level. As a point of comparison, Goodwin 1993 using county level data from Iowa for 1985-

8The dependent variable yit is bounded between 0 and 1, so we are also reporting another result by using
the logit transformation of it, which is ln(yit/1− yit) = γpit + βXit + α+ λi + f(Time) + εit.

9We stick to a lag length of 1 for parsimony; longer lags do not meaningfully change our γ estimates.
10Employing a Heckman-2-Step type approach and survey elicited cross-sectional farm data set, Smith

and Baquet 1996 find an elasticity estimate of -0.59. A fundamental challenge with their study: inability
to effectively control for unobserved heterogeneity, although elicited farm level data was used. For a mere
point of comparison, our pooled regression which neither controls for time-invariant unobserved heterogenity
“Colums 1-4 of Table 2” provides an average estimate of about -0.29
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1990 and similar specification finds an elasticity of -0.32, which is not too much different

from our panel estimate after controlling for potential sampling noise.

The effect of the other control variables including weather and average loss ratio are

worth pointing out. In particular, degree days in levels is postive but insignificant in the

pooled OLS model. The squared of which is negative and significant at 1% level. On

the other hand, the panel model suggests the opposite. Growing degree days in levels is

significantly negative, while the squared degree days is siginificantly positive. Precipitation

in both models is negative but squared precipitation is positive. Another important variable

is the average loss ratio which is taken over the lass three years. This variable is positive

and significant in all cases. This suggests that more risky agents are likely to enroll land

into insurance.

To clearly understand the contrast between the pooled and panel model estimates, we

consider the key identifying assumptions. More formally, the pooled model requires the

following orthogonality condition

E(ptεt|Xit) = 0, ∀t

for consistent estimation. In words, this says that the pooled estimate is consistent if

changes in premium pt are uncorrelated with the unknown determinants of “insured area” εt.

This condition is unlikely to hold due to standard premium endogeneity arguments: while

the control vector Xit houses many premium determining variables that are observable, there

exist unobservables which potentially correlate with premium. A false correlation is created

between pt and εt. This causes the pooled elasticity estimate to be biased toward zero,

since all of the predicted change in “insured area” is incorrectly attributed to the change in

premium. This is a primary challenge in the pooled model, just as in many cross-sectional

studies.
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The panel model may alleviate this standard premium endogeneity concerns to an extent

through the county-fixed effects and time trends that control for unobserved changes in insur-

ance demand –thereby explaining the increase in elasticity estimates in last two columns of

Figure 4. It is worth pointing out that the panel approach, however, is an imperfect solution

because the county-level premiums may still reflect county-specific differential changes in

insurance demand. The next subsection addresses the endogenity problem of insurance pre-

miums more directly using an instrumental variable estimation strategy. We aim to provide

well identified elasticities using exogenous changes in premiums that are driven by major

Federal subsidy reforms over the period.

Note that the Figure 6 reports the implied results of the pooled OLS estimation and

Panel estimation by using the logit transformation of the dependent variable, as a result,

if the premium rate increases by 1% then the odd of the fraction insured acres decrease

by 0.292%, 0.282%, 0.679%, and 0.666% respectively. Under standard transformations, the

results in Figures 6 and 4 coincide.

Panel IV Estimates

Moving forward, we instrument for premiums using episodes of major Federal subsidy Acts

that took place over the period. Notable examples, as discussed in the introduction section,

include the Federal “Crop Insurance Reform Act” (CIRA) of 1994 and the “Agricultural

Risk Protection Act” (ARPA) of 2000. We exploit these exogenous changes to construct

the instrument11. Denote by Z1
it an indicator that is equal to 1 whether the CIRA is force,

11An potential concern will be that the timing of these reforms/Acts may be correlated with current
county-level macroeconomic conditions and other factors that influence insurance demand. We will address
potential concerns about the exogeneity of these policy changes based on standard economic arguments:
“exclusion” holds conditonal on f(Time) controls which likely reflect the direct channels through which
the timing of the Acts may correlate insurance demand. Also, while policy decisions likely reflect current
economic conditions, delays in the implementation of proposed or approved Federal Acts may help alleviate
these exogeneity concerns. These delays mean current economic and /or insurance demand conditions may
not move with actual implementation of the approved reforms. The condition cov(Zit, εit) = 0 required for
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and similarly by Z2
it an indicator that is equal to 1 whether the ARPA is in force. Our

instrumenting vector comprises Z1
it and Z2

it . Here the identifying variation is from a pre

and post design because the instrument reflect episodes before and after the major policy

changes.

Results

For the instrument Zit to be credible it must be valid and strong. In particular, it is important

that the instrument be correlated with the out-of-pocket insurance premiums. This will show

the strength of the instrument. The instrument has to be relevant and strong. First we find

evidence against irrelevance as the standard rule of thumb diagnostics: F-stat>10 in the

first stage is satisfied. Furthermore, the Montiel-Olea and Pflueger test for weak instruments

for case of non-iid errors (e.g., robust SEs, cluster SEs, etc) suggest no evidence of weak-

instruments (p-values =0.00). Throughout we employ county fixed effect specifications, but

not random fixed effects. The Hausman test rejects the random effect model in favor of the

alternative fixed effect model (p-values¡0.01). One can reject the null hypothesis of a zero

coefficient on Zit in the first-stage regression. We are left with the conclusion of no potential

weak instrument problem.

The Figure 5 reports the intrumental variable IV estimates of the baseline panel model by

using the two-stage panel IV estimation method and one-step panel IV estimation method

respectively. Both of the two estimation methods obtain the same insurance price elasticity

which is -0.89 and statistically significant at 1% level. However, the one-step panel IV method

gains efficiency compared to the two-stage panel IV method because the standard error of

one-step panel IV estimate of insurance price elasticity is less. This parameter estimate is

dramatically larger than estimates from the pooled and panel models reported in Figure

4: -0.216 and -0.423, respectively. It is worth highlighting that our panel IV estimate is

the validity of major policy swings as an instrument likely holds.
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considerably larger than most previous estimates of the premium elasticity of “insured area”

reported in the literature (see e.g., Goodwin 1993). As we found in earlier results, average

loss ratio is postive and significant across in the panel IV model.

For comparison, Figure 7 also reports the implied results of the two-stage panel IV es-

timation method and one-step panel IV etimation method respectively by using the logit

transformation. In Figure 7 the premium rate increases by 1% ,the odds of the fraction

insured acres will decrease by 1.42%. This is the case for both one-step and two-step esti-

mation procedures. To put results into context, we further evaluate what the implications

of the different estimates are on the effect of a given change in Federal premium subsidies on

crop insurance participation. We do this using some back-of-the door policy experiments.

Finally, we replicate our panel IV estimation using subsidy rate as an instrument12 instead

of the policy reform shocks. The results are reported in Figure 8. Quantitatively, the results

are identical. The estimated price elasticity of demand is -0.776. The last column of Figure 8

also reports the logit transformation estimates. Average loss ratio is positive and statistically

significant. The squared degree days is also significantly positive, similar to columns 3-4 of

Figure 4 and columns 2-3 of Figure 7.

Conclusions

The US Federal crop insurance program has received signifcant attention as far as the United

States food and agricultural policies (e.g., Federal support programs) are concerned. There

are ongoing policy debates about why the Federal government subsidize crop insurance,

which effectively rests on our understanding of the market context of insurance demand.

Much concerns revolves around the indequate participation rates of the program. At the

same time, there is mounting empirical evidence about how price sensitive producers in the

12Note that, Subsidy rate=Subsidy/Total Insured Acres
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United States are to participating in crop insurance, generally suggesting a wide range of

elasticities. Research challenges remain, however, and the existing evidence is relatively

outdated. More importantly, most of these studies fail to address the potential endogenity

of insurance premiums.

The aim of this study has been to address these challenges and attempt to provide

well-identified elasticity estimates that reflect current state of the world of the Federal crop

insurance program, using a variety of methods. The data which spans 1989-2013 is an unbal-

anced panel: covering over 673 counties in the Corn Belt of the United States. We explore

the fraction of planted acreage insured as our main outcome of interest. Our preferred model

which exploits exogenous variations from major Federal subsidy policy changes provides a

demand elasticity of -0.89. This estimate imply larger effects than suggested by previous

estimates (see e.g., Goodwin 1993; and Smith and Baquet 1996; among others) which are

based on less desirable econometric methodologies. The overall results are crucial for ongoing

debates and have important policy implications for the Federal crop insurance program.

Future research aims to quantify the implications of results from this paper using some

back-of-the door policy experiments. This will build on the current empirical modelling

framework. Next, while this paper combines all insurance plans, another line of research

(Paper III) examines potential heterogeneity in crop insurance demand along two dimensions:

individual versus area-based plans, and revenue versus non-revenue plans. The latter is

especially crucial for evaluating the effectiveness of subsidy reforms, since the crop revenue

insurance which was introduced in the 1990s now accounts for about 70% of the total liability

in the Federal program (see e.g., Goodwin 2012).
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Figure 1: Outcome: distribution of “Insured Area”
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Table 1: Summary Statistics of “Insured Area”

State Mean Std. Dev., Min., Max., # of Obs.,
Illinois 0.51 0.21 0.01 0.91 2277

Indiana 0.45 0.21 0.01 0.89 2029

Iowa 0.67 0.18 0.06 0.97 2198

Kentucky 0.28 0.23 0.00 0.97 1748

Michigan 0.42 0.21 0.01 0.94 1158

Minnesota 0.59 0.24 0.02 0.98 1572

Nebraska 0.59 0.24 0.04 0.99 1828

N., Dakota 0.29 0.19 0.04 0.95 94

Ohio 0.40 0.21 0.01 0.89 1851

S., Dakota 0.56 0.26 0.00 0.96 379

Wisconsin 0.42 0.19 0.01 0.98 1468

Total 0.49 0.24 0.00 0.99 16608

Notes: Table reports the moments, the smallest and largest order statistics of “Fraction
Insured” or simply “area insured” variable. For a county to be included in the sample, it
must have at least 23 years of nonmissing data points.
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Figure 4: OLS and Panel Estimates: under Alternative Specifications

ELASTICITY ESTIMATES UNDER ALTERNATIVE MODELS: OLS AND PANEL 

 (1) (2) (3) (4) 

VARIABLES logFracInsured logFracInsured logFracInsured logFracInsured 

     

logPremRate -0.222*** -0.216*** -0.436*** -0.423*** 

 (0.0118) (0.0117) (0.0135) (0.0132) 

yieldSq_1lag 2.05e-05*** 2.03e-05*** -3.53e-06*** -4.46e-06*** 

 (6.42e-07) (6.45e-07) (8.21e-07) (8.59e-07) 

avglossRatio3lags 0.0652*** 0.0808*** 0.0370*** 0.0812*** 

 (0.00516) (0.00832) (0.00631) (0.00913) 

gdd_1Lag 0.173 0.172 -0.598*** -0.672*** 

 (0.151) (0.151) (0.197) (0.198) 

gdd2_1Lag -0.158*** -0.155*** 0.190*** 0.224*** 

 (0.0516) (0.0516) (0.0712) (0.0720) 

prec_1Lag -3.286*** -3.298*** -0.110 -0.135 

 (0.156) (0.156) (0.113) (0.113) 

prec2_1Lag 2.345*** 2.348*** 0.146 0.144 

 (0.132) (0.132) (0.0932) (0.0932) 

T 0.0661*** 0.0666*** 0.0949*** 0.0969*** 

 (0.00165) (0.00168) (0.00222) (0.00233) 

premRateXavglossRatio3lags  -0.00142***  -0.00409*** 

  (0.000467)  (0.000645) 

Constant -131.6*** -132.7*** -189.2*** -193.1*** 

 (3.299) (3.369) (4.410) (4.621) 

     

Observations 14,544 14,544 14,544 14,544 

R-squared 0.374 0.375 0.530 0.533 

Model Pooled OLS Pooled OLS Panel Model Panel Model 

Years 1989-2013 1989-2013 1989-2013 1989-2013 

FEs No No Yes Yes 

Number of fips   673 673 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Figure 5: OLS and Panel Estimates: under Alternative Specifications

ELASTICITY ESTIMATES UNDER ALTERNATIVE MODELS: OLS AND PANEL 

 (1) (2) (3) (4) 

VARIABLES logFracInsured logFracInsured logFracInsured logFracInsured 

     

logPremRate -0.222*** -0.216*** -0.436*** -0.423*** 

 (0.0118) (0.0117) (0.0135) (0.0132) 

yieldSq_1lag 2.05e-05*** 2.03e-05*** -3.53e-06*** -4.46e-06*** 

 (6.42e-07) (6.45e-07) (8.21e-07) (8.59e-07) 

avglossRatio3lags 0.0652*** 0.0808*** 0.0370*** 0.0812*** 

 (0.00516) (0.00832) (0.00631) (0.00913) 

gdd_1Lag 0.173 0.172 -0.598*** -0.672*** 

 (0.151) (0.151) (0.197) (0.198) 

gdd2_1Lag -0.158*** -0.155*** 0.190*** 0.224*** 

 (0.0516) (0.0516) (0.0712) (0.0720) 

prec_1Lag -3.286*** -3.298*** -0.110 -0.135 

 (0.156) (0.156) (0.113) (0.113) 

prec2_1Lag 2.345*** 2.348*** 0.146 0.144 

 (0.132) (0.132) (0.0932) (0.0932) 

T 0.0661*** 0.0666*** 0.0949*** 0.0969*** 

 (0.00165) (0.00168) (0.00222) (0.00233) 

premRateXavglossRatio3lags  -0.00142***  -0.00409*** 

  (0.000467)  (0.000645) 

Constant -131.6*** -132.7*** -189.2*** -193.1*** 

 (3.299) (3.369) (4.410) (4.621) 

     

Observations 14,544 14,544 14,544 14,544 

R-squared 0.374 0.375 0.530 0.533 

Model Pooled OLS Pooled OLS Panel Model Panel Model 

Years 1989-2013 1989-2013 1989-2013 1989-2013 

FEs No No Yes Yes 

Number of fips   673 673 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Figure 6: OLS and Panel Estimates-logits: under Alternative Specifications

ELASTICITY ESTIMATES UNDER ALTERNATIVE MODELS: OLS AND PANEL-logits 

 (1) (2) (3) (4) 

VARIABLES logitFracInsured logitFracInsured logitFracInsured logitFracInsured 

     

logPremRate -0.292*** -0.282*** -0.679*** -0.666*** 

 (0.0191) (0.0194) (0.0196) (0.0197) 

yieldSq_1lag 5.39e-05*** 5.37e-05*** 9.46e-06*** 8.58e-06*** 

 (1.33e-06) (1.34e-06) (1.42e-06) (1.45e-06) 

avglossRatio3lags 0.169*** 0.195*** 0.117*** 0.159*** 

 (0.0119) (0.0186) (0.0114) (0.0170) 

gdd_1Lag 0.852*** 0.850*** -0.238 -0.309 

 (0.307) (0.307) (0.339) (0.340) 

gdd2_1Lag -0.450*** -0.445*** 0.190 0.222* 

 (0.104) (0.104) (0.119) (0.120) 

prec_1Lag -9.422*** -9.442*** -0.888*** -0.911*** 

 (0.346) (0.347) (0.247) (0.246) 

prec2_1Lag 6.383*** 6.387*** 0.444** 0.441** 

 (0.279) (0.279) (0.195) (0.195) 

T 0.126*** 0.127*** 0.177*** 0.179*** 

 (0.00254) (0.00260) (0.00292) (0.00304) 

premRateXavglossRatio3lags  -0.00236**  -0.00387*** 

  (0.00113)  (0.000997) 

Constant -249.2*** -251.0*** -352.3*** -356.1*** 

 (5.103) (5.223) (5.852) (6.082) 

     

Observations 14,544 14,544 14,544 14,544 

R-squared 0.429 0.429 0.615 0.615 

Model Pooled OLS-logits Pooled OLS-logits Panel Model-logits Panel Model-logits 

Years 1989-2013 1989-2013 1989-2013 1989-2013 

FEs No No Yes Yes 

Number of fips   673 673 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

22



Figure 7: Panel IV Estimates-logits: under Alternative Models

ELASTICITY ESTIMATES UNDER ALTERNATIVE MODELS-logits: PANEL IV 

 (1) (2) (3) 

VARIABLES logPremRate logitFracInsured logitFracInsured 

    

dum94 -1.071***   

 (0.0226)   

dum00 -0.0395***   

 (0.0127)   

yieldSq_1lag -1.64e-06** 1.15e-05*** 1.13e-05*** 

 (8.17e-07) (1.23e-06) (1.54e-06) 

avglossRatio3lags 0.00477 0.151*** 0.151*** 

 (0.00483) (0.0115) (0.00987) 

gdd_1Lag 1.081*** -1.280*** -1.254*** 

 (0.170) (0.276) (0.349) 

gdd2_1Lag -0.247*** 0.717*** 0.705*** 

 (0.0620) (0.0953) (0.124) 

prec_1Lag 0.857*** -0.782*** -0.780** 

 (0.134) (0.255) (0.329) 

prec2_1Lag -0.743*** 0.522*** 0.519** 

 (0.110) (0.202) (0.263) 

T 0.126*** 0.239*** 0.239*** 

 (0.00123) (0.00343) (0.00248) 

predlogPremRate_logit  -1.417***  

  (0.0284)  

logPremRate   -1.415*** 

   (0.0244) 

Constant -249.8*** -474.9***  

 (2.489) (6.829)  

    

Observations 14,544 14,573 14,544 

R-squared 0.747 0.666 0.509 

Number of fips 673 673 673 

Model First Stage-Panel IV-logits Second Stage-Panel IV-logits One Step Panel IV-logits 

Years 1989-2013 1989-2013 1989-2013 

FEs Yes Yes Yes 

F Stat 1990   

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Notes: We do not find evidence of weak-instruments, see e.g., Column 1 of Figure 5. The
standard rule of thumb diagnostics: F-stat>10 in the first stage. Furthermore, the Montiel-
Olea and Pflueger test for weak instruments for case of non-iid errors (e.g., robust SEs, cluster
SEs, etc) suggest no evidence of weak-instruments (P-values =0.00). Overidentification tests
provide evidence in favor of exogeneity of intruments (P-values ¿0.21). Hausman tests rejects
the random effect model, so we are using fix effect model (P-values¡0.01).
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Figure 8: Panel IV Estimates (Susbsidy Rate)

ELASTICITY ESTIMATES UNDER ALTERNATIVE MODELS: PANEL IV (Susbsidy Rate) 

 (1) (2) 

VARIABLES logFracInsured logitFracInsured 

   

logPremRate -0.776*** -0.899*** 

 (0.0700) (0.125) 

yieldSq_1lag -2.70e-06*** 1.00e-05*** 

 (8.36e-07) (1.42e-06) 

avglossRatio3lags 0.0524*** 0.127*** 

 (0.00579) (0.0104) 

gdd_1Lag -1.066*** -0.541 

 (0.221) (0.357) 

gdd2_1Lag 0.428*** 0.344** 

 (0.0863) (0.141) 

prec_1Lag -0.0605 -0.856*** 

 (0.167) (0.295) 

prec2_1Lag 0.181 0.466** 

 (0.136) (0.232) 

T 0.124*** 0.196*** 

 (0.00604) (0.0107) 

   

Observations 14,544 14,544 

R-squared 0.445 0.605 

Number of fips 673 673 

Model One Step Panel IV One Step Panel IV-logits 

Years 1989-2013 1989-2013 

FEs Yes Yes 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Notes: We do not find evidence of weak-instruments, the standard rule of thumb diagnostics:
F-stat>10 in the first stage. Furthermore, the Montiel-Olea and Pflueger test for weak
instruments for case of non-iid errors (e.g., robust SEs, cluster SEs, etc) suggest no evidence
of weak-instruments (P-values =0.00). Hausman tests rejects the random effect model, so
we are using fix effect model (P-values¡0.01).
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