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Does	the	Adoption	of	Weather	Tolerant	Variety	Contribute	to	Reduction	in	

Rice	Yield	Loss?	Panel	Data	Survey	from	Chinese	Rice	Farmers	

 
Abstract: Climate extremes, characterized by droughts and floods, have become one of the 
major constraints to sustainable improvement of rice productivity. Variety choice, considered 
as one of the main adaptation measures, could help farmers reduce yield loss resulting from 
these extremes. Based on a three-year panel survey of 1,080 Chinese rice farms in major rice 
producing provinces, we study the effect of adopting weather tolerant variety rice as a main 
adaptation measure against climate extremes. Taking into account the endogeneity of 
adoption behavior, we employ an endogenous switching regression to separately estimate the 
treatment effects of adoption for adopters and non-adopters. We find that farmers who 
adopted the new variety increased yield by 537 kg/ha (about 7%), compared with the 
counterfactual case of no-adoption. In contrast, the farmers who did not adopt, would 
increase rice yield by 272 kg/ha (about 4 %) if they adopted, much smaller than the adopters. 
However, adoption of new variety demands more knowledge, better education, more 
intensive management, and higher seed costs. As a policy implication, expansion of public 
extension services could help relax these restrictions.   
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1. Introduction 

Climate extremes, characterized by droughts and floods, have significant adverse effects 

on agricultural production (Liu and Chen，2000；Wang et al.，2007；Long et al.，2011) and 

have become a major challenge to sustainable development of agriculture (Stern, 2006；

Mendelsohn and Dinar, 2009；De Salvo et al., 2013；Lin，1997；Pan, 2011；Chen, 2015). 

The frequency of the extremes is predicted to increase in the future and the challenge to 

agriculture and international food security has been pronounced (World Bank, 2013). The 

predictions show that total area suffering from drought globally will increase between 15~44% 

by the end of the twenty-first century (IPCC，2014). In China, the annual average crop area 



suffering from drought has more than doubled since the 1950s, and the frequency of flood 

events has also increased (MWR, 2014).The direct economic losses due to meteorological 

disaster amount to RMB100 billion each year，accounting for an estimated 3~6% of GDP, 

among of which drought is the most severe weather events faced by China’s rice producers, 

followed by flood. Ju et al. (2007) report that the areas affected by drought and flood 

respectively account for 17.6% and 8.1% of the total grain acreage, while the proportions for 

each province respectively are about 5～19% and 2～10%; with the frequent occurrence of 

climate extremes, even if the irrigation condition can be satisfied under current technical level, 

the losses of wheat, corn and rice yields are expected to be 3~7%, 1~11% and 5~12%, 

respectively.  Rice is the main staple food in China, which produces nearly 30% of the 

world’s total rice output (FAOSTAT, 2014), but it is particularly vulnerable to climate 

extremes. Hence we especially shed light on rice production in this study.  

Overcoming the challenge to food security caused by increasing weather and climate 

extremes has drawn much attention from researchers. Recent studies have identified a variety 

of effective adaptation measures being taken by farmers to cope with climate change, such as 

diversifying crop varieties (Bradshwa et al., 2004; Bryan et al., 2009；Chen et al.，2014; Bai 

et al. 2015), adjusting the timing of sowing and harvesting (Smit and Skinner, 2002; 

Challinor et al., 2007; Tubiello et al., 2007；Deressa et al., 2009), increasing input use and 

changing plant densities (Cuculeanu et al., 1999；Smit and Skinner, 2002; Meza et al., 2008；

Seo and Mendelsohn, 2008), and reseeding, fixing or cleaning seedlings (Huang et al., 2015). 

However, most studies focused on the determinants of adaptation decisions, the effectiveness 



of adaptation practices has not been well evaluated. For example, Deressa et al. (2009) find 

that household characteristics and access to extensions influence farmers’ adaptation 

decisions in Ethiopia. Similarly, Chen et al. (2014) indicate that farm characteristics and local 

government policies influence farmers’ adaptation decisions in China. Though some studies 

have treated some farm management practices as adaptation measures and analyzed the 

impact of adaptation on crop yield (Yesuf et al., 2008; Di Falco et al., Veronesi, 2011; Pan, 

2011; Chen, 2015), yet whether these adaptation measures can help mitigate the impact of 

climate extremes remains unclear. 

Variety choice is a major adaptation strategy. In other words, farmers can adopt new 

variety with strong resistance to reduce risks from climate extremes (Selvaraj and Ramasamy, 

2006). Given that the stress tolerant varieties are of shorter duration, and have ability to 

withstand high heat, drought, flood and other unfavorable weather conditions, crop breeding 

for weather-tolerance variety has attracted considerable research attention in the recent past 

(Lybbert and Bell, 2010; Bai et al. 2015). In the case of rice, it has been reported to have a 

yield advantage of 5-28% over the existing varieties (Virk and Witcombe, 2007; Pray et al., 

2011; IRRI, 2013). The adoption of excellent variety with strong tolerance is a main 

adaptation measure of farmers, which can mitigate the harmful effects of climate change on 

rice (Wu, 2004; Wang, 2005). Besides, several studies have examined the factors affecting 

farmers’ choice of seed varieties. Meng et al. (2005) indicated that yield potential is the top 

concern when farmers in Guangxi province make a decision of seed purchase, which could 

help maximize the profit. Yuan et al. (2009) found that farmers’ maize seed choice behavior 



is heavily motivated by increasing high yield, other factors including labor, marketing, local 

cultivation knowledge, livelihood strategy and the awareness of risk and so on. Similarly, 

Cao (2011) indicated that yield potential is a major driver for adoption behavior in China, 

significantly related to labor force and the age of household head. These studies, however, 

did not make clear that to what extend farmers’ adoption behavior is affected by climate 

change, particularly, the increasing climate extremes.  

Given the increasing severity of climate extremes and the potential role of stress tolerant 

variety in mitigating climate risks, it is important to identify the factors influencing farmers’ 

adoption of weather tolerant variety, and to evaluate whether their adoption can really reduce 

rice yield loss. The adoption of stress tolerant variety responds to extreme climate can be 

considered as an effective adaptation strategy to climate extremes, an issue which is only 

studied in a limited way in the current literature. Particularly, the adoption behavior could be 

endogenous, but it has not been well examined in the literature. Taking into account the 

endogeneity of adoption, we shed light on the impact of adoption of weather tolerant varieties 

on rice yield in China with use of a three-year panel dataset collected from 1,080 Chinese rice 

farmers in 4 major rice producing provinces in China: Zhejiang and Jiangsu in the coastal 

area of eastern China, Sichuan in southwest China, and Hunan in central China. We are 

particularly interested in identifying factors influencing farmers’ adoption behavior and 

evaluating whether their adoptions can reduce rice yield loss. The nature of panel data 

enables us to compare the adoption behaviors in different years in respond to different 

weather situations, while controlling for unobserved heterogeneities. It is methodologically 



superior to the cross section analysis, prevalent in the literature (e.g. Wang et al. 2009; Wang 

et al. 2013).   

Rest of the paper is organized as follows. Section 2 illustrates the empirical strategy 

which examines farmers’ adoption of weather tolerant variety and its impact on rice 

production. Section 3 introduces the data and sampling method used in this study. Then 

Section 4 provides econometric estimation results. The final section concludes with policy 

implications.  

 

2. Model Specification  

2.1 Base Model 

There are two broad streams of literature which models the impact of climate change on 

agricultural production. One stream is called Ricardian method, which implicitly takes into 

account all adaptation measures, observable or unobservable, in the impact analysis (e.g. 

Deschenes and Greenstone 2007; and Wang et al. 2009, 2013).  One stream is called 

production approach, which explicitly incorporates adaptation to production process (e.g. 

Holst, Yu and Gruen 2013). The latter is more flexible, as it can analyze the direct impact of 

adaptations. Following Kim and Chavas (2003), Di Falco and Chavas (2009) and Holst, Yu 

and Gruen (2013), we take the production function approach with consideration of adaptation 

behavior, and specify the rice yield function as:  

(1) log 𝑦 = 𝑓(𝐴, 𝑋, β) + 𝜇 



Where y is the rice yield (kg/ha); A is a dummy variable denoting the adoption of 

weather tolerant variety (1 for adoption, and 0 otherwise). X is a set of explanatory variables, 

including: a) farm characteristics including characteristics of household head (gender, 

education and years of experience), agricultural labor, soil quality by category (low, moderate, 

and high), and type of rice planted (single-seasoned and double-seasoned); b) production 

inputs (labor, land, fertilizer and pesticide, machinery and other inputs) specified in logarithm; 

c) year dummies for 2013 and 2014 to control for the effects related to time, such as 

technological change; and d) province dummies (fixed effects at the provincial level) to 

control for unobserved heterogeneities for province. β	is a vector of parameters to be 

estimated. u is the error term that captures measure errors，unobserved heterogeneities, and 

uncertainties, and satisfies E (u) = 0.  

If 𝑓(𝐴, 𝑋, β) is specified as a linear function, the coefficient of A exactly measures the 

impact of adoption of weather tolerant variety on rice output. However, the adoption behavior, 

which is linked to climate extremes, could be endogenous. The adopters and non-adopters 

may have different production functions, so that is not good to pool the two yield functions 

together. A separated estimation is necessary, and we proposed an endogenous switching 

regression to tackle this issue. 

2.2 Modeling Adaptation to Climate Extremes 

To deal with the endogeneity of farmers’ adoption behavior (A), we further employ an 

endogenous switching regression model. In the switching regression approach, farmers are 

partitioned into two regimes according to the adoption decision (e.g., adopters and 



non-adopters). Theoretically, farmers typically choose to adopt when there is a net benefit 

from doing so (Abdulai and Huffman 2014; Bai et al. 2015). Farmer i’s adoption decision 

(whether to adopt weather tolerant variety) thus can be modelled by a latent variable 

explanatory variable 𝐴0∗as 

(2) 						𝐴0∗ = 𝑔(𝑋, 𝑍, 𝐷, 𝛾) + 𝜂0, 	𝐴0 = 1[𝐴0∗ > 0], 

Where the variable Z is an instrument variable (IV) for A. It is defined as access to the 

public service related to the extension and technical guidance for new rice variety or not at 

the village level (1 = yes, 0 otherwise). Furthermore, we control the level of climate extremes 

D, which includes three dummy variables: low climate extreme (1 = yes, 0 otherwise), 

moderate climate extreme (1=yes, 0 otherwise) and severe climate extreme (1=yes, 0 

otherwise) measured at the county level.  

 Then, γ denotes a vector of parameters to be estimated. The error term η with mean 

zero and variance1 captures measurement errors and unobserved factors. 

Given that the choice whether to adopt weather tolerant variety, separated outcome 

functions are specified for adopters and non-adopters: 

(3a)  Regime 1 (Adopters): 

log	(𝑦<0) = 𝑓(𝐴, 𝑋, 𝐷, 𝛽<) + 𝜀<0				𝑖𝑓	𝐴0 = 1, 

(3b)  Regime 2 (Non-adopters): 

log	(𝑦@0) = 𝑓(𝐴, 𝑋, 𝐷, 𝛽@) + 𝜀@0				𝑖𝑓	𝐴0 = 0 



Where 𝑦<0 and 𝑦@0 are the outcome variables (rice yield in logarithm) for adopters and 

non-adopters, respectively. The vectors β1 and β2 are parameters to be estimated.  

The three error terms η, ε1 , and ε2 in equations (2), (3a), and (3b) are assumed to have a 

trivariate normal distribution, with zero mean and the following covariance matrix:  

Σ =
1 𝜎C< 𝜎C@
𝜎<C 𝜎<@ 𝜎<@
𝜎@C 𝜎@< 𝜎@@

, 

where Var(ε1)=𝜎<
@, Var(ε2)=𝜎@

@, Var(η)=1, Cov(ε1, ε2) = σ12, Cov(ε1, η) = σ1η ，and  

Cov (ε2 , η) = σ2η . Note that since 𝑦<0 and 𝑦@0 are not observed simultaneously, so that it 

become a sample selection problem, and the covariance between ε1and ε2is not defined. The 

sample selection bias may lead to nonzero covariance between the error term of the selection 

equation (2) and the outcome equation (3) (Maddala, 1983). According to Lee and Trost 

(1978), the expected values of the error terms ε1 and ε2, conditional on the sample selection 

are given as:  

(4) 							𝐸 𝜀<0 𝐴0 = 1  

         =E	(𝜀<0|	𝜂 > −𝑔	(𝑋, 𝑍, 𝐷, 𝛾) 

         =𝜎<C
G[H(I,J,K,L)/N]
O[H(I,J,K,L)/N]

= 𝜎<C𝜆<0, 

And  

(5)								𝐸 𝜀<0 𝐴0 = 0  

         =E	(𝜀@0|	𝜂 ≤ −𝑔	(𝑋, 𝑍, 𝐷, 𝛾) 

         =−𝜎@C
G[H(I,J,K,L)/N]

<RO[H(I,J,K,L)/N]
= 𝜎@C𝜆@0, 



Where 	𝜑	(·) is the standard normal probability density function, and Φ	(∙) is the 

standard cumulative distribution function. The terms λ1 and λ2 refer to the inverse Mills 

ratios evaluated at 𝑔	(𝑋, 𝑍, 𝐷, 𝛾), and are incorporated into equations (3a) and (3b) to 

account for sample selection bias. Together with the probit model of selection in Equation (2), 

the endogenous switching regression can be estimated by the full information maximum 

likelihood (FIML) method (Lokshin and Sajaia, 2004), though the computation requirement 

is very intensive. 

 To account for the possible heterogeneity in farmers’ decisions on whether to adopt or 

not, we first included the dummy variable of rice type (double-seasoned rice) to capture the 

specificity of the different crops. Second, we used the White sandwich estimator for robust 

standard errors (Shen and Hartarska, 2013). This approach yields consistent estimates of the 

covariance matrix without making distributional assumptions (Freedman, 2006).  

2.3 Estimation of adoption effects 

The impact of weather tolerant rice adoption on yield can be examined by first 

specifying the expected values of the outcome. For an adopter and a non-adopter of the new 

variety, the expected value of the outcomes are calculated, respectively, as 

(6)   𝐸 𝑦<0 𝐴0 = 1 = 𝑓(𝐴, 𝑋, 𝐷, 𝛽<) + 𝜎<C𝜆<0	 

and  

(7)					𝐸 𝑦@0 𝐴0 = 0 = 𝑓(𝐴, 𝑋, 𝐷, 𝛽@) + 𝜎@C𝜆@0	. 

In order to estimate the treatment effect, we have to estimate the counterfactual effects. 

Accordingly, the expected values of the same adopter, had he chosen not to adopt weather 



tolerant variety, and of the same non-adopter, had he chosen to adopt stress tolerant variety 

are given, respectively, as  

(8)   𝐸 𝑦@0 𝐴0 = 1 = 𝑓(𝐴, 𝑋, 𝐷, 𝛽@) + 𝜎@C𝜆<0	 

and  

(9)					𝐸 𝑦<0 𝐴0 = 0 = 𝑓(𝐴, 𝑋, 𝐷, 𝛽<) + 𝜎<C𝜆@0	. 

The changes in outcomes due to the adoption of weather tolerant variety can then be 

specified as the difference between adopters and non-adopters (Di Falco, Veronesi, and Yesuf 

2011). The average treatment effect for the treated (ATT) is represented by the difference 

between (6) and (8):  

(10)                 ATT = 𝐸 𝑦<0 𝐴0 = 1 − 𝐸 𝑦@0 𝐴0 = 1  

= 𝑓 𝐴, 𝑋, 𝐷, 𝛽< − 𝑓 𝐴, 𝑋, 𝐷, 𝛽@  

+(𝜎<C − 𝜎@C)𝜆<0	. 

Similarly, the average treatment effect for the untreated (ATU) that did not adopt can be 

calculated as the difference between (9) and (7):  

(11)                 ATU = 𝐸 𝑦<0 𝐴0 = 0 − 𝐸 𝑦@0 𝐴0 = 0  

= 𝑓 𝐴, 𝑋, 𝐷, 𝛽< − 𝑓 𝐴, 𝑋, 𝐷, 𝛽@  

+(𝜎<C − 𝜎@C)𝜆@0	. 

Such a procedure taking into account the selection bias (λ1, λ2), could yield better 

treatment effects. ATT can be explained as the effect of adoption for those adopters, while 

ATU is the possible effect of adoption if those non-adopters adopted the new variety. A 



comparison between ATT and ATU could provide a good benchmark for explaining the 

non-adoption behavior.  

3. Data and Sampling Methods 

We use a stratified sampling method to select rice farms in order to make the samples 

more representative. Rice in China is mainly planted in the Northeast Plain, the Yangtze 

River basin and Southeast coastal area, respectively accounting for 12%, 64%, and 22% of 

the national cultivating area. Heilongjiang in the Northeast region; Hunan, Hubei, Jiangxi in 

the Central region; Jiangsu, Zhejiang, Anhui, Guangxi, Guangdong in East region and 

Sichuan, Yunnan in Southwest region are the eleven major provinces of rice production, 

together accounting for over 80 percent of the national total production (NBSC, 2015). 

Climate change has impact on these major rice production areas at various degrees. For 

instance, the potential rice output in Northeast China may increase due to global warming，

but the yields in other three major regions might be adversely affected (Tang et al. 2000). 

Therefore, taking full consideration of regional crop production systems and climate 

situations, we selected four provinces from the three major regions with high risk of rice yield 

loss: Zhejiang and Jiangsu in the coastal area of eastern China, Sichuan in southwest China, 

and Hunan in central China. We then conducted a large-scale household survey regarding the 

impact of adaptation to climate change on rice production during the period from October 

2014 to May 2015.   

We then selected 6 counties from each province according to the following three 

standards. First, we identified all counties that had experienced climate extremes over the 



period of 2012–2014. According to China’s national standard for natural disasters (CMA，

2004), the severity of climate extremes has three categories: low (10~30% of yield loss), 

moderate (30~50％ of yield loss) and severe (greater than 50% of yield loss). Second, from 

the counties identified in the first step, we only kept those which also had experienced a 

“normal year” in these three years.  Finally, we randomly selected 6 counties from the listed 

counties identified in the last two steps. This sampling approach allowed us to examine 

differences between normal years and years with climate extremes.  

Within each of the 24 selected counties, all townships were divided into three groups 

based on the condition of agricultural production infrastructure, and one township was 

randomly selected from each group. The same sampling techniques were applied to select 

three villages from each township. Finally, 15 households were randomly selected from each 

selected village for face-to-face interviews. A total of 1,080 from 72 villages in 24 counties 

rice farms were interviewed. Excluding the incomplete samples，the final sample used in our 

analysis includes 1,057 households from 68 villages in 24 counties (see Table 1). 

 Considering that most farms in our sample both planted single-seasoned rice and 

double-seasoned rice, we analyzed data by rice types: single-seasoned rice and 

double-seasoned rice. We thus arrive at the final number of 3,171 observations for rice 

production. For each observation, we collected data for a normal year and a year with climate 

extremes within the period of 2012–2014. The information collected in the survey include: 1) 

characteristics of households and farms; 2) detailed rice production cost information (e.g., 

land, labor, fertilizer and pesticide, machinery service, other inputs); 3) rice yield, soil quality 



and rice type; 4) farmers’ adoption behavior for weather-tolerant variety in both years; and 5) 

availability of public services related to the extension and technical guidance for new rice 

variety which was collected in the village level survey.  

Table 2 provides a description statistics for variables included in the empirical models. 

Of the 1057 farms，most of household heads are male-dominated and relatively low-level 

educated (middle school or below), but have rich rice production experiences (an average of 

20 years). Each farm on average has 2 agricultural labor forces.   

[Insert Table 1 &2 here] 

The average rice yield is 7,935 kg/ha, slightly higher than the 2014 national average rice 

yield, which is 7,274 kg/ ha1. The average cost of labor, land, chemical fertilizers and 

pesticides, mechanical service and other inputs is approximately RMB 7,895, RMB 4,369, 

RMB 3,585, RMB 2,443 and RMB 1,178 per ha, respectively. Particularly, labor cost and 

land cost are the highest, consistent with the clear upward trend of the two costs in recent 

years. However, only one-fourth of rice farms in our study can access to the public service 

related to the extension and technical guidance for new rice variety at village level, 

suggesting that the current public services are generally low and there is still much room to 

improve.  

 

4. Estimation Results and Discussion 

4.1 Joint Estimation of Selection Function and Rice Yield Function 

																																																								
1 Source: Table 1-2-1, Rice Production Costs and Revenues. Collections of National Agricultural Production Costs and Revenues (2015) 

(Quan guo nong chan pin cheng ben shou yi zi liao hui bian 2015).    



As aforementioned, equations (2), (3a), and (3b) can be jointly estimated by the 

maximum likelihood method, and the results are reported in Table 3. The first column reports 

the estimation results for the selection function (2), which is a probit model helping explain 

why some farmers adopt weather tolerant variety and others not. The second and third 

columns present, respectively, the estimated coefficients of rice yield functions (3a) and (3b) 

respectively for farmers who adopted weather tolerant variety and who did not. Most of the 

coefficients are consistent with our expectations and the current literature (e.g., Huang et al. 

2008; Holst et al. 2013；Huang et al. 2015; Bai et al. 2013). 

[Insert Table 3 here] 

4.2 Results of Selection Function 

In the results of selection Function (2), we are particularly interested in the effects of  

different severity of extreme climate on farmers’ adoption decision. Though some previous 

studies (e.g. Di Falco, Veronesi, and Yesuf, 2011) did not find strong relationship between 

climate change variables and farmers’ adaptation decisions, we have different evidence. The 

coefficients for low, moderate and severe climate extremes are 0.390, 0.756, and 0.939, and 

all statistically significant. It is consistent to our common sense that rice farmers are more 

likely to adopt stress tolerant variety when they have experience of suffering from more 

serious climate extremes.  

Household characteristics could affect the adoption behavior. Both the education of 

household heads and agricultural labor forces have significant and positive effects on the 

probability of adopting the new variety. This result confirms that households headed by high 



educated people and more agricultural labor forces tend to adopt the new variety. It is 

interesting that the variable of household head experience in agriculture is statistically 

significant. Its value is -.015, and implies that more years of experience in rice production are 

less likely to adopt the new variety. It is possible that the new variety demands new 

knowledge for planting, while the experience accumulated from the old variety may not work. 

According to the estimation results, gender of household head does not play significant roles 

in adoption behavior. 

The estimated coefficients for moderate soil quality and high soil quality are -0.360 and 

-0.621, and both statistically significant.  It shows that soil quality is negatively correlated 

with the adoption probability. It is understandable that better soil quality and more favorable 

growing conditions could make rice less vulnerable to climate extremes, so that farmers have 

lower motivation to adopt stress tolerant variety, which is usually more expensive.  

The coefficients for the year dummies of 2013 and 2014 are statistically significant, and 

the values respectively are 0.042 and 0.053, which indicates an increasing likelihood of 

adoption behavior. 

Finally, we take the estimated coefficient for the instrument variable (IV) ─local access 

to public services on new rice variety. As an instrumental variable, it should be correlated 

with selection behavior, but not the error terms in the output function. The estimated value is 

0.360 and statistically significant at 1%. It implies that the IV is not a weak instrument. The 

coefficient also implies that local access to public services on new rice variety could help 

increase the likelihood of farmer adoption.  



4.3 Estimation of Yield Functions  

Equations (3a) and (3b) respectively show yield functions of adopters and non-adopters, 

as we assume that their technologies might be different. 

First, we find that the severity of climate extremes in general decrease the rice outputs no 

matter for conventional variety or for weather tolerant variety. An exception is found for 

adopters in the severe extreme climate year: the estimated coefficient (-0.035) is statistically 

significant, but lower than that in moderate climate year (-0.068), suggesting that rice yield 

suffer more losses in moderate extreme climate year. This may be because the effect of stress 

tolerant rice varieties’ resistance to extreme climate is limited due to the constraints on rice 

production technology and agricultural production infrastructure. However, comparing the 

coefficients between adopters and non-adopters under the same severity of climate extremes, 

the magnitudes in terms of absolute value for adopters are much smaller. It implies that the 

stress tolerant variety could help farmers reduce the yield loss resulting from climate 

extremes, given the same severity of climate extremes.   

Second, there are only two input variables which are significant: land, fertilizer and 

pesticide for adopters. Particularly, adopters are found a significantly negative impact of land 

on output. The negative impact of land input suggests the average yield is negatively 

correlated with farm size, indicating a decreasing return to scale, a finding similar to that of 

many existing studies (e.g., Abdulla and Huffman 2014;Huang et al. 2015).  

The point estimates for all input variables are generally small in the yield function. It 

implies that the yield of Chinese rice has reached a limit. Further increasing inputs do not 



help increase yield substantially, and future increase of rice output in China depends on the 

expansion of land, which is now limited in China. Having less significant coefficients for 

input variables is consistent with previous findings on intensive or excessive use of 

production inputs in China (e.g., Huang et al. 2008; Holst, Yu, and Grunt 2013). 

Third, the estimated coefficient for male head of households is negative and statistically 

significant, suggesting that women, which are more risk averse, tend to be more motivated to 

adopt stress tolerant variety to minimize the yield loss caused by extreme climate. The 

positive impact of agricultural labor force suggests that more agricultural labor forces is 

beneficial for increasing rice yield，as rice production demand more labor inputs (e.g., 

Abdulla and Huffman, 2014). 

Finally, for non-adopters, the estimated coefficient for double-seasoned rice is negative 

and statistically significant, suggesting that the yield of double-seasoned rice is significantly 

lower than single-seasoned rice, this may be mainly determined by rice’s labor-intensive 

characteristics, and shorter growing season. Single-seasoned rice farmers could spend more 

time and effort on rice cultivation and farm management and this intensive cultivation helps 

improve rice yield. Surprisingly, other variables such as the education of household head and 

soil quality are not statistically significant, which is contrary to the conclusion that highly 

educated people and better soil quality positively impact rice yield (Wang et al., 2014).This 

may be due to the fact that China has built up a good agricultural extension system, in which 

individual heterogeneities of rice production skills become less important. . 

4.4 Effects of adoption on Rice Output   



The estimates for the average treatments effect (ATT and ATU) on the mean of rice 

yield are presented in table 4. Obviously, the results reveal that the adoption of stress tolerant 

variety could significantly increases rice yield (or reduce the loss), even the severity of 

climate extremes are controlled in the regression. Specifically, in the counterfactual case 

represented by equation (8), farmers who adopted would reduce rice yield by 537kg/ha (about 

7%) if they had not adapted (row 1). In the counterfactual case of equation (9), for farmers 

who did not adopt, they would increase rice yield by 272 kg/ha (about 4 %) if they adopted 

(row 2). These findings suggest adapting to extreme climate through adopting stress tolerant 

variety does increase rice production and contribute to the reduction in rice yield loss. 

[Insert Table 4 here] 

It also explains why some farmers do not adopt the weather tolerant variety. The possible 

benefit for non-adopters, if they had adopted the new variety, is much smaller than those 

adopters. Adoption of new variety demands new knowledge, intensive management, and 

higher seed cost, and the benefit might not overcome the learning costs (Yu and Zhao 2009). 

Further expansion of the weather tolerant rice variety calls for more government action on 

extension services. 

 

5. Conclusions 

Using a panel data survey from 1,080 rice farmers conducted in four provinces in China, 

this article investigates the contribution of adopting weather tolerant variety in response to 

extreme climate to the rice yield loss reduction (or yield increase). Different from the current 



literature, we take into account the endogeneity of adoption behavior, and employ an 

endogenous switching regression to separately estimate the treatment effects of adoption for 

adopters and non-adopters.  

The results of adoption behaviors reveals that farmers adoption decision of weather 

tolerant rice variety mainly depends on the severity of climate extremes, local access to 

public service on new variety, the education of household heads, agricultural labor forces and 

famers experience on rice production. The former four factors could incentivize farmers to 

adopt the new variety, while more experience on rice production discourage farmers to adopt, 

perhaps due to high learning costs. 

We assume that rice productions for adopters and non-adopters have different 

technologies in the endogenous switching regression. Specifically, farmers who adopted the 

new variety increased yield by 537 kg/ha (about 7%), compared with the counterfactual case, 

in which if they had not adopted. In contrast, the farmers who did not adopt, would increase 

rice yield by 272 kg/ha (about 4 %) if they adopted. In both equations, the severity of climate 

extremes is controlled. It suggests that adopting stress tolerant variety could generally 

increase rice production and contribute to the reduction in rice yield loss. 

It also indicates that the possible benefit of adopting weather tolerant variety for 

non-adopters is much smaller than those adopters. Adoption of new variety demands new 

knowledge, high education, more agricultural labor forces, and more seed costs and the 

benefit might not overcome the learning costs and adoption costs. Further expansion of the 

weather tolerant rice variety calls for more government action on extension services. 



In addition, we find that the output elasticities for all physical inputs are very small, 

except for land, fertilizer and pesticide. It implies that further increases of these inputs would 

have very small effect on expansion of rice output. Rice output mainly depends on land 

expansion, which is however now very limited in China.   
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Table 1 Distribution of Surveyed Rice Farms 

Province 
County 

(No.) 
Village 

(No.) 
Household 

(No.) 
Percentage 

(%) 
Hunan 6 12 185 17.51 
Jiangsu 6 15 225 21.28 
Zhejiang 6 20 298 28.19 
Sichuan 6 21 349 33.02 
Total 24 68 1,057 100 

 
  



Table 2  Descriptive Statistics of the Sample （N=1057） 

Variables Definition/Unit Min Max Mean Std. 
Rice yield kg／ha 4,664 11,59

5 
7,935.
52 

1,678.6
0 

Household Characteristics 
  Gender 1=male；0=female 0 1 0.81 0.39 

Education of  
household head  

Years 0 19 7.68 2.38 

Year of 
Experience in 

agriculture 

Years 1 65 20.02 13.33 

Family and Farm Characteristics 
Agricultural 

labor 
No. 1 12 2.12 0.95 

Soil quality 1=high quality ；
2=moderate；3=low 

1 3 1.90 0.39 

Rice type 1=single-seasoned ；
2=double-seasoned 

1 2 1.25 0.45 

Various inputs 
Labor yuan/ha 776 14,92

5 
7,895.
05 

3,209.5
9 

Land yuan/ha 1,050 22,50
0 

4,368.
60 

2,149.5
0 

Fertilizer and 
pesticide 

yuan/ha 2,100 5,220 3,585 626 

Machinery yuan/ha 418 4,254 2,443 820 
Other inputs yuan/ha 132 1,693.

24 
1,178.
35 

237.57 

Instrument variable 
Access to public 
service on new 
rice variety 

1=yes；0=no 0 1 0.25 0.49 
 

 
  



Table 3 Estimations of Farmer’s Adoption on Stress Tolerant Variety and Its Impact on Rice 
Yield 

 Adoption Choice 
(Adopter=1) 

       Rice yield (log) 
Adopters Non-adopters 

Severe Extreme 
Climate  

 

Low 0.390*** 
(0.077) 

-.017 
(.097) 

-.552*** 
(.021) 

Moderate 0.756*** 
(0.252) 

-.068*** 
(.020) 

-.745*** 
(.022) 

Severe 0.939*** 
(0.342) 

-.035*** 
(.012) 

-1.068*** 
(.082) 

Inputs   
Labor (log)   .089 

(.064) 
-.051 
(.053) 

Land (log)   
  

-.107*** 
(.026) 

-.158 
(.106) 

  Fertilizer and  
  pesticide (log) 

  
  

.047*** 
(.013) 

.055 
(.488) 

Machinery (log)   
  

.027  
(.125) 

.040 
(.048) 

Other inputs (log)   .003 
(.065) 

-.036 
(.072) 

Farm characteristics   
  Gender -.095 

(.094) 
-.056*** 
(.018) 

-.046 
(.062) 

  Education .170*** 
(.043) 

.004 
(.006) 

.005 
(.024) 

 Years of experience 
in 
 agriculture 

-.015*** 
(.003) 

-.003 
(.002) 

.001 
(.001) 

Agricultural labor .082*** 
(.031) 

.009*** 
(.003) 

.014 
(.012) 

Moderate soil quality -.360* 
(.221) 

-.011 
(.041) 

-.118 
(.091) 

High soil quality -.621*** 
(.241) 

-.010 
(.039) 

-.095 
(.066) 

Double-seasoned rice .252 
(.244) 

-.005 
(.036) 

-.027*** 
(.008) 

D2013 .042*** 
(.015) 

.092** 

(.046) 
.085*** 
(.024) 

D2014 .053** .102** .054 



(.024) (.045) (.048) 
Instrument variable  
Access to public 
services on new rice 
variety 

.360*** 
(.115) 

  

Constant -1.034 
(.766) 

3.901*** 
(0.344) 

4.302*** 
(1.498) 

Province dummies Yes Yes Yes 
rho_1  .400*** 

(.042) 
0.416*** 
(0.035) 

rho_2  .845 
(.768) 

-.761 
(.635) 

Notes: (1) Robust standard errors are reported in parentheses.   
            (2) *,  ** , and *** denote significance at the 10%, 5%, and1% levels,  
               respectively.  
            (3) The sample consists of 3,171 observations (1,057×3years).  
 
 

  



Table 4 Impacts of Adopting Stress Tolerant Variety on Rice Yield 
 
Sub-samples 

Decision stage  
Treatment effects To adopt Not to adopt 

Average expected rice yield 
(kg/ha) 

 

Rice yield for adopters 
(ATT) 

8,041 7,504 ATT= 537*** 

Rice yield for non-adopters 
(ATU) 

7,902 7,630 ATU= 272*** 

Note: ATT represents the effect of the treatment (i.e., adoption) on the treated (i.e., farmers that adopted 
stress tolerant variety), while ATU represents the effect of the treatment (i.e., adoption) on the untreated 
(i.e., farmers that did not adopt stress tolerant  variety). Asterisks***denote significance at the 1% level. 

 


