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ABSTRACT 

Stutzman, Sarah A. Ph.D., Purdue University, May 2016. U.S. Farm Capital Investment 1996-

2013: Differences by Farm Size and Operator Primary Occupation. . Major Professor: Timothy 

Baker. 

 

 

This study analyzes U.S. farm level investment in machinery, equipment and structures 

between 1996-2013.  A synthetic panel is constructed using annual cross-sectional farm level 

observations from the Agricultural Resource Management Survey (ARMS). Cohorts are formed by 

grouping farms into similar categories based upon farm production type, region and farm 

typology.  This methodology allows the use of fixed effects to control for cohort specific and time-

invariant similarities in investment levels, addresses non-investment in a single period by using 

cohort average investment rates, and allows links between investment levels and other key 

determinants across cohorts over time.    

Within farm typologies, farms are classified based on levels of gross cash farm income 

(GCFI) and operator primary occupation.  Commercial farms have GCFI greater or equal to 

$350,000.  Resident farms have GCFI less than $350,000 and a primary operator occupation other 

than farming.  Intermediate farms also have GCFI less than $350,000 but identify their primary 

occupation as farming.  Making these distinctions is important if investment behavior is related 

both to GCFI levels and primary occupation.   

Previous studies find differences between in farm capital investment rates and changes 

in sales or income measurements, tax policy variables, and cash flow measurements based on 

farm size and levels of off-farm income.  To test if these same relationships hold when using the 

ARMS data and farm typology categories, I develop three hypotheses based upon these three 

commonly found and/or asserted relationships.  The three hypothesis developed are that 
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compared to the other farm typologies there is a greater increase in investment rates given:  1) 

an increase in output prices and returns on investment for commercial farms, 2) changes in tax 

policy variables for resident farms, and 3) changes in measures of credit constraints for 

intermediate farms.  I test these hypotheses by allowing these key coefficients to vary across farm 

typologies.  Given the results of these tests, I find evidence to support the first two hypotheses, 

though this varies by commodity type, but little evidence to support the third.   

Using the estimated model, changes in specific model coefficients are used to explain 

differences in investment levels in 2013 vs. 1996 and to estimate average farm investment levels 

in 2024. Changes in farm capital investment in 1996 vs. 2013 can be attributed to changes in 

output prices, interest rates and year specific impacts.  Decreases in net farm incomes on 

commercial grain and livestock farms, declining output prices for intermediate livestock farms, 

lower bonus tax depreciation expense limits on resident livestock farms, and rising interest rates 

for grain farms across typologies lead to large declines in average farm investment in 2024 

compared to 2013. 



1 

 

CHAPTER 1:  INTRODUCTION 

Investment in machinery, equipment and structures by farms in the U.S. grew rapidly 

over the past two decades.  In 1996, U.S. farms, on average, spent $19.6 billion on long-lived 

machinery, equipment and structures (excluding dwellings).  By 2013 annual farm capital 

investment rose to $37.9 billion (USDA, August 2015).  This rise in investment coincided with 

favorable economic conditions in agriculture, including rising commodity prices and resulting 

growing farm incomes, generous tax investment incentives, low interest rates, rising farm equity 

and decreasing debt levels. These favorable conditions are not expected to continue.  After 

declining in 2014, net cash receipts and net cash farm income are expected to again decrease by 

9% and 21% respectively (USDA, November 2015).  Short and long term farm debt has seen a 

steady rise over the past year and is expected to have grown by 3.5% in 2015 (USDA, November 

2015).  While future equipment and machinery tax deduction levels are set to continue at their 

current levels for the immediate future (Gearhardt, January 2015), loan interest rates are 

expected to increase in response to the Federal Reserve’s increase in the federal funds rate in 

December of 2015 with further planned in 2016.  Given the different and interconnected 

impacts of changes in each of these on farm capital investment and the capital intensive nature 

of US agriculture production, those engaged the manufacturing and retailing of farm capital as 

well as policy makers involved in agricultural loan programs would benefit from obtaining 

accurate estimates of the potential impacts of said changes on future levels of farm capital 

investment. 

An obstacle to obtaining such estimates is that there are few studies examining how 

investment responds to changes in key drivers of investment which differentiate between farms 

based upon farm typology, a classification of farms based on Gross Cash Farm Income levels and 

the primary occupation of the principle operator.  I believe that average farm capital investment 

responds differently to changes in key determinants of investment given differences in farm 

typologies.  Estimated investment responses need to reflect this.  Not accounting for these 
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differences, and instead using the average across farms, may mask important fundamental 

differences between how farms will respond given changes in the key drivers of investment.   

These differences are important considering the heterogeneity in U.S. farm capital 

investment levels across farms of different sizes.  The US agricultural sector is comprised of 

small segment of large commercial farms, earning large farm incomes and making large annual 

capital investments, and many smaller farms accounting for a much smaller portion of total farm 

capital investment.  Examining the investment behavior of large commercial farms as well as 

smaller farms, and differentiating according to operator occupation, has value.  Given that they 

comprise a greater portion of total production and investment, the behavior of large 

commercial farms will have a greater impact on total agricultural capital investment in the 

economy, as well as on the technology employed and environmental impact associated with 

producing the US food supply.  Alternatively, many beginning and disadvantaged farmers do not 

fall into the large commercial farm category, but instead operate farms with lower farm income 

levels and/or may have another primary off-farm occupation.  Determining what drives 

investment on smaller farms is a key priority when planning for and evaluating programs to 

ensure that beginning and/or part-time farm operators have the needed capital and technology 

to earn a reasonable profit, and the opportunity to grow, if they desire.   

In this study, I will examine differences in investment levels in response to changes in 

key drivers of investment across farm typologies.  The structure of the paper is as follows:  I 

define farm typologies, examine capital investment levels by farm typology, and review the 

literature.  Next, I develop a fixed effects regression model, explain the methodology for 

constructing pseudo panels from ARMS survey data, and introduce the three hypothesis I will 

test using this model.  These hypotheses are that investment rates will increase more on A) 

commercial farms given changes in output rates and/or returns to investment, B) resident farms 

given changes in tax policy, and C) intermediate farms given changes in liquidity or other 

measures of credit and financial constraints.  After estimating the model separately for farms 

within the following three categories1:  1) grains, 2) fruit, nut, vegetable, and nursery crops 

(FNV), and 3) livestock farms, I compare my results to other panel data farm capital investment 

studies and test my hypothesis.  Next, I use the estimated model elasticities to calculate the 

                                                           
1  Commodity type is defined as earning at least 50% of Gross Cash Farm Sales from the commodities 
within these categories.   
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change in average farm capital investment levels between 1996 and 2013 attributed to changes 

in model variables between these years.  Finally, I estimate projected changes in average farm 

capital investment in 2024 compared to 2013 given projected changes in key model variable.   

Previous studies have examined the impact of credit constraints on farms according to 

asset levels (Ariayante and Featherstone, 2009), age (Ariayante and Featherstone, 2009; Barry 

et al., 2000; Bierlen and Featherstone, 1998) and measures of credit worthiness (Barry et al., 

2000). They have not differentiated between the impacts of output prices, returns, liquidity 

levels, and taxes on farms accounting for differences in primary operator occupation.  My study 

is different from others in that I split farms into categories based upon levels of net farm income 

as well as primary operator occupation and look for differences in investment responses given 

changes in taxes, liquidity levels, output prices, return, and other measures of financial 

constraints.   

Another distinguishing factor is my use of ARMS, a national survey of U.S. farms.  Other 

farm level panel data studies have used a relatively small set of farms within a limited 

geographical region.  In contrast, I utilize survey data from farms within 48 different U.S. states.  

By employing the provided weights, I am able to obtain estimates representative of the US farm 

population as well as to distinguish between farms using the detailed production and financial 

farm business and household level data within the survey.  Finally, to account for links between 

investment levels over multiple time periods I construct a synthetic panel using ARMS 

observations.  This approach has not been utilized to study investment behavior within the 

ARMS survey in any currently published literature.   

Research on investment responses to changes in economic conditions which adequately 

accounts for differences by farm size, operator occupation, and production type can provide 

useful information on future farm capital investment demand.  Having more detailed 

information on commercial farm capital investment demand in particular can assist the farm 

manufacturing and retail sector control production levels and coordinate to meet demand 

within differing regions and commodity specific capital good sectors.   Having accurate 

information regarding future farm capital demand can also assist FSA program administrators in 

the planning and implication of FSA operating loan programs.  Farm loan programs have target 

participation rates for beginning or socially disadvantaged farmers and ranchers, and limited 

resource farms.  Farms meeting these criteria, on average, have smaller than average levels of 
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farm income and/or a primary occupation other than farming.  The knowledge generate in this 

study will be helpful in meeting these goals.  Finally, many of the key determinants of farm 

investment are also affected by changes in farm policy, farm programs, and general economy-

wide macroeconomic policy.  This includes farm income levels and variability, commodity prices, 

tax rates and interest rates.  Knowing the impacts of changes in investment given changes in 

these variables will be helpful for those involved in decision making within these diverse areas. 
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CHAPTER 2:  BACKGROUND AND INVESTMENT BY FARM TYPOLOGIES 

 In this chapter I describe the ARMS data from which I draw information on farm capital 

investment and other farm characteristics, explain the farm typology classification system and 

details regarding the characteristics of farms within each typology, provide an outline of what is 

included when I speak of farm capital investment, and provide some information of the different 

levels of investment across farm typologies, regions, and production category types. 

 

 

 

2.1 Arms 

The data on investment and distribution of farms by typology is from the USDA 

Agricultural Resource Management Survey (ARMS).  ARMS is a national survey jointly conducted 

by the USDA and NASS.  Sampled farms2 from within 48 states are asked to provide information 

on farm production processes, financial measurements for the given survey year,, and farm 

operation and household characteristics.  The ARMS is unique in that it is the only national 

survey to provide such a detailed level of information on farm household income and 

characteristics on such a large scale (National Research Council, 2008).  The information 

collected is vital to the role of the fulfilling the USDA’s mandate to prepare estimates of U.S. 

farm income and production practices (National Research Council, 2008).   

ARMS follows an annual, multiphase, multi-frame, stratified, probability sampling design 

(ERS, ARMS Farm Financial and Crop Production Practices, 2014). The survey is conducted in 

three phases.  Phase one occurs in the spring of the survey year and consists of verifying the 

farm fits the criteria of the survey in a given year.  The phase two occurs in fall and obtains 

information regarding farm production practices.  Phase three occurs in the winter following the 

                                                           
2 According to the USDA definition, a farm refers to a place with the potential of producing $1,000 or more 

worth of agricultural commodities a year (MacDonald et. al, 2013) 
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survey year.  In phase three detailed information regarding revenue and expense data are 

collected.   

The list of farms to sample are chosen from within two frames, the list frame and the 

area frame.  The list frame is a list of farms maintained by NASS and updated at a regular basis 

using different sources.  The area frame comes from the NASS June area survey and is obtained 

by determining farms that appear on the June area survey with those not on the list frame.  This 

attempts to cover any farms missing on the list frame so that all farms are sampled accordingly.   

There are multiple versions of the survey corresponding to different survey phases and 

methods of delivery.  Versions 2-4 correspond to phase two.  These commodity specific phase 

two surveys are conducted by personal interview.  Versions 1 and 5 correspond to phase three.  

Version 1 of the phase three survey is conducted by personal interview.  The data from this 

version is referred to as the Cost and Returns report (CRR).   Version 5 refers to a separate mail-

in version of the phase three survey.  This is called the Core version and contains less questions 

compared to version 1.  Within this study I only use observations from the CRR. 

ARMS is a stratified sample.  This stratified procedure reflects the expected differences 

in farms given farm size, location and production type.  Farms are grouped in stratum based 

upon the farm’s state, gross sales, and commodity type.  Farms are randomly sampled from 

within stratum.  Stratified sampling relies on the theory that by grouping farms into samples and 

sampling within these smaller units, more efficient estimates, with lower sample variances, can 

be made as compared to random sampling within the whole population (Dubman, 2000). In 

addition, this reduces the cost of sampling while ensuring that the population in question is 

adequately covered.     

Each farm observation has a weight reflecting the probability that they are selected out 

of the general population.  These weights are used to calculate population statistics and when 

making population inferences.  These help insure that estimates for the farm population drawn 

from the sample results correctly reflect national farm averages.  The weights adjust for 

nonresponse to both individual questions and to the survey as a whole.    I take advantage of the 

weights3 provided and employ these when estimating population means and when constructing 

                                                           
3 There are different weights provided depending on the versions of the survey used.  Within this study I 

use the weights associated with the CRR when calculating summary statistics for the population and when 

forming the pseudo panel datasets.  These weights were revised in 2012 to reflect 2012 Census of 
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my pseudo panels.  This allows my results to correctly reflect the U.S. Farm population over time 

rather than just the choice of farms sampled that year.    

The ARMS survey data provides a cross sectional sample of farms where the individual 

farms and the number of farms sampled differ each year.  The ARMS survey began in 1996.  

Since its inception, the number of surveyed farms has grown.  Within this study, I use years 

1996-2013.  This provides 152,609 initial observations across 18 years.  Table 1 lists the number 

of observations within the survey dataset by year.   

 

Table 1: Number of Farms by Year in ARMS Constructed Dataset 

Year Number of Farm Observations 

1996 6,985 

1997 9,024 

1998 7,991 

1999 9,778 

2000 7,712 

2001 5,439 

2002 9,949 

2003 6,048 

2004 6,706 

2005 6,828 

2006 6,456 

2007 6,179 

2008 6,149 

2009 6,575 

2010 6,775 

2011 9,488 

2012 18,728 

2013 15,799 

Total 152,609 

 
 
 

2.2 Farm Typologies 

 Farms are grouped by typologies to further explore differences in investment behavior.  

Below I provide a description of the typologies as well as characteristics of farms within each 

typology.   

 
 

                                                           
Agriculture data on farm numbers and revisions of acreage and production statistics by NASS (USDA, 

2016).  The weights employed in this study reflect this revision.  
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2.2.1 Defining Farm Typologies 

 I separate the farm observations into categories based upon level of annual Gross Cash 

Farm Income (GCFI) and the primary occupation of the operator.  These categories are based 

upon the 2013 updated ERS farm typologies (Hoppe and MacDonald, 2013).  Using average 

measurements across farms of different size and types can mask significant levels of variation 

and be misleading (Hoppe, 2014).  To account for this variation, ERS has developed a set of farm 

typologies, or classifications.  These typologies classify farms into homogenous groupings.  These 

groupings allow for more accurate estimates of average levels of farm revenues, incomes, 

production expenses, assets, debts, and other key farm and operator characteristics.   

 The first division is between family farms and nonfamily farms.  Family farms are any 

farm where the majority of the business is owned by the operator and/or individuals related to 

the operator.  Nonfamily farms include those organized as cooperatives or nonfamily 

corporations, those held in trust, and farms with a hired manager. Family farms are further 

divided into small and large family farms4.  Small family farms are defined as having GCFI of less 

than $350,000.  Small family farms are further split into resident and intermediate farms.  

Intermediate farms are small family farms where the primary operator identifies their primary 

occupation as farming.  Resident farms are small family farms in which the primary operator lists 

a primary occupation other than farming.  This includes retired farm operators and those 

employed in a non-farming primary occupation.  Commercial farms, are farms with an annual 

GCFI of greater than $350,000.  This category makes no distinction between the primary 

operator’s occupation and includes nonfamily farms.  These farm typology categories are 

summarized in Table 2 below. 

 

                                                           
4 Under the ERS farm typologies small family farms include 1) retirement farms, where the primary 

occupation is retirement and GCFI < $350,000, 2) off-farm occupation farms, where the primary 

occupation is nonfarm and GCFI < 350,000, 3) low-sales, with farming as the primary occupation and 

GCFI < $150,000, and 4) moderate sales, where farming is primary occupation and GCFI between 

$150,000 and $350,000. Commercial farms include the ERS farm typologies 1) mid-sized family farms, 

with GCFI between $350,000 and 999,999, 2) large family farms, with GCFI between $1,000,000 and 

$4,999,999, 3) very family large farms, with GCFI of $5,000,000 or more, and 4) non-family farms.  Using 

the ERS conventions, I combine retirement farms and off-farm occupation farms in the resident farm 

category and low-sales and moderate sales in the intermediate farm category.  I combine mid-sized family 

farms, large family farms, very large family farms and nonfamily farms to form the commercial farm 

category.   
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Table 2: Summary of Farm Typologies 

 
1 Gross Cash Farm Income includes revenue from crop and livestock sales, government payments, other 

farm related income including custom work, machine hire, livestock grazing fees, timber sales, outdoor 

recreation, and production contract fees (Hoppe, 2014).  
2 Occupation is the task for which the operator spends 50% or more of his or her work time 

 
 
 The GCFI threshold for the farm typology definitions are not adjusted for yearly changes 

in GCFI due to inflation.  It is acknowledged that not adjusting the thresholds over time may 

result in a small number of farms moving between categories due to changes in inflation rather 

than due to any change in the actual production level (Hoppe and McDonald, 2013).   Small 

farms earning near the $350,000 GCFI threshold within the early years of our sample time 

period are the most likely to move to the commercial farm category given inflation over time.  

The impacts of this is an area deserving of future study.  

 
 
 

2.2.2 Distribution of Farms within Typologies over Time 

Table 3: Number of farms and value of production by farm typology in 1995 and 2010 

Typology Category Number of Farms  
(% of US total) 

Value of Production  
(% of US total) 

 1995 2010 Change 1995 2010 Change 

Small Farms       
     Resident Farms       
            Retirement 16.2 16.6 +0.04 1.6 1.2 -0.4 
            Other Occupation 38.3 43.2 +4.9 6.1 4.3 -2.2 
     Intermediate Farms 38.4 28.2 -9.8 30.8 10.6 -19.8 
Large Farms       
     Commercial Farms 7.1 12.1 +5.0 61.6 83.9 +22.3 

Data used in computations are from Hoppe, Robert and James MacDonald.  "Updating the ERS Farm 
Typology 2013".  EIB-110.  April 2013.  
 

Resident

•Annual Gross Cash Farm 
Income1 <$350,000

•Primary occupation2 other 
than farming

Intermediate

•Annual Cash Farm Income  
<$350,000

•Primary occupation farming

Commercial

•Annual Gross Cash Farm 
Income ≥ $350,000
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 Table 3 lists the percentage of farms within each typology by number and value of 

production.  The majority of US farms are small farms.  In 2010, 87.1% of all US farms were small 

family farms, while only 12.1% were classified as large commercial farms.  Over the past two 

decades the number of resident farms in the U.S. has increased, while the number of 

intermediate farms has declined.  There are many reasons for this change.  The increase in the 

number of retirement resident farms can be associated with an overall increase in the median 

U.S. farm operator age.  Hoppe and MacDonald (2013) link this increase in the median farm 

operator age with improved health care and advances in farm equipment. Technology changes 

have also facilitated part-time farming, allowing more acres to be operated in less time and 

leaving more time for off-time employment (MacDonald et al., 2014). Additional reasons for the 

expansion in the number of residential farms may include the desire to combine a rural lifestyle 

with some level of crop or livestock production (MacDonald et al., 2014) and increasing off-farm 

employment opportunities in rural areas. 

 The majority of US farm production is produced by large commercial farms. In 2010, 

large family farms produced 83.9% of all US agricultural value of production.  Over the last two 

decades, a larger share of US production has moved to larger farms (Hoppe and MacDonald, 

2013).  This is due to both increases in the total number of and average size of commercial 

farms.  Increases in the average size of commercial farms has been driven by producers taking 

advantage of economies of scale in the production of specific agricultural commodities 

(MacDonald and McBride, 2009; MacDonald and Newton, 2014) as well as advances in 

technology and capital inputs, allowing a single operator to farm more land in less time 

(MacDonald et al., 2013). 

 
 
 

2.2.3 Distribution of Farms within Typologies by Production Type 

 Small farms dominate production within a few specific commodities.  While only 

comprising 26% of the value of production in 2011, they comprised 56.4% of poultry value of 

production, 51.1% of hay value of production, and 47.7% of other livestock value of production, 

including horse, sheep and goats.  They are 32% of beef calf farms and a significant presence 
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within the category of other field crops5 (Hoppe, 2014). Within commodities dominated by large 

farms, such as cash grains and dairy production, small farms have been able to find niches in 

high value production segments requiring relatively low capital investment and lower labor 

inputs.  This includes local food hubs and farmers markets, the production of artisian cheese and 

other dairy products, and the breeding of high value calves (Vogel and Low, 2015; MacDonald 

and Newton, 2015).   

 In contrast, cash grain, dairy and hog farms are dominated by larger commercial farms, 

where larger capital costs and initial investment levels create barriers to entry.  Large farms, 

while comprising 60% of US farm production make up 60% of cash grain, 66% of hog, 76% of 

high-value crop, 70% of dairy, and 82% of cotton value of production (Hoppe, 2014).    

 
 
 

2.2.4 Distribution of Farms within Typologies by Region 

 The above differences in farm size by commodity specialization are related to 

differences in the distribution of farm typologies across US regions.  Figure 1 provides a map of 

the ERS Production Regions and Table 4 provides the average number of farms by farm typology 

type within each Production Region over the 1996-2013 time period.  

                                                           
5 This includes conservation reserve acres.  A significant portion of the acreage under conservation reserve 

plans are owned by resident farms  



 

 

       

 
Figure 1: Map of ERS Farm Resource Regions

1
2 
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Table 4: Percentage of Farms within each Farm Typology by ERS Farm Resource Region over the 
Period of 1996-2013 

 Farm Typology 

Farm Resource 
Region 

Resident Intermediate Commercial 

Heartland 69% 24% 8% 

Northern Crescent 69% 27% 4% 

Northern Great 
Plains 

45% 43% 12% 

Prairie Gateway 66% 30% 4% 

Eastern Uplands 72% 26% 2% 

Southern Seaboard 74% 19% 7% 

Fruitful Rim 68% 24% 9% 

Basin and Range 67% 29% 5% 

Mississippi Portal 72% 22% 6% 
ARMS data used. Sample observations are weighted by their percentage of the US farm population 

 
 
Resident farms form a larger share of farms in the East Coast and interior Southeast regions. 

Intermediate farms form a large share of farms in the interior sections of the US.  The largest 

share of commercial farms is located in the Northern Plains, the Heartland, and Western and 

Southern Seaboard regions, corresponding to areas of cattle, cash grain, fruit, nut and vegetable 

production.   

 
 
 

2.3 Investment  

 In the next section I provide details on my measurement of investment as well as a 

summary of the different investment patterns by farm typology. 

 
 
 

2.3.1 Defining Investment 

Farm Capital Investment in this study is the sum of expenditures by a farm in a given 

calendar year on buildings, structures, improvements, office equipment placed on a 

depreciation schedule, vehicles, tractors, farm machinery, and farm equipment less the costs of 

trade-ins, rebates and discounts. If applicable, these were adjusted for their portion of use in 

the farm business over the course of that survey year. Improvement include improvements to 
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structures as well as to land.  The expenditures on buildings and land improvements include 

those paid by operators as well as by landlords and contractors.    

 
 
 

2.3.2 Treatment of Farmland 

Farmland investment is not included in the measure of farm capital investment.  Data 

on farmland purchases within ARMS is only available 2004 onward.  Very few producers in the 

ARMS survey made an investment in farmland in a given survey year compared to investments 

in other capital items.   Table 5 gives the average percent of farms within the ARMS survey 

between 1996-2013 making expenditures on different types of capital items.   

 

Table 5: Average Percent of Farms1 Making an Expenditure within a Given Survey Year in Farm 
Capital over the Period 1996-20132 by Farm Typology and Capital Investment Type 

Item Farm Typology 

Resident Farms Intermediate Farms Commercial Farms 

Equipment, Machinery 32% 40% 66% 

Buildings and 
Improvements 23% 25% 39% 

Farmland2 1% 2% 6% 

Breeding Livestock 13% 21% 23% 
1Sample observations are weighted by their percentage of the US farm population 
2Farmland investment data is only available in ARMS starting in 2004.  As a result, farmland investment is 
the average of observations using survey years 2004-2013.   
 
 

Only 1% and 2% of resident farms and 6% of commercial farms made a farmland purchase in a 

given year.  This is in contrast to 32% of resident farms, 40% of intermediate farms and 66% of 

commercial farms making a purchase in machinery and equipment, and 23% of resident farms, 

25% of intermediate farms, and 39% of commercial farms investing in buildings, structures or 

improvements.   

Another reason why farmland is excluded from investment is that the decision to invest 

in farmland is different from that of capital, machinery, equipment and livestock.  There are 

different economic and tax depreciation characteristics and motivations for purchasing farmland 

compared to machinery and equipment.  Farmland is subject to potential capital gains taxes at 

the time of sale.  Capital gains seldom apply to machinery or equipment sales.  Farmland has a 
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longer expected lifespan.   Farmland is expected to last over an infinite horizon while the value 

of machinery, equipment and buildings decline over their useful life.  This results in different 

methods of valuing farmland and discount rates over time.  The market for farmland is thin, with 

the amount of farmland that is sold in a given year is small in comparison to total available 

farmland.  This results in greater price fluctuations in farmland values compared to machinery, 

equipment and structures.  

While I do not include farmland within my measure of farm capital investment, I do 

acknowledge that farmland purchases can impact the level of non-farmland capital stock 

purchased.  Investment in farmland can either reduce funds available for investment in other 

assets such as building, machinery and equipment.  On the other hand, farmland purchases 

leading to an increase in total farmland operated should increase the need for additional capital 

stock and thus lead to additional non-farmland capital stock.  To control for the later, I include a 

measure of farm acres operated.  To account for the impact of farmland purchases on total 

investment funds, I try including both the level of farmland assets, the purchase amount of 

farmland assets, and a dummy variable representing if the farm purchased farmland or not.  

These are explained further in section 6.10.   

 
 
 

2.3.3 Treatment of Breeding Livestock 

Investment does not include investment in breeding livestock unless specifically stated 

and only in that instance for farms specializing in livestock production.  Table A4 gives the 

average percent of farms in the ARMS by typology and livestock production type investing in 

breeding livestock over the period 1996-2013.  

Table 6: Average Percentage of Farms1 Making an Expenditure within a Given Survey Year in 
Breeding Livestock during the Period of 1996-2013 by Livestock Production Category 

Livestock Category Farm Typology 

Resident Farms Intermediate Farms Commercial Farms 

Beef Cattle 22% 32% 52% 

Dairy 21% 38% 39% 

Hogs 30% 39% 20% 

Poultry 7% 15% 18% 

Other 5% 9% 14% 
1Sample observations are weighted by their percentage of the US farm population 
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Over the past two decades, breeding livestock was a significant investment for producers 

specializing in beef cattle and dairy product production.  While, on average, only 13% of resident 

farms, 21% of intermediate farms, and 23% of commercial farms made an investment in 

breeding livestock in a given year, 32% of intermediate and 52% of commercial beef farms and 

32% of intermediate and 39% of commercial dairy farms made breeding livestock investments. 

Livestock investment exhibits tax characteristics common to farmland, such as capital gains 

realized at the point of sale, but like machinery, equipment and structures has a finite life span. 

 When investment in breeding livestock is included, it only covers expenditures for 

purchased breeding livestock and not livestock raised for breeding purposes.  Breeding livestock 

asset values includes the value of both purchased and raised breeding livestock.  This could 

create measurement issues when calculating the rate of breeding livestock investment.  This 

may be most problematic for small farms, for which livestock raised for breeding purposes may 

constitute a large portion of farm investment.  Accounting for the costs of raised breeding 

livestock will be pursued in further work but is beyond the scope of this study currently without 

access to the base survey data.        

 
 
 

2.4 Investment by Farm Typology 

Commercial farms are more likely to invest in a given year and, on average, make larger 

annual investments compared to resident and intermediate farms.   Over the period of 1996-

2013, 43% of resident farms, 54% of intermediate farms, and 79% of resident farms made an 

investment in machinery, equipment or structures.  Given a farm choose to make an investment 

in the given survey year, the average investment was $15,013 for resident farms, $22,849 for 

commercial farms and $100,165 for commercial farms.   

 
 
 

2.4.1 Differences Across Farm Typologies Over Time 

The average annual level of farm capital investment on U.S. farms rose tremendously 

from 1996 to 2013.  The majority of this rise in investment has been driven by commercial 
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farms.  Figure 2 shows the percentage of farms making an investment by farm typology each 

year over the period of 1996-2013.  

 
Figure 2: Percent of Farms6 Making an Expenditure on Machinery, Equipment, and Structures by 
Year and Farm Typology using ARMS Data over the Period 1996-2013 
 
 
The percentage of commercial farms making an investment each year was larger and remained 

relatively constant compared to the portion of resident and intermediate farms making 

investments.   In contrast, the percentage of resident and intermediate farms making an 

investment increased in the beginning of the sample period and then declined over the latter 

time period.  The percentage of small and resident farms making capital purchases exhibited a 

greater level of variability over time period as well.  The variability of investment was 5.7% for 

resident farms, 7.6% for intermediate farms, and 3.2% for commercial farms. 

There are also differences in the trends between farm typologies regarding the average 

level of farm capital investment.  This is illustrated in Figure 3 below.   

                                                           
6 Sample observations are weighted by their percentage of the US farm population 
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Figure 3: Average7 Expenditures on Machinery, Buildings, and Structures over the Period of 
1996-2013 by Year and Farm Typology 
 
 
There is a clear upward trend in the average level of investment on commercial farms between 

this time period, resulting in the average annual level of investment doubling on commercial 

farms by the end of 2013 compared to 1996.  The average annual level of investment on 

resident and intermediate farms increased but to a much smaller degree in comparison to that 

of commercial farms.  The variability of the level of investment between years was also greater 

for commercial farms compared to resident and intermediate farms.  The variance between 

years of investment was $2,047 for resident farms, $1,852 for intermediate farms, and $20,202 

for commercial farms.   

 
 
 

2.4.2 Differences Across Farm Typologies by Region 

Figure 4 provides the average annual investment level by farm typology and ERS 

production region.   

                                                           
7 Sample observations are weighted by their percentage of the US farm population 
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Figure 4: Average8 Expenditure on Machinery, Equipment and Structures within a Given Survey 
Year over the Period 1996-2013 by Region9 and Farm Typology 
 
 
Investment was larger, on average, in the Northern and the Fruitful Rim regions of the US, 

where the main commodities produced include wheat, corn, soybean, cattle and dairy, are 

production is dominated by large farms.  In contrast, investment was lower in regions 

dominated by resident farms, such as the Eastern Uplands and Southern Seaboard regions.  

There was a greater variance in the level of investment between commercial farms across 

different regions compared to resident and intermediate farms.   

 
 
 

2.4.3 Differences Across Farm Typologies by Production Type 

Figure 5 shows the average annual investment level by farm typology and commodity 

type.   

                                                           
8 Sample observations are weighted by their percentage of the US farm population  
9 See Figure 1 for a map and descriptions of the ERS Production Regions 
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Figure 5: Average10 Expenditure on Machinery, Equipment and Structures within a Given Survey 
Year on Farm Capital by Commodity Type11 and Farm Typology during 1996-2013 
 

 
The annual average investment level was larger for grain, fruit and vegetable, and poultry 

commercial farms compared to dairy, beef cattle, and hog commercial farms.  Similar patterns 

exist across other farm typologies, except for dairy, where resident and intermediate average 

investment levels were larger than that of resident and intermediate farms in other commodity 

types. Similar to between regions, there is a greater degree of variance in commercial farm 

investment levels across crop type compared to resident and intermediate farms.   

 

                                                           
10 Sample observations are weighted by their percentage of the US farm population 
11 Farms are grouped under a specific commodity if more than 50% of the farm’s sale revenues in a given year are 

from that commodity. If no single commodity comprises more than 50% of the farm’s revenues, then they are classified 

either under grain or “other” livestock. 
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CHAPTER 3:  LITERATURE REVIEW 

There is a rich history within agricultural economics of studying the demand for 

agricultural machinery and equipment, going back to Cromarty (1959) whom looked at the 

factors influencing the demand for farm machinery in the U.S. from 1920-1955, a time of great 

transition within the agricultural sector.  Subsequent studies focused on the question of what 

determines the demand for agricultural equipment, but incorporated developments in the 

theory to examine issues of long run vs. short run adjustment and elasticities, the relative 

demand for types of capital goods and in relation to labor and other inputs, quasi-fixed assets 

and adjustment costs, the impact of taxes, and technological change.  These included Abebe 

Dahl Olson (1989), Jorgenson (1963), Kolajo and Adrian (1986) and Lopez (1980). These studies 

employed aggregate economy wide data time series datasets and the neoclassical approach 

proposed by Jorgenson (1963), where farm machinery demand is solved by optimizing a 

production or cost function.  Most of these early studies assume perfect capital markets (Fuzzari 

et al., 1988).  Under this scenario, real firm decisions are independent of financial factors.  All 

farms have equal access to capital and are able to purchase the optimal level of farm machinery 

to maximize profits so that external funds are a perfect substitute for internal capital (Fuzzari et 

al., 1988).  This assumption was first relaxed by Hubbard and Kashyap (1990) using Euler 

equations on aggregate US farm investment data from 1914-1987 to model the impact of 

changes in cash flows on farm capital investment.  Further extensions to this model have been 

employed in subsequent panel data studies and are covered below.    

 
 
 

3.1   Early Literature and Changes in Tax Policy 

In particular, one early addition to the literature and relevant to my study was 

incorporating the impact of taxes.  These examined the impact of taxes and the difference in 
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predicted vs. actual investment and capital stocks via the change in the implicit price, or user cost 

of capital caused by a change in either tax rates or depreciation tax policy, as outlined by Hall and 

Jorgenson (1967) for non-agricultural capital.   This wave of literature was prompted by significant 

changes in the tax code in the 1980’s under the passage of the Tax Reform Act of 1986 (TRA). 

Examples include Halvoresen (1991), Hanson and Bertelsen (1987), LeBlanc and Hrubovcak 

(1986), LeBlank et al (1992).  Overall they find that changes in the tax code have significant impacts 

on the level of implicit prices and capital stocks and the level and timing of investment, though 

the impact varies by farm size, production type and asset type (Hansen and Bertelsen, 1987), the 

level of asset fixity assumed (Halverson, 1991), and if one allows for time varying coefficients or 

not (Conway et al., 1987).  In contrast to the econometric methods used in the prior studies, Smith 

(1990) and Mauer and Ott (1995), examined the impact of investment tax credits, depreciation 

rates, and marginal tax rates on investment timing for agricultural and non-agricultural machinery 

using asset replacement models and numerical analysis.  They also find that tax code policy 

changes have significant impacts on the level and timing of investment. 

 
 
 

3.2 Use of Cross Sectional and Panel Data Studies 

Many of the initial studies which examined the impact of prices, tax policy changes, 

interest rates and measures of farm asset and debts on investment relied on time series data.  

With the advent of cross sectional and panel level datasets, it is possible to link investment 

behavior to differences in specific farm variable levels and differences.  Taking advantage of these 

datasets, further capital investment studies have addressed the impacts of cash flows (Jensen et 

al., 1993) and farm credit constraints (Ariyaratne and Featherstone, 2009; Barry et al., 2000; 

Bierlen and Featherstone, 1998; Hüttel et al., 2010;; Serra, 2003), tax policy (Gustafon et al. 1988; 

Hadrich, 2013; Venzetti and Quiggin, 1985), and adjustment costs (Micheels et al., 2004).    

 
 
 

3.2.1   Cash Flow 

Drawing on the work of, Hubbard and Kashyap (1990), whom estimated statistically 

significant relationships between cash flow and U.S, farm investment using aggregate data over 
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the period of 1910-1978, Jensen et al. (1993) added internal cash flow variables to a panel data 

level model of Kansas farm investment during 1973-1988 to determine if these variables, and 

other farm specific identifiers such as operator age and type of business, could improve farm 

investment models.  They conclude that in addition to traditional neoclassical variables used in 

previous studies, additional internal cash flow measures, such as lagged profits, interest 

expenses, and off farm income levels were significant in explaining investment levels.  In a 

similar exercise, Weersink and Tauer (1989) added cash flow variables using an flexible form 

accelerator model to Dairy farm investment and compared this to solving a dynamic 

optimization problem.  They similarly found cash flow measurements significant in explaining 

farm capital investment.   

 
 
 

3.2.2   Credit Constraints 

Credit constraints are linked to the theory of asymmetric information and imperfect 

capital markets.  Due to asymmetric information between borrows and lenders or lack of 

collateral, obtaining loans may be expensive or prohibitive. Reflecting the pecking order of the 

hierarchy of finance, external funds become more expensive than internal funds.  Lack of 

internal funds may lead to an inability to invest.  As a result, farm investment on credit 

constrained farms becomes sensitive to fluctuations in the level of internal funds (Berlien and 

Featherstone,1998; Gilchrist and Himmelberg, 1995; Hubbard and Kashyap,1992; Jensen et al., 

1993).  When profits are high the cost of funds is low and farms invest.  When profits are low 

than the cost of internal funds are expensive/probative and investment goes down.  A common 

exercise has been to compare the behavior of credit constrained farms with farms judged a prior 

to be non-credit constrained.  Extensions for this model include controlling for the impact of 

outliers (Hart and Lence, 2004), differences in credit constraints across countries (Benjamin and 

Phimister, 2002; Hüttel et al., 2010), and risk (Bokusheva et al., 2007; Sckokai and Moro, 2006) 
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3.2.3   Adjustment Costs and Real Options 

Credit constraints are one reason for lags in adjustment in investment (Berlien and 

Fetherstone, 1998; Hubbard and Kashyap, 1992; Jensen et al., 1993).   Others include adjustment 

costs or real options (Boetel et. al., 2007; Hüttel et al. 2010; Serra et al. 2009).  Under the former, 

assets are fixed or quasi fixed and there are fixed costs associated with adjusting the capital stock 

(Boetel et. al., 2007, Vasavada and Chambers, 1986) while under the later the decision not to 

invest becomes rational given uncertainty regarding the future.  Within the panel data literature 

areas of emphasis include determining optimal lag adjustment structure of farm capital 

investment (Trevena and Keller, 1974), or employing threshold adjustment models (Guastella et 

al., 2013; Serra et al. 2009), tobit models (Hüttel et al., 2010) or error correction models 

(Bokusheva, 2007) to model real option behavior.      

 
 
 

3.2.4   Tax Policy 

Moving to panel data, Hadrich et al. (2013) estimated the impact of a change in the 

Section 179 limit on the probability and resulting level of capital investment for farms in the 

North Dakota Farm and Ranch Association during the period 1993-2011.  They find that 

increases in the section 179 limit significantly increased the probability of investing and the 

investment rate.  Similarly, Ariayante and Featherstone (2009) also find that depreciation tax 

levels have a significant impact on farm capital investment, though the impacts are remarkably 

different across types of capital.  In contrast, other panel data studies find tax code changes 

have little impact on farm capital cite the importance of expected profits (Vanzetti and Quiggin, 

1985) and other financial and structural characteristics (Gustafson et al 1988) in determining 

investment.  

 
 
 

3.3   Differences in Investment Across Farms by Category  

Since the focus of my research is differences in the responsiveness to U.S. farm capital 

investment by farm size, when reviewing the literature on U.S. farm capital investment I 

searched for studies which estimated the impact of changes in key variables on investment 
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separately by measures of farm size and/or related categories.  I found three which fit this 

criteria.  They are summarized below. 

Using Illinois Farm Management data on farm investment during 1987-1994, Barry et. al. 

(2000) compare farm investment for different groups based upon age and different financial 

ratio criteria.  They utilize a tobin q model, where the fundamental return to investment is 

estimated and distinguished from cash flows available to the firm.  They find that investment 

levels are more sensitive to changes in cash flow movements for younger producers and those 

with weaker financial ratios.   

Using a similar methodology, Bierlen and Featherstone (1998) examine the impact of 

cash flows on farm investment using Kansas Farm Management data from 1976-1992.   They 

separate farms by age, time period and farm debt levels.  Sensitivity to cash flow characteristics 

differed across groups within different time periods.  Cash flow variables were generally less 

significant in determining farm investment during the boom period of the 1970s.  They became 

important for younger farmers with greater farm debt with the downturn in the farm economy 

in the 1980s and the 1990s.  In contrast, older and lower debt farms were less sensitive to credit 

constraints during the 1980s and 1990s.   

Ariayante and Featherstone (2009) also split farms into categories based upon farm size 

to examine relative impacts of government payments, depreciation expense levels and inflation 

on investment for farms as a whole and across different asset and age quartiles.  They utilized 

Kansas Farm Management data over the period of 1998-2007.  Investment across all farm 

categories were significantly related to lagged crop and livestock income and depreciation 

expenses.   The impact of government payments and interest expenses varied by farm asset 

level and operator age.  Investment was not responsive to changes in government payments for 

farms with larger asset levels and for operators in the youngest or oldest age quartiles but was 

but was for farms with operators in the middle age quartile or for farms with smaller asset 

levels.  Investment decreased with increases in interest payments for farms in all age quartiles 

and farms in the smaller asset quartile but had no impact on farms in larger asset quartiles.   
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3.4 My Additions to the Literature 

 This study adds to the current literature in two ways.  First, this study examines how the 

factors driving farm investment differ across farm typologies, accounting for both differences in 

gross cash farm income levels and primary operator occupation type.  None of the prior studies 

has examined how differences in the primary occupation of the farm operator could influences 

differences in farm investment. I believe that occupation type has an impact on investment, and 

that by distinguishing farms earning smaller farm incomes by occupation type, I can obtain more 

accurate estimates of investment.   

Utilizing the ARMS data to study farm capital investment is another unique aspect of my 

research.  The ARMS is currently used to develop congress mandated: estimates of commodity 

costs and returns for specific commodities, estimates of net farm income for commercial 

producers across specific farm types, an index of prices paid by farmers, and a report on 

demographic and structural information and trends for family farms (Kuethe and Morehart, 

2012).  While the ARMS has been utilized by researchers to study a variety of issues, including 

but not limited to technology adoption, structural change in agriculture, the economic health of 

and trends within the farming sector, and to comparisons of farm household and non-farm 

households across different measurements (Kuethe and Morehart, 2012), it has not been 

utilized to study farm capital investment, with the exception Stutzman and Williamson (to be 

published).  The majority of the farm capital investment literature utilizes either aggregate time 

series data or state/region wide farm panel datasets.  Compared to the ARMS, these 

state/region wide farm panel datasets, have fewer observations, cover a limited geographic 

region, and/or provide less detailed farm business and household financial data.    The ARMS is 

the only annual national survey of US farms to provide detailed information regarding farm level 

production practices, financial performance and household information (Kuethe and Morehart, 

2012; National Research Council, 2008).   It provides information on a wide range of the 

business and farms making up the farming sector, included many small part-time and limited 

resource operations as well as large farms with sales in the millions (Kuethe and Morehart, 

2012).  By utilizing the ARMS I am able to provide a unique and necessary picture of the farm 

capital investment behavior of farms across the whole U.S. as well as distinguish between 
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differences among farms according to key production, financial, and farm household 

characteristics. 
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CHAPTER 4:  THEORETICAL INVESTMENT MODEL 

In this section, I derive a theoretical model from a dynamic optimization problem solved 

for the optimal long run level of capital stock, explain my choice of variables included in the 

model and specify the reduced form model that I will estimate.   

 
 
 

4.1 Deriving the Flexible Accelerator Model 

A model of investment based upon the flexible accelerator theory can be derived by 

solving a profit maximization problem.  Under the profit maximization problem, a firm makes an 

investment in machinery to maximize the net present value of expected cash flows from the 

investment. Using a dynamic model, this can be written as: 

Maximize       𝑉0  =  ∫ 𝑅𝑡
𝐿

𝑡=0
𝑒−𝑟𝑡    where 𝑅𝑡/𝑃𝑡. = 𝐺(𝑊𝑡 , 𝑋𝑡 , 𝐾𝑡) − 𝐶(

𝑑𝐾

𝑑𝑡
);   

𝑑𝐾

𝑑𝑡
= 𝐼𝑡- 𝜑𝐾𝑡−1         (1) 

where (V0) is the net present value of cash flows over the life of the investment, based on Rt, the 

returns from investment in year t, the discount rate r, and the life of the asset L. Rt is the 

difference between a long-run unit-output profit maximization function, Gt (Wt,Xt,Kt) and a short 

run-capital cost adjustment function, C(dK/dt).  Both the profit maximization function and the 

capital cost adjustment function are normalized by output price, Pt.  Profits are a function of the 

chosen level of a quasi-fixed level of capital stock (Kt), other variable inputs, Xt, and variable 

input prices, Wt.  This is reduced by the costs involved in adjusting the level of capital stock.  This 

is represented by the cost adjustment function, C(dK/dt), which states that the cost of adjusting 

to a new level of capital is a function of the change in capital between time periods, dK/dt.  This 

assumes that the marginal cost of existing capital stock is constant between time periods and 

changes in the marginal cost of capital occur only when the capital stock level is altered.  

Reasons for changing marginal costs include financing concerns, additional training, or 

equipment downtime.



29 

 

 

 

 

 

   

 

An equation of motion, dK/dt, links capital stock levels between periods.  The equation 

of motion states that the change in capital between periods is equal to gross investment, It, less 

economic depreciation of capital stock, 𝜑𝐾𝑡−1. I assume that economic depreciation is equal to 

a fixed portion, 𝜑, of the previous period’s capital stock, Kt-1.   In each period, the firm chooses 

the capital stock, Kt and other inputs, Xt, given the equation of motion governing the change in 

capital over time, 
𝑑𝐾

𝑑𝑡
, to maximize the net return to investment 𝑉0.  Assumptions include myopic 

or stationary real input and output price levels, other variable inputs are completely flexible, 

and firms are price takers in the input and output markets.  LeBlanc et al., (1992) outline how by 

choosing a profit and cost function and solving the Hamiltonian one obtains a numerical solution 

for the short-run demand for capital, Kt. This is equivalent to the approximate solution to the 

demand for K*, which is the steady state or long-run profit maximizing demand for capital.  K* is 

the optimal capital level or the capital level the firm would choose given no barriers, time lags, 

financing constraints, or other delays in adjusting the capital stock given changes in economic 

conditions or other factors affecting the demand for capital.  The long-run solution to K* using 

dynamic programing obtained by LeBlanc et al. (1992) and Weersink and Tauer (1989) is 

equivalent to the long-run demand for capital as expressed by accelerator theory.  

From this the demand for gross investment is derived.  This is referred to as the flexible 

accelerator theory of investment.  Gross investment becomes the change in the capital stock 

between periods.  This can be expressed in discrete time as: 

 

𝐼𝑖,𝑡 =  𝐾𝑖,𝑡 − 𝐾𝑖,𝑡−1 = 𝑎𝑙𝑝ℎ𝑎[𝐾𝑖,𝑡
∗ − 𝐾𝑖,𝑡]   where 𝑁𝐼𝑖,𝑡 =  (𝐾𝑖,𝑡 − 𝐾𝑖,𝑡−1) − 𝜑𝐾𝑖,𝑡−1              (2) 

 

where Ii,t is gross investment, NIi,t is net investment, and 𝜑 is the rate of economic depreciation.  

Gross Investment (Ii,t) is proportional to the difference between desired capital, 𝐾𝑖,𝑡
∗ , less capital 

stock levels in the prior period, 𝐾𝑖,𝑡−1, times an adjustment factor, alpha.  Net Investment (NIi,t) 

is equivalent to gross investment less the portion of the previous capital stock that needs to be 

replaced due to wear or tear (𝜑𝐾𝑖,𝑡−1).    Adjustment is instantaneous under neoclassical theory.  

Changes in factors affecting the long run level of capital, K*, are fully manifest in a change in 

investment in the given period.  This is equivalent to stating that the value of alpha equals one.  

If alpha does not equal 1, than within a given time period the capital stock does not fully adjust 
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to the long-run level. Full capital adjustment instead takes multiple time periods.  This means 

that changes in previous economic conditions have impacts on investment beyond the current 

period.  

Following in the footsteps of Jensen et al., (1993) and others I start directly from the 

flexible accelerator theory and obtain a reduced form model for capital investment. Economic 

theory and previous literature provides a basis on the choice of variables to proxy 𝐾 ∗𝑖,𝑡 and 

adjustment costs.  Different methods for modeling the adjustment factor and desired farm 

machinery stock have been suggested by Conway et al (1987), Girao et al. (1974), Jorgenson and 

Seibert (1968), Trevena and Keller (1974), and Weersink and Tauer (1989). Treveno and Keller 

(1974) compared the results from solving the dynamic optimization problem with estimating the 

reduced form flexible accelerator model and found that they performed similarly.  Using a 

reduced form accelerator, one does not have to specify a specific functional form for profits or 

costs.  Additionally, utilizing this model allows the incorporation of factors affecting investment 

beyond the prices and quantities of outputs and inputs and including lagged independent 

variables to represent linkages between internal funds and investment levels over multiple 

periods.   

 
 
 

4.2 Representing Changes in the Optimal Level of Capital Stock 

Economic factors driving changes in the optimal level of capital stock included in the 

model are outlined below.  These include changes in output prices, net cash farm income, tax 

depreciation, marginal tax rates, farm size, specialization, and technological change. 

 

Output Prices (PrIndex)  

According to neoclassical theory, the demand for inputs into the production process is a 

function of output prices.  This follows from the accelerator theory of investment.  Under this 

theory, increases in the demand for output lead to increases in output prices.  Producers 

respond to higher output prices by increasing production and output levels.   
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Net Cash Farm Income (NCFI) 

Under the profit theory of investment, the optimal level of capital stock is influenced by 

the returns earned from investment.  This follows from the initial profit maximizing equation 

above.  Firms choose a level of capital to maximize the returns from investment, or the income 

earned per unit capital stock.  A change in output prices and/or input prices leads to direct 

changes in the quantities produced and/or shifts among either outputs and/or inputs to 

maximize expected returns to investment.  Greater potential returns to investment are 

expected to increase firm investment level.   

I measure the returns to investment as net cash farm income per unit capital stock.  Net 

cash farm income is gross cash farm income less operating expenses.  Gross Cash farm income 

includes revenues from the sale of farm productions, inventory adjustments, government 

payments, custom work income, incomes from land rented to others, incomes from livestock or 

crops removed under production contracts, and payments from royalties and leases for energy 

production.  Expenses include labor, land rental, hire custom work expenses, capital equipment 

leasing fees, and others.  This measurement does not include non-cash labor expenses, 

depreciation expenses, or the returns to operator’s time and management.   

The expense items included to calculate net cash farm income, such as labor, land 

rental, hire custom work expenses, and capital equipment leasing fees, are highly correlated 

with investment.  Unfortunately, within the ARMS dataset, these items are also strongly 

correlated with each other and with net cash farm income levels, leading to multicollinearity 

and other estimation problems.  Utilizing a single measure of net cash farm income to capture 

the impacts of these different cost items minimizes the number of additional variables in the 

regression model and multicollinearity issues.  Unfortunately, it limits my ability to discern the 

individual impact of each item separately.   

 

Depreciation Expenses (DEP) and Marginal Tax Rates (MTR) 

According to Jorgenson’s neoclassical theory of investment, changes in the user cost of 

capital impact the level of capital demanded by the firm.  The user cost of capital is determined 

by equating the marginal value product of capital with its user cost. The marginal value product 

of capital is the extra revenue earned by a unit of capital while the user cost is a function of the 
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asset’s purchase price adjusted for interest expenses and the tax benefits of owning capital.  

These tax benefits include depreciation tax deductions and reductions in total farm household 

tax levels.  An increase in allowable depreciation expenses and a larger farm marginal tax rate 

will decrease the after-tax cost of capital.  This makes capital relatively less expensive and 

should lead to increases in investment. 

In theory, the user cost of capital should reflect the individual cost of each specific unit 

of capital.  Different individual purchase prices, interest rates, and depreciation rates will result 

in very different implicit prices for different capital units and resulting impacts on investment.  

Unfortunately, the ARMS survey does not consistently collect data on the number and specific 

type of capital unit per farm across survey years.  The survey does not ask producers to provide 

information on prices of individual capital items nor their use within different farm enterprise 

production activities.  As a result, it is not possible to link revenues, output prices, interest 

payments, nor depreciation deductions with individual physical units of capital.  As a result, I 

capture the impact of taxes on farm investment by utilizing the farm’s total annual tax 

depreciation expense and marginal tax rate.   Interest expenses are accounted for in the 

measurement of net cash farm income.   

 

Farm Size (Acres) 

The annual capital replacement level is directly related to the number of acres operated.  

Larger farms will require greater investment levels to maintain existing capital stocks.  An 

increase in the number of operated acres should lead to an increase in investment in the current 

period as well as in future periods. The degree of which capital needs change as farm acreage 

increases will differ across farms depending on commodity type, regional geography, and 

returns to scale.  Given an expansion of farm size, increasing returns to scale will result in a less 

than proportional increase in investment expenditures per acre while decreasing returns to 

scale will lead to more than proportional investment per acre.     

 

Specialization (Entropy) 

Specialization, defined as the total number of crops produced and relative portion of 

each within the farm’s crop mix, will impact the level of farm capital investment.  Adding 
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additional crops to the farm’s crop mix is expected to increase capital investment.   The degree 

to which gains to or disadvantages to scope are present will influence how much additional 

investment is needed.  If specialization in fewer crops results in more efficient use of current 

machinery, then investment per unit of output will decrease as specialization increases.  If 

instead diversification allows the farm to reduce total capital required per acre, for example by 

reducing machinery downtime and taking advantage of different crop planting and harvest 

schedules, then diversification will result in reduced investment per acre.   

 

Technological Change  

Over time, changes in technology alter the profit maximizing level and type of capital.  

The impact of technological change on annual investment is proxied by dummy year variables.  

The use of individual year variables allows the impacts of technological change to vary 

differently depending on the year.  In addition, these dummy variables capture other 

unobserved year specific impacts.  Using a linear time trend assumes a constant marginal impact 

of technological change on investment over the given sample period.  Considering diversity of 

commodities produced and geographic regions within the ARMS data, as well as changes in US 

farming over the 18-year sample period, assuming non-constant technological change is the 

most logical choice.  In practicality, a linear time trend is often insignificant while individual time 

dummy variables are statistically significant and different across years. 

 
 
 

4.3 Representing Changes in the Adjustment Rate 

Under the theory of perfect capital markets, firm financing is irrelevant in the 

investment decision.  If markets are not perfect than the level of internal funds becomes an 

important factor determining farm investment levels.  This is due to either constraints in the 

amount of funds firms can borrow or increasing costs as a function of firm borrowing levels.  If 

imperfect capital markets are assumed, farm investment may increase or decrease depending 

on changes in internal measures of cash flows.  Previous studies have found internal cash flow 

variables have a significant impact on farm investment levels (Ariyarante and Featherstone, 

2009; Bierlen and Featherstone, 1998; Hadrich, et al., 2013; Jensen et al.; 1993; and Weersink 
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and Tauer, 1989).  These cash flow measures will impact the rate at which the capital stock is 

adjusted to the new optimal level.  Included cash flow variables are off-farm income, liquidity, 

and interest rates.   

 

Off-farm income (OFFI) 

Off-farm income is an indicator of additional cash flow available to the farm for 

investment.  Greater off-farm income results in higher levels of internal funds available for farm 

investment.  As a result, increases in off-farm income is expected to increase farm investment. 

 

Working Capital (WC)  

Farm liquidity represents another measure of internal funds available for investment.  

Farm liquidity is represented using working capital, which is measured as current assets less 

current debts.  This represents the level of short-term assets available each period after current 

debt obligations have been met.  For farms which are credit constrained, a greater level of 

liquidity should increase investment.   

 

Interest Rates (IR) 

Interest rates impact the cost of borrowing and the opportunity cost of investment.  

Increases in interest rates will make investment more expensive and should decrease the level 

of investment. Farm interest rates are linked to broader overall national economic trends 

including GPD levels and inflation.  By including interest rates in the model, the model captures 

some element of the broader macroeconomic forces affecting farm machinery demand.   

 
 
 

4.4 Reduced Form Flexible Accelerator Model 

Incorporating the above variables into the flexible accelerator model in (2) and assuming 

a linear functional form results in the following model: 

 
𝐼𝑖,𝑡

𝐾𝑖,𝑡
= 𝐹(𝑃𝑟𝐼𝑛𝑑𝑒𝑥𝑖,𝑡 ,

𝑁𝐶𝐹𝐼𝑖,𝑡

𝐾𝑖,𝑡
,

𝐷𝐸𝑃𝑖,𝑡

𝐾𝑖,𝑡
, 𝑀𝑇𝑅𝑖,𝑡 ,

𝐴𝐶𝑅𝐸𝑆𝑖,𝑡

𝐾𝑖,𝑡
, 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑖,𝑡 , 𝑌𝑒𝑎𝑟𝑡, 𝑂𝐹𝐹𝐼𝑖,𝑡 ,

𝑊𝐶𝑖,𝑡

𝐾𝑖,𝑡
)        (3) 
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Investment is a function of output prices, net cash farm income, depreciation, the tax rate, farm 

size, specialization, off-farm income, working capital, and the specific year.  Following the 

example of Ariyaratne and Featherstone (2009) and Barry et al. (2000) relevant variables, which 

included investment, net cash farm income, depreciation expenses, acres and working capital, 

were normalized by the level of farm capital, 𝐾𝑖,𝑡.  This reduces the level of heteroscedasticity 

that would be otherwise caused by differences in revenue and expense levels between farms 

related to differences in farm sales. The interpretation of these variables alters slightly due to 

this normalization.  Investment is no longer the dollars invested per year but instead the rate of 

replacement of the gross capital stock, income is income earned per unit of capital, depreciation 

expenses is the average depreciation taken on a unit of capital that year, working capital is the 

level of working capital per unit capital stock, and acres is no longer total farm acres but the 

average acres operated per unit capital.   This model is estimated using pseudo panels 

constructed from the ARMS survey data.  In the next section I provide background on pseudo 

panel theory, construction, and estimation methodology.  
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CHAPTER 5: PSEUDO PANELS AND DATA SOURCES 

 In this section I provide a description of pseudo panels, the literature supporting their 

usage, my methodology for constructing pseudo panels from the ARMS data and compare the 

resulting pseudo panel measurements with the survey data. 

 
 
 

5.1 Reasons for Construction 

The cross sectional nature of ARMS provides information only on the decision of a single 

producer to make a capital purchase in a given year. There is no way of knowing from the data if 

the same producer made an investment last year or will make an investment next year. This 

prevents the linkage of investment behavior over multiple time periods.   In addition, there is no 

way to connect changes in the levels of the model variables in prior periods with investment 

choices today.  Believing that I will attain more accurate estimates by examining the investment 

behavior of similar farm types over multiple time periods rather than individual farms at a single 

point in time, I construct a synthetic panel using the ARMS data.  My methodology is based upon 

established theory developed for construction and estimation using synthetic panels 

constructed from survey data.  These panels are often referred to as pseudo panels.    

Deaton (1985) introduced pseudo panels as a means to construct panel datasets from 

balanced or unbalanced survey datasets.  He outlines the conditions for which one can utilize 

pseudo panels to consistently estimate population effects.  These conditions were further tested 

and expanded upon in by Verbeek and Nijman (1993), Moffitt (1993), Verbeek and Vera (2005), 

and McKenzie (2004).   Utilizing these findings, authors have explored economic relationships 

using pseudo panels constructed from large surveys such as the US Census (Russell and Fraas, 

2005). 
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Previous studies have constructed pseudo panels using ARMS data.  For example, Blank 

et al. (2004) constructed pseudo panels to examine differences over time in risk attitudes for 

corn and soybean producers using ARMS data from 1996-2001.  O'Donoghue and Whitaker 

(2010) examined farm payments and acreage planting decisions using pseudo panels 

constructed from ARMS data for survey years 2000-2001 and 2003-2004. To look at the impact 

of production contracts on productivity, efficiency and scale economies Morrison-Paul et al. 

(2004) formed pseudo panels using 1991-2002 ARMS survey data.  Finally, to determine if 

marginal rates of consumption differ by type of government payment, Whitaker (2009) formed 

pseudo panels using ARMS observations from survey years 1998-2004. 

ARMS data has many advantages over other farm management panel data sets.  The 

ARMS dataset is geographically more representative of the U.S. farm population, covers a 

greater number of farms, and is more detailed than most existing farm panel data sets available. 

By constructing pseudo panels from cross sectional data much of the attrition bias found in 

panel datasets is eliminated. Using ARMS data to study farm behavior overtime would allow us 

insights into many questions concerning the impacts of different policies.  Unfortunately, 

currently many important policies are not studied using ARMS data due to the inability to track 

farms over time (Featherstone et al., 2012). The results of my work into pseudo panel data can 

assist others in utilizing ARMS data to estimate dynamic panel models of farm behavior.  

 
 
 

5.2 Construction of Pseudo Panel Dataset 1 

Creating pseudo panels involves grouping farms with similar characteristics into groups, 

referred to as cohorts.  The mean values of observations are calculated within each cohort and 

for each year.  Estimation is performed on these mean values.    

An important decision when forming pseudo panels is the categories to use to split 

individual farms into groups.  There are two main considerations.  The first is forming time 

invariant groupings.  This requires that the probability of the same farm being placed in a given 

cohort is independent of the survey year.   The second is making sure that the groupings are 

heterogeneous enough to determine different impacts from changes in the dependent variables 

while making sure that they still reflect the true population means.  I choose categories to 
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maximize the heterogeneity between cohort observations and maximize the homogeneity of 

observations between farms in the same cohort (Whitaker, 2009).   

I group farms according to commodity type, geographic region, and typology.   These 

categories are summarized in Table 7 and described in more detail below.   

 

Table 7: Categories Used to Form Pseudo Panel Cohorts in Panel Dataset 1 

 

Previous studies using ARMS data have used similar categories such as: geographic 

region (Blank et al., 2004; Morrison-Paul et al., 2004; O’Donoghue and Whitaker, 2010), revenue 

or sales levels (Blank et al., 2004; Morrison-Paul et al.,2004; Whitaker, 2009), and production 

specialty (O’Donoghue and Whitaker, 2010; Morrison-Paul et al., 2004).  These categories are 

similar to the ARMS stratified sampling divisions of state, farm type and farm size.  Using 

categories that take into account the ARMS sampling design should provide more accurate 

cohort estimates.  In addition, farm investment and other variables such as revenues, expenses, 

asset and debts differ according to region, commodity type, and typology.  By taking cohort 

means within these categories the cohort means will reflect important distinctions within the 

sample data.   

The next consideration is how many categories to utilize.    In compiling the data, ERS 

researchers split farms into 19 commodity groups depending on the share of farm revenue 

earned by commodity.  Farms are then grouped into smaller commodity categories by 

combining similar commodity groups.  When choosing the number of commodity types there is 

Farm Typologies

•resident

•intermediate

•commercial

Prodution Type

•cash grain

•tobacco and cotton

•fruit, nut and vegetable

•nursery and greenhouse

•other crops

•beef, hot and sheep

•dairy

•poultry

•other livestock

NASS Farm Production 
Expenditure Regions

•West

•Plaines

•MidWest

•Atlantic

•South
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a trade-off between making sure that I am not taking averages over distinctively different 

commodity types while keeping the time-invariant nature of my sample.  For example, splitting 

farms into separate categories for corn and soybean farms would most likely result in farms 

moving between cohorts in alternative years and as a result provide inconsistent estimates.  On 

the other hand, separating corn and soybean farms from dairy farms should not result in farms 

moving between categories depending on the year. I choose to group farms into 9 commodity 

types. I am fairly confident that these divisions capture key differences between farm 

observations by production type while retain the time invariant nature of the pseudo sample.  

The commodity types are listed in table 2. 

Larger geographic regional distinctions are created by combining farms within each of 

the 48 surveyed states by state and/or similar geographic regions.  I choose to utilize the five 

NASS Farm Production Expenditure Regions. See table 2 for a list of the regions.  A map of the 

regions is provided in Figure 6.   

 
 

 

Figure 6: Map of NASS Farm Production Expenditure Regions 
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I am fairly confident that these categories are relatively time invariant.  It is unlikely that more 

than a few farms will move geographically between regions over the sample period.  On the 

other hand, the regions are different enough to capture significant regional variations between 

farms.  

Finally, I use three typology categories to reflect differences in farms according to farm 

size.  Using economic size categories to take advantage of the stratified ARMS sampling was 

suggested by Featherstone et al. (2012).  Blank et al. (2004) and Morrison-Paul et al. (2004) 

constructed cohorts using farm typologies.  Technically, this category is not completely time 

invariant.  While there may be some switching between the resident and intermediate 

categories as farmers retire and either leave or enter farming full time, the greater concern may 

be farms moving between the commercial category and either resident or intermediate 

categories based on annual fluctuations in farm income.  Fluctuations in farm income will be due 

to fluctuations in both aggregate level agricultural price cycles and farm level yields.  This will 

most likely be an issue for larger intermediate or resident farms and smaller commercial farms.  

The alternative, not splitting farms into categories based upon typologies, would result in cohort 

means being averages of farms within these different categories.  This is problematic. Average 

values within these categories are very different.  Taking means across these categories creates 

cohort means not reflective of the true underlying sample values.  To account for the potential 

of farms moving between cohorts due to using farm typologies, the estimates obtained using 

this cohort formation will be compared with cohort formations that do not split farms based 

upon farm income levels.  This is explained in more detail later. 

The final decision is to employ the ARMS weights or not when forming cohort means.  

Whitaker (2009) and Blank et al. (2004) also employed ARMS expansion weights within their 

analysis.  Other studies choose not to apply the weights.  This reflects the overall mixed opinion 

in the literature regarding using survey weights when constructing subsamples from stratified 

larger samples.  If the cohort formation process is reflective of the stratum category division, 

using the weights should provide better estimates of the means within cohorts.  This is 

particularly important as ARMS does not sample the same farms or even the same composition 

of farms each year.  They rely on the sample weights to make sure that all farm types are 

accurately accounted for.  Using the sample weights ensures that farm estimates in each year 
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are more likely to represent the true population mean values in a given year.  Using sample 

weights also alleviates the problem of heterogeneity within cohort means due to unequal 

sample sizes across survey years.   On the other hand, if only the behavior of the sample is of 

interest the weights may distort the estimates (Dubman, 2000).  A benefit of stratification is to 

reduce the variance of estimates.  Categorizations not correlated with strata categories may not 

reflect the benefits of stratification (Dubman, 2000).  After considering the tradeoffs, I decide to 

apply the ARMS weights.   My decision is further supported by the resulting sample estimates.  

Within the different typology categories, the cohort sample means are similar to the weighted 

sample means and reflect important differences between resident, intermediate and 

commercial farms.  Similarly to using the weights when calculating mean and standard error 

estimates for survey mean values, employing the weights when taking the cohort means results 

in lower overall mean and standard error estimates.   

I take the weighted mean of the relevant variables across farms within the same region, 

production type, and typology category.  This creates an unbalanced panel dataset of 2,341 total 

cohort observations.   Within each region, production type and farm typology over time and 

within time between cohorts the number of observations used to construct the cohort means 

vary, as seen in Table 8-Table 10.   

 
 
Table 8: Average Number of Farm Observations Used to Calculate Resident Farm Cohort Means 

 Region 

Production Type Atlantic South Midwest Plains West 

Cash Crop 33.3 22.3 186.2 69.1 17.7 

Tabaco and Cotton 25.6 9.9 1.6 3.7 0.3 

Fruit and Nut 24.4 31.4 15.5 8.0 72.7 

Vegetable and Horticulture 23.6 11.2 10.7 3.2 13.6 

Other Grain 188.0 226.7 154.9 248.5 125.1 

Beef and Hogs 4.2 2.9 9.3 4.7 3.8 

Dairy 10.9 8.6 6.4 3.7 4.3 

Poultry 5.3 0.9 8.2 1.0 0.9 

Other Livestock 189.7 134.9 238.1 195.9 188.8 
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Table 9: Average Number of Farm Observations Used to Calculate Intermediate Farm Cohort 

Means 

 Region 

Production Type Atlantic South Midwest Plains West 

Cash Crop 52.9 48.9 314.6 195.9 77.6 

Tabaco and Cotton 42.4 30.8 2.0 22.9 2.4 

Fruit and Nut 38.8 31.9 22.7 6.8 104.4 

Vegetable and Horticulture 33.7 26.9 14.6 4.1 22.0 

Other Grain 110.9 158.7 108.8 241.4 176.7 

Beef and Hogs 3.7 2.4 15.9 3.2 1.6 

Dairy 17.1 18.3 4.8 3.7 2.3 

Poultry 89.9 9.8 118.7 9.2 10.3 

Other Livestock 84.7 62.8 91.9 96.9 134.0 

 
 
Table 10 Average Number of Farm Observations Used to Calculate Commercial Farm Cohort 

Means 

 Region 

Production Type Atlantic South Midwest Plains West 

Cash Crop 71.2 135.1 461.4 220.4 99.9 

Tabaco and Cotton 39.1 85.0 3.8 36.5 9.7 

Fruit and Nut 35.9 40.4 24.7 6.1 163.2 

Vegetable and Horticulture 42.9 50.8 30.6 7.7 44.1 

Other Grain 16.8 18.3 45.2 131.1 87.6 

Beef and Hogs 36.8 7.7 79.8 8.8 1.1 

Dairy 139.5 251.7 36.8 37.9 9.3 

Poultry 136.0 25.9 151.5 29.4 134.5 

Other Livestock 29.3 59.0 42.1 35.3 94.8 

 
 

Variation in the number of farms comprising cohort means is due to both the increasing 

scope of the ARMS sample over time as well as the stratified nature of the ARMS survey.  As 

time progressed the overall number of farms sampled has increased, as demonstrated in Table 

1.  In addition, some categories are sampled more heavily generally due to a greater number of 

available farms within that production category, region and farm typology class.  ARMS is used 

to construct estimates for US farm income and expenditure estimates and given the importance 

of commercial farms in determining these figures as well as their greater ability to be located, a 

greater number of commercial farms are sampled compared to resident and intermediate 
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farms.   Within certain regions, and in particular among large farms, there may be few or zero 

farms that earn greater than 50% of their farm income from that commodity or livestock 

category. This creates an unbalanced pseudo panel. Missing cohort values occur to a greater 

degree among resident an intermediate farms compared to commercial farms and in more 

defined livestock and commodity categories such as tobacco and cotton grown in the Midwest 

and Western U.S.  Other specific categories having missing observations in some years included 

resident poultry farms, intermediate beef and hog farms outside of the Midwest, or commercial 

beef and hog farms in the Western U.S. 

 
 
 

5.3 Data Sources and Variable Construction 

Data on capital expenditures, farm capital stock levels, net cash farm income, tax 

depreciation expenses, farm acreage, specialization levels, off-farm income, and working capital 

levels are obtained from the ARMS.  See section 2.1 for more details on the ARMS procedures 

and methodology.  Revenues, expenses, and income measures totals earned or spent over the 

course of the survey year from January 1st to December 31st.   Asset, debt and net worth values 

represent the dollar value of the item in question as of December 31st of the given survey year.  

All dollar values are adjusted to 2012 real values using the CPI data available from the Bureau of 

Labor Statistics.   

The ARMS collects data on total revenue and expenses but not individual input or output 

prices.  To obtain a measure of output prices, I construct a price index (PrIndexi,t).  I obtained 

data from NASS Quick Stats and from the USDA Annual Survey of Horticulture Producers on 

annual output prices for a set of 18 different commodity and livestock categories.  These 

categories correspond to a set of 18 commodity types into which farms in the ARMS are divided.  

The division is based upon revenue levels.  If farms receive more than 50% of their yearly sales 

from commodity(s) within a given category they are classified as under that category. The “other 

crop” or “other livestock” category is used for farms for which less and 50% of revenues fall 

under one of the specific crop or livestock categories.  Within each year for each cohort, the 

index price for each commodity category was multiplied by the portion of sales within that 

category.  A list of the commodity types and price data used is provided below in Table 11. 
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Table 11: Price Index Variable Construction 

ARMS 
Code 

Commodity  Data Used Notes on the ARMS classifications 

1 General Cash 
Crop1 

Average of price indexes 
constructed for: Corn, Soybeans, 
Sorghum, Oats rice received ($/Bu), 
Barley price received ($/Bu), Rice, 
Wheat 

Producers are classified as 
general cash crop if more than 
50% of sales are from the cash 
crops listed but no single item is 
50% or more of sales 

2 Wheat NASS Quickstats. Wheat Price 
Received $/Bu 

 

3 Corn NASS Quickstats. Corn Price 
Received $/Bu 

 

4 Soybeans NASS Quickstats. Soybeans Price 
Received $/Bu 

 

5 Sorghum NASS Quickstats. Sorghum Price 
Received $/Cwt 

 

6 Rice NASS Quickstats. Rice Price 
Received $/Cwt 

 

7 Tobacco NASS Quickstats. Tobacco Price 
Received $/lb. 

 

8 Cotton NASS Quickstats. Cotton Price 
Received $/lb. 

 

9 Peanuts NASS Quickstats. Peanuts Price 
Received $/lb. 

 

10 Crop Other NASS Quickstats. Crop Totals Index 
for Price received, base year 2011 

Includes sugarcane, sugar beet, 
crp pasture, maple syrup, mint, 
grass seed, hops, hay, grain 
silage, straw, Christmas trees, and 
short rotational woody crops 

11 Fruit and Tree 
Nuts 

NASS Quickstats. Fruit and Tree Nut 
Totals Index for Price received, base 
year 2011 

Includes revenues from fruit, tree 
nuts, berries 

12 Vegetable NASS Quickstats. Vegetable Totals 
Index for Price received, base year 
2011 

Includes revenues from 
vegetables, melons, sweet 
potatoes, potatoes 

13 Nursery and 
Greenhouse1 

NASS Floriculture Crops Annual 
Summary Reports 1997-2014.   

Includes nursery, greenhouse, 
and floriculture crops 

14 Beef Cattle NASS Quickstats. Cattle /Calves 
Price Received $/Cwt 

Includes revenue from the sale of 
cattle and calves 

15 Hogs NASS Quickstats. Hogs Price 
Received $/Cwt 

Includes revenue from sale of 
hogs and pigs 

16 Blank N/A  

17 Poultry NASS Quickstats. Poultry totals, 
including eggs, Index for price 
Received, base year 2011 

Includes revenue from sales of 
poultry and eggs 
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Table 11: Continued 

18 Dairy NASS Quickstats. Dairy Product 
totals Index for price Received, base 
year 2011 

Includes revenue from the sale of 
milk and other dairy products 

19 General Livestock NASS Quickstats. Livestock Totals, 
Index for price Received, base year 
2011 

Includes sheep, goats, goat 
products, equine, and 
aquaculture 

1 An average price per year was created by multiplying the wholesale price times the portion of sales from 
each of the following crops: Carnations (cents/stem), Chrysanthemums ($/bunch), lilies (cents/stem), 
orchids (cents/bloom), roses (cents/stem), geranium flats ($/flat), inpatients ($/flat), pansy/viola flats 
($/flat).   

 
 

Interest rates (IRi,t) are the fourth quarter loan rates for farm machinery loans per each 

of the 10 USDA Production Regions.  These were obtained from the Board of Governors Federal 

Reserve System Agricultural Finance Databook.  ARMS data on farm income, off-farm income, 

and IRS federal tax rates and exemption limits obtained from IRS publications were used to 

construct a farm household federal marginal tax rate (MTRi,t).  Beginning with farm income, I 

adjust for social security and Medicare taxes on self-employment and social security income, 

and subtract from total household income estimated deductions for social security payments, 

domestic production activities credits, health insurance premiums, and other deductions.  From 

this we subtract the larger of the standardized or itemized tax deduction that year to arrive at 

an estimated farm household federal taxable income.  Based upon married or single status, 

number of dependents, and federal taxable income levels, the federal marginal tax rate of each 

farm is determined.  

 
 
 

5.4 Summary Statistics for Pseudo Panel Dataset 

In this section I examine the summary statistics for the constructed model variables in 

the pseudo panel dataset.  In addition to examining the summary statistics for the model as a 

whole, I compare mean values across farm typologies and production types as well as the 

degree of variation between observations within and between variables by farm typologies. 

Summary statistics for the model variables using pseudo panel dataset 1 are provided in Table 

12. 
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Table 12: Summary Statistics for Variables in Model Using Pseudo Panel Dataset 

Variable Definition Units Mean SD Min Max 

I a 

 
Investment Rate.  Dollars 
spent on farm capital 
investment divided by 
capital assets Ratio 0.0624 0.0577 0.0000 0.7432 

PrIndex  Output Price Index.  See 
Data Section and table 
A11 for more detail Index 0.7866 0.1920 0.3287 1.2300 

NCFI a  Return on Assets.  Net 
cash farm income divided 
by capital assets Ratio 0.1555 0.2998 -2.6284 4.2015 

DEP a Annual tax depreciation 
expenses divided by 
capital assets Ratio 0.0545 0.0584 0.0000 1.2432 

ACRES a  Farm aces operated 
divided by capital assets Ratio 0.0016 0.0026 0.0000 0.0331 

MTR  Federal marginal tax rate.  
See notes above. Percent 0.1655 0.0700 0.0000 0.3960 

ENTROPY  Measurement of farm 
specialization.   Index 0.1256 0.0968 0.0000 0.4703 

OFFI  Off-farm income  1000s 
Real 
Dollars 63.57 52.95 -7.38 1,313 

WC a Value of current assets 
less current debts divided 
by capital assets Ratio 0.2647 0.4587 -1.8716 8.9960 

IR Interest rates.  See Data 
section for further detail Percent 0.0704 0.0178 0.0358 0.1070 

SD= standard deviation, Min=minimum value, Max=maximum value  
a Notes variables normalized by farm capital assets.  Farm capital assets= total dollar value of assets 
including machinery, buildings, structures and equipment.   
I= Investment= expenditures on buildings, equipment and machinery 
PrIndex=index of output prices.  For more detail on its construction see data section and Table 11 
NCFI=Net cash farm income is gross cash farm income (GCFI) less operating expenses.  GCFI includes sales, 
changes in inventory, government payments to landlord, income from custom work and machine hire, 
income from royalties and leases for energy production, income from land rented to others, income from 
crops or livestock removed under production contract, changes in the value of inventories.  This 
measurement does not include non-cash labor expenses or depreciation expenses.   
DEP= tax depreciation expenses  
MTR= federal marginal tax rate.  Includes farm and off-farm income and adjustments for Medicare and 
social security taxes on self-employment and social security income, deductions including social security 
taxes paid, domestic production activities credit and an adjustment for health care premiums paid.   
ACRES= Physical farm size is measured as the total number of acres operated by the farm.  This includes 
land rented from others and not including land rented to others. 
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Table 12: Continued 

ENTROPY= level of farm specialization.  This variable ranks farms on a scale of 0-1, 0 being the most 
specialized and receiving 100% of yearly sales from a single crop/livestock product compared to 1 the 
least specialized with all crop/livestock products produced contributing equally to total farm sales.   
OFFI= off-farm income. Includes earnings from wages, salaries and self-employment income as well as 
income from interest, dividends, and social security payments. 
WC= Working Capital.  Difference in farm current assets less short term debts. 
IR= average across farm production regions of the interest rate on farm machinery loans.  From the 
Agricultural Finance Databook. 

 
 
 

5.4.1 Pseudo Panel Means Across Farm Typologies and Production Types 

The means of the model variables are further broken down and listed by farm 

production type and farm typology in Table 13, Table 14, and Table 15. This is followed by a 

discussion of the overall summary statistics and differences between farm typologies and 

production types. 

 

Table 13: Means of Model Variables for Grain Farms by Farm Typology 

  Farm typology 

Variable Resident Intermediate Commercial 

I  0.0683 0.0693 0.1137 

PrIndex 0.705 0.700 0.669 

NCFI 0.075 0.145 0.393 

DEPR  0.036 0.056 0.098 

ACRES  0.00188 0.00254 0.00291 

MTR  0.172 0.134 0.233 

ENTROPY   0.135 0.181 0.219 

WC  0.196 0.318 0.343 

IR  0.0695 0.0698 0.0706 

OFFI 82.13 40.57 59.45 

Number of Observations 158 171 178 
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Table 14: Means of Model variables for Fruit, Nut, Vegetable, Horticulture and Nursery Farms by 

Farm Typology 

  Farm typology 

Variable Resident Intermediate Commercial 

I  0.0311 0.0451 0.0899 

PrIndex 0.884 0.886 0.891 

NCFI -0.001 0.064 0.585 

DEPR  0.019 0.031 0.101 

ACRES  0.00035 0.00042 0.00078 

MTR  0.158 0.127 0.246 

ENTROPY   0.035 0.050 0.062 

WC  0.245 0.284 0.651 

IR  0.0717 0.0719 0.0730 

OFFI 96.06 52.03 62.87 

Number of Observations 179 180 180 
 

 
Table 15: Means of Model Variables for Livestock Farms by Farm Typology 

  Farm typology 

Variable Resident Intermediate Commercial 

I  0.0410 0.0491 0.0695 

PrIndex 0.786 0.787 0.789 

NCFI -0.004 0.053 0.276 

DEPR  0.033 0.043 0.090 

ACRES  0.00067 0.00090 0.00060 

MTR  0.146 0.117 0.190 

ENTROPY   0.117 0.159 0.128 

WC  0.127 0.118 0.228 

IR  0.0697 0.0700 0.0698 

OFFI 78.79 41.17 43.48 

Number of Observations 239 252 263 
 
 

The average rate of investment differs between typologies and commodity enterprises.  

The average rate of investment is larger for commercial farms compared to resident and 

intermediate farms and grain farms compared to FNV and livestock farms.  Within the sample as 

a whole, investment expenditures are on average 6.2% of capital stocks.  The average 

investment is 11% for commercial grain farms, 8.9% for commercial FNV farms and 6.6% for 

commercial livestock farms.   
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For the sample as a whole, on average, each dollar of capital generated $0.155 of net 

cash farm income.  The range is between -$2.40 to $4.20 in income generated per each unit of 

capital stock.  While most farms earn a modest return on capital, there are some farms that earn 

extremely low or high returns on capital.  Some portion of this is explained by farms which earn 

very large positive or negative incomes.  The rest is due to farms which own very small levels of 

capital stock and either employ other inputs, are involved in labor intensive activities, or rent 

these items or services.  This low level of capital stock in relationship to net cash farm income 

results in extreme negative or positive estimates for return on assets.     

On average, commercial farms are highly profitable with FNV farms earning the largest 

return on assets and grain farms earning the lowest return on assets.  The average return on 

assets was 0.39 for commercial grain farms, 0.58 for FNV farms and 0.27 for livestock farms.  In 

contrast, the average return on assets was -0.001 for resident FNV farms and -0.004 for resident 

livestock farms.  These negative estimates are due to average negative net cash farm incomes.  

It is not uncommon within the ARMS survey data for a large portion of farms to not earn enough 

from the sale of farm commodities and receipts to cover expenses (Hoppe, 2015).  The share of 

such farms is higher among farms with retired operators, operators having primary occupations 

other than farming or having annual GCFI less than $100,000.  These farms often rely on off-

farm income for livelihood and to cover expenses and make investment (Hoppe, 2015).   

The average tax depreciation expense as a percent of capital assets is larger for 

commercial farms compared to resident and intermediate farms.  Resident farms had smaller 

rates of tax depreciation per unit capital assets than intermediate farms.  There is a wide degree 

of variation among these estimates between farms and over the survey period.  While the 

average estimates within typologies are similar to each other and the sample mean of 0.054, the 

range of the estimates are between 0.00 to 1.24.  Part of this variation may be due to 

differences in annual allowable depreciation tax levels as well as producers adjusting 

depreciation tax expenses in a given year depending on the level of total farm income to 

minimize total tax expenditures.   

Most farm households are in the middle to upper echelon of US income levels (Hoppe, 

2014). According to the US Census Bureau, median U.S. household income in 2013 was $52.25 

thousand (Noss, 2014).  The average off-farm income level alone (not accounting for farm 
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income) for farms in the ARMS survey was $63.57 thousand.  Resident farms, on average, have 

larger average off-farm income levels compared to resident and intermediate farms and fall 

within the top echelon of US income levels.  The average off-farm income level alone (not 

including farm income) for resident grain, FNV and livestock farms was $82.13 thousand, $96.06 

thousand and $78.79 thousand.   Commercial grain and FNV farms had higher off-farm income 

levels compared to intermediate farms, while the average levels of off-farm income earned by 

intermediate and commercial livestock farms were similar.  

Intermediate farms, on average, are more likely to specialize in fewer crops compared 

to resident and intermediate farms.  On average, commercial farms are most likely to have the 

greatest degree of diversification.  In general, crop farms are more diversified than livestock 

farms.   This may be due to the greater ability to grow multiple grain crops simultaneously 

within a given year and with fewer additional fixed costs compared to diversifying among 

different livestock categories.  The degree of specialization calculated for FNV crop enterprises is 

lower than expected.  This could be due to the fact that there are many more varieties and types 

of crops within the single fruit and vegetable categories used to calculate entropy estimates 

compared to those used for the grain categories.  FNV farms may be more diversified among 

varieties and types of fruits and vegetables than these statistics indicate.   

The average number of acres per unit capital is smaller for grain farms compared to FNV 

and livestock farms. According to MacDonald et al. (2013) larger rates of capital per acre in fruit 

and vegetable production compared to grain production reflects the higher per unit capital 

intensive nature of fruit and vegetable production.  Across grain and FNV farms, commercial 

farms employ, on average, less capital per acre land compared to resident and intermediate 

farms.    

In terms of the other variable models, commercial farms had, on average, larger levels 

of working capital compared to resident farms and intermediate farms.  Marginal tax rates, 

which account for both off-farm and on-farm income, are the largest for commercial farms grain 

and FNV farms and the lowest for intermediate farms.  The output price indexes are fairly similar 

across farm typologies, as is expected.   
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5.4.2 Within, Between, and Overall Variance for Pseudo Panel Variables 

Table 16 lists the level of within, between and overall variation in the pseudo panel 

variables. To adequately estimate a fixed effects regression, exogenous variables must exhibit 

cohort specific variation (Koksal and Wolgenant, 2013).  This includes variation within cohorts 

over time and between cohorts in a given time period.  A sample variable that fails to 

adequately reflect the true population level of variance in both of these dimensions will produce 

biased estimates.  One potential issue in using pseudo panels is that forming panels by taking 

averages over groups of similar farms may result in a reduction in the level of within variation in 

the panel data compared to the initial sample population within variation.  This could result in 

small and/or statistically insignificant estimates for these variables.  

 
 
Table 16: Within, Between and Overall Variance in Pseudo Panel Variables 

Variables 
Type of 

Variance Resident Intermediate Commercial 

I Overall                   17,769                  14,932                 54,994  

 Between                     4,681                  10,876                 26,008  

 Within                   16,948                  12,864                 49,302  

K Overall                 117,951                135,361               542,978  

 Between                   81,034                101,290               327,539  

 Within                   99,451                109,466               454,594  

I/K Overall                   0.0601                  0.0491                 0.0523  

 Between                   0.0352                  0.0305                 0.0291  

 Within                   0.0522                  0.0433                 0.0450  

PrIndex Overall                   0.1946                  0.1910                 0.1908  

 Between                   0.1103                  0.1052                 0.1030  

 Within                   0.1624                  0.1610                 0.1632  

NCFI Overall                   0.1463                  0.2783                 0.2947  

 Between                   0.0868                  0.1090                 0.1755  

 Within                   0.1250                  0.2584                 0.2398  

DEP Overall                   0.0591                  0.0370                 0.0516  

 Between                   0.0334                  0.0209                 0.0307  

 Within                   0.0522                  0.0317                 0.0438  

Acres Overall                   0.0014                  0.0020                 0.0036  

 Between                   0.0009                  0.0015                 0.0031  

 Within                   0.0010                  0.0014                 0.0025  

MTR Overall                   0.0609                  0.0570                 0.0555  
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Table 16: Continued 

 Between                   0.0310                  0.0251                 0.0320  

 Between                   0.0310                  0.0251                 0.0320  

Entropy Overall                   0.0787                  0.0916                 0.1059  

 Between                   0.0541                  0.0662                 0.0873  

 Within                   0.0586                  0.0654                 0.0600  

WC Overall                   0.4563                  0.3420                 0.5220  

 Between                   0.2414                  0.2098                 0.3227  

 Within                   0.4179                  0.3010                 0.4423  

IR Overall                   0.0178                  0.0177                 0.0179  

 Between                   0.0071                  0.0070                 0.0066  

 Within                   0.0168                  0.0168                 0.0170  

OFFI Overall                 44.8255                30.8884               67.3705  

 Between                 36.1077                15.2234               28.6644  

 Within                 38.7398                27.7696               61.0437  

 
 
There is an adequate level of variation both within cohorts over time and between cohorts in a 

given time period.  In general, the level of variation within cohorts over time is greater than the 

level of variation between cohorts over time.  This is indicative of the cyclical nature of 

agriculture resulting in large variation in key variables over time.   

 
 
 

5.5 Comparing Cross Sectional Survey Data with Pseudo Panel  

To make sure that my pseudo panel is reflective of the actual survey data I compare the 

means, standard deviations, and ranges of the model variables in the survey dataset with those 

obtained by constructing pseudo panels.  As seen in Table 17, the mean values of the variables 

within each typology for the pseudo panel dataset are almost identical to those of the survey 

dataset.   

 

Table 17: Means of Variables in Survey and Pseudo Panel Datasets 

 Resident Intermediate Commercial 

Variable Survey Panel Survey Panel Survey Panel 

I 7,706  7,882       13,384  13,735  79,503  74,352  

K 196,489  195,267  267,815  274,425   812,031  862,934  

I/K 0.0512 0.0435 0.0625 0.0520 0.1147 0.0904 

PrIndex 0.7855 0.7898 0.7691 0.7879 0.7813 0.7822 
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Table 17: Continued 

NCFI -0.0194 0.0084 0.1125 0.0654 0.5735 0.3826 

DEP 0.0280 0.0260 0.0501 0.0399 0.1220 0.0956 

Acres 0.0025 0.0009 0.0047 0.0015 0.0051 0.0022 

MTR 0.1497 0.1570 0.1070 0.1214 0.2087 0.2166 

Entropy 0.0870 0.0898 0.1516 0.1294 0.2017 0.1556 

WC 0.3547 0.1650 0.4576 0.2155 0.7092 0.4068 

IR 0.0673 0.0701 0.0672 0.0702 0.0653 0.0707 

OFFI 93.4 87.4 51.7 47.8 53.4 56.5 

 

The similarity between the means across typologies for the two datasets indicates that the 

cohort observations are representative of the underlying typology variable values in the original 

survey dataset. By taking means across similar farms, the variables in the pseudo sample dataset 

have a lower variance than the original observations in the survey dataset.  This is demonstrated 

in Table 18.. 

 
 
Table 18: Standard Errors of Variables in Survey and Pseudo Panel Dataset 

 Resident Intermediate Commercial 

Variables Survey Panel Survey Panel Survey Panel 

I 31,928    17,769  18,724  14,932  108,970  54,994  

K 231,964  117,951  315,513  135,361  1,097,405  542,978  

I/K 0.2460  0.0601  0.0710  0.0491  0.1209  0.0523  

PrIndex 0.2297  0.1946  0.7835  0.1910  0.8073  0.1908  

NCFI 4.6567  0.1463  0.1222  0.2783  0.6689  0.2947  

DEP 0.2362  0.0591  0.0638  0.0370  0.1292  0.0516  

Acres 0.1082  0.0014  0.0062  0.0020  0.0046  0.0036  

MTR 0.1097  0.0609  0.1285  0.0570  0.2175  0.0555  

Entropy 0.1194  0.0787  0.1636  0.0916  0.1758  0.1059  

WC 185.9064  0.4563  10.3295 0.3420  63.1318 0.5220  

IR 0.0196  0.0178  0.0686  0.0177  0.0680  0.0179  

OFFI 201.9686  44.8255  51.3605  30.8884  56.1405  67.3705  

  

 
The variance reduction differs across variables and farm typology.  The variance of farm 

capital investment declines across all farm typologies, though only to a small degree for 

intermediate farms.  For resident farms, forming pseudo panels has a larger impact on reducing 

the variance on the following variables: off-farm income, working capital, acres, and net cash 
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farm income.  There is a similarly large reduction in the variance of working capital levels for 

intermediate and commercial farms, but much less of a reduction in variance across the other 

farm types for net cash farm income, acres and off-farm income.  For intermediate and 

commercial farms, forming pseudo panels results in a large decrease in the variance interest 

rates and price index variable across farms.  The pseudo panel process leads to a greater 

reduction in marginal tax rates and depreciation expense measurements for commercial farms 

compared to other farm typologies.  This reduction in variance should take away some of the 

noise within the survey data and better enable us to identify the actual impacts of changes in 

variable levels on farm responses to investment. 

Table 19-Table 21 provide the minimum and maximum value as well as the range of 

observations in the survey dataset and in the pseudo panel dataset by farm typology.  In 

general, taking cohort means greatly reduces the range of most of the variable values.  This is 

because by using averages across similar farms many of the extreme values that occur within 

the original survey dataset are removed.  These extreme values come from both extreme values 

of the observations themselves and by normalizing by farms having either very large or small 

levels of capital stocks.     

 
 
Table 19: Minimum, Maximum and Range for Model Variables for Resident Farms in Survey vs. 

Pseudo Panel Datasets 

 Survey  Panel 

Variable min max range min max range 

I 0 2,110,000  2,110,000  0    684,521  684,521  

K -7 6,814,000  6,814,007  90,520  7,374,659  7,284,139  

I/K 0.000 24.784 24.784 0.000 0.596 0.596 

PrIndex 0.267 1.230 0.963 0.329 1.230 0.901 

NCFI -118.680 775.000 893.680 -0.324 2.622 2.946 

DEP 0.000 30.900 30.900 0.002 0.664 0.662 

Acres 0.000 15.074 15.074 0.000 0.033 0.033 

MTR 0.000 0.396 0.396 0.000 0.396 0.396 

Entropy 0.000 0.623 0.623 0.000 0.465 0.465 

WC  (25,685)      5,051      30,736  -1.197 8.996    10  

IR 0.0356 0.1070 0.0714 0.0366 0.1070 0.0704 

OFFI -178.5 10462.5     10,641  -7.4 1,313.6    1,321  
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Table 20: Minimum, Maximum and Range for Model Variables for Intermediate Farms in Survey 

vs. Pseudo Panel Datasets 

 Survey  Panel 

Variable min max range min max range 

I 0 2,093,850  2,093,850  0      428,149  428,149  

K             (7) 13,000,000  13,000,007  0    1,474,600  1,474,600  

I/K 0.0000 29.3283 29.3283 0.0000 0.7432 0.7432 

PrIndex 0.2673 1.2300 0.9627 0.3348 1.2300 0.8952 

NCFI -602.4971 276.8860 879.3831 -0.9584 1.7545 2.7129 

DEP 0.0000 25.9810 25.9810 0.0000 1.2432 1.2432 

Acres 0.0000 5.9107 5.9107 0.0000 0.0223 0.0223 

MTR 0.0000 0.3960 0.3960 0.0000 0.3960 0.3960 

Entropy 0.0000 0.6949 0.6949 0.0000 0.4327 0.4327 

WC   -174,597   24,044    198,641  -0.447 8.094            9  

IR 0.03560 0.10700 0.07140 0.03661 0.10700 0.07039 

OFFI -45.7 6500.0     6,546  0       498.8        499  

 
 
Table 21: Minimum, Maximum and Range for Model Variables for Commercial Farms in Survey 

vs. Pseudo Panel Datasets 

 Survey  Panel 

Variable min max range Min max range 

I 0 20,600,000  20,600,000  0 229,255  229,255  

K             -7 126,000,000  126,000,007  10,030  1,471,601  1,461,571  

I/K 0.00 162.27 162.27 0.000 0.474 0.474 

PrIndex 0.2673 1.2300 0.9627 0.3287 1.2300 0.9013 

NCFI -369 677 1,046 -2.6284 4.2015 6.8299 

DEP 0.0000 45.3983 45.3983 0.0000 0.5490 0.5490 

Acres 0.0000 7.0175 7.0175 0.0000 0.0167 0.0167 

MTR 0.0000 0.3960 0.3960 0.0000 0.3300 0.3300 

Entropy 0.0000 0.6226 0.6226 0.0000 0.4703 0.4703 

WC -1,112,331 116,019 1,228,350 -2 5 6 

IR 0.0356 0.1070 0.0714 0.0358 0.1070 0.0712 

OFFI -1,054 13,501 14,555 -13 307 321 

 
 

Taking the cohort averages has the largest impact on revenue and asset variables such 

as investment, capital stock, income, depreciation, working capital levels and off-farm income 

levels.  The impact on working capital levels is very staggering, reflecting a large degree of 
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variation between actual working capital levels in the survey population and those across farms 

by cohort.  Unsurprisingly, there is little impact on marginal tax rates, entropy variables, interest 

rates and price index variables.  These variables would tend to have less variation in their 

absolute level across farms.  In addition, the last two are measured using regional vs. farm 

specific data which already accounts for outliers.  The range of acre estimates is reduced by 

taking farm means, even by taking into account differences in farm sizes.  It appears that within 

farm typologies the acres per unit capital can vary widely. 

 
 
 

5.6 Construction of Alternative Pseudo Panel Datasets 

The above pseudo panel dataset 1 was one of 8 initial pseudo panel datasets 

constructed.  The other pseudo panels constructed either utilized A) a different number of 

regions and/or commodity types or B) measures of economic size rather than farm typologies.  

ARMS divides producers into 48 individual states, 10 farm production regions, 9 ERS farm 

production regions, or 5 NASS US regions.  Farms are classified using 19 commodity types, which 

can further be aggregated into either 7 or 9 commodity categories. Using these different 

categories, I explored constructing pseudo panels using the 3 farm typologies as well as 19 

commodity types and 10 production regions.  I refer to this as panel dataset 2.  I use this 

additional constructed panel to test the robustness of my results obtained using panel dataset 1 

to differences in the number of regions and commodity types. Panel dataset 2 provides an 

unbalanced panel dataset of 6,913 observations total.  Unfortunately, the average number of 

farm observations per cohort mean is only 51 in this dataset.   This is below the minimal 100-200 

observations for consistent estimators recommended by Verbeek and Ninjam (1992).   

Other measures of economic size I explored to create alternative pseudo panels 

included: A) 4 categories created by the interaction of high and low sales values with high and 

low asset values giving a measure of household economic well-being, B) 4 farm acre size 

quartiles, C) 4 asset values quartiles, and D) 5 operator age categories. Each of these was 

interacted with ERS production regions to differentiate between farms by region.  The ERS 

production regions were chosen as they are constructed to reflect both physical location and 

differences in production type due to physical location of the farm. Unfortunately, any category 
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including a measure of economic size will not be completely time invariant.  Categories involving 

sales values are most likely to create issues with time invariability while categories involving 

measures such as age in a base year or acres are more likely to be stable over time.  For this 

reason, age has been used in other pseudo panel studies (Russel and Fraas, 2005; Whitaker, 

2009).   In addition, age has been found to be correlated with investment and is a significant 

variable explaining investment behavior when the cross sectional survey dataset is used.  

Unfortunately, within ARMS the survey question is often left blank by respondents and imputed 

as 55 when conducting the survey.12  Utilizing age could result in incorrectly classifying a large 

number of farms within cohorts and lead to biased estimates of cohort mean values.  Given 

these considerations, from these additional constructed datasets I choose to compare my 

results using panel dataset 1 to those obtained utilizing the panel dataset formed splitting farms 

by acre quartiles and ERS regions.  This alternative panel dataset is referred to as panel dataset 

3.  Panel dataset 3 provides a balanced panel dataset with 648 cohort observations.  

                                                           
12 Source is ARMS training session attended in Summer 2015 at ERS 
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CHAPTER 6:  EMPIRIAL MODEL 

6.1 Panel Data Model Using Cohort Mean Observations 

Starting with the model in (3) and assuming a linear form, the empirical regression model 

can be written as follows: 

𝐼𝑐,𝑡 = 𝐵0 + 𝐵1𝑃𝑟𝐼𝑛𝑑𝑒𝑥𝑐,𝑡 + 𝐵2𝑁𝐶𝐹𝐼𝑐,𝑡 + 𝐵3𝑁𝐶𝐹𝐼𝑐,𝑡
2 +  𝐵4𝑂𝐹𝐹𝐼𝑐,𝑡 + 𝐵5𝐼𝑅𝑐,𝑡 + 𝐵6𝐷𝐸𝑃𝑐,𝑡 + 𝐵7𝐴𝑐𝑟𝑒𝑠𝑐,𝑡 +

𝐵8𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑐,𝑡 + 𝐵9𝑀𝑇𝑅𝑐,𝑡 + 𝐵10𝑊𝐶𝑐,𝑡 + 𝑅𝑐 +  𝐼𝑐  +  𝑇𝑡 + 𝑢𝑐 + 𝑒𝑐,𝑡                 (4) 

where the subscript c indicates that the observation is the cohort mean, Rc,t and Ic,t are cohort 

dummies for resident and intermediate farms, Tt are individual year dummies, uc represents 

time invariant differences in investment across cohorts, and ec,t is the idiosyncratic error term 

for each cohort at time t. Income is square to reflect the changing impact of an extra dollar of 

income on investment at different income levels.  The regression model in (4) can be written as: 

 𝐼𝑐,𝑡= 𝐵0 + 𝐵𝑘𝑋𝑐,𝑡,𝑘  +𝑢𝑐 +  𝑒𝑐,𝑡                         (5) 

where Xc,t is a vector of cohort means of the k dependent variables in the model and Bk is a 

vector of coefficient values for each dependent variable in the model.   

 
 
 

6.2 Fixed Effects 

The pseudo panel regression model developed by Deaton (1985) treated estimated 

population effects using cohort level observations as measurement error issue.   Measurement 

error arises when constructing cohorts from cross sectional sample data.  The cohort sample 

means can be considered estimates of the true cohort population means.  The difference 

between the true population estimates and the sample cohort means include differences 

between the population estimates and the population cohort means as well as between the 

population cohort means and the sample cohort means.  Deaton treats the measurement error 

between the sample and population cohort means as a cohort fixed effect. He shows, using a 

fixed effect model and the between estimator, that as the number of observations per cohort 
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approaches infinity and the number of cohorts remains fixed, the measurement error 

disappears and the model collapses to the fixed effects within estimator.   

The fixed effects estimator assumes that the cohort time invariant differences, uct, are 

correlated with the values of the independent variables.  If this is the case, then estimating the 

model using OLS will result in biased estimates.  Instead, the data must first be transformed to 

remove these cohort time invariant differences.  One method to transform the data is to take 

the difference between the observation in time t and the average value of the observation 

separately by cohort for each variable.  This results in the following between estimator model:  

𝐼�̈�𝑡 =  𝐵0 + B�̈�𝑐𝑡 +  �̈�𝑐𝑡      

where 𝐼�̈�𝑡 = 𝐼𝑐𝑡 − (
1

𝑇
) ∑ 𝐼𝑐𝑡

𝑇
𝑖=1 , �̈�𝑐𝑡 = 𝑋𝑐𝑡 − (

1

𝑇
) ∑ 𝑋𝑐𝑡

𝑇
𝑖=1  ; �̈�𝑐𝑡 = 𝑢𝑐𝑡 − (

1

𝑇
) ∑ 𝑢𝑐𝑡

𝑇
𝑖=1                   (6) 

𝐼�̈�𝑡,  �̈�𝑐𝑡, and �̈�𝑐𝑡 are the deviation of the cohort observations in time t from their average value 

over the sample period.  The regression above can be estimated using pooled OLS with the 

standard error corrected for degrees of freedom.   

If the cohort unobserved effects are correlated with the regressors, the fixed effects 

estimated coefficients will be unbiased while estimates using the alternative, a random effects 

model, will be biased.  Downsides of using a fixed effects model include the inability to include 

time invariant dependent variables and the sensitivity of the estimates to the relative level of 

between and within variation.  This model will be less accurate in estimating marginal impacts of 

changes in variables that exhibit little relative variation within a given cohort over the time 

period.   

 
 
 

6.2.1 Comparing Fixed and Random Effects Models 

If the unobserved effects are not correlated with the regressors, then a fixed effects 

model will be unbiased but not efficient.  In that case, a random effects model would be the 

appropriate model to use, as it would be both unbiased and the most efficient.  The random 

effects model treats the cohort differences as a random error term and incorporates this into 

the regression composite error term 𝑣𝑖𝑡.  The random effects model would be: 

 𝐼𝑐,𝑡 = 𝐵0 +  𝐵𝑘𝑋𝑐,𝑡 + 𝑣𝑐,𝑡 ;   where 𝑣𝑐𝑡= 𝑢𝑐 +  𝑒𝑐𝑡                         (7) 
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In practice this is estimated using a weighted combination of the within estimator, which is 

equivalent a pooled OLS estimator, and the between estimator in the fixed effects model.  The 

random effects model is estimated as follows: 

𝐼𝑐,𝑡 −  𝜆𝐼�̅� = (1-𝜆)𝐵0 + (𝑋𝑐,𝑡,𝑘- 𝜆�̅�𝑐)Bk +(1-𝜆)𝑢𝑐 + 𝑒𝑐𝑡 ;  where 𝑒𝑐𝑡 = ( (1- 𝜆)𝑣𝑐 + (1-𝜆)𝑢𝑐𝑡)            (8) 

𝜆 is a weighted average of the variance of 𝑣𝑖 and 𝑢𝑐𝑡 and referred to as rho.  The benefits of a 

random effects model include that time invariant variables can be included as well as a greater 

number of degrees of freedom are available without the estimation of the additional fixed 

effects terms. Both the fixed effects and random effects models assume that the errors are 

serially uncorrelated across time within cohorts and between cohorts within the same time 

period.  

 
 
 

6.2.2 Heteroscedasticity Robust Hausman Test 

The Hausman test examines the validity of imposing these extra orthogonality 

conditions within the fixed effects regression.  The null hypothesis is that both the fixed effects 

and the random effects are consistent but the random effects model is more efficient.  The 

alternative hypothesis is that only the fixed effects is consistent.  The traditional test 

implemented by most statistical packages requires that the fixed effects and the error terms are 

homoscedastic and normally distributed.  This is most likely not the case given the 

heteroskedastic nature of the ARMS survey data and farm investment (see section 6.3).  Hence, I 

cannot use the traditional Hausman test.  Hence instead I use a heteroscedasticity robust 

version of the Hausman test based upon Hoechle (2007) and Cameron and Trivedi (2010).  

According to Hoechle (2007), a Wald test of 𝛾𝑘 =0 for all k variables in the regression model 

below is equivalent to performing the Hausman test and allowing for heteroscedasticity and 

autocorrelated error terms.  The regression model is as follows: 

𝐼𝑐𝑡 −  𝜆𝐼�̅� = (1-𝜆)𝐵0  +  (𝑋𝑐𝑡- 𝜆�̅�𝑐)𝐵𝑘 + (𝑋𝑐𝑡- �̅�𝑐)𝛾𝑘  +𝑣𝑐𝑡   ; 𝑣𝑐𝑡 = 𝑢𝑐+ 𝑒𝑐𝑡                    

where = 1 − √𝜎𝑒
2/(𝜎𝑢

2 + 𝜎𝑒
2) ;   𝐼�̅� = (

1

𝑇
) ∑ 𝐼𝑐𝑡

𝑇
𝑖=1 ;    �̅�𝑐 = (

1

𝑇
) ∑ 𝑋𝑐𝑡

𝑇
𝑖=1          (9) 

𝐼�̅�𝑡 and �̅�𝑐𝑡 are the cohort mean values over time for the dependent and independent variables, 

𝑢𝑐 is the cohort fixed effect which has a variance of 𝜎𝑢
2, and 𝑒𝑐𝑡 is the idiosyncratic error term 

which has a variance of 𝜎𝑒
2.    
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To perform this test I followed the steps outlined in Hoechle (2007).  I first ran a random 

effects regression of my model assuming homoscedastic errors.  Then I calculated 𝜆, 𝐼�̅�𝑡 and �̅�𝑐𝑡.  

I next calculated the difference between the variables and the group means times 𝜆 for the 

independent and dependent variables separately.  These are the terms 𝐼𝑐𝑡 −  𝜆𝐼�̅� and 𝑋𝑐𝑡- 𝜆�̅�𝑐 in 

the above model and represent the random effects.  Next I calculate the difference between the 

variables and the group means by cohort.  These represent the fixed effects and are the terms 

𝑋𝑐𝑡- �̅�𝑐 in the above model.    The model was then re-estimated including both the fixed effects 

and random effects terms and clustering the standard errors.  An F test was performed to see if 

it was possible to reject the null hypothesis that 𝛾𝑘 =0.  This is equivalent to stating that the 

fixed effects in the model are statistically insignificant from zero.  If the null hypothesis that 𝛾𝑘 

=0 can be rejected, than one can conclude that significant fixed effects are present in the model.  

Estimating the model using a random effects model will result in biased coefficient values.  If I 

cannot reject the null, than I can use the random effects model concluding that both the 

random and fixed effects models are both consistent but the random effects model is more 

efficient.  The results of this test for each of the three commodity types are provided in Table 

22. 

 

Table 22: Heteroskedastic Robust Hausman Test Results 

 Grain Farms FNV Farms Livestock Farms 

F-statistic 3.84 4.73 3.46 

P-value 0.0002 0.0000 0.0005 

 

Given the above results, I reject the null hypothesis that the fixed effects are statistically 

insignificant for all three of the estimated regressions.  I conclude that there are statistically 

significant fixed effects present and that the correct model to use is the fixed effects model.   

 
 
 

6.2.3 Other Model Forms Explored 

Early on I compared using the fixed effects and random effects models with either 1) 

OLS model with clustered standard errors, 2) a maximum likelihood random effects model, 3) a 

feasible generalized least square model for panel data allowing for heteroscedasticity between 
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panels and serial autocorrelation within panels, 4) fixed effects model, and 5) a differenced 

GMM model.  The results were similar across the models, with the main differences being that 

the magnitude of the coefficients decreased and the coefficients were less likely to be 

statistically significant using a fixed effects model vs. an OLS model. 

The maximum likelihood model returned very similar coefficient values as the fixed or 

random effects models with the main difference being the significance of the coefficients, which 

were higher under the maximum likelihood model.  While this model was promising in that it 

allows for heteroskedastic and correlated errors, it rests on the assumption that the errors are 

normally distributed.  In graphing my errors, I find that even after normalizing by capital stock 

levels and taking averages across pseudo panels the errors appear normally distributed except 

for at the tail ends of the distribution.  On the whole I cannot guarantee that I have normally 

distributed errors.  For this reason and given my rejection of the random effects model in 

general, I do not report the maximum likelihood results.   

The generalized least squares model also returned similar results in terms of the signs of 

the coefficients as the fixed effects model and an OLS model with clustered standard errors, 

though the coefficients were more likely to be significant and the magnitude of the coefficients 

slightly larger under this model compared to the fixed effects model.  The results under this 

model (which was tested initially before I choose to use interaction terms and allow for different 

coefficients across farm typologies) returned similar results to those obtained by running a 

survey reg model in the cross section.  Given that I find evidence of fixed effects, the generalized 

least squares model was rejected in favor of a fixed effects model.   

I also explored using a first difference model instead of a between estimator to remove 

the fixed effects.  Using a first differenced model, the fixed effects are removed in this case by 

taking differences between variable values over subsequent periods.  This model would be 

preferred if the fixed effects are related to differences in the levels of variables between 

subsequent periods vs. the average level of the variables over the sample period.   The model 

assumes that changes in the error terms across time are uncorrelated with the changes in the 

independent variables. This is a weaker form of erogeneity compared to the between estimator, 

which assumes that the level of the errors is uncorrelated with the level of the independent 

variables.  This method corrects for potential unit root behavior and rules out spurious 
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regressions.  Using a first difference estimator requires that the change in the level of the 

variables between subsequent time periods exhibits variation, both within and between 

cohorts, and assumes that changes in the error term between periods are serially uncorrelated. 

The results obtained using the first difference estimator were similar to the fixed effects model, 

though the overall coefficient values and significance levels were different.  My choice to use 

the fixed effects model vs. a first difference model was based on the belief that differences in 

farm investment across time periods, production type, and farm typology are more likely to be 

related to differences in the average level of model variables vs. to changes in these variables 

between time periods.   

The final model I attempted to use was the Arellano-Bond estimator.  This is a 

differenced GMM model for fixed effects equations which include lagged dependent variables.  

This model is commonly used in the business finance and agricultural economics literature.  It 

addresses the fact that with the inclusion of a lagged dependent variable the between estimator 

to control for fixed effects is no longer valid.  Taking the difference between variable levels and 

the mean each period leads to correlation between the average value of the error term and the 

lagged dependent variable.   To correct for this, the model uses the difference (as well as levels 

in the system version of the model) of past lags of independent variables as instrumental 

variables.  I attempted to use this model but found that the resulting signs for my coefficients 

were largely insignificant and/or did not conform to economic theory.  This leads me to 

conclude that the lagged differences of the independent variables and of lagged investment are 

poor instruments for changes in the level of the variables in the current periods. Given the poor 

model results and overall lack of statistical significance for the lagged dependent variable this 

model is rejected in favor of the fixed effects model where time dummies are used to capture 

differences in adjustment behavior over time.   

While I would like to conclude that the insignificance of the lagged dependent variable 

in my model supports the idea that agricultural investment adjusts relatively quickly over time, 

given the overall results of this model I cannot reject either of the following two opposite 

conclusions.  The first is that my results are due to the use of pseudo panels.  Taking averages 

over different cohort samples each period may weaken the ability to identify links between 

current and lagged variables and hence the ability to link farm investment behavior over time.  
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While this does not mean that it is not beneficial to use pseudo panels, it does mean that certain 

variables, such as changes in incomes, may be easier to link across cohort samples over time 

compared to lagged values of variable and that identifying adjustment behavior may be more 

difficult.  The second alternative conclusion is that my results are due to the use of initial survey 

data which does not account for disinvestment.  In theory a producer could be a net seller of 

farm capital in a given period.  The survey data only records zero investment or positive 

investment levels.  Creating pseudo panels from such data could further limit the ability to 

capture error adjustment behavior over time.    

 
 
 

6.3 Heteroscedasticity and Autocorrelation 

I suspect that heteroscedasticity will be an issue in my model.  Heteroscedasticity arises 

in cross sectional datasets where the scale of the dependent variable and its explanatory power 

differs across observations (Woodridge, 2005, p.191). A large portion of the heterogeneity 

within the constructed pseudo panels is due to the nature of the ARMS cross-sectional data.  

Farm financial measurements differ widely between farms across different size and production 

type categories.  These differences lead to large standard errors and inflate the residual 

estimates when estimating within the cross-sectional dataset.  Creating the pseudo panel data 

by clustering farms on similar characteristics further magnifies these differences.   In addition, 

equipment, machinery and structures are bought in discrete vs. continuous units.  This creates a 

greater degree of variance between different size investments than otherwise would be seen.   

Panel datasets may suffer from both heteroscedasticity and autocorrelation.  

Differences in sample means linked to cohort difference and differences in sample 

measurement error between different cross sections over time could lead to heteroscedasticity 

between panel estimates within the same time period or autocorrelation between error terms 

within cohorts over time.  The latter is referred to as group-wise heteroscedasticity.  These 

differences could also lead to contemporaneous serial correlation, which consists of 

homoscedasticity within certain cohort groupings but heteroscedasticity between these distinct 

groups of cohorts within a single time period.   
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Forming cohorts in which the number of cross-sectional observations used to construct 

the cohort mean differs, either between cohorts in the same time period or in same cohort over 

multiple time periods could introduce heteroscedasticity, even if the initial cross sectional 

dataset was homoscedastic (Koksal and Wohlgenant, 2011).  This is an issue in my pseudo panel 

dataset.  The number of available cross sectional observations within the ARMS dataset varies 

over time.  The portion of farms sampled each year within the categories used to construct 

pseudo panels, farm production type and region, also varies by year in the ARMS.  Within the 

ARMS survey weights are used to correct for this when compiling population estimates.   

If heteroscedasticity and/or autocorrelation is present the fixed and random effects 

coefficient estimates will still be unbiased, consistent and asymptotically normally distributed, 

but the standard errors and tests statistics may be biased.  Weighting each cohort estimate by 

the square root of the number of cohort observations is one means in which previous studies 

have addressed this issue (Koksal and Wolgenant, 2013).  Instead, I rely on the ARMS weights 

when constructing my cohort means and use heteroscedasticity robust estimation methods to 

solve this issue.   

 
 
 

6.4 Clustering Standard Errors 

To address the heteroscedasticity and autocorrelation present in the standard errors, I 

choose to cluster the standard errors across cohorts.   This corrects for heteroscedasticity 

between cohort error terms in a given time period and correlation between errors terms within 

cohorts over time.  Clustering standard errors when using ARMS survey data takes advantage of 

the stratified nature of the survey process as well as reduce the variance of estimates when the 

clustering categories are representative of the survey design (Weber and Clay, 2013).  My 

clustering categories, commodity type, region, and typology, are representative of the ARMS 

survey sampling categories of region, farm size and commodity type.  The only assumption 

made when clustering errors is that no contemporaneous serial correlation exists.  To address 

this potential, the model was re-estimated using a technique that takes into account serial 

correlation.  The estimates were unchanged compared to using the fixed effects model and 

clustering standard errors on cohorts.   
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6.5 Checking for Multicollinearity 

When I was initially working with the survey data and choosing the variables to include 

in my model I carefully checked for multicollinearity by first comparing the correlation 

coefficient matrixes and testing for the presence of multicollinearity using the STATA VIF13 

command after running the regressions.  These results informed my choice of model variables.   

These tests also led to the exclusion of certain expense category variables that while 

highly correlated to investment were also highly correlated with farm revenues/income 

measurements.   

 

Table 23 23 provides the correlation coefficients between revenues and expenditures on 

different items with both investment, measured as the total level of investment as well as the 

rate of investment for the survey data in columns 1 and 2 and for the pseudo panel dataset in 

columns 4 and 5.  This is contrasted with the correlation coefficients between revenues and 

these same expense categories for the survey data in column 3 and the pseudo panel dataset in 

column 6.  This points out that while certain key expense categories are correlated with 

investment they are also, or to a greater degree, correlated with farm sales/income levels. 

 
 
Table 23: Pseudo Panel and Survey Dataset Correlation Coefficients Between Investment, 

Revenues and Expense Category Variables 

 cross section pseudo panel 

Variable With the 
level of 

investment 

With the 
rate of 

investment 
With 
Sales 

With the 
level of 

investment 

With the 
rate of 

investment 
With 
Sales 

Value Product 0.36 0.11  0.65 0.32  

Expense Categories: 

Substitutes 0.25 0.03 0.53 0.47 0.23 0.51 

Fuel and Repair  0.44 0.04 0.66 0.69 0.37 0.66 

Cash Rent 0.32 0.04 0.69 0.55 0.39 0.46 

Labor  0.32 0.04 0.49 0.50 0.24 0.64 

Interest payments 0.31 0.04 0.34 0.58 0.20 0.41 

Depreciation  0.39 0.07 0.30 0.67 0.41 0.59 

                                                           
13 This measures the variance inflation factor (VIF) or the degree that each variable can be expressed as a 

linear combination of the other model variables.   
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One would like to explore the impact of changes in expense categories such as labor, repairs, 

and interest payments these items on the demand for farm machinery though.  Changes in 

these could, according to neoclassical theory, results in different choices for the optimal level of 

capital stock and investment demand.  Unfortunately, due to the high degree of 

multicollinearity between these variables and investment, including both in a regression may 

lead to inaccurate coefficient estimates.  Given the importance of changes in either farm income 

and/or sales on investment it would be problematic to not include this variable.  This reasoning 

prompted my decision to use net cash farm income instead of using revenue and other expense 

category variables.  Unfortunately, while the impact of changes in these categories are 

accounted for, this formulation imposes limitations in my ability to directly link changes in 

investment with changes in specific expense categories.   

 
 
 

6.6 Allowing Coefficients to Differ by Farm Typology 

To capture differences in investment across farm typologies due to differences in either 

prices, cash flow measurements, or tax variables I include interaction terms between resident 

and intermediate farms and the following variables:  output prices, income, income squared, 

depreciation, tax rates, and liquidity.  A single coefficient across all farm typologies is assumed 

for the remaining variables:  off farm income, acres, entropy, and interest rates.   

 
 
 

6.6.1 T-Test for Differences in Coefficients by Farm Typology Across Other Coefficients 

This technique allows me to include the different typologies within my regression, 

increasing the within variation present among farms but also account for differences in marginal 

impacts according to farm typologies while not allowing all the variables to differ conserves 

degrees of freedom.  Unfortunately, this assumes that the marginal impacts of the remaining 

variables are similar across farm typologies.  To test this assumption, I ran the regressions 

including interaction terms for all of the variables and tested each variable in the model to see if 
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I could reject the null hypothesis that the coefficient on the interaction terms for resident and 

commercial farms are both equal to zero.  The results of this test are provided in Table 24. 

 
 

Table 24: Pseudo Panel Fixed Effects Regression Test Results for Differences in All Coefficient 

Values Across Farm Typologies 

Variable Grain Farms FNV Farms Livestock Farms 
 F-Statistic p-value F-Statistic p-value F-Statistic p-value 

PrIndex 1.69 0.19 3.77 0.02 0.07 0.92 
NCFI 6.81 0.00 7.01 0.00 2.96 0.06 
NCFI2 3.78 0.03 2.86 0.06 1.69 0.19 
DEP 1.27 0.29 1.55 0.22 1.17 0.31 
Acres 3.24 0.04 1.12 0.33 1.91 0.15 
Entropy 0.63 0.53 0.89 0.41 0.19  0.82 
MTR 5.99 0.00 2.44 0.09 1.94 0.15 
WC 0.13 0.87 2.14 0.12 0.36 0.70 
IR 0.70 0.50 1.24 0.29 0.57 0.56 

The null hypothesis is that the coefficient value of the variable times an interaction term for resident farm and the 
coefficient on the variable times an interaction term for intermediate farms are both statistically insignificant from zero.  
Separate regressions were performed for grain farms, FNV farms, and livestock farms.   
 
 

The results of this test confirm both the overall findings of my study, that there are marked 

differences between investment in response to changes in incomes across farms as well as due 

to changes in tax rates and prices within certain commodity groups.  In terms of the other 

variables that I do not allow to differ by farm typology, except for acres for grain farms, I am 

unable to reject the null that the coefficient values differ between farm typologies for these 

variables.  This further lends credence to my choice of coefficients to vary across farm types and 

my results in later sections. 
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6.7 Separate Regressions for Different Production Types 

I estimate the regressions separately for grain14, FVP15 and livestock enterprises16.  This 

allows me to compare differences in coefficient values due to differences in investment 

behavior across these different types of production systems.  For livestock farms, I compare 

estimating the regressions including breeding livestock investment with the results when 

breeding livestock is omitted from investment.  In addition, I estimate the model for dairy and 

poultry farms separately.   

 
 
 

6.8 Calculating Partial Investment Elasticities 

For the ease of explanation and for use later on, I calculate partial investment 

elasticities for the key variables in the model: output prices, net farm income, depreciation tax 

expenses, marginal tax rates, working capital and interest rates.   The partial investment 

elasticities indicate the average annual change in dollars invested in capital per a 1% change in 

value of the independent variable.  To obtain these estimates I divide the STATA partial 

elasticities, which are the model coefficients multiplied by the average of the independent 

variable for each farm typology group over the sample period, divide by 100 and multiply by the 

average level of farm capital for the corresponding farm typology group over the 1996-2013 

time period.    

 
 
 

6.9 Additional Variables Employed to Measure Credit and Financial Constraints 

Instead of working capital, other studies have utilized variables such as debt, net worth, 

and the debt to asset ratio to examine the impact of financial and credit constraints on farm 

investment. To further test the impact of financial constraints on intermediate farms, I explored 

using these other measures instead of working capital.  I re-estimated the regressions separately 

                                                           
14 Grain farms include general cash grains, wheat, corn, soybean, sorghum, rice, and tobacco and cotton farms.  These 

correspond to farms in the “cash grain” and “cotton and tobacco” but not the “other crops” commodity group category.  
15 FNV farms include farms in the “fruits, nuts, and vegetables” and “nursery and greenhouse” commodity type 
categories 
16 Livestock farms include farms in the “beef, hog and sheep”, “dairy” and “poultry” but not the “other livestock” 

commodity type categories.     
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replacing the variable working capital with first total farm debt, then net worth, and finally the 

debt to asset ratio.  To control for the impact on investment in the current period on the level of 

farm debt and assets, I use lagged values for debt, net worth, and the debt to asset ratio.  Total 

farm debt and net worth levels were normalized by the total farm level of capital stocks.  

 
 
 

6.10 Notes on Other Independent Variables Explored 

In addition to the variables used in the model, during the course of completing this 

dissertation I looked at including other variables to further explain farm investment.  These 

included 1) other assets such as farmland and breeding livestock as independent variables, 2) 

sales over multiple time periods, 3) and lagged capital asset levels.  Farmland or breeding 

livestock could serve as either complements or substitutes to other forms of farm capital 

investment.  In the first case, the purchase of additional farmland or livestock would require 

addition investment in machinery, equipment, or structures such as crop storage or livestock 

housing.  In the latter case, given a fixed amount of available dollars to invest, the producer 

makes a choice between investment within each category depending on the relative price and 

returns.  

To explore the impact of farmland and breeding livestock investment on machinery, 

equipment, and structural investment, I constructed variables representing the annual cohort 

average of the following: asset values, dollars of investment expenditures, the percent of farms 

making a positive expenditure.  These variables were added as independent variables to the 

regression equation.  This was done separately for each variable and for farmland and breeding 

livestock.  In general, I find no statistically significant impacts or improvement in goodness of fit 

from inclusion of these variables within the regression.    

Assuming farms only look at current income levels when making investment decisions 

assumes naive investment behavior.  Instead farms may take into account prices received or 

quantities sold over multiple prior time periods when making investment decisions.   I 

constructed 2 different variables to test the assumption of naïve investment behavior.  The first 

variable constructed is the difference in the average value of cohort revenues between the 

current and prior year.  This variable is statistically insignificant when included in the regression 
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and does not improve the goodness of fit of the regressions.  The second variable created is the 

average value of net cash farm income over the current year and the past two years.  The result 

when included in the regression was smaller estimated coefficient values and a slight reduction 

in the goodness of fit statistics for grain and FNV farms and a slight increase in the coefficient 

values and goodness of fit statistics for livestock farms.   

I would expect to obtain a negative coefficient value on an independent variable for the 

value of capital stocks in the prior period.  This assumes that an increase in average cohort 

investment in the prior period triggers a reduction in investment this period.  When I include 

this variable in my regressions I consistently obtain negative signs on the coefficient across farm 

typologies, indicating a link between greater investment last period and lower investment this 

period.  Unfortunately, none of the coefficients were statistically significant within the various 

regressions. 

 
 
 

6.11 Comparing my Results with the Cross Section and Other Panels  

I estimate the regressions for the cross section and for panels 2 and 3. This provides a 

check on the sensitivity of my results to the use of pseudo panels in general and the specific 

choice of categories used to construct the pseudo panels.  The regressions are estimated for the 

pseudo panel dataset using an OLS regression with jackknifed standard errors and applying the 

ARMS weights.  The method used for panel 2 is the same as that of panel 1.  When estimating 

the regressions for panel 3, instead of using dummy variables for resident and intermediate 

farm typologies times the coefficient values, I instead multiply the coefficient value times a 

variable specifying the percentage of resident and intermediate farms within the cohort.   

 
 
 

6.12 Specifying Three Hypothesis 

 I use the above model to test three main hypotheses regarding differences in the rate of 

farm capital investment between typologies given equivalent changes in key model variables.  

The hypotheses are:  1) commercial farm investment rates will increase to a greater degree 

given increases in output prices and the returns to investment, 2) resident farms increase 
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investment rates more given favorable changes in tax policy variables, and 3) intermediate farm 

investment rates increase to a greater degree given decreases in the level of credit and financial 

constraints.  These hypotheses are related to previous literature findings that farm size 

investment differs by farm size measurement (Ariayante and Featherstone, 2009; Barry et. al., 

2000; Bierlen and Featherstone, 1998) where farm size could be defined by sales value, income 

level, number of acres, or livestock units.   In particular, hypothesis two tests the common 

literature finding that small farms are more responsive to changes in cash flow measurements 

(Ariayante and Featherstone, 2009; Barry et. al., 2000; Bierlen and Featherstone, 1998), 

hypothesis one the assertion that farms with higher off-farm incomes will be more responsive to 

changes in tax policy (Durst, 2009; Hoppe and MacDonald, 2013), and hypothesis one that larger 

farms are more responsive to changes in sales levels.  By using the farm typologies, I link 

differences in farm occupation type with differences in off-farm income levels.  This allows the 

difference in primary occupation, rather than just differences in off-farm income levels, to 

explain differences in investment rates given differences in farm typologies.  Finally, all three 

hypotheses allow me to either reject or verify the statistical significance of key differences I see 

within farm typologies regarding the impacts of different variables on farm capital investment.    

 
 
 

6.12.1 Hypothesis 1 

Hypothesis one flows from hypothesis two and three as well as the nature of 

commercial farming.  Commercial farms generally highly profitable (Hoppe and MacDonald, 

2013), operate on a large scale, and may face tight profit margins.  They generally have positive 

return on asset and operating profit margins, compared to small farms where the median farm 

operating profit and rate of return on asset is negative and fall within the critical zone (Hoppe 

and MacDonald, 2013).  Part of this may be explained by the fact that for many resident farms, 

the profitability of the farm may be secondary to other reasons to farm such as lifestyle choices 

(MacDonald et al., 2014).  These resident farms rely on outside farm income to supplement farm 

income and invest (MacDonald et al., 2014).  For other small farms, credit and financial 

constraints may be a greater issue.  Compared to these farms, commercial farms will have a 

greater ability to take advantage of positive investment opportunities and expand production 
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given increases in output prices or the returns to investment.   Additionally, the measure of the 

returns to investment utilizes net cash farm income, which includes government payment and 

other income from farming activities. Moderate, mid-sized and large-scale family farms are 

more likely to receive government payments than smaller farms (Hoppe, 2014).  The overall 

level of NCFI earned by commercial farms is, on average, significantly larger for commercial 

farms compared to intermediate farms.  Due to these factors, I would expect the rate of 

commercial farm investment to increase more given a change in output prices and/or the 

returns to investment.    

 
 
 

6.12.2 Hypothesis 2 

Hypotheses two is based upon the fact that resident farms on average have higher 

levels of off-farm income compared to intermediate farms and earn a greater share of their 

income from off-farm activities as compared to commercial farms.  For the majority of farms, 

income taxes are calculated based upon total household income levels, or the sum of off-farm 

and farm incomes after determining other deductions.  Increases in tax depreciation expenses 

taken, either due to an increase in the allowable tax depreciation rate or an increase in total 

investment expenditures that period, decreases total farm income and as a result total 

household income levels.  The benefit from such a deduction should be greater for farms 

earning higher off-farm incomes.  An increase in the marginal tax rate should also provide a 

greater incentive for farms with higher off-farm incomes to invest in farm capital and thus 

decrease total household income levels.   As a result, I hypothesize that an increase in the 

marginal tax rate or tax depreciation expense rate will result in a larger increase in investment 

rates for resident farms compared to resident and/or intermediate farms.   

 
 
 

6.12.3 Hypothesis 3 

Hypotheses three draws upon the theory of credit constraints or imperfect financial 

markets.  The idea is that intermediate farms, having lower levels of farm income compared to 

commercial farms and lower levels of average off-farm income compared to resident farms, are 
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more likely to be credit constrained.  Credit constraints can come from external or internal 

sources.  Credit constrained farms face external credit constraints if the available level of 

external credit is less than the optimal level of credit they would like to obtain or if there are 

increasing costs to obtaining external credit.  Internal credit constraints may arise if there are 

reasons why the farm operator declines to take on additional debt given they are below the 

farm specific theoretical optimal level of debt financing.   In these instances, internal sources of 

financing become preferred over external sources. Additionally, asset and debt levels also 

become significant in determining investment responses in light of profitable opportunities.  A 

higher level of debt may reduce available levels of financing or lead to higher costs for additional 

external financing.  Higher levels of assets and equity does the opposite.  As a results of these 

forces, investment expenditures are expected to increase to a greater degree given increases in 

internal funds for credit constrained farms.  If lower levels of both off and on-farm income result 

in greater credit constraints for intermediate farms, I hypothesize that intermediate farm 

investment rates will increase more given an increase in liquidity, debt and/or equity levels.   
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CHAPTER 7:  REGRESSION RESULTS AND PARTIAL INVESTMENT ELASTICITY ESTIMATES 

Within this section I provide the regression results and a summary of the resulting 

values obtained in other U.S. farm investment panel data studies for similar variables.  I also 

provide the mean and confidence intervals for the calculated partial investment elasticities.  This 

is done for the original model, for a model replacing the working capital variable with different 

measures of farm financial constraints, and finally for the other pseudo panels constructed.   

 
 
 

7.1 Regression Results 

 The results of two separate regressions are provided in Table 25-Table 30 for each farm 

production type.  The first column indicates the value and t-statistic for coefficients of key 

variables in the first regression, where I constrain this to be equal across all farm typologies.  

The second through fourth columns indicate the coefficient values and t-statistics for key 

variables in the second regression where I allow the coefficient values to differ across farm 

typologies using interaction terms.  I also provide information for each regression on the 

number of cohort observations, the R2 statistic and the root mean squared error (RMSE).  The 

resulting values for the time dummy coefficients included in the regressions are provided 

separately in Table 31 and Table 32.  Table 33 provides results for an f-test of the joint 

significance of the time dummy variables in each regression. 
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Table 25: Pseudo Panel1 Fixed Effects Regression Results for Grain2 Farm Investment 1996-2013 

  By Farm Typology 
Variable Name Single Coef.3 Commercial Resident4 Intermediate4 

PrIndex 0.0303  

(1.96) 
0.045* 
(2.61) 

-0.0037    
 (-0.13)     

-0.062** 
(-2.76)   

NCFI   -0.0356   
(-1.01)                                             

0.117*   
 (2.27)    

-0.167    
  (-0.92)                                                                                      

-0.155** 
(-3.08)    

NCFI2 0.00759          
(0.90)                                     

- 0.043*   
(-2.08)    

0.075    
(0.34)                                                                                          

0.054* 
(2.50)      

DEP  0.289           
(1.65)                                      

0.0274  
(0.26)     

0.714    
(1.22)                                                

0.234   
 (1.09)    

OFFI 
 

0.000064        
(1.05)                                      

0.000078   
(1.36)    

  

Acres  4.341            
(1.85)                                     

1.577    
(0.49)    

  

Entropy 0.0402           
(0.45)                                     

0.0316   
 (0.32)    

  

MTR 0.0803          
(0.80)                                     

-0.329*   
(-2.34)    

0.462** 
(3.05)                                           

0.400** 
(2.98)    

WC -0.00690        
(-0.56)                             

-0.0065    
(-0.34)    

-0.0012   
(-0.04)                                               

-0.00006   
 (-0.00)    

IR 
 
Intermediate 
 
Resident 
 
Constant 

-0.545          
(-0.97)    

-0.0312*                   
(-2.59)    
0.0266                                  
(-1.52)          
0.0409                    
(0.66)           

-0.540   
(-0.91)     

-0.0635*                                 
(-2.05)   

-0.133*** 
 (-3.59)        

0.115            
(1.63)                                       

  

Observations 
RMSE 
R2 

507 
0.0537    

0.218   

507 
0.0527   

0.264 

  

Top number is the coefficient, below in parenthesis is the t-statistic.  ***=99%, **=95% *=90% Confidence 
intervals.   
The dependent variable is investment in machinery, equipment and structures divided by the value of farm 
assets.  Farm assets include machinery, equipment and buildings.   
1Psuedo panel dataset 1 constructed from ARMS survey data. Farms are grouped into cohorts based upon 
5 US regions, 9 commodity types, and 3 farm typologies. Standard errors are clustered by cohort.  See table 
A15 for the values of the included year dummy variables. 
2This regression includes cohorts which fall into the commodity type: 1) cash grains and 2) tobacco and 
cotton farms.  This does not include other crop farms.  
3 In this case a single coefficient is estimated for resident, intermediate and commercial farms 
4 these are the difference from commercial farms  
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Table 26: Pseudo Panel1 Fixed Effects Regression Results for FNV2 Farm Investment 1996-2013 

  By Farm Typology 
Variable Name Single Coef.3 Commercial Resident4 Intermediate4 

PrIndex 0.00079 
(0.02) 

-0.0412    
 (-0.66)   

0.0899*    
(1.86)                                               

0.0122                                              
(0.23)   

NCFI  0.0327                                      
(1.78)           

0.128*** 
(4.20)    

-0.115**                                           
(-3.47)     

-0.255**                                           
(-2.92)    

NCFI2 -0.0082                                   
(-0.72)          

-0.052** 
(-2.78) 

0.0535                                             
(1.68)    

0.386*                                             
(2.02)    

DEP  0.108                                   
(1.08)           

0.0062 
(0.07)    

0.348    
(1.71)                                               

 

0.315                                             
(1.39)    

OFFI 
 

  0.00000389 
(0.06)          

-0.0000526  
(-0.74)     

  

Acres    0.437                                    
(0.12)          

-1.259  
(-0.35)      

  

Entropy -0.0497                                   
(-0.90)          

-0.0560 
(-1.07)       

  

MTR -0.0765                                    
(-1.51)          

-0.146  
(-1.46)      

0.0743                                              
(0.66)     

0.207                                              
(1.68)    

WC 0.0050                                   
(0.82)          

-0.0016  
(-0.39)     

0.0020                                              
(0.34)     

0.0247*                                             
(2.49)    

IR 
 
Intermediate 
 
Resident 
 
Constant 

0.0222                                     
(0.05) 

-0.00434   
(-0.42)  

-0.00434                                           
(-1.09) 
0.0729                                      
(1.49)           

-0.121 
(-0.30)  
0.0169   
(0.28) 

-0.00886  
(-0.16) 
0.124 
(1.73)                                         

 
 

 

Observations 
RMSE 
R2 

539 
0.0446           

0.207            

539  
  0.0434 

0.266      

  

Top number is the coefficient, below in parenthesis is the t-statistic.   
Robust Standard errors clustered by cohort are used.  See table A15 for the values of the included year 
dummy variables. 
The dependent variable is investment in machinery, equipment and structures divided by the value of farm 
assets.  Farm assets include machinery, equipment and buildings.   
***=99%, **=95% *=90% Confidence intervals.   
1Psuedo panel dataset 1 constructed from ARMS data was used. This panel groups farms based on 5 regions, 
9 commodity types, and 3 farm typologies.  
2This regression includes cohorts where the commodity category is defined as fruit, nut, vegetable, 
horticulture and nursery farms.  These are farms which fall into the commodity type categories:  1) fruit, 
nut and vegetable and 2) nursery and horticulture farms.    
3 In this case a single coefficient is estimated for resident, intermediate and commercial farms 
4 these are the difference from commercial farms  
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Table 27: Pseudo Panel1 Fixed Effects Regression Results for Livestock2 (not including Breeding 
Livestock) Farm Investment 1996-2013 

  By Farm Typology 
Variable Name Single Coef3 Commercial Resident4 Intermediate4 

PrIndex 0.0303                                     
(0.83)           

0.0442 
(1.24)       

-0.0284                                             
(-0.75)     

-0.0181                                             
(-0.52)    

NCFI  0.0049                                     
(0.25)           

0.0702 
(1.59)       

-0.107                                            
(-1.92)    

-0.0311                                             
(-0.62)    

NCFI2 -0.0119                                   
(-1.11)          

-0.0444 
(-1.81)       

  -0.0381                                             
(-0.57)     

0.0708*                                             
(2.32)   

DEP  0.261**                                    
(3.06)           

0.190* 
(2.52)    

0.267                                              
(1.54)    

-0.121                                             
(-0.93)    

OFFI 
 

0.0000018                                  
(0.05)           

0.000011 
(0.21)    

  

Acres  -3.751**                                  
(-2.73)          

-4.871*  
(-2.57)     

  

Entropy 0.0218                                     
(0.93)           

0.0203 
(0.80)       

  

MTR -0.0421                                  
(-1.06)          

-0.0267  
(-0.35)   

-0.0147                                             
(-0.16)    

-0.0601                                            
(-0.58)    

WC 0.0077                                    
(1.18)           

0.0090 
(0.96)       

-0.0052                                             
(-0.53)     

0.00046                                              
(0.02)    

IR 
 
Intermediate 
 
Resident 
 
Constant 

0.287                                      
(0.65) 

-0.0079                                             
(-1.07)  

-0.0100                                             
(-1.06) 
0.0115                                    
(0.22)          

0.412 
(1.00) 

  0.028                                              
(0.66)  

0.0198                                             
(0.53)  

-0.0207 
(-0.39)                                            

  

Observations 
RMSE 
R2 

   752                                           
0.0534           

0.143                                  

752 
0.0529   

0.174    

  

Top number is the coefficient, below in parenthesis is the t-statistic.   
Robust Standard errors clustered by cohort are used.  See table A15 for the values of the included year 
dummy variables. 
The dependent variable is investment in machinery, equipment and structures divided by the value of farm 
assets.  Farm assets include machinery, equipment and buildings.  Breeding livestock is not included in 
either investment or farm assets. 
***=99%, **=95% *=90% Confidence intervals.   
1Psuedo panel dataset 1 constructed from ARMS data was used. This panel groups farms based on 5 regions, 
9 commodity types, and 3 farm typologies.  
2This regression includes cohorts where the commodity category is: 1) beef, hog and sheep, 2) dairy, and 3) 
poultry.    
3 when a single coefficient is estimated for resident, intermediate and commercial farms 
4these are the difference from commercial farms  
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Table 28: Pseudo Panel1 Fixed Effects Regression Results for Livestock2 (including Breeding 
Livestock) Farm Investment 1996-2013 

  By Farm Typology 
Variable Name Single Coef.3 Commercial Resident4 Intermediate4 

PrIndex 0.0401  
(1.02)           

0.0611  
(1.37)       

-0.0518  
(-1.00)      

-0.0508                                              
(-1.39) 

NCFI  0.00309                                     
(0.17)           

0.0644 
(1.73)       

-0.121**  
  (-2.76) 

-0.0826  
(-1.77)   

NCFI2 0.00160                                   
(0.11)          

-0.00902 
(-0.58)       

  0.0889***                                            
(3.51)      

-0.00883   
(-0.24) 

DEP  0.378*** 
(8.59)           

1.97  
(2.52)    

0.234*                                               
(2.22)    

0.212  
(0.84) 

OFFI 
 

0.0000018                                  
(0.05)           

0.000011 
(0.21)    

  

Acres  7.756  
(1.80) 

3.532    
(0.76)     

  

Entropy -0.0699  
 (-1.61) 

  -0.0502  
(-1.10) 

  

MTR 0.0306  
(0.60) 

-0.104  
(-0.93)   

0.202                                             
(1.98)    

0.103                                            
(0.59)    

WC 0.0420  
(0.07) 

100.2   
(0.94) 

-102.4  
(-0.96)     

-94.56  
(-0.89)    

IR 
 
Intermediate 
 
Resident 
 
Constant 

0.742  
(1.06) 

-0.0079                                             
(-1.07)  

-0.0100                                             
(-1.06) 

-0.0678                                    
(-0.95) 

0.501   
(0.75)  

  0.028                                              
(0.66)  

0.0198                                             
(0.53)  

-0.0363    
(-0.46)                                            

  

Observations 
RMSE 
R2 

   752                                           
0.0895  

0.448 

752 
0.0874   

0.483 

  

Top number is the coefficient, below in parenthesis is the t-statistic.   
Robust Standard errors clustered by cohort are used.  See table A15 for the values of the included year 
dummy variables. 
The dependent variable is investment in machinery, equipment, structures and breeding livestock per 
capital stock.  Capital stock is the value of machinery, equipment, structures, and breeding livestock. 
***=99%, **=95% *=90% Confidence intervals.   
1Psuedo panel dataset 1 constructed from ARMS data was used. This panel groups farms based on 5 regions, 
9 commodity types, and 3 farm typologies.  
2 This regression includes cohorts where the commodity category is: 1) beef, hog and sheep, 2) dairy, and 
3) poultry.    
3 when a single coefficient is estimated for resident, intermediate and commercial farms 
4 these are the difference from commercial farms  
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Table 29: Pseudo Panel1 Fixed Effects Regression Results for Dairy2 Farm Investment 1996-2013 

  By Farm Typology 
Variable Name Single Coef3 Commercial Resident4 Intermediate4 

PrIndex 
 
 NCFI 
 

 
 

-0.0363                                    
(-1.04)          

 
 

-0.0934* 
(-2.27)  

  0.060  
(1.54)  

0.00706    
          (0.08) 

-0.0239 
  (-0.45) 
0.330** 

 (3.08)       
NCFI2 0.0186           0.0620* 0.133     -0.220 
 (1.11)           (2.48)   (0.59)   (-0.97) 
DEP  0.328 

(1.65)           
0.0194 
(0.07)              

1.020* 
(2.25)   

-0.261 
(-0.65)   

OFFI 
 

0.0000461 
(0.35)           

0.0000557 
(0.45)        

  

Acres  -3.326 
(-1.46)          

-5.907 
(-1.11)            

  

Entropy 0.0352 
(0.43)                     

0.00886 
(0.10)     

  

MTR -0.0295 
(-0.29)           

0.0947 
(0.85)            

0.000965 
  (0.01) 

  -0.422* 
(-2.44)    

WC -0.0159 
(-0.86)                   

-0.0317 
(-0.52)   

  -0.0146 
(-0.18) 

   0.0470 
(0.78)    

IR 
 
Intermediate 
 
Resident 
 
Constant 

0.442 
(0.41) 

-0.00585                                                  
(-0.87) 

-0.00715                                             
(-1.49) 
0.0591 
(0.63)                   

0.796 
(0.74) 

 -0.0942   
   (-1.70)  

0.0558  
   (0.74)  
0.0425  
(0.41)                                                                                                   

  

Observations 
RMSE 
R2 

260              
0.0602           
 0.134                       

260  
0.0595 

0.199             

  

Top number is the coefficient, below in parenthesis is the t-statistic.   
Robust Standard errors clustered by cohort are used.  See table A18 for the values of the included year 
dummy variables. 
The dependent variable is investment in machinery, equipment and structures per capital stock. 
***=99%, **=95% *=90% Confidence intervals.   
1Psuedo panel dataset 1 constructed from ARMS data was used. This panel groups farms based on 5 regions, 
9 commodity types, and 3 farm typologies.  
2This regression includes cohorts where the commodity type category is dairy. 
3 when a single coefficient is estimated for resident, intermediate and commercial farms  
4 these are the difference from commercial farms 
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Table 30: Pseudo Panel1 Fixed Effects Regression Results for Poultry2 Farm Investment 1996-
2013 

  By Farm Typology 
Variable Name Single Coef3 Commercial Resident4 Intermediate4 

PrIndex 
 
 NCFI 
 
NCFI2 

 
 

0.0444           
(0.74)           

-0.130**  
(-3.47)                   

 
 

0.0723  
(0.47) 

 -0.0414  
(-0.22)   

0.00843                                                          
(0.11)    

          -0.0323    
 (-0.22)   
 -0.142                                          
(-0.74)   

0.0389    
(0.77)  

0.0667                                                      
(0.37)      

  -0.291    
 (-1.34)                                                 

DEP 0.425** 
(3.38)          

-0.0623  
(-0.44)             

0.631**  
 (3.47)    

0.437*                                            
(2.39)    

OFFI 
 

-0.0000009                           
(-0.01)          

-0.00000246  
(-0.06)   

  

Acres  4.138            
 (-1.46)          

0.408  
(-1.11)             

  

Entropy -0.0833 
(-1.16)                      

-0.0673 
(-0.85) 

  

MTR -0.114 
(-1.06)          

-0.0578 
(-0.29)            

-0.0525                           
(-0.25)       

                        -0.137    
(-0.66) 

WC 0.00554 
(1.34)                        

0.0826 
(1.80) 

-0.0748    
 (-1.59)    

-0.159*   
 (-2.66)    

IR 
 
Intermediate 
 
Resident 
 
Constant 

-0.238 
(-0.22) 

-0.00656                                                                    
(-0.61)                                            
0.0205                                             
(1.00) 

0.0443                                          
(0.42)                               

-0.649 
(-0.50) 

-0.00759    
                     (-0.09)    

                  -0.028                                                                    
(-0.47) 
0.0890    
(0.69)     

  

Observations 
RMSE 
R2 

244              
0.0388 
  0.473            

244 
0.0362  

0.567            

  

Top number is the coefficient, below in parenthesis is the t-statistic.   
Robust Standard errors clustered by cohort are used.  See table A18 for the values of the included year 
dummy variables. 
The dependent variable is investment in machinery, equipment and structures per capital stock. 
***=99%, **=95% *=90% Confidence intervals.   
1Psuedo panel dataset 1 constructed from ARMS data was used. This panel groups farms based on 5 regions, 
9 commodity types, and 3 farm typologies.  
2This regression includes cohorts where the commodity type category is poultry.  
3 when a single coefficient is estimated for resident, intermediate and commercial farms 
4 these are the difference from commercial farms 
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Table 31:  Value of Year Dummies from Pseudo Panel Fixed Effects Regressions by Farm Type 
1996-2013 

 Grain Farms FNV Farms Livestock Farms1 Livestock Farms2 

Year 
All Farms 

By 
Typology 

All 
Farms 

By 
Typology 

All 
Farms 

By 
Typolog

y 

All 
Farms 

By 
Typology 

1997 
 
1998 
 
1999 
 
2000 
 
2001 
 
2002 
 
2003 
 
2004 
 
2005 
 
2006 
 
2007 
 
2008 
 
2009 
 
2010 
 
2011 
 
2012 
 
2013 
 

0.0531*          
 (2.49)           

0.0331*          
 (2.43)           

0.0284*                                    
(2.29)           

0.0403**         
(2.72)                                      

0.0245           
(1.74)                                      

0.0151           
(0.89)                                        

0.0358                                     
(1.97)           

0.0305                                     
(1.80)           

0.0554**                                   
(2.90)           

0.040***                                  
(4.63)           

    0.0416*                                    
(2.32)           

0.0247                                     
(1.66)           

0.0491                                     
(1.86)           

0.0369*                                    
(2.26)           

0.0357                                     
(1.85)           

0.0316           
(1.26)                                      

0.0165                                     
(0.70)              

0.0613** 
(2.81)  

0.0391* 
(2.63)    

0.0305*   
(2.08)    

0.0423*   
(2.62)    

0.0283*   
(2.21)    

0.0172    
(1.03) 

0.0352*   
(2.02)    

0.0305    
(1.83)    

0.0544** 
(2.92)    

0.038*** 
(3.86)    
0.0379*   

(2.05)    
0.0215    
(1.43) 

0.0500*   
(2.09)    

0.0338    
(1.78)    

0.0326    
(1.66)    

0.0338    
(1.28)  

0.0177    
(0.64)        

0.0125           
(0.88)                                      

0.0214                                     
(1.22)           

0.0132           
(0.86)                                      

0.0229                                    
(1.18)           

0.0032                                       
(0.24)           

0.0260                                     
(1.31)           

0.0140                                     
(0.78)           

0.0117         
(0.76)           

0.0005                                   
(0.04)           

0.0051                                    
(0.25)           
  -0.00                                  
(-0.42)          
0.0007         
(-0.04)                                             
0.0101         
(0.46)           
-0.014                                   
(-0.73)          
-0.007        
(-0.33)          
0.0010                                   
(0.04)           

0.0109          
(0.37)                                      

0.0112 
 (0.78)  
0.0226    
(1.30)    

0.0159 
(1.05) 

0.0265    
(1.37)    

0.0090 
(0.68)    

0.0219    
(1.17)    

0.0103    
(0.59)    

0.0092                               
(0.70)    

0.0005    
(0.04)  

0.0034    
(0.18)    

-0.0087    
(-0.46)    

-0.0015 
(-0.08)  
0.0047                              
(0.25)    

-0.0168    
(-0.89)    

-0.0093                              
(-0.45)    
0.0009    
(0.04) 

0.00705    
(0.26)                      

0.0062 
(0.30) 

0.0170                               
(0.69)    

0.0044    
(0.20)    

0.0031 
(0.14) 

 -0.005 
(-0.32)    
0.0007    
(0.04)    

-0.0010    
(-0.05)    
0.0138    
(0.71)    

-0.0099   
(-0.58)    

-0.0157 
(-0.84)  

-0.0091 
(-0.49)    

-0.0008    
(-0.05)    

-0.0115    
(-0.55)    

-0.0218  
(-1.27) 

-0.0138 
(-0.63)  

-0.0101    
(-0.52)    

-0.0161    
(-0.86) 

0.0062 
(0.30) 

0.0170                               
(0.69)    

0.0044    
(0.20)    

0.00315 
(0.14) 

 -0.0059 
(-0.32)    
0.0007    
(0.04)    

-0.0010    
(-0.05)    
0.0138    
(0.71)    

-0.0099   
(-0.58)    

-0.0157 
(-0.84)  

-0.0091 
(-0.49)    

-0.0008    
(-0.05)    

-0.0115    
(-0.55)    

-0.0218  
(-1.27) 

-0.0138 
(-0.63)  

-0.0101    
(-0.52)    

-0.0161    
(-0.86)                              

-0.002 
(-0.09)     
0.0113 
(0.44)    

-0.0071     
(-0.30) 
0.0071    
(0.29)            

0.0087 
(0.39) 

0.0225 
(0.86) 

0.0501 
(1.81) 

0.105* 
(2.47) 

0.0128 
(0.71) 

0.0527 
(1.62) 

-0.0025 
(-0.12)   
0.061* 

   (2.26)  
0.0436 
(1.66) 

0.0279 
(1.27) 

0.057* 
(2.18) 

0.0486 
(1.87) 

0.0309 
(1.09)                      

0.0009 
(0.05) 

0.0059 
(0.23) 

-0.0039 
(-0.16) 
0.0090 
(0.36) 

0.0044 
(0.20) 

0.0022 
(0.087)  
0.0234 
(0.88) 

0.099* 
(2.52) 

0.0068 
(0.38) 

0.0475 
(1.55) 

0.0012 
(0.06) 

0.06** 
(2.67) 

0.0292 
(1.17) 

0.0177 
(0.89) 

0.0409 
(1.73) 

0.0385 
(1.55) 

0.0225 
(0.91) 

Top number is the coefficient, below in parenthesis is the t-statistic for the dummy variables corresponding 

to Table 25- Table 28 
1 regressions do not include breeding livestock in measure of investment and total capital assets 
2 regressions include breeding livestock in measure of investment and total capital assets 
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Table 32: Value of Year Dummies from Pseudo Panel Fixed Effects Regressions by Farm Type for 
Dairy and Poultry Farms 1996-2013 

 Dairy Farms Poultry Farms 
Year All Farm By Typology All Farm By Typology 

1997 
 
1998 
 
1999 
 
2000 
 
2001 
 
2002 
 
2003 
 
2004 
 
2005 
 
2006 
 
2007 
 
2008 
 
2009 
 
2010 
 
2011 
 
2012 
 
2013 

-0.0438 
(-0.82)          

-0.0419         
(-0.70)          

-0.0232 
(-1.11)          

-0.0360          
(-0.61)          

-0.0462          
(-0.92) 

-0.0593          
(-1.00) 

 -0.0540 
(-0.96) 

-0.0135          
(-0.27)          

-0.0468          
(-0.96) 

-0.0509          
(-1.00) 

 -0.0722 
(-1.33)  

-0.00776 
(-0.13)           

     -0.0593   
(-1.03) 

-0.0608 
(-1.06) 

-0.0478          
    (-0.82)          

-0.0514          
(-0.82)          

-0.0531          
(-0.89)                     

-0.0493 
(-0.94) 

-0.0588 
(-0.99) 
-0.060 
(-1.16)           

-0.0458           
(-0.83)           

-0.0437           
(-0.81)           

-0.0450          
(-0.73)           

-0.0467    
 (-0.83) 
0.0204 
(-0.26)           

-0.0540           
(-1.08) 

-0.0594           
(-1.16) 

-0.0713           
 (-1.36)           

0.00510 
(0.08)           

-0.0595           
(-0.99)  

 -0.0513       
(-0.88) 

-0.0430              
(-0.72)           

-0.0427        
(-0.65)       

-0.0484           
(-0.79)                                                

0.0289  
(1.20) 

0.0457* 
(2.15)           

-0.0696 
(2.51)           

0.0519*          
(2.69)           

0.0568***        
(3.82)           

0.00754 
(0.40)           

0.0423           
(1.92)  

-0.0140           
(0.86)           

0.03(2.75)  
71**         

0.0162 
(1.18) 

0.0737***        
(4.22)           

0.0349             
(1.25)           

0.0115          
(0.50)           

-0.00323          
   (-0.13) 

0.0301           
(0.76)           

-0.00289          
(-0.09)          
0.0237            
(0.62)                      

0.0373 
(1.48)   

0.0527* 
(2.38) 

0.0467* 
(3.40) 

0.0590** 
(3.21)    

0.0477**  
(3.47)                            

0.0137 
(0.54)    

0.0406    
(1.82) 

0.00636    
(0.24) 

0.0322*   
(2.27)   

0.0306 
(1.71)    

0.0665**                          
(3.38)    

0.0235 
(1.04)              

0.00944                                               
(0.33) 

-0.0115 
(-0.48) 
0.0169 

(0.44 
-0.0203 
(-0.58)       

-0.00646    
(-0.16) 

Top number is the coefficient, below in parenthesis is the t-statistic for the dummy variables corresponding 

to the regression results in Table 29 and Table 30  
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Table 33: Tests for Statistically Significant Time Effects in Fixed Effects Regression with Pseudo 
Panel Dataset 

 Farm Production Type 

 Grain 
Farms 

FNV Farms 
Livestock 
Farms1 

Livestock 
Farms2 

Dairy farms 
Poultry 
Farms 

F-Statistic 2.01 1.74 2.24            1.87 2.84             2.66 

  p-value 0.0321     0.0660 0.0106 0.038 0.0039         0.0067 
F-statistic and p-value are from an F-test of the null hypothesis that all of the dummy year variables are not 
statistically different from zero.   
Regressions allowed coefficients to vary by farm typology 
1 regressions do not include breeding livestock in measure of investment and total capital assets 
2 regressions include breeding livestock in measure of investment and total capital assets 

 
 
 

7.2 Results for Similar Variables Found in the Literature 

 Table 34 provides the results of similar coefficients obtained by other studies examining 

farm capital investment.  While many other studies examined farm capital investment, within 

this table I choose to focus on studies covering investment behavior on farms located in the U.S. 

within the recent two decades where the authors used panel datasets.   
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Table 34: Results for Similar Variables Used in Other U.S. Farm Capital Investment Studies 

Study Ariyaratne and 

Featherstone (2009) 

Barry et. al. 

(2000) 

Hadrich and 

Olson (2013) 

Jensen et al. 

(1993) 

Micheels et al. 

(2004) 

Serra et al. 

(2009) 

Weersink and 

Tauer (1989) 

Dataset Kansas Farm 

Management 

Association  

Illinois Farm 

Management 

Association 

North Dakota 

Farm Ranch 

Business 

Association 

Kansas Farm 

Management 

Association 

Illinois Farm 

Business 

Management 

database A 

Kansas Farm 

Management 

Association B   

New York Dairy 

Farm Business 

Summary 

Time Period 1998-2007 1987-1994 1993-2011 1973-1988 1995-2002 1997-2001 1974-1983 

Estimation 

method 

GMM GMM Tobit OLS DFFITS 

and Bisquare C 

OLS Maximum 

likelihood and 

threshold 

regressions D  

OLS (LSDV and 

GLS) 

Dependent 

Variable 

farm crop machinery 

and investment per 

total capital assets 

managed 

Investment 

in land and 

non-land 

assets 

divided by 

capital stock   

purchases of 

machinery 

divided by GV 

sales given 

made a purchase 

Investment in 

land, livestock, 

machinery, 

equipment and 

buildings 

Investment E Investment 

normalized by 

capital rental 

rate 

Investment in 

machinery, 

equipment and 

livestock changes 

per unit of capital 

assets 

Coefficient  on 

Farm  Income 

Cash crop= 0.4334*;  

Grain= 0.1778*;  

beef = -0.1887*F 

0.68*G  N/A 0.29* to 0.35*  -0.009* 

(lagged) 

N/A -0.286* to -

0.276* 

Coefficient  on 

Output Price 

Index 

N/A N/A N/A N/A N/A $8,731-

$17,321*H 

 

N/A 

 

 

 

8
5
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Table 34 Continued 

Study Ariyaratne and 

Featherstone (2009) 

Barry et. al. 

(2000) 

Hadrich and 

Olson (2013) 

Jensen et al. 

(1993) 

Micheels et al. 

(2004) 

Serra et al. 

(2009) 

Weersink and 

Tauer (1989) 

Coefficient  on 

Depreciation 

machinery and 

equipment 

depreciation= 4.31*;  

vehicle depreciation= 

4.02*;   

structure depreciation 

=                       -

2.831*I 

N/A Log of 

depreciation= 

0.01221 

(lagged) 

0.51* to 0.59* 

(lagged) 

N/A N/A N/A 

Coefficient  on 

Marginal Tax 

Rate 

N/A N/A N/A -12,753 to         

-15,699*J 

N/A N/A N/A 

Coefficient  on 

Working 

Capital  

N/A N/A Log of working 

capital=                 

-0.0132 

N/A N/A N/A N/A 

Estimates for 

other 

Coefficients of 

Interest  

Non-farm income=           

-0.08; 

interest payments=            

-0.553* 

 debt to assets=           

-0.2737*; 

Livestock 

farm=                   

-0.1372*K;  

crop farm=              

-0.0033 K  

Off-farm 

income 

coefficient= 

0.08* to 0.15* 

Debts to 

assets= 57.8*; 

Return on 

equity= 0.040; 

Acres= 6.805* 

Assets=0.010*L; 

Index of input 

prices=                       

-16,635M* 

Change in 

liabilities= 

0.358* to 0.366*;   

total assets= 

2.13* to 2.48*;  

Size= 0.088N; 

 

* Indicates the coefficient was statistically significant 
A included only farms with revenues > $40,000 
B limited to farms with at least 80% of sales from wheat, corn, grain sorghum and soybeans.   
C both are variants of OLS that deal with nonnormal errors 
D separate regressions for farms with: 1) investment <0, 2) investment =0, and 3) investment >0 
E authors were not clear what was included in investment 
F these are the average for all farms.  Depending on age and asset quartile cash crop income ranges from 0.2078 to 0.6050, grain income ranges from 0.03402 to 
0.4811, beef farm income ranges from -0.0955 to 0.3169  
 

8
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Table 34 Continued 

G these are the average for all farms.  Depending on age and credit constraint category the cash flow coefficient ranges from 0.386 to 1.118.  The only other 
variables included in the regression were marginal q and a constant 
H average capital stock levels are $188,391 resulting in a coefficient value for dollars investment per unit capital stock between 0.04-0.09 
I these are the average for all farms.  Depending on age and asset quartile machinery and equipment depreciation ranges from 2.5957 to 6.7294, motor vehicle 
and listed property depreciation ranges from 3.2421 to 5.0996; building depreciation ranges from -4.7969 to -1.3445 

J average level of farm capital is 936,889 so in per capital terms this is equivalent to 0.00136 to 0.0167 dollars per unit capital stock 
K these are dummy coefficients.  The base is a livestock and crop combination farm 
 L lagged value of farms total assets not including investment capital.  Included only in regression for investment =0 regime.   
M Average capital stock levels are $188,391 resulting in a coefficient value of dollars investment per unit capital stock of -0.0883. Included only in regression for 
investment =0 regime. 
N measured as dairy farm work units.  Was only included in the LSDV regression and not the GLS regression 

8
7 



88 

 

 

 

7.3 Partial Investment Elasticity Estimates 

 In Figure 7-Figure 12 I provide graphs of the mean and 95% confidence intervals for the 

partial investment elasticities calculated for the key variables of interest.  The 95% confidence 

interval for the estimated elasticity is indicated by the horizontal line.  The estimated elasticity is 

the number provided to the right of the illustrated confidence interval.  The partial investment 

elasticity is the estimated average $ change in investment given a 1% change in the variable.  

These are provided separately by farm type and by farm typology, where C= commercial farms, 

R=resident farms and I= intermediate farms.  The stars indicate the level of statistical 

significance, where *=90%, **=95% and ***=99%.   

 
Figure 7: Mean and 95% Confidence Interval for Partial Investment Elasticities for Grain Farms 

 

 

Figure 8: Mean and 95% Confidence Interval for Partial Investment Elasticities for FNV Farms 
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Figure 9: Mean and 95% Confidence Interval for Partial Investment Elasticities for Livestock 
Farms (not including Breeding Livestock) 

 

 

Figure 10: Mean and 95% Confidence Interval for Partial Investment Elasticities for Livestock 
Farms (including Breeding Livestock) 
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Figure 11: Mean and 95% Confidence Interval for Partial Investment Elasticities for Dairy Farms 

 

 
Figure 12: Mean and 95% Confidence Interval for Partial Investment Elasticities for Poultry 
Farms 

 
 
 

7.4 Results for Alternative Measures of Credit and Financial Constraints 

 Table 35 provides the coefficient values and t-statistics on the variable lagged debts 

from a regression where this variable replaces the working capital variable in the original model.  

The regression is performed separately for by farm production type.  The first column indicates 

the value and t-statistic when I constrain this to be equal across all farm typologies.  The second 

-210 -174 -197
5 11 -30 80 -12 2 -14 1 -9 66 -57 34

-$1,500

-$1,000

-$500

$0

$500

$1,000

$1,500

$2,000

P
ar

ti
al

 I
n

ve
st

m
e

n
t 

El
as

ti
ci

ti
y

Variables by farm typology with indicated statistical significance

671
161 311 348

-3 9 33 85 68 109 -8 -52
-364

-4 3

-$2,000

-$1,000

$0

$1,000

$2,000

$3,000

$4,000

P
ar

ti
al

 in
ve

tm
e

n
t 

e
la

st
ic

it
ie

s

Variables by farm typology with indicated statistical significance



91 

 

 

 

through fourth columns indicate the coefficient values where I allow the coefficient values to 

differ across farm typologies using interaction terms.  

Table 36 shows similar results when the working capital variable is replaced with the 

lagged debt to asset ratio variable.  For brevity, the results for the other model variables are not 

included.  These estimates are converted to partial investment elasticities and illustrated in 

Figure 13-Figure 16.  The same procedure was performed for grain farms and poultry farms 

using lagged debts and debt to asset ratio as well as across all 6 farm production types using 

lagged net worth levels, but none of the coefficients within these various regressions were 

statistically significant from zero and hence they are illustrated in the tables above. 

 

 
Table 35: Selected Results from Pseudo Panel1 Fixed Effects Regression Results Replacing the 

Working Capital Variable with Lagged Debts 

  By Farm Typology 
Variable Name Single Coef2 Commercial Resident3 Intermediate3 

FNV4 Farms 

Debtst-1 -0.00380 
(-1.60) 

-0.00821 
(-0.90) 

0.00663 
(0.54) 

0.00387 
(0.42) 

Livestock5 Farms (not including breeding livestock) 

Debtst-1 -0.00115 
(0.22) 

-0.000479 
(-0.07) 

0.00236 
(1.07) 

0.00219 
(0.99) 

Livestock5 Farms (including breeding livestock) 

Debtst-1 -0.00859* 
(-2.21) 

-0.0126 
(-1.91) 

0.0122 
(1.42) 

-0.000526 
(-0.05) 

  Dairy6 Farms   

Debtst-1 -0.0200** 
(-2.91) 

-0.0249** 
(-3.06) 

0.0232 
(1.49) 

-0.0149 
(-1.06) 

Top number is the coefficient, below in parenthesis is the t-statistic.   
Variables:  Debtst-1= lagged Farm Total Debt Levels  
The dependent variable is investment in machinery, equipment and structures per capital stock. 
***=99%, **=95% *=90% Confidence intervals.  Robust Standard errors clustered by cohort are used.   
1Psuedo panel dataset 1 constructed from ARMS data was used. This panel groups farms based on 5 regions, 
9 commodity types, and 3 farm typologies.  
2 when a single coefficient is estimated for resident, intermediate and commercial farms 
3these are the difference from commercial farms 
4 This regression includes cohorts where the commodity category is: 1) fruit, nut and vegetable and 2) 
nursery and horticulture farms.    
5 This regression includes cohorts where the commodity category is: 1) beef, hog and sheep, 2) dairy, and 
3) poultry.    
6This regression includes cohorts where the commodity type category is dairy 
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Table 36: Selected Results from Pseudo Panel1 Fixed Effects Regression Results Replacing 

Working Capital with Lagged Debt to Asset Ratio 

  By Farm Typology 
Variable Name Single Coef2 Commercial Resident3 Intermediate3 

FNV4 Farms 

DTARt-1 -0.0000883 
(-1.32) 

-0.000174 
(-0.94) 

0.000161 
(0.73) 

-0.000430 
(-1.46) 

Livestock5 Farms (not including breeding livestock) 

DTARt-1 0.00000241 
(0.57) 

0.00000758*** 
(4.16) 

-00000657    
 (0.29)     

 -0.0000212** 
(-3.28)   

Livestock6 Farms (including breeding livestock) 

DTARt-1  0.0000153* 
(2.13) 

0.0000249*** 
(7.18) 

-0.000109 
(-0.37) 

-0.0000409*** 
(-4.97) 

  Dariy7 Farms   

DTARt-1 0.0000337** 
(2.89) 

0.0000453* 
(2.60) 

-0.000394 
(-0.67) 

-0.000216 
(-0.19) 

Top number is the coefficient, below in parenthesis is the t-statistic.   
Variables:  DTARt-1= lagged Debt to Asset Ratio  
The dependent variable is investment in machinery, equipment and structures per capital stock. 
***=99%, **=95% *=90% Confidence intervals.  Robust Standard errors clustered by cohort are used.   
1Psuedo panel dataset 1 constructed from ARMS data was used. This panel groups farms based on 5 regions, 
9 commodity types, and 3 farm typologies.  
2 when a single coefficient is estimated for resident, intermediate and commercial farms 
3these are the difference from commercial farms 
4 This regression includes cohorts where the commodity category is: 1) fruit, nut and vegetable and 2) 
nursery and horticulture farms.    
5 This regression includes cohorts where the commodity category is: 1) beef, hog and sheep, 2) dairy, and 
3) poultry.    
6This regression includes cohorts where the commodity type category is dairy 
 
 

 
Figure 13: Mean and 95% Confidence Intervals for Partial Investment Elasticities for FNV Farms 
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Figure 14: Mean and 95% Confidence Intervals for Partial Investment Elasticities for Livestock 

Farms (not including Breeding Livestock) 

 

 
Figure 15: Mean and 95% Confidence Intervals for Partial Investment Elasticities for Livestock 

Farms (including Breeding Livestock) 

 

 
Figure 16: Mean and 95% Confidence Intervals for Partial Investment Elasticities for Dairy Farms 
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7.5 Comparison Across Alternative Pseudo Panels and Cross Section 

Below I provide estimates of the coefficient values and t-statistics for selected variables 

using the alternative panels constructed. Table 37 – Table 41 provides the results for pseudo panel 

2 separately by farm production type, Table 42 for pseudo panel 3, and Table 43 for pseudo panel 

3 separately for farms in region 3. 

 
 
Table 37: Coefficient Values and T-statistics for Selected Variables Using Pseudo Panel Dataset 21 

for Grain2 Farms  

Variable Name Coefficient Value By Farm Typology 
 Commercial Resident3 Intermediate3 

PrIndex 0.0144 -0.0458* -0.0306 
 (0.71) (-2.03) (-1.42) 

NCFI 0.0383* -0.0127 -0.0473* 

 (2.53) (-0.50) (-2.53) 
NCFI2 0.00137 -0.00306 -0.00133 

 (1.57) (-1.97) (-1.53) 
DEP  0.224 0.431* 0.359 

 (1.30) (2.08) (1.33) 
MTR 0.00191 0.101 0.0284 

 (0.02) (1.02) (0.32) 
WC 0.00468 0.0199 -0.00682 

 (0.46) (1.01) (-0.64) 

Observations 2,509   

R2 0.159   
Top number is the coefficient, below in parenthesis is the t-statistic.  Robust Standard errors clustered by 
cohort are used.  ***=99%, **=95% *=90% Confidence intervals.   
The dependent variable is investment in machinery, equipment and structures per capital stock. 
The above variables varied according to farm typology.  A single coefficient was included and not listed 
above for acres, entropy, OFFI, and year dummies. The resulting coefficients were statistically insignificant 
for these coefficients. 
1Psuedo panel dataset 2 constructed from ARMS data was used. This panel groups farms based on 10 farm 
production regions, 19 commodity types, and 3 farm typologies.  
2This regression includes cohorts which fall into the commodity type: 1) cash grains and 2) tobacco and 
cotton farms.  This does not include other crop farms.  
3 these are the difference from commercial farms  
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Table 38: Coefficient Values and T-statistics for Selected Variables Using Pseudo Panel Dataset 21 

for FNV2 Farms 

Variable Name Coefficient Value By Farm Typology 
 Commercial Resident3 Intermediate3 

PrIndex -0.308* 0.235* 0.219 
 (-2.16) (2.01) (1.72) 
NCFI 0.0778 -0.053 -0.182* 
 (1.05) (-0.66) (-2.10) 
NCFI2 0.0203 -0.011 0.121 
 (1.43) (-0.48) (1.48) 
DEP  -0.115 0.943** 0.392 
 (-0.70) (3.15) (1.51) 
MTR -0.374 0.479* 0.528** 
 (-1.94) (2.58) (2.87) 
WC 0.0889 -0.086 -0.0685 
 (1.85) (-1.82) (-1.35) 

Observations 991   

R2 0.495   
Top number is the coefficient, below in parenthesis is the t-statistic.  Robust Standard errors clustered by 
cohort are used.   
The dependent variable is investment in machinery, equipment and structures per capital stock. 
***=99%, **=95% *=90% Confidence intervals.   
The above variables varied according to farm typology.  A single coefficient was included and not listed 
above for acres, entropy, OFFI, and year dummies. The resulting coefficients were statistically insignificant 
for these coefficients. 
1Psuedo panel dataset 2 constructed from ARMS data was used. This panel groups farms based on 10 farm 
production regions, 19 commodity types, and 3 farm typologies.  
2This regression includes cohorts which fall into the commodity type: 1) fruit, nut and vegetable and 2) 
nursery and horticulture farms.    
3 these are the difference from commercial farms 
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Table 39: Coefficient Values and T-statistics for Selected Variables Using Pseudo Panel Dataset 21 

for Livestock2 Farms 

Variable Name Coefficient Value By Farm Typology 
 Commercial Resident3 Intermediate3 

PrIndex 0.107* 0.016 0.00552 
 (2.26) (0.29) (0.16) 
NCFI 0.0338 -0.165* -0.0195 
 (1.59) (-2.35) (-0.75) 
NCFI2 -0.00265 0.0679* 0.00402 
 (-1.65) (2.11) (1.75) 
DEP  0.0624 0.285* 0.0336 
 (1.02) (2.18) (0.35) 
MTR -0.0716 0.0767 0.0201 
 (-1.04) (0.82) (0.22) 
WC -0.005 -0.002 -0.014 
 (-0.52) (-0.16) (-0.85) 

Observations 890   
R2 0.188   

Top number is the coefficient, below in parenthesis is the t-statistic.  Robust Standard errors clustered by 
cohort are used.   
The dependent variable is investment in machinery, equipment and structures per capital stock. 
***=99%, **=95% *=90% Confidence intervals.   
The above variables varied according to farm typology.  A single coefficient was included and not listed 
above for acres, entropy, OFFI, and year dummies. The resulting coefficients were statistically insignificant 
for these coefficients. 
1Psuedo panel dataset 2 constructed from ARMS data was used. This panel groups farms based on 10 farm 
production regions, 19 commodity types, and 3 farm typologies.  
2This regression includes cohorts which fall into the commodity type: 1) beef, hog and sheep, 2) dairy, and 
3) poultry.    
3 these are the difference from commercial farms 
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Table 40: Coefficient Values and T-statistics for Selected Variables Using Pseudo Panel Dataset 21 

for Dairy 2 Farms 

Variable Name Coefficient Value By Farm Typology 
 Commercial Resident3 Intermediate3 

PrIndex -0.142 0.0231 0.0853 
 (-0.72) (0.15) (0.57) 
NCFI -0.0318 -0.471* 0.0503 
 (-0.48) (-2.42) (0.35) 
NCFI2 0.00516 -0.455* -0.278 
 (0.67) (-2.60) (-0.66) 
DEP  0.0261 1.117 0.261 
 (0.13) (1.48) (0.61) 
MTR 0.0727 0.185 -0.201 
 (0.21) (0.47) (-0.48) 
WC 0.0956 -0.0966 0.125 
 (1.19) (-0.99) (0.49) 

Observations 217   

R2 0.304   
Top number is the coefficient, below in parenthesis is the t-statistic.  Robust Standard errors clustered by 
cohort are used.   
The dependent variable is investment in machinery, equipment and structures per capital stock. 
***=99%, **=95% *=90% Confidence intervals.   
The above variables varied according to farm typology.  A single coefficient was included and not listed 
above for acres, entropy, OFFI, and year dummies. The resulting coefficients were statistically insignificant 
for these coefficients. 
1Psuedo panel dataset 2 constructed from ARMS data was used. This panel groups farms based on 10 farm 
production regions, 19 commodity types, and 3 farm typologies.  
2This regression includes cohorts which fall into the commodity type dairy. 
3 these are the difference from commercial farms 
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Table 41: Coefficient Values and T-statistics for Selected Variables Using Pseudo Panel Dataset 21 

for Poultry 2 Farms 

Variable Name Coefficient Value By Farm Typology 
 Commercial Resident3 Intermediate3 

PrIndex 0.0649 0.0071 -0.00074 
 (0.75) (0.13) (-0.02) 
NCFI 0.0672 -0.291* -0.159 
 (1.01) (-2.12) (-1.10) 
NCFI2 -0.0336 0.509* 1.263 
 (-0.34) (2.08) (1.29) 
DEP  0.253* 0.581** -0.0693 
 (2.18) (3.23) (-0.45) 
MTR -0.05 0.0598 0.104 
 (-0.54) (0.48) (1.04) 
WC 0.00119 -0.0273 -0.0569 
 (0.04) (-0.74) (-1.20) 

Observations 441   

R2 0.557   
Top number is the coefficient, below in parenthesis is the t-statistic.  Robust Standard errors clustered by 
cohort are used.   
The dependent variable is investment in machinery, equipment and structures per capital stock. 
***=99%, **=95% *=90% Confidence intervals.   
The above variables varied according to farm typology.  A single coefficient was included and not listed 
above for acres, entropy, OFFI, and year dummies. The resulting coefficients were statistically insignificant 
for these coefficients. 
1Psuedo panel dataset 2 constructed from ARMS data was used. This panel groups farms based on 10 farm 
production regions, 19 commodity types, and 3 farm typologies.  
2This regression includes cohorts which fall into the commodity type poultry. 
3 these are the difference from commercial farms 
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Table 42: Coefficient Values and T-statistics for Selected Variables Using Pseudo Panel Dataset 31 

and All Regions 

Variable Name Coefficient Value By Farm Typology 
 Commercial Resident2 Intermediate3 

PrIndex    0.0484    -0.0808**  -0.0438 
 -1.35  (-3.05)     (-0.95)    
NCFI 0.0417    -0.133 0.168 
 -0.32 (-0.75)    -1.15 
NCFI2 0.0592 0.104 -0.551**  
 -0.41 -0.38  (-2.88)    
DEP  0.319   -0.432 0.533 
 -1.03   (-0.89)    -1.19 
MTR   -0.199*   0.0623   0.276*   
 (-2.34)    -0.86 -2.28 
WC 0.021 0.00952 -0.0241 
 -0.61 -0.22 (-0.42)    

Observations 648   
R2 0.316   

Top number is the coefficient, below in parenthesis is the t-statistic.  Robust Standard errors clustered by 
cohort are used.   
The dependent variable is investment in machinery, equipment and structures per capital stock. 
***=99%, **=95% *=90% Confidence intervals.   
The above variables varied according to the percentage of both resident and intermediate farms in each 
cohort.  A single coefficient was included and not listed above for acres, entropy, OFFI, and year dummies. 
The resulting coefficients were statistically insignificant for these coefficients. 
1Psuedo panel dataset 3 constructed from ARMS data was used. This panel groups farms based on 9 ERS 
production regions and 4 acre quartiles.  
2 these are the coefficients and t-statistics on the variable times the percent of resident farms in the cohort 
3 these are the coefficients and t-statistics on the variable times the percent of intermediate farms in the 
cohort 
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Table 43: Coefficient Values and T-statistics for Selected Variables Using Pseudo Panel Dataset 31 

in Northern Great Plains Region2 

Variable Name Coefficient Value By Farm Typology 
 Commercial Resident3 Intermediate4 

PrIndex 0.412 -0.493 -0.35 
 (1.19) (-2.33) (-1.12) 
NCFI 3.578 -3.692* -3.604 
 (2.97) (-3.29) (-2.56) 
NCFI2 -4.37 4.427 3.21 
 (-2.81) (1.96) (1.74) 
DEP  -2.561 3.404 4.397* 
 (-2.31) (2.70) (4.74) 
MTR -2.784 2.866* 3.531* 
 (-2.94) (3.6) (3.4) 
WC 0.0122 0.101 -0.0633 
 (0.04) (0.42) (-0.16) 

Observations 72   

R2 0.69   
 

Table 43: Continued 

Top number is the coefficient, below in parenthesis is the t-statistic.  Robust Standard errors clustered by 
cohort are used.   
The dependent variable is investment in machinery, equipment and structures per capital stock. 
***=99%, **=95% *=90% Confidence intervals.   
The above variables varied according to the percentage of both resident and intermediate farms in each 
cohort.  A single coefficient was included and not listed above for acres, entropy, OFFI, and year dummies. 
The resulting coefficients were statistically insignificant for these coefficients. 
1Psuedo panel dataset 3 constructed from ARMS data was used. This panel groups farms based on 9 ERS 
production regions and 4 acre quartiles.  
2 Included in the region are farms in which the cohort ERS production region is the Northern Great Plains 
3 these are the coefficients and t-statistics on the variable times the percent of resident farms in the cohort 
4 these are the coefficients and t-statistics on the variable times the percent of intermediate farms in the 
cohort 
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CHAPTER 8:  DISCUSSION OF REGRESSION RESULTS 

Within this section I discuss the overall goodness of fit of my regressions, evaluate my 

hypothesis, and discuss some of the findings for other variables as well as alternative 

specifications for the model.   

 
 
 

8.1 Overall Goodness of Fit 

The R2 values I obtain range between 0.264-0.266 for grain and FNV farms, 0.17 for 

livestock without including breeding livestock 0.44 when I include breeding livestock, 0.19 for 

dairy farms and 0.57 for poultry farms.  The fit of the regressions improve when I allow the 

chosen coefficients to vary across typology.  This is indicative of the lower RMSE values when I 

allow for resident and intermediate variable interaction terms on key model variables compared 

to estimating the regressions with only a single coefficient across all farm typologies for these 

same variables. Within the regressions, many of the coefficient values are insignificant.  One 

reason could be the lower level of variation between cohort observations compared to that 

present within the sample data.  Another reason could be that in estimating the fixed effects 

model and including dummy time coefficients, a portion of the variation that would otherwise 

be explained by the model variables is explained by the fixed effects terms and/or year time 

dummies.  Including these will potentially lead to smaller, though more accurate, variable 

coefficient estimates compared to studies for which fixed effects and independent year effects 

exist but are not estimated.  In chapter 9, I will demonstrate that regardless of the low R2 values 

and small number of statistically significant coefficient estimates, the grain and livestock 

(without breeding livestock) regressions adequately explain changes in investment over the 

sample time period given changes in the model variables.   
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8.2 Results for Hypothesis 1: Output Prices 

An increase in output prices results in a statistically significant increase in investment for 

commercial grain farms.  On average, a one percent increase in output prices leads to a $150 

increase in investment for commercial grain farms and a $108 increase for resident grain farms. 

My results for grain farms are similar to Serra et al. (2009).  They also estimate that an increase 

in the value of an index of agricultural output prices results in a positive and statistically 

significant increase in farm capital investment using data from the Kansas Farm Management 

Association database over the period of 1997-2001.  Unlike Serra et al. (2009) the coefficients 

are not statistically significant for livestock farms.   

One reason why I obtain insignificant coefficients for livestock farms and on commercial 

FNV farms may be the greater level of heterogeneity within the FNV and livestock farms in my 

sample compared to that of Serra et al.  Serra et al., used farms located only in Kansas and 

belonging to the Kansas Farm Management Association.  In contrast, the ARMS sample 

encompasses farms located across 48 U.S. states.  Within the greater U.S. I would expect there 

to be a wide variety in the type of FNV crops and livestock products produced across the U.S., 

leading to a greater variation in average farm investment responses given changes in output 

prices.  The wide range of responses across farms given changes in output prices is illustrated 

when one examines the large confidence intervals obtained for the FNV and livestock output 

price partial investment elasticities.   In contrast, within grain farms the confidence intervals on 

output price partial investment elasticities are smaller.  One could draw the conclusion that 

within the ARMS sample there is a greater level of homogeneity in across grain farms in 

response to changes in output prices compared to that found across different FNV and livestock 

production types.  This results in a greater ease in quantifying the impacts for changes in output 

prices across grain farms compared to FNV and livestock farms. 

I can accept hypothesis one for commercial grain farms.  Investment rates for 

commercial grain farms respond to a greater degree given a change in output prices compared 

to commercial and resident grain farms.   This is indicated by the negative and statistically 

significant interaction term on output prices for intermediate grain farms.  In fact, the partial 

investment elasticity on output prices is not statistically different from zero for intermediate 

grain farms.  I cannot conclude that an increase in output prices has a statistically significant 

impact on intermediate grain farm investment.  Within livestock farms, I am inclined to conclude 
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that that the same relationship exists and commercial livestock farm investment is more 

responsive to changes in output prices compared to intermediate livestock farm investment, 

given the negative estimated interaction terms and lower partial investment elasticity estimates 

for resident and intermediate livestock farms compared to commercial livestock farms.  

Unfortunately, due to lack of statistical significance, I must reject hypothesis one for commercial 

livestock farms. 

I reject hypothesis one with regards to output prices for FNV farms.  There is a 

statistically significant and positive coefficient on the interaction term for resident FNV farms, 

indicating that the rate of investment increases more given an increase in output prices for 

resident FNV farms compared to commercial FNV farms.  The large resident FNV farm output 

price partial investment elasticity estimate indicates that resident FNV farms are extremely 

responsive the changes in output prices.  On average, a one-percent increase in output prices 

will generate a $251 increase in farm capital investment for resident FNV farms.  I cannot make 

any conclusions regarding intermediate vs. commercial farm investment in responses to changes 

in output prices given the lack of statistical significance of my estimated commercial farm 

coefficient and the intermediate farm interaction term. 

 
 
 

8.3 Results for Hypothesis 1: Returns on Investment 

Past studies for crop or mixed crop and livestock farms overwhelmingly find a positive 

and statistically significant relationship between investment and increases in farm income and 

the returns to investment.  These include:  Jensen et al. (1993) for investment in land, livestock, 

machinery, equipment and buildings by farms in the Kansas farm management dataset over the 

period of 1973-1988, Ariyarante and Featherstone (2009) using the same dataset over the 

period of 1998-2007 for the rate of investment in farm machinery and equipment, and Barry et 

al. (2000) for investment in land and non-land assets using the Illinois Farm Management 

Association database for years 1987-1994. Similar to these studies, my estimated coefficients 

are statistically significant and positive for commercial grain and FNV farms.  On average a 1% 

increase in the returns to investment income results in a $158 increase in commercial grain farm 

investment and a $216 increase in commercial FNV investment.   
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Looking only at livestock farms, Ariayante and Featherstone (2009) obtain negative and 

statistically significant coefficient estimates on beef farm income.   Similarly, Weersink and 

Tauer (1989) estimate that an increase in income for New York Dairy Farms leads to statistically 

significant decrease in machinery, equipment, and livestock investment. In contrast to these 

studies, the coefficient estimates and partial elasticity estimates on the returns to investment 

for commercial livestock farms are positive but not statistically different from zero.  I cannot 

reject that changes in the returns to investment have no impact on commercial livestock 

investment.   

There are multiple reasons why my results for livestock farms may differ from those of 

Ariayante and Featherstone (2009) and Weersink and Tauer (1989).  One reason could be the 

greater level of heterogeneity between livestock producers within my sample. Since my dataset 

covers the whole US rather than a single state, it includes a greater variety of animal production 

systems.  Believing that that the response to changes in net farm income differs according to 

animal production type, it is logical that having a greater variety of animal production types in 

the sample may lead to a greater range of estimates and difficulty in finding statistical 

significance.    

To address this issue, I estimate the regression for dairy and poultry separately.  I obtain 

similar results for poultry farms as I do for livestock farms as a whole.  For dairy farms my results 

now match those of other studies.  There is a statistically significant and negative coefficient on 

the returns to investment and a smaller but positive statistically significant coefficient on 

investment returns squared. It appears that the rate of investment is negatively correlated with 

increases in the returns to investment.  This may be related to the livestock production cycle, 

where changes in prices and income levels encourage producers to either build or reduce herd 

sizes. 

I can accept hypothesis one for grain and FNV farms.  The interaction terms for 

intermediate grain farms as well as intermediate resident and intermediate FNV farms are 

negative and statistically significant.  An increase in the returns to investment encourages a 

larger increase in the rate of investment on commercial grain farms compared to intermediate 

grain farms and on commercial FNV farms compared to either resident or intermediate FNV 

farms.  I cannot conclude that there is any difference in the rate of investment on resident farms 
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compared to commercial grain farms given the lack of significance of the interaction term on 

resident grain farm returns.    

Interestingly, for resident and intermediate grain and FVN farms the coefficient on the 

squared term is generally positive while it is negative for commercial grain and FNV farms.  In 

general, the opposite is true for resident and intermediate farms. This results in the following 

relationship: for intermediate and resident farms: increases in returns have a greater impact on 

investment given higher initial farm income levels while they have a greater impact on 

commercial farms at lower initial farm income levels. As a result, the response to a change in the 

returns to investment will be the most similar for farms in the middle of the income distribution 

range. In general, very low income intermediate and resident farms will be the least responsive 

to a change in the returns to investment.     

Hypothesis one is more difficult to interpret for livestock farms given the lack of 

statistical significance on commercial farm coefficients and the squared income term I use.  I 

obtain a statistically significant and negative interaction term on resident farms when breeding 

livestock is included but a positive interaction term for intermediate farms when breeding 

livestock is not included.  When I look at dairy separately, I obtain no difference between 

resident and commercial responses to a change in the returns to investment but that 

intermediate dairy farms increase the rate of more given an increase in returns.  For poultry 

farms both the commercial farm and the interaction term coefficients are statistically significant, 

indicating that an increase in investment returns has no impact across any of the farm 

typologies.  Looking at the estimated partial investment elasticities, it appears that commercial 

livestock, dairy, and poultry farm investment increases to a greater degree given a change in 

returns, but this could be mainly due to the large levels of capital stock on commercial farms vs. 

higher rates of investment.   

 
 
 

8.4. Results for Hypothesis 2: Marginal Tax Rates 

A change in marginal tax rates has a statistically significant impact only commercial 

farms within the grain farms production category.   There is a negative relationship between 

commercial grain farm investment and marginal tax rates.  A one percentage increase in the 

marginal tax rate leads to a $375 decrease in commercial grain farm capital investment.  My 
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results for commercial grain farms are similar to that of Jensen et al. (1993).  They estimate that 

an increase in the calculated farm marginal tax rate results in a statistically significant decrease 

in investment.   

Unlike Jensen et al. (1993), I obtain statistically insignificant coefficients on marginal tax 

rates for commercial farms in all other production types.  This difference in statistical 

significance for FNV and livestock farms may be linked to differences in estimated levels and 

variation of farm marginal tax rates.  The mean and standard deviation of marginal tax rates for 

farms in Jensen et al.’s Kansas Farm Management Dataset sample is larger than those estimated 

for cohorts in the ARMS dataset.   Jensen et al. (1993) estimate that during the 1973-1988 time 

period the average marginal tax rate for farms in the Kansas Farm Management Dataset was 

0.30 with a standard deviation of 0.223.  The average marginal tax rate for cohorts within the 

sample is 0.16 with a standard deviation of 0.07.  These differences could be due to differences 

in federal tax rates during the different sample time period, differences in farm crop and 

livestock production choices and related farm income levels, or the use of pseudo panels vs. 

true panel data.  Regardless, at lower tax rates an increase in the marginal tax rate could have 

less of an impact on investment then at higher marginal tax rates.  At these lower rates a change 

in the marginal tax rate could have a smaller impact on investment.  In addition, Jensen et al. 

(1993) uses a Bisquare OLS estimation methodology while this study uses a fixed effects 

methodology.  His methodology accounts for outliers in the data while mine focuses on fixed 

effects related to differences in farm size, production region, and production type.  These 

differences in estimation methodologies may lead to differences in coefficient estimates.   

Hypothesis two is supported for grain farms, though different than what I expected. An 

increase in investment leads to a slightly larger increase in investment for resident farms 

compared to intermediate farms.  Compared to commercial farms, the impact of an increase in 

marginal tax rates on resident farm investment is not “larger or stronger” as much as it is 

“different”.  On average, an increase in the marginal tax rate leads to a $375 decrease in 

commercial grain farm investment and a $83 increase in resident farm investment and a $35 

increase in intermediate grain farm investment.   Higher levels of investment reduce total 

taxable income.  Taking advantage of this tax benefit should be more attractive as off-farm 

income levels increase.  This explains the larger impact of marginal tax rates on resident grain 

farms compared to intermediate grain farms.  One would expect the same relationship for 
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commercial grain farms, as the summary statistics show that they also earn high levels of off-

farm income.   One explanation for this negative relationship could be when the marginal tax 

rate increases, either due to increases in the tax bracket percentages or because higher farm 

incomes push the farm into a higher tax bracket, the impact of a reduction in total income 

available for investment is greater than the benefits of reducing off-farm taxable income 

through investment.  The overall result is a decrease in investment given an increase in marginal 

tax rates.  It appears that the same relationship holds for FNV farms, livestock farms (including 

breeding livestock), and poultry farms.  Unfortunately, given the lack of statistical significance on 

these coefficients for the other farm production types, I cannot reject that changes in marginal 

tax rates have no impact on resident farm investment within these categories.     

 
 
 

8.5   Results for Hypothesis 2: Tax Depreciation Expenses 

Increases in the depreciation tax rate17 are associated with greater investment on 

livestock farms.  For every one percent increase in the depreciation tax rate investment on 

commercial livestock farms increases by $102 and $123, depending if breeding livestock is 

included or not. This impact holds if livestock farms are split into more homogeneous categories.  

A one percent increase in the depreciation tax rate results in a $198 increase in commercial 

dairy investment and $33 in commercial poultry investment.  The estimated coefficients are 

                                                           
17 The level of tax depreciation expenses is also related to the level of investment as seen in 
Table 23.  Unfortunately, the link between larger farms having on average larger levels of 
revenues, expenditures, income, and asset levels makes using depreciation expenses without 
adjusting for differences in farm size problematic.  By normalizing by capital expenses I minimize 
multicollinearity between model variables.  Another way to address this would be to instead use 
a measure of allowable tax depreciation rates. This methodology along with pseudo panels 
constructed from ARMS data was used in a soon to be published article by Williamson and 
Stutzman in the Agricultural Finance Review.  This methodology minimizes multicollinearity and 
deals with potential endogeneity due to greater depreciation expense levels caused by larger 
capital stock levels as a result of greater investment that period.  This method does not take into 
account the actual level of depreciation taxes taken that period. Given generous tax 
depreciation expensing limits and bonus depreciation expense rates in the later part of our 
sample period, many farms expensed the majority of capital purchases in the given purchase 
period (Williamson and Stutzman).  As a results, allowable and actual tax depreciation rates may 
differ substantially in the later sample time period.   
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statistically insignificant for commercial grain and FNV farms.  A change in depreciation tax 

expenses have no statistically significant impact on commercial grain and FNV investment.     

In comparison, Ariyarante and Featherstone (2009) obtain statistically significant 

estimates for machinery and equipment depreciation, vehicle depreciation and structure 

depreciation across the whole sample and within specific constructed farm quartiles. They 

estimate that an increase in lagged machinery and vehicle tax depreciation expenses results in 

an increase in investment, while an increase in lagged structure depreciation expenses results in 

a decrease in investment.  Smaller but also positive and statistically significant increases in 

investment per dollar of lagged tax depreciation expenses were obtained by Jensen et al. (1993).  

In contrast, Hadrich and Olson (2013) estimate a statistically insignificant coefficient on the 

lagged log value of tax depreciation expenses for farms which made an investment in the given 

period.    

One reason for the difference in statistical significance and smaller coefficients I and 

Hadrich and Olson obtain compared to Ariyarante and Featherstone may be the fact that 

neither I nor they distinguish between different types of capital.  If, according to Ariyarante and 

Featherstone, increases in machinery and equipment depreciation rates lead to increases in 

investment rates while increases in structure depreciation expenses are associated with 

decreases in investment, then lumping these categories together will result in either smaller 

coefficient estimates and/or increase the standard error of the estimated coefficients and lead 

to statistically insignificant estimates.   

The positive and statistically significant interaction term on resident farms supports 

hypothesis two for livestock farm investment. Resident livestock farms increase their rate of 

investment to a greater degree given a change in the rate of tax depreciation expenses.  A one 

percent increase in the depreciation tax rate results in a $70 or $110 increase in depreciation for 

resident livestock farms, depending on if breeding livestock is included or not and a $85 increase 

in investment for poultry farms.  While the rate of investment is greater for resident farms, 

converting this to dollars of investment results in a smaller partial investment elasticity estimate 

compared to commercial farms.  This is due to the fact that that resident farms, on average, 

have smaller capital stock levels.  Hence, while investment policy may have a larger “impact” on 

resident farms the actual change in investment expenditures for the sector as a whole from any 

change in tax rates will be largely determined by the impact of investment by both commercial 
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and resident farms.  The statistically insignificant interaction terms on resident and intermediate 

grain and FNV farms leads me to reject hypothesis two for grain and FNV farms and conclude 

that there are no statistically different response to marginal tax rates between resident, 

intermediate, and commercial intermediate grain or FNV farms. 

 
 
 

8.6 Results for Hypothesis 3: Working Capital 

Changes in working capital levels have little impact on commercial farm investment. 

Across all of the farm production types, the coefficient on working capital for commercial farms 

is not statistically different from zero, nor are the majority of the interaction terms on resident 

or intermediate farms.  These results are similar to that of Hadrich and Olson (2013).   They also 

obtain a small and statistically insignificant coefficient on the log of working capital.  

 I accept hypothesis three for FNV farms.  The rate of investment greater on 

intermediate FNV farms given an increase in working capital levels.  Greater levels of internal 

liquidity on intermediate FNV farms lead to a higher rate of replacement of capital stocks.   This 

supports my hypothesis of credit constrained behavior for intermediate FNV farms.   I reject 

hypothesis three for grain, livestock, dairy and poultry farms.  There is no statistically significant 

differential impact on investment across intermediate grain, livestock, or dairy farms given a 

change in working capital levels. 

While I reject the hypothesis of credit constrained behavior for poultry farms, I do find a 

linkage between working capital levels and investment on intermediate poultry farms.  A 

decrease in the rate of working capital on intermediate poultry farms is associated with an 

increase in the rate of investment.  There are multiple reasons that could explain this 

relationship. One potential explanation is that the act of investment leads to a decline in 

working capital levels on intermediate farms.  In this case, the investment funds are obtained 

from either liquidating short-term assets or taking on additional short-term debt.  An alternative 

explanation is that intermediate poultry farms with lower working capital levels are more likely 

to have higher investment rates.  Further research is needed to determine the impact of poultry 

contracting relationships on the optimal level of working capital producers choose to hold and 

the impact on farm investment levels.    
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8.7 Results for Hypothesis 3:  Lagged Debts, Lagged Net Worth, Lagged Debt to Asset Ratio 

To verify these results, I examine the impact of other measures of financial constraints 

on farm capital investment, including lagged net worth, lagged debt, and lagged debt to asset 

measurements.  For grains, FNV and poultry farms I find no statistically significant impacts on 

the rate of commercial farm capital investment from a change in any of these variables.  Lagged 

debt levels have no statistically significant impact on the rate of commercial farm capital 

investment, except for dairy farms.  Within dairy farms, there is a statistically significant and 

negative relationship between lagged debts and commercial farm investment.  A higher level of 

debt in the prior period on commercial dairy farms is linked with a reduction in investment in 

the current period.  This appears logical though the nature of the cause is uncertain.  Increases 

in debt over the prior periods may reduce available credit levels this period.  The reduction 

could be imposed externally in the credit markets or by the producer themselves unwilling to 

take on higher investment.  The link between investment and higher prior credit levels could 

also just reflect the fact that, given the lumpy nature of capital and if it is assumed that some 

portion of the investment is financed through debt, a large investment yesterday could mean 

that needed investments will be lower in the current and subsequent periods.   

My results for all but dairy farms are different from those obtained by other farm 

investment studies such as Serra et al., who obtains a positive and statistically significant 

coefficient on assets, or Weersink and Tauer, whom obtain a positive and statistically significant 

coefficient on changes in liabilities and assets.   One reason may be my sample time period.  

Farm incomes rose and total debt levels of producers fell during the latter portion of my sample 

period.  Many producers were able to invest out of current earning and hence the level of debts 

and net worth will have less of an impact in influencing investment levels.   

For livestock and dairy farms, I obtain positive and statistically significant coefficients on 

lagged debt to asset coefficients for commercial farms.  A higher level of debts relative to assets 

last period is associated with greater investment this period.  A similar coefficient value was 

obtained by Micheels et al. (2004) for farms in the Illinois Farm Business Management 

Association between 1995-2002.  In contrast, Hadrich and Olsen (2013) estimate that an 

increase in the debt to asset ratio leads to a statistically significant decline in farm investment 

for farms in the North Dakota farm Ranch Business Association between 1993-2011.   It could be 

that within my and Micheels et al.’s studies, the debt to asset ratio coefficient is picking up the 
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relationship between farms which are growing and both tend to have greater than average 

investment levels and higher debt to asset ratios.   

Using the debt to asset ratio, I can only accept hypothesis three for livestock farms.  The 

debt to asset interaction term on intermediate livestock farms is negative and statistically 

significant.  The rate of investment on intermediate farm investment declines as debts increase 

relative to assets while it increases on commercial livestock farms.  A one percent increase in 

the ratio of debts to assets the prior period results in a $2 or $21 increase in investment in 

commercial farm investment and a $2 or $7 decline in investment on intermediate farms, 

depending if breeding livestock is included or not.  While the intermediate and commercial farm 

investment elasticity estimates for dairy and FNV farms exhibit the same relationship, the 

intermediate farm interaction terms are not statistically significant, hence I cannot conclude 

that there is any statistically difference across farm typologies in response to a change in the 

ratio of debts to assets in FNV or dairy farms.   

Given these conflicting results, that the impact of credit and financial constraints on 

investment is different even in similar farm production types depending on the measurement 

used, further work is needed to be certain regarding the exact relationship between increases in 

liquidity and financial constraints across farm production types and typologies.  

 
 
 

8.8 Results for Other Model Variables: Off-farm Income 

In most cases, the estimate partial investment elasticities on off-farm income are small 

and statistically insignificant.  A 1% change in the level of off-farm income results in no 

statistically significant change in farm investment across any of the enterprise types.   Ariyarante 

and Featherstone (1998) also estimated a statistically insignificant coefficient on off-farm 

income.  In contrast, Jensen et al. (1993) estimated positive and statistically significant 

coefficients on off-farm income.  Both Jensen et al. (1993) and Ariyarante and Featherstone 

(1998) utilize Kansas Farm Management but examine investment behavior over different time 

periods.  The 1998-2007 time period utilized by Ariyarante and Featherstone (1998) overlaps my 

sample time period, 1996-2013.  Jensen et al. (1993) utilized the earlier time period of 1973-

1988.   Reasons for these differences may be that in the earlier time period either: off-farm 

incomes varied more in general and/or in comparison to farm incomes, off farm incomes were 



112 

 

 

 

much higher in comparison to farm incomes, or a larger portion of farms did not earn off-farm 

income.  A lower level of variation within off-farm income levels overall and compared to farm-

income levels during the sample time period, less of a difference between off-farm and farm 

income levels, or a greater number of farms now earning off-farm incomes would result in 

smaller and potentially statistically insignificant impacts on investment from a change in the 

level of farm off-farm income during the 1996-2013 time frame, supporting the lack of statistical 

significance obtained in my and Ariyarante and Featherstone’s estimates.   

 
 
 

8.9: Results for Other Model Variables: Farm Acres 

The impact of a change in farm acres on investment differ across production types.  

There are no statistically significant impacts on investment from a change in farm acreage for 

grain or FNV farms.  For livestock farms (excluding breeding livestock), an increase in farm acres 

results in a statistically significant decrease in investment rates.     These results differ from that 

of Micheels (2004), who estimated a positive and statistically significant relationship between 

farm capital investment and farm acres using Illinois Farm Business Management data.  Unlike 

Micheels, I normalize by the value of farm capital stock.  This removes any spurious correlation 

between larger investment levels on large farms and acres due to the sole fact that large farms 

operate a greater number of acres.  In addition, Micheels does not differentiate between crop 

and livestock production when estimating the impact of farm acres on investment.  By 

separating grain, FNV and livestock farms I remove any spurious relationships between acreage 

and investment that are due to differences between different crop and livestock production 

systems.  In contrast to the findings of Micheels (2004), Weersink and Tauer (1989), find no 

statistically significant relationship between dairy farm investment and farm size.  They utilize 

work units to measure farm size.  This measurement is a more accurate reflection of farm size 

for livestock farms given that it takes into account physical livestock units produced and is not 

solely based on physical farm size.  When I estimate the regression for dairy farms separately I 

also obtain a statistically insignificant coefficient on farm acres.   Given these conflicting 

relationships, further work is needed to determine the exact relationship between investment 

across different livestock production types and physical farm size.  
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8.10: Results for Other Model Variables: Interest Rate 

I would expect an increase in interest rates to both increase the opportunity cost of 

investing and to deter taking on new loans.  Surprisingly, my estimated coefficients and partial 

investment elasticities for interest rates are statistically insignificant.  In contrast, Ariyarante and 

Featherstone (1998) found a statistically significant and negative coefficient on interest rate 

expenses. One reason for these differences may be that I use average Federal Reserve District 

level interest rates rather than interest expenses or the rates paid on individual farm loans.  This 

measurement takes into account time variation in interest rates but does not fully capture the 

regional variation within different Federal Reserve Districts, farm typologies, or production 

enterprise types.  Nor does it account for variation in actual interest rates paid at the farm level.  

As a result, using an average of farm interest rates may result in estimates that under-estimate 

the variation in interest rates faced by farms in a given cohort.  Another reason may that during 

my sample period farm incomes were high allowing many farms to invest using internal funds 

vs. outside debt.  The market interest rate may have had very little impact on investment for 

these farms.   

 
 
 

8.11: Results for Other Pseudo Panels 

Comparing my results across other panels supports the initial results found using panel 

1.  Statistically significant results within the panels match the results found using panel 1. On the 

other hand, the results obtained within the other panels raises additional questions regarding 

the ability of pseudo panels to identify important relationships.  Fewer of the coefficients are 

statistically significant when pseudo panel2 is used compared to panel 1.  It appears that 

breaking farms into more categories, and as a result using a fewer number of farms to calculate 

each cohort means, leads to a smaller ability to identify the impacts of changes in variable 

values on investment.  One thought is that there not enough observations within each category 

to accurately reflect true population means.  In this case, using pseudo panel 2, while resulting 

in a greater number of categories and better large sample regression properties, does not 

outweigh the downsides of this panel, which include fewer observations within cohorts and a 

greater number of missing cohort observations.        
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When I utilize pseudo panel 2, I obtain negative coefficients on prices and income and 

positive coefficients on depreciation and tax interaction terms for resident and intermediate 

farms compared to commercial farms.  These further support the results of hypothesis 1 and 2 

for grain farms.  The impacts of output prices and taxes for resident farms and incomes for 

intermediate farms are statistically significant.  For FNV farms I see similar impacts for incomes 

and for depreciation and marginal tax rates, again further supporting my results for hypothesis 1 

and 2 for FNV farms.   I also see a greater impact of an increase in prices on resident FNV farms 

compared to commercial farms, similar to that found in pseudo panel 1 and contrasting my 

expected results for hypothesis 1 with regards to output prices in FNV farms.  For livestock 

farms I see very little impact from prices, incomes or marginal tax rates.  I find negative 

interaction terms on output prices and a positive interaction terms on depreciation tax rates for 

resident and intermediate farms.  The coefficients are generally insignificant for commercial 

farms and the intermediate farms, indicating low overall impacts on investment from changes in 

these variables.  Those for incomes and tax depreciation rates for resident farms are statistically 

significant, supporting hypothesis 2 and to some degree hypothesis 1.  These impacts are similar 

for dairy and poultry farms as to livestock farms when using pseudo panel 3, further adding 

credence to these hypotheses.  I overall find no statistically significant differences in working 

capital levels across any of the farm typologies or farm types, further supporting my results for 

hypothesis 3. 

Similar results are obtained in terms of coefficient signs with regards to output prices, 

income levels, depreciation levels and marginal tax rates when using pseudo panel 3 compared 

to using pseudo panel 1.  One difference is that statistical significance of the coefficients 

obtained using pseudo panel 3 is lower compared to those obtained when using pseudo panel 1.  

This supports my thought that by not grouping farms specifically into farm typologies I am less 

able to clearly identify differences between the responses to key variables among farm 

typologies.  The results obtained in panel 3 support hypothesis 1 for output prices when 

comparing commercial and resident farms and hypothesis 2 with regards to marginal tax rates 

when comparing resident and intermediate farms. I reject hypothesis 3, finding no statistically 

significant impact from a change in working capital levels on farm investment.   This proves that 

my results with respect to working capital are related to my choice of pseudo panel 

construction.  Working capital levels have little impact on the rate of farm capital investment 
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regardless of if cohort categories reflect differences in farm income levels or not.  Estimating the 

regressions separately by region in an attempt to take advantage of production differences 

resulted in mainly statistically insignificant coefficient estimates.   The exception was region 3, 

where my results are very similar to those obtained for grain farms using pseudo panels 1 and 2.   

These comparisons both lend credence to my earlier results, support the need to taking 

into account differences in farm size and owner occupation when forming cohorts, as well as the 

difficulty of obtaining statistical significance when estimating using fixed effects models and 

pseudo panels constructed from highly heterogeneous survey data.  Statistically significant 

impacts for panel 1 in general appear consistent across panel construction while similar but 

statistically insignificant results in other panels may be statistically significant in panel 1.  This is 

similar to the findings comparing using different models, including random effects and feasible 

least squares, to a fixed effects model. 
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CHAPTER 9: APPLYING THE MODEL 

 In this chapter I use the estimated coefficients and partial investment elasticities to 

perform two exercises.  First, I examine the ability of changes in the model variables between 

the sample time period of 1996 and 2013 to explain changes in investment levels between these 

time periods.  Next, I estimate the expected change in farm capital investment by 2024 given 

projected changes in key model variables.   

 
 
 

9.1 Differences in Farm Capital Investment in 2013 vs. 1996 

Both investment and the other key variables in the model, such as output prices, net 

farm incomes, depreciation expenses, working capital levels, and interest rates changed 

dramatically over the sample time period.  In this section I draw connections between 

differences in farm investment levels in 2013 vs. 1996 and differences in output prices, returns, 

cash flows, tax policy, and interest rates in these two years.   I estimate the portion of the 

difference in investment in 2013 vs. 1996 attributable to changes in each of the model variables 

both separately and as a whole.  These measurements are compared to the portion of 

investment not explained by changes in the model variables between these two years.    

 
 
 

9.1.1 Farm Economy in 2013 Compared to 1996 

Table 44-Table 49: Average Value of Model Variables in 1996 vs. 2013 for Intermediate 

Livestock Farms  list the average value of each of the model’s variables in 2013, in 1996, and the 

percentage change between the two years by farm typology and enterprise type.  For net cash 

farm income, tax depreciation expenses, working capital and acres I provide estimates below 

using the observation values, while in the model these are normalized by the level of farm 

capital stock.
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Table 44: Average Value of Model Variables in 1996 and 2013 for Commercial Grain and FNV 

Farms 

  Grain Farm FNV 

Variable (units) 2013 1996 Change 2013 1996 Change 

I($)  74,718  34,641  40,077  62,175  31,603  30,571  

K($)  634,771  424,796  209,975  592,504  444,039  148,465  

Prindex (index) 1.017 0.646  0.371  1.119 0.726  0.392  

NCFI  ($)* 229,311  130,242  99,069  334,651  218,324  116,326  

DEP  ($)* 59,349  33,145  26,204  62,615  45,783  16,832  

ACRES* 1,188  1,205  -17 447  337  110  

MTR (ratio) 0.206 0.206 -0.001 0.211 0.200 0.010  

ENTROPY (index) 0.187 0.205 -0.018 0.051 0.076  -0.025 

WC($)* 246,329  113,042  133,287  595,337  120,555  474,782  

Intrate (ratio) 0.0449 0.0796 -0.0347 0.0493 0.0791 -0.0298 

OFFI (thousand $) 71.804 59.006 12.798  85.840 59.006 26.834  

 

 

Table 45: Average Value of Model Variables in 1996 and 2013 for Commercial Livestock Farms 

  Livestock Farm 

Variable (units) 2013 1996 Change 

I ($) A 26,121  41,224  -15,103 

I ($) B 33,248  24,675  8,573  

K ($) A 581,777  606,827  -25,049 

K ($) B 448,803  323,991  124,813  

Prindex (index) 1.106 0.782 0.324  

NCFI  ($)* 144,494  129,167  15,326  

DEP  ($)* 40,603  44,435  -3,831 

ACRES* 247  316  -69 

MTR (ratio) 0.160 0.164 -0.004 

ENTROPY (index) 0.108 0.087 0.021  

WC($)* 131,309  105,065  26,245  

Intrate (ratio) 0.0458 0.0787 -0.0329 

OFFI (thousand $) 69.579 51.535 18.044  
A does not include breeding livestock 
B includes breeding livestock 
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Table 46: Average Value of Model Variables in 1996 and 2013 for Resident Grain and FNV Farms 

  Grain Farm FNV 

I($)  2013 1996 Change 2013 1996 Change 

K($)  48,046  17,869  30,178  37,241  14,669  22,572  

Prindex (index) 420,658  329,452  91,206  391,094  337,143  53,951  

NCFI  ($)* 1.032 0.669 0.363  1.119 0.726 0.392  

DEP  ($)* 155,224  58,422  96,802  256,243  68,951  187,292  

ACRES* 36,495  20,519  15,976  61,364  27,209  34,155  

MTR (ratio) 963   911  51  534  313  221  

ENTROPY (index) 0.176 0.189 -0.013 0.183 0.159 0.024  

WC($)* 0.169 0.204 -0.035 0.051 0.085 -0.034 

Intrate (ratio) 138,332  101,058  37,274  387,571  48,163  339,407  

OFFI (thousand $) 0.0438 0.0792 -0.0354 0.0485 0.0790 -0.0305 

I($)  76.647 57.401 19.246   98.238 68.017 30.221  

 

 

Table 47: Average Value of Model Variables in 1996 and 2013 for Resident Livestock Farms 

  Livestock Farm 

Variable (units) 2013 1996 Change 

I ($) A 15,259  38,357  -23,099 

I ($) B 17,939  20,916  -2,977 

K ($) A 459,101  555,166  -96,065 

K ($) B 259,549  272,459  -12,911 

Prindex (index) 1.116 0.785  0.331  

NCFI ($)*  85,757  98,043  12,286 

DEP  ($)* 27,421  34,328  -6,907 

ACRES* 160   253  93 

MTR (ratio) 0.149 0.154 -0.005 

ENTROPY (index) 0.098 0.086 0.013  

WC ($)* 63,158  87,896  -24,738 

Intrate (ratio) 0.0453 0.0787 -0.0334 

OFFI (thousand $) 74.311 56.166 18.146   
A does not include breeding livestock 
B includes breeding livestock 
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Table 48: Average Value of Model Variables in 1996 vs. 2013 for Intermediate Grain and FNV 
Farms 

  Grain Farm FNV 

Variable (units) 2013 1996 Change 2013 1996 Change 

I ($)  46,973  18,965  28,008  37,918  15,636  22,282  

K ($)  415,333  319,319  96,013  450,673  342,380  108,293  

PrIndex (index) 1.030 0.652 0.378  1.119 0.726 0.392  

NCFI  ($)* 155,224  43,965  111,259  188,881  74,465  114,417  

DEP  ($)* 36,495  20,526  15,969  47,221  28,333  18,888  

ACRES* 963  933  29   412  313  98  

MTR (ratio) 0.175 0.182 -0.006 0.170 0.173 -0.003 

Entropy (index) 0.167 0.197 -0.030 0.052 0.076 -0.024 

WC ($)* 143,135  85,432  57,703  394,684  47,866  346,818  

Intrate (ratio) 0.0450 0.0793 -0.0343 0.0489 0.0791 -0.0301 

OFFI (thousand $) 71.698 50.319 21.379  81.729 73.848 7.881  

 

Table 49: Average Value of Model Variables in 1996 vs. 2013 for Intermediate Livestock Farms  

  Livestock Farm 

Variable (units) 2013 1996 Change 

I ($) A 14,358  38,031  -23,673 

I ($) B 16,911  20,863  -3,952 

K ($) A 441,180  568,321  -127,140 

K ($) B 256,470  282,585  -26,116 

Prindex (index) 1.106 0.782  0.324  

NCFI  ($)* 76,625  95,307  -18,683 

DEP  ($)* 25,051  34,918  -9,866 

ACRES* 166  286  -120 

MTR (ratio) 0.000 0.150 -0.150 

ENTROPY (index) 0.109 0.083 0.026  

WC ($)* 69,383  88,412  -19,028 

Intrate (ratio) 0.0453 0.0787 -0.0334 

OFFI (thousand $) 69.496 50.590 18.906  
A does not include breeding livestock 
B includes breeding livestock 
 
 

Compared to 1996 and earlier years, by 2013 grain and FNV farms experienced large increases in 

the average level of capital investment, farm stock capital levels, agricultural output prices, net 

cash farm incomes, depreciation tax expenses and working capital levels.  Resident and 

Intermediate livestock farms, while seeing increases in average output prices in 2013 compared 

to 1996, reduced investment and saw capital stock levels decline in comparison to prior years 
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(when not accounting for breeding livestock).  This was accompanied by lower net farm 

incomes, depreciation tax expenses, and working capital levels in 2013 vs. 1996.  Commercial 

livestock farms also reduced capital investment (not including breeding livestock) in 2013 vs. 

1996 despite modest increases in net farm income and working capital levels.  When breeding 

livestock is included in the definition of investment and farm capital stock, average livestock 

farm investment and capital stock levels are higher 2013 vs. 1996.  This statistic indicates that in 

2013 vs. 1996 livestock farms shifted total investment away from machinery and equipment and 

towards greater investment in breeding livestock.   

 
 
 

9.1.2 Methodology 

To estimate the change in average farm investment between 2013 vs. 1996 I first multiply the 

difference in the average level of the independent variables between these two years 

(calculated in tables A24A-C) by the estimated coefficient18.  Since the dependent variable in the 

model is the rate of investment, or dollars invested per dollars of capital stock, the result is the 

difference in the rate of investment in 2013 vs 1996.  To express this difference in dollars of 

capital invested, I multiply by the average level of capital stock over the sample time period19.  

This is done separately for each farm typology and farm enterprise type.  The total change in 

investment explained by changes in the model variables between 2013 and 1996 is calculated as 

the sum of the changes in investment predicted by each of the independent variables 

separately.  The residual is calculated as the actual change in investment between 1996 and 

2013 less the total change in investment explained by changes in the model variables. 

                                                           
18  This can be expressed as:   𝐼𝐶,2013-𝐼𝐶,1996   =∑ 𝐵𝑘[𝑋2013,𝑘-𝑋1996,𝑘] + [ 𝑒2013-𝑒1996], where 𝐼2013 and 𝐼1996 denote the 

average value of investment in 2013 and 1996, 𝑋2013,𝑘  and 𝑋1996,𝑘 the average value of each of the K independent 

variables (including the time dummy for 2013 and that for 1996) in 2013 and 1996, and 𝑒2013 and 𝑒1996 the error term 

in 2013 and 1996.  The difference in investment is the sum of the difference in each of the model variables times the 

estimated coefficient plus the difference in the error terms between the two periods. All fixed effects terms or typology 

dummy variables present in the original regression specification are removed by taking the difference between two 

time periods.  

19 This is an approximation.  The true difference in the rate of investment is   

𝐼2013-𝐼1996 = 
𝐼2013

𝐾𝑐,2013

̂
 - 

𝐼𝑐,1996

𝐾𝑐1996

̂
.  Instead this is proxied by  𝐼2013-𝐼1996 = 

𝐼𝑐,2013−𝐼𝑐,1996 

𝐾
 where 𝐾 is the average level of capital 

stock.  The residual now includes differences in the rates of investment between 2013 and 1996 due to changes in the 
level of capital stock not accounted for by the model variables.   
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9.1.3 Investment Changes Explained 

Figure 17, Figure 18, and Figure 19 show the estimated change in average farm capital 

investment between 2013 vs. 1996 explained by changes in each variable in the model 

separately for commercial, resident and intermediate farms respectively.  Figure 20, Figure 21, 

and Figure 22 compare the total change in investment explained by changes in the model 

variables with that not explained by the model variables for commercial, resident and 

intermediate farms.     

 
 

 

Figure 17: Change in Average Annual Farm Capital Investment in 2013 vs. 1996 Explained by 

Changes in Each of the Variables Separately for Commercial Farms by Farm Production Type 
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Figure 18: Change in Average Annual Farm Capital Investment in 2013 vs. 1996 Explained by 

Changes in Each of the Variables Separately for Resident Farms by Farm Production Type 

 

 
Figure 19: Change in Average Annual Farm Capital Investment in 2013 vs. 1996 Explained by 

Changes in Each of the Variables Separately Intermediate Farms by Farm Production Type 
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Figure 20: Total change in annual farm capital investment explained by changes in model variables 

in 2013 vs. 1996 for Commercial Farms by Farm Production Type 

 

 

Figure 21: Total Change in Annual Farm Capital Investment Explained by Changes in Model 

Variables in 2013 vs. 1996 for Resident Farms by Farm Production Type 
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Figure 22: Total Change in Annual Farm Capital Investment Explained by Changes in Model 

Variables in 2013 vs. 1996 for Intermediate Farms by Farm Production Type 
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prices, interest rates, and other factors specific to 2013 explain $10,600, $11,887 and $11,235 of 

the increase in average farm investment levels on commercial grain farms in 2013 vs. 1996.  

Reductions in interest rates and the 2013 year dummy variable explains $7,881 and $9,367 of 

the decrease in average investment levels on commercial livestock farms.  Increases in output 

prices, all else held constant, indicate that commercial livestock farm capital investment should 

be $8,037 higher in 2013 vs. 1996.  The year dummy variable represents factors unique to 2013 

but common across all farm production types and typologies and not accounted for by specific 

variables within the model.  These could include weather conditions and changes in export 

demand.   

A smaller portion of the difference in commercial farm investment between these two 

years can also be explained by changes in net farm income, off-farm income, acres, and 

depreciation tax expenses.  Changes in net farm income explain $1,437 of the increase in 

investment for commercial grain farms and $818 of the decrease in investment for commercial 

livestock farms.  For commercial farms, an increase in average off-farm income levels explains 

$783 of the increase in average farm investment while a decrease in average farm acreage 

would predicts a $1,086 decrease in investment.  For commercial livestock farms, the decline in 

tax depreciation expenses in 2013 compared to 1996 explains $1,571 of the decline in 

investment, while the increase in average farm acreage leads to an estimated $400 increase in 

average farm capital investment in 2013 vs. 1996.   

Similar results are obtained for resident and intermediate farms.  The model does an 

adequate job at explaining resident and intermediate grain and livestock (not including breeding 

livestock) average farm capital investment.  Differences in the average level of the model 

variables in 2013 vs. 1996 explain 75% and 91% of difference in average resident and 

intermediate grain farm investment and 78% and 46% of resident and intermediate livestock 

farm investment.  The model does an adequate job of estimating changes in resident and 

intermediate FNV farms, while it performed poorly for commercial FNV farms.  Differences in 

the average value of the model variables in 2013 vs. 1996 explain 54% of the difference in 

average resident FNV farm capital investment levels and 63% of intermediate FNV farm capital 

investment.   This is largely explained by the positive coefficient on output prices for resident 

and intermediate FNV farms compared to the negative coefficient on output prices for 

commercial FNV farms.  The livestock model (including breeding livestock) does equally as poor 
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a job estimating investment changes between 1996 and 2013 within the resident and 

intermediate farms as for the commercial farms.  This leads me to believe that there is 

something specifically driving breeding livestock investment, common across all farm typologies, 

which my model is not capturing.    

Similar to commercial farms, increases in output prices, falling interest rates, and the 

2013 year dummy variable explain the majority of the change in in resident and intermediate 

grain farm capital investment.  Differences include the greater impact of: net cash farm income 

on resident grain farm investment, off-farm income levels on intermediate grain farms, and 

reductions in tax depreciation expenses on resident and intermediate livestock farms.  Increases 

in average grain net farm incomes explains $2,499 of the increase in resident grain farm 

investment and only $1,105 of the increase in commercial grain farm investment.  Higher 

average off-farm income in 2013 vs. 1996 accounts for $1,240 of the increase in intermediate 

grain farm investment compared to $603 for commercial grain farms.  The reduction in average 

depreciation expenses per unit capital stock explains $2,596 of the decrease in resident livestock 

investment and $2,483 for intermediate livestock farm investment.  This is in contrast to the 

$1609 decrease in investment on commercial livestock farms explained by decreases in 

depreciation per unit capital stock.   

 
 
 

9.2 What Does this Mean for Farm Investment in 2024? 

Farm capital investment declined as of 2015 given lower output prices and net farm 

incomes between 2013 and 2015.  The level of farm debt has begun to rise.  After years of 

constant or declining interest rates, the Federal Reserve raised bank lending interest rates for 

the first time in December 2015.  These trends are projected to continue for the next few years.  

Given each of these has an impact on farm capital investment, one interesting question is what 

will average farm capital investment look like in 2024 given the expected changes in economic 

conditions between now and then?   

To answer this question, in the next section I utilize my model to estimate future 

changes in investment over the 2014-2024 time period given projected changes in output prices, 

net farm income, tax depreciation levels, marginal tax rates, working capital levels, and interest 

rates.  I utilize the estimated grain and livestock (not including breeding livestock) investment 
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models only.  I do not use the FNV and livestock (including breeding livestock) investment 

models given their lower ability to accurately estimate changes in investment over the sample 

period.  

 
 
 

9.2.1 Projection Data 2014-2024 

Projected changes in output prices for crop and livestock farms, net farm incomes, and 

interest rates are estimated using data from the Food and Agriculture Policy Research Institute 

(FAPRI)20 10-year baseline estimates.  For changes in crop and livestock output prices, I utilize 

the FAPRI estimates for annual gross crop and livestock receipts.  For changes in net farm 

income I use the FAPRI projections for net farm income earned by the agricultural sector.  

Changes in interest rates are represented as one third the projected change in prime interest 

rates.  FAPRI nominal crop receipts, livestock receipts, and net farm incomes were converted to 

real net farm incomes using the FAPRI CPI estimates.  This is in order to be consistent with my 

model, which uses real output and net farm income levels.  Estimates of annual changes in tax 

depreciation expenses, marginal tax rates, and working capital levels are my best estimates.   

Figure 23 shows the calculated annual continuous percentage change in each of these 

variables.  

 

Figure 23: Projected Annual Change in Model Variables 2014-2023 

                                                           
20Excel files with FAPRI data can be obtained at: http://www.fapri.missouri.edu/publication/2015-u-s-

baseline-briefing-book/?preview=true 
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Grain farm real output prices decrease 12% in 2014, 7% in 2015 and 2% in 2016.  Livestock 

prices increase by 11% in 2014 but then decrease by 11% in 2015, 5% in 2016 and 4% in 2017. 

For the remainder of the 2018-2024 time period crop and livestock prices are projected to 

remain close to these new 2017 levels, either increasing or decreasing by 0-3% annually.  Real 

net farm income levels will drop severely between 2014 and 2017.  Net Farm incomes fall by 

15% in 2014, 21% in 2014, 9% in 2016 and 4% in 2017. For the rest of the time period, nominal 

net cash farm income continues to increase slightly, but less than inflation leading to decreases 

in real cash farm income of between 1-3% over the 2018-2024 time period.    

I assume that the current depreciation tax laws remain intact until 2018, and hence 

there is no change in the average rate of tax depreciation per unit capital until 2018.  This is 

based on the "Protecting Americans from Tax Hikes Act of 2015" (PATH Act) passed on 

December 18, 2015 (Gearhardt, January 2016).  Under this act, the Section 179 depreciation 

expensing limit for new capital purchase was extended indefinitely at its current value.  The 

current bonus depreciation percentage limit was extended at its current 50% level though 2017, 

after which it decreases to 40% in 2018 and 30% in 2019.  To account for these declines I 

estimate a 10% reduction in the rate of tax depreciation each of these years.  I assume that 

bonus depreciation remains constant at 30% after this point, leading to no change in tax 

depreciation expenses beyond 2019.  These projections assume that rules governing current 

depreciation tax lives and normal deduction percentages remain consistent at their 2013 levels.   

I estimate the projected annual rate of change in marginal tax rates as one-third of the 

annual percentage change in net cash farm income each year.  The smaller reduction in tax rates 

compared to that of farm income takes into account that the model estimates a federal tax rate 

using total household income.  Reductions in total household income may be less than the 

reduction in farm incomes depending on levels of off-farm income and other taxable income 

sources and actions on the part of the household.  These estimates assume that federal tax 

rates, standardized and itemized deduction levels, and the rates and limits for individual tax line 

items remain at their 2013 levels.   

I estimate a 10% decline in working capital in 2014, a 25% decline in 2015, and an 

additional 10% decline in 2016.  These estimates are based upon documented increases in farm 

debt levels and declines in farm asset levels in 2014 and 2015 (USDA, November 2015) and my 

expectations that this pattern will continue in 2016 given further expected declines in farm 
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income levels.   After 2016, I assume that working capital remains constant at its 2017 level as 

farm incomes stabilize.   

 
 
 

9.2.2 Methodology 

I calculate the projected change in average farm capital investment due to changes in 

each variable separately within farm types and typologies.  First I calculate the total percentage 

change in each variable between 2014-2024.  This is done by taking the sum of the annual 

continuous percentage changes in the variable over these years.  This is then multiplied by the 

partial investment elasticity.  This results in an estimate of the average change in farm capital 

investment in 2024 compared to 2013 given a change in the specified variable.    

 
 
 

9.2.3 Projected Change in Investment 

The results are summarized in table 50 for grain farms and table 51 for livestock farms.   

 

Table 50: Projected Change in Average Farm Investment in 2024 vs. 2013 for Grain Farms 

Variable 

Resulting Change ($) in Average Farm Investment in 

2024A vs. 2013B 

Variable Name 

Change 

(%) Commercial Farms Resident Farms 

Intermediate 

Farms 

Output Prices D -19 -2,879*** -2,075* 850 

Net Farm Income D -59 -8,815** 728 1,129 

Tax Depreciation  -26 -336 -2,517 -1,391 

Working Capital -50 545 276 390 

MTR -11 4,534** -949 -400 

Total (before Interest Rates)  -7,218 -4,537 577 

 

Interest Rates 25 -4,576 -3,365 -3,448 

Total (including interest rates)  -11,794 -7,903 -2,872 
 

 
 
Table 51: Projected Change in Average Farm Investment in 2024 vs. 2013 for Livestock Farms 

Variable 

Resulting Change ($) in Average Farm Investment in 

2024A vs. 2013C 

Variable Name Change 

(%) Commercial Farms Resident Farms 

Intermediate 

Farms 

Output Prices -13 -2,683*** -787 -1,308* 

Net Farm Income -59 -4,414 -41 -645 

Tax Depreciation  -26 -2,593 -1,909*** -377 
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Table 51: Continued 

Working Capital -50 -610 -116 -267 

MTR -11 344 338 1,730 

Total (before Interest Rates)  -9,955 -2,515 -876 

 

Interest Rates 25 4,215 3,491 3,500 

Total (including interest rates)  -5,740 975 2,624 
A  These are the reduction in average farm capital investment in 2024 given the state change in that 
variable and all else held constant.  Stars indicate statistical significance of partial investment elasticities 
used in calculations with d Statistical significance: *= 90% Confidence level, **=95% confidence level, 
***=99% confidence level.   
B The 2013 average grain farm investment levels are:  $74,717 for commercial farms, $48,046 for Resident 
Farms, $46,972 for Intermediate farms 
C The 2013 average livestock farm investment levels (not including breeding livestock) are:  $26,121 for 
commercial farms, $15,258 for Resident Farms, $14,358 for Intermediate farms 
D Expected Changes in Real Dollar Values.   

 

Given the projected change output prices, net farm incomes, marginal tax rates, 

depreciation tax rates and working capital levels, average farm capital investment is expected to 

decline for all but intermediate grain farms.  The largest decline in investment occurs on 

commercial grain and livestock farms.  Average farm capital investment will decline by $7,218 

on grain commercial grain farms and by $9,955 on commercial livestock farms.  Resident farm 

investment will fall significantly as well.  Resident grain farm investment will be $4,537 lower for 

grain farms and $2,515 lower for livestock farms in 2024 compared to 2013. Intermediate farm 

investment is the least impacted given projected changes in model variables.  When projected 

changes in interest rates are included in the total projected change, the decline in farm capital 

investment is larger across all farm typologies.   

The largest decline in commercial farm capital investment arises due to falling farm 

income levels.  A projected 59% decrease in real net cash farm results in an $8,815 decrease in 

average commercial grain farm investment and a $4,414 decrease in average livestock farm 

investment.   The second largest decline in commercial farm investment is due to increasing 

interest rates.  Other important impacts on commercial farm investment include a $4,534 

increase in commercial grain farm investment due to a decline in marginal tax rates, an average 

$2,879 increase in commercial grain farm investment levels due to falling output prices, and a 

$2,683 decline in commercial livestock investment due to a decline in output prices.   

For resident grain farms and intermediate livestock farms falling output prices have a 

significant and larger impact on overall average farm investment relative to declines in net farm 
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income.  Falling output prices reduces resident grain farm investment by $2,075 and 

intermediate livestock farm investment by $1,308.  Also, projected future declines in 

depreciation expenses will have the largest impact on resident farms and commercial crop 

farms.   A projected 26% decrease in tax depreciation expenses results in a decrease in average 

farm capital investment of $2,031 for commercial livestock farms, $1,971 for resident grain 

farms and $1,029 for resident livestock farms.   
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CHAPTER 10: CONCLUSIONS AND FUTURE STEPS 

 Below I summarize the research undertaken, draw conclusions and outline future steps. 

 
 
 

10.1 Summary 

In this study, I examine U.S. farm expenditures on machinery, equipment and structures 

by farm enterprise type and farm typology, a classification of farms based on farm income and 

primary occupation of the operator.  The dataset utilized consists of constructed synthetic 

panels from annual cross sectional farm level observations from the Agricultural Resource 

Management Survey (ARMS) data for survey years 1996-2013.  Regressions are estimated 

separately for 1) grain 2) fruit, nut and vegetable (FNV), and 3) livestock farms.  Using these 

results, I am able to test three hypothesis regarding the difference in marginal responses 

between farm typologies given changes in output prices, returns, tax policy variables, and 

liquidity levels.  The estimated model is then used to estimate the change in investment levels in 

2013 vs 1996 explained by changes in the model variables over this time period. Finally, I 

calculate the expected change in average farm capital investment levels in 2024 compared to 

2013 given projected changes in key model variables.     

 
 
 

10.2 Conclusions 

Commercial farm investment responds to changes in output prices, net farm income, 

marginal tax rates, depreciation tax rates, and acres, though the magnitude and statistical 

significance of these impacts differ by farm production type.  I can accept my first hypothesis, 

that commercial farm investment is more responsive to changes in output prices and returns 

compared to intermediate farms for commercial grain farms only.  I can accept this hypothesis 

with regards to returns for FNV farms but not for output prices.  I can accept my second 
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hypothesis, that resident farms are more sensitive to tax policy variables compared to 

commercial farms, for grain farms with regards to marginal tax rates and for livestock farms with 

regards to tax depreciation expense rates.  I can accept the third hypothesis, that intermediate 

farms exhibit credit constrained behavior and increase investment to a greater degree 

compared to commercial and resident farms given increases in farm liquidity, for FNV farms, but 

not for grain or livestock farms.   

Changes in output prices, interest rates, and year specific impacts explain the majority 

of the difference in average grain and livestock farm investment levels in 2013 compared to 

1996.  Within individual farm typologies, a large portion of the increase in average investment 

levels on commercial farms between these years is explained by higher returns in 2013 

compared to 1996.  For resident and commercial livestock farms declines in the average tax 

depreciation expense rate explain a significant portion of the change in investment between 

these years.   Calculating projected average farm capital investment in 2024 given expected 

changes in key variables over the 2014 to 2024 time period highlights the importance of the 

following:  net farm income levels and marginal tax rates on projected commercial farm 

investment, changes in tax depreciation policy on resident and commercial livestock farm and 

resident grain farm investment, and livestock output prices for intermediate livestock farm 

investment.   

My research both sheds light on the differential impacts of changes in the factors driving 

the demand for investment across different farm typologies as well as the importance of 

accounting for both microeconomic and macroeconomic factors when estimating projected 

agricultural investment. The literature on agricultural investment has tended to put a large 

emphasis on microeconomic factors, such as prices and returns, while placing a smaller 

emphasis on macroeconomic factors.  My analysis indicates that macroeconomic factors may 

have an equally as important impact as microeconomic factors on determining farm capital 

investment.  In this light, upcoming anticipated changes in the interest rate may have significant 

impacts on farm investment, both to the degree to which proposed changes in interest rates set 

by the Federal Reserve impact farm loan rates and the cost of borrowing money, as well as the 

degree to which changes in interest rates impact exchange rates, the value of the dollar, and 

agricultural commodity prices and export/import levels.  Given the current lackluster economic 

activity in Europe and Asia and a dearth of high yielding alternative investment options, the 
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Federal Reserve’s proposed actions may have little impact on actual loan rates and/or the value 

of the dollar.  In that case, there would be little impact on farm capital investment from changes 

in the Federal Reserve loan rates.  On the other hand, if these measures are successful and lead 

to both an increase in interest rates and trigger an appreciation of the dollar, leading to lower 

agricultural export demand and falling net farm incomes, declines in investment may be even 

more severe than anticipated.   

 
 
 

10.3 Future Steps 

Further work is needed in this area.  While interest rates explain a large portion of the 

change in investment (2013 vs. 1996) and are projected to have a strong impact on future farm 

investment, the coefficients are statistically insignificant.  This could be due to either: the 

measurement I use for interest rates, the use of a fixed effects model, or the use of pseudo 

panels. Future work in this area may involve finding data for or calculating average interest rates 

at the state and production type level, or constructing a measure of farm interest expenses paid 

on current farm loans which takes into account both the large number of farms with no current 

interest rate expenses and addresses issues of multicollinearity between farm size, investment 

levels, net farm income levels, and total interest rate expenditures.   

The above step would correspond with another step I plan to undertake, which is the 

creation of an input cost index.  Such an index would allow me to examine the impact of 

changes in input costs on farm investment demand.  It may also shed additional light on the 

large portion of the difference in investment in 2013 vs. 1996 explained by the dummy year 

variable in the model.  Important relationships to model using this index include investment and 

energy and variable input prices on grain farms, labor prices on FNV and livestock farms, and 

feed costs for livestock and dairy farms.  

In conjunction, the measure of working capital I use needs to be updated to account for 

raised breeding livestock.  This involves returning to the original survey dataset and re-creating 

the pseudo panel datasets.  This is something that I am unable to do currently.  This may shed 

greater light on the factors driving livestock investment as well differences between the 

investment behavior within livestock vs. grain farm investment. Knowing these differences is key 

when looking to meet the investment demand for producers within these different sectors. 
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Finally, I can utilize the alternative pseudo panels I created to see if my results differ 

utilizing interaction terms based upon farm size or asset value levels.  In particular, this would 

allow me to further examine the impact of changes in working capital and debts on farm 

investment.  This would also allow for further analysis of the impact of farm size on investment.  

By separating resident farms within this sample, I may be able to obtain more finite results for 

intermediate farms than I currently have been able to within my sample. These additional 

results will be invaluable as the agricultural sector seeks to understand, anticipate and plan for 

changes in future farm capital investment in a period of declining farm prices and incomes.    
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APPENDIX:  TABLES AND GRAPHS OF MODEL VARIABLES BY YEAR 

Table 52 below provides a list of the mean, standard deviation, minimum and maximum 

value of the model variables within the pseudo panel dataset by year.  The variables are:  

I=investment, K= capital stock, PrIndex=output price index, NCFI=net cash farm income, DEP=tax 

depreciation expenses, Acres= farm acres, Entropy= level of farm specialization, OFFI= off-farm 

income, WC= working capital, IR= interest rate.  For additional information on their construction 

and what is included in each see the notes at the bottom of the table. Similar summary statistics 

for the sample as a whole are provided in the text in Table 12.  These mean values of the sample 

observations by year are graphed in Figure 24-Figure 34.    

Table 52:  Summary Statistics for Pseudo Panel Dataset by Year 

Variable Mean SD Min Max 

Year= 1996 

I ($) 28,253 30,395 0 125,984 

K  ($) 364,127 248,813 23,813 1,092,475 

PrIndex (index) 0.695 0.109 0.482 0.970 

NCFI  ($) 93,612 149,951 -32,580 769,389 

DEP  ($) 24,885 27,160 0 134,110 

ACRES  687 1,432 7 13,919 

MTR (rate) 0.237 0.052 0.000 0.388 

ENTROPY (index) 0.117 0.089 0.000 0.391 

OFFI  ($) 58,257 49,335 -7,375 490,875 

WC  ($) 118,432 168,016 -292,613 994,078 

IR (rate) 0.093 0.004 0.078 0.101 

     

Year= 1997 

I  28,253 30,395 0 125,984 

K  364,127 248,813 23,813 1,092,475 

PrIndex  0.695 0.109 0.482 0.970 

NCFI  93,612 149,951 -32,580 769,389 

DEP  24,885 27,160 0 134,110 

ACRES  687 1,432 7 13,919 

MTR  0.237 0.052 0.000 0.388 

ENTROPY  0.117 0.089 0.000 0.391 

OFFI  58,257 49,335 -7,375 490,875 

WC  118,432 168,016 -292,613 994,078 

IR 0.093 0.004 0.078 0.101 

     

Year= 1998 

I  33,506 52,088 0 431,971 

K  411,194 347,036 19,864 2,7473,917 
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Table 52: Continued 

PrIndex  0.660 0.137 0.373 0.983 

NCFI  106,446 181,406 -92,758 1,088,136 

DEP  32,208 42,139 0 122,321 

ACRES  727 1,305 1 9,088 

MTR  0.199 0.073 0.000 0.381 

ENTROPY  0.110 0.088 0.000 0.380 

OFFI  62,937 48,720 0.889 443,474 

WC  142,229 234,296 -31,418 1,975,414 

IR 0.092 0.003 0.083 0.097 

     

Year= 1999 

I  29,272 33,407 0 187,055 

K  410,198 292,990 22,356 1,325,851 

PrIndex  0.620 0.147 0.335 0.984 

NCFI  97,824 156,128 -57,662 767,296 

DEP  29,461 26,540 0 196,017 

ACRES  692 1,32 5 11,306 

MTR  0.177 0.054 0.000 0.280 

ENTROPY  0.107 0.084 0.000 0.357 

OFFI  63,773 42,523 0 321,610 

WC  133,143 179,253 -33,396 958,571 

IR 0.091 0.003 0.038 0.098 

     

Year= 2000 

I  31,781 40,432 0 233,124 

K  454,915 669,134 25,988 1,192,236 

PrIndex  0.657 0.153 0.329 1.029 

NCFI  120,363 228,707 -32,341 4,980,959 

DEP  30,347 43,097 0 324,090 

ACRES  781 2,176 10 22,711 

MTR  0.168 0.077 0.000 0.396 

ENTROPY  0.108 .0084 0.000 0.362 

OFFI  69,789 80,723 2,281 759,194 

WC  
212,302 

1,007,62
4 -10,985 11,400,000 

IR 0.097 0.004 0.092 0.107 

     

Year= 2001 

I  30,480 25,098 0 142,675 

K  480,390 475,501 2,925 3,487,891 

PrIndex  0.681 0.174 0.329 1.053 

NCFI  118,159 253,448 -112,409 1,998,014 

DEP  33,582 49,319 0 326,959 

ACRES  834 2,000 4 19,516 

MTR  0.175 0.070 0.0000 0.356 

ENTROPY  0.142 0.110 0.000 0.470 
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Table 52: Continued 

OFFI  55,084 36,704 0 193,653 

WC  222,504 760,816 -80,091 8,302,456 

IR 0.070 0.009 0.052 0.087 

     

Year= 2002 

I  30,726 39,758 0 279,322 

K  414,726 290,198 23,228 1,347,893 

PrIndex  0.640 0.159 0.359 1.043 

NCFI  83,560 142,046 -60,315 698,117 

DEP  31,904 40,696 0 241,316 

ACRES  697 1,577 8 15,273 

MTR  0.155 0.058 0.008 0.336 

ENTROPY  0.133 0.096 0.000 0.401 

OFFI  67,205 38,653 2,842 238,936 

WC  76,204 137,800 -178,767 806,513 

IR 0.060 0.006 0.047 0.076 

     

Year= 2003 

I  31,139 38,718 0 230,984 

K  421,001 339,627 24,559 2,165,338 

PrIndex  0.695 0.144 0.409 1.058 

NCFI  104,903 198,744 -85,983 1,540,516 

DEP  28,090 36,702 0 192,349 

ACRES  725 1,699 2 13,623 

MTR  0.150 0.065 0.000 0.324 

ENTROPY  0.131 0.099 0.000 0.438 

OFFI  54,697 31,325 0 182,075 

WC  113,884 176,274 -176,339 1,166,919 

IR 0.059 0.006 0.042 0.075 

     

Year= 2004 

I  41,904 73,438 0 684,521 

K  500,252 691,849 67,100 7,374,659 

PrIndex  0.764 0.144 0.453 1.068 

NCFI  117,967 236,622 -81,656 1,842,675 

DEP  31,356 44,205 0 267,537 

ACRES  794 2,404 10 25,634 

MTR  0.148 0.068 0.000 0.293 

ENTROPY  0.130 0.101 0 0.465 

OFFI  63,177 47,863 0 425,258 

WC  151,867 319,472 -371,787 2,670,202 

IR 0.062 0.006 0.051 0.075 

     

Year= 2005 

I  32,080 39,669 0 209,408 

K  468,270 461,596 10,030 3,695,406 
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Table 52: Continued 

PrIndex  0.754 0.162 0.386 0.954 

NCFI  121,281 216,874 -108,554 1,583,550 

DEP  29,620 43,583 0 261,794 

ACRES  703 1,289 5 9,187 

MTR  0.164 0.064 0.000 0.309 

ENTROPY 0.127 0.104 0.000 0.397 

OFFI 58,979 38,813 0 302,759 

WC 149,580 262,853 -11,052 1,983,501 

IR 0.074 0.004 0.066 0.081 

Year= 2006 

I 31,715 40,248 0 263,500 

K 468,701 372,490 17,100 2,174282 

PrIndex  0.750 0.166 0.411 0.992 

NCFI  90,825 156,037 -118,027 674,389 

DEP  28,984 40,074 0 282,651 

ACRES  715 1,377 4 10,730 

MTR  0.155 0.067 0.000 0.330 

ENTROPY 0.132 0.096 0.000 0.369 

OFFI 70,760 50,110 285 438,775 

WC 167,350 255,348 -320,188 1,601,836 

IR 0.086 0.003 0.074 0.092 

Year= 2007 

I 37,172 56,716 0 424,010 

K 503,528 452,133 30,525 3,125,297 

PrIndex  0.856 0.126 0.602 1.010 

NCFI  117,087 206,694 -166,336 1,154,692 

DEP  30,745 40,437 0 238,176 

ACRES  770 1,583 2 11,923 

MTR  0.618 0.063 0.000 0.306 

ENTROPY 0.135 0.097 0.000 0.381 

OFFI 60,367 36,305 4,006 190,525 

WC 148,418 204,523 -149,061 1,085,139 

IR 0.088 0.005 0.081 0.104 

Year= 2008 

I 33,884 42,832 0 197,880 

K 486,702 542,734 26,750 5,015,650 

PrIndex  0.876 0.113 0.525 1.010 

NCFI  111,049 237,944 -257,996 1,887,667 

DEP  40,456 92,545 0 918,054 

ACRES  685 1,485 5 11,779 

MTR  0.135 0.069 0.000 0.320 

ENTROPY 0.134 0.104 0.000 0.441 

OFFI 58,671 49,154 0 407,125 
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Table 52: Continued 

WC  163,667 223,891 -33,260 1,289,742 

IR 0.060 0.009 0.000 0.441 

     

Year= 2009 

I  29,908 44,894 0 362,386 

K  483,566 538,097 27,075 5,106,359 

PrIndex  0.803 0.133 0.632 1.030 

NCFI  145,582 492,127 -116,432 5,004,353 

DEP  33,138 55,986 0 330,865 

ACRES  664 1,393 9 10,994 

MTR  0.134 0.068 0.000 0.350 

ENTROPY  0.142 0.103 0.000 0.434 

OFFI  59,367 41,259 3,126 353,524 

WC  174,502 279,291 -81,738 1,967,753 

IR 0.053 0.007 0.040 0.065 

     

Year= 2010 

I  28,465 36,834 0 175,900 

K  456,593 393,480 27,634 2,714,675 

PrIndex  0.876 0.090 0.693 1.017 

NCFI  109,984 193,612 -36,734 1,137,628 

DEP  29,328 42,176 0 255,355 

ACRES  615 1,269 3 9,615 

MTR  0.149 0.065 0.000 0.330 

ENTROPY  0.133 0.095 0.000 0.424 

OFFI  62,643 46,185 333 376,591 

WC  184,696 252,700 -12,048 1,783,301 

IR 0.058 0.005 0.051 0.067 

     

Year= 2011 

I  35,624 48,505 0 294,475 

K  439,032 386,452 0 2,601,745 

PrIndex  1.000 0.000 1.000 1.000 

NCFI  113,441 196,777 -86,590 993,545 

DEP  35,264 51,552 0 350,618 

ACRES  579 1,145 2 9,554 

MTR  0.148 0.066 0 0.350 

ENTROPY  0.119 0.094 0.000 0.378 

OFFI  60,350 36,108 6,202 237,286 

WC  211,856 334,685 -153,105 2,285,123 

IR 0.051 0.005 0.039 0.060 

     

Year= 2012 

I  35,798 51,163 0 325,275 

K  458,998 412,027 40,027 2,104,947 

PrIndex  1.046 0.101 0.810 1.218 
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Table 52: Continued 

NCFI  134,535 251,503 -264,414 1,347,264 

DEP  31,602 41,535 0 187,986 

ACRES  581 1,123 9 9,010 

MTR  0.167 0.062 0 0.291 

ENTROPY  0.131 0.099 0.00 0.433 

OFFI  86,428 118,442 250 1,313,614 

WC  215,849 368,422 -67,203 3,309,380 

IR 0.048 0.004 0.037 0.056 

     

Year= 2013 

I  38,084 57,886 0 348,309 

K  476,117 472,145 43,367 2,698,808 

PrIndex  1.090 0.098 0.864 1.230 

NCFI  154,435 259,877 -74,251 1,243,048 

DEP  37,408 62,693 0 496,960 

ACRES  638 1,295 7 9,068 

MTR  0.172 0.069 0.048 0.394 

ENTROPY  0.116 0.092 0.000 0.360 

OFFI  74,104 34,444 15,256 187,890 

WC  212,473 519,872 -64,284 5,224,248 

IR 0.046 0.007 0.036 0.062 

SD= standard deviation, Min=minimum value, Max=maximum value  
I= Investment= expenditures on buildings, equipment and machinery 
K= Farm capital assets= total dollar value of assets including machinery, buildings, structures and 
equipment.   
PrIndex=index of output prices.  For more detail on its construction see data section and Table 11 
NCFI=Net cash farm income is gross cash farm income (GCFI) less operating expenses.  GCFI includes sales, 
changes in inventory, government payments to landlord, income from custom work and machine hire, 
income from royalties and leases for energy production, income from land rented to others, income from 
crops or livestock removed under production contract, changes in the value of inventories.  This 
measurement does not include non-cash labor expenses or depreciation expenses.   
DEP= tax depreciation expenses  
MTR= federal marginal tax rate.  Includes farm and off-farm income and adjustments for medicare and 
social security taxes on self-employment and social security income, deductions including social security 
taxes paid, domestic production activities credit and an adjustment for health care premiums paid.   
ACRES= Physical farm size is measured as the total number of acres operated by the farm.  This includes 
land rented from others and not including land rented to others. 
ENTROPY= level of farm specialization.  This variable ranks farms on a scale of 0-1, 0 being the most 
specialized and receiving 100% of yearly sales from a single crop/livestock product compared to 1 the 
least specialized with all crop/livestock products produced contributing equally to total farm sales.   
OFFI= off-farm income. Includes earnings from wages, salaries and self-employment income as well as 
income from interest, dividends, and social security payments. 
WC= Working Capital.  Difference in farm current assets less short term debts. 
IR= average across farm production regions of the interest rate on farm machinery loans.  From the 
Agricultural Finance Databook. 
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Figure 24: Mean of Investment (I) Annually for Pseudo Panel Dataset 1996-2013 

 

 

Figure 25: Mean of Capital Stock (K) Annually for Pseudo Panel Dataset 1996-2013 

 

 

Figure 26: Mean of Output Prices (PrIndex) Annually for Pseudo Panel Dataset 1996-2013 
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Figure 27:  Mean of Net Cash Farm Income (NCFI) Annually for Pseudo Panel Dataset 1996-2013 

 

 

Figure 28: Mean of Tax Depreciation Expenses (DEP) Annually for Pseudo Panel Dataset 1996-

2013 

 

 

Figure 29: Mean of Acres operated (Acres) Annually for Pseudo Panel Dataset 1996-2013 
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Figure 30: Mean of Marginal Tax Rate (MTR) Annually for Pseudo Panel Dataset 1996-2013 

 

 

Figure 31: Mean of Farm Specialization (Entropy) Annually for Pseudo Panel Dataset 1996-2013 
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Figure 32: Mean of Off-farm Income (OFFI) Annually for Pseudo Panel Dataset 1996-2013 

 

 

Figure 33: Mean of Working Capital (WC) Annually for Pseudo Panel Dataset 1996-2013 

 

 

Figure 34: Mean of Interest Rates (IR) Annually for Pseudo Panel Dataset 1996-2013 
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 VITA 

EDUCATION 
Purdue University.  Ph.D.  Agricultural Economics, Expected graduation May, 2016 

 
University of California, Davis.  M.S. in Agricultural & Resource Economics, 2003 with High 
Honors   
 
University of California, Davis.  B.S. in Managerial Economics, 2002 with Highest Honors 
 
RESEARCH EXPERIENCE 
Economic Research Service of USDA, Intern 

May to August 2015  

From FRED, BLS, and other sources gathered data to forecast US Farm National 

Assets and Debts Accounts; forecasted 2015 Farm Asset and Debt levels, 

researched forecasting methodology for VAR panel data models, summarized 

economic literature on the factors affecting farm debt and asset levels  

August to December 2014  

Reviewed literature on farm capital investment and tax policy; within STATA 

estimated the impact of tax policy on farm capital investment; developed a 

lengthy SAS program to calculate the marginal tax rate of farms using ARMS and 

IRS data  

 

Purdue University Agricultural Economics Department, Graduate Student Assistant, 2012-

present 

Projects  

 Optimal Replacement Policies for Biomass Rejuvenated Coal-Fired Electricity 
Plants, funded through the Office of Energy Policy and New Uses, USDA, current  

 Farmland Values and Inflation, Department Project, 2012-2013  

 Impact of Risk on Agricultural Production, funded through the Indiana Soybean 
Alliance Risk Initiative, 2012-2013  

Teaching Assistant 

 AGEC 250 “Agricultural Policy and Climate Change”, Spring 2014 

 AGEC 217 “Macroeconomics”, Fall 2015  

 Undergraduate seminar “The Business of Commercial Agriculture”, Spring 2013  
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Agricultural Issues Center, UC Davis, Research Assistant, 2002-2004  

Designed surveys, trained survey administrators, used survey results to estimate 

impact of socioeconomic factors and grocery location on healthy food choice, 

reviewed literature on farm labor and pesticide usage 

 

PROFESSIONAL EXPERIENCE 
Guadalupe Associates, Inc., Finance & Accounting Department, 2008-2012 

Performed inventory and sales database queries, used excel extensively for financial 

calculations and reports, resolve supplier and customer accounting issues 

 

Law Offices of TCS, Paralegal & Account Management, 2006-2008 

 Legal research and document preparation, client management 

  

Teaching: 

Oak Grove High School, Mathematics Student Teacher, 2005-2006  

Franklin McKinley School District, K-12th grade Substitute Teacher, 2005-2006  

Sacramento Job Corps, Mathematics GED Tutor/Instructor, 2004-2005 

Sylvan Learning Center, Mathematics Tutor and Program Manager, 2004-2005   

DQ University, English Language Instructor, 2004-2005  

 

JOURNAL ARTICLES 

Williamson, James and Sarah Stutzman.  “Tax Policy and Farm Capital Investment:  Section 179 

Expensing and Bonus Depreciation”. Agricultural Finance Review.  Status: accepted for 

publication.  

Hubbs, Todd and Stutzman.  “Corn Farm Liquidity and Short-Tem Asset Debt Choice.” Journal of 

Applied Farm Management.  Status:  submitted for publication and awaiting response. 

Yeager, Elizabeth and Sarah Stutzman. “Deer Creek Farms Case Study: Transitions into the 

Future”. 2014. American Journal of Agricultural Economics. Vol 96 (2) pp 598-605. 

 
PRESENTATIONS  
Department Job Market Seminar.  Farm Capital Investment:  Does Size Matter?  November 4, 

2014 

Stutzman, Sarah, “Analyzing Farm Investment using ARMS survey data.” Seminar for USDA ERS 

Staff, December 2014. 

 

POSTERS  

Stutzman, Sarah, “Small Farms and Investment”, Indiana Small Farms Conference, Purdue 

Extension Service, 2016. 
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Stutzman, Sarah, “Who Invests in Capital: Propensity Score Analysis using ARMS Survey Data,” 

Department of Agricultural Economics, Purdue Snyder Lecture poster contest, Purdue 

University, 2015.   

Stutzman, Sarah, “What’s For Dinner: Asymmetric Separability and Meat Demand.” 2014 AAEA 

Selected Presentation, St. Paul, MN., 2014  

Stutzman, Sarah, “100 Years of Farmland Values and Inflation,” Department of Agricultural 

Economics, Purdue Snyder Lecture poster contest, Purdue University, 2013.   

WORKSHOPS AND MEETINGS 

Data   

 Data Management, 16 Week Seminar, Purdue University, Spring 2016 

 Agricultural Resource Management Survey Data, 2 day seminar, Economic Research 
Service USDA, 2015 

 Big Data in Agriculture, Purdue University, 2014  

Statistical Methodology  

 Propensity Score Methods, Economic Research Service of USDA, 2014 

Topic/Issues  

 IFAMA Midwest Chapter Meeting, “Communicating with the public regarding large 
scale agriculture”, International Food and Agribusiness Management Association, 
2014 

 IFAMA Midwest Chapter Meeting, “Supporting the Growth of Agricultural Business 
in Africa” International Food and Agribusiness Management Association, 2013 

 Strategic Risk Management, Purdue University Center for Food and Agricultural 
Business, 2012 

 Research Issues: Research Integrity, Purdue University, 2012 

Writing & Communicating 

 Grant-Writing Strategies, Purdue University, 2012. Presenting Data using Graphics, 
Purdue University, 2015 

 Writing Government Economic Reports, Economic Research Service of USDA, 2014 

 Working with Print and TV Media: Communicating your Research Message, Purdue 
Graduate Student Seminar Series, 2016 


