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1 Introduction

The identification and consistent estimation of the production function, which lies at the heart
of the theory of the firm, is among the oldest empirical problems in economics dating back at
least as early as the 19th century (Chambers, 1997). The presence of latent productivity is the
primary obstacle to the identification of firm-level production functions. While usually unobserved
by an econometrician, it is one of the key determinants of the firm’s endogenous input allocation
decisions resulting in its correlation with inputs entering the production function. If not accounted
for explicitly, the presence of the firm’s productivity leads to the classical endogeneity (omitted
variable) problem as first discussed by Marschak and Andrews (1944). This endogeneity issue is
also sometimes referred to as the “transmission bias” problem (Griliches and Mairesse, 1998).

Given a rather unsatisfactory performance of conventional approaches to tackling endogeneity
in the production function context, such as fixed effects estimation or instrumenting for inputs using
output and/or input prices [see Ackerberg, Caves and Frazer (2006), Gandhi, Navarro and Rivers
(2013) for excellent discussions], the recently developed alternative control-function-based approach
to the identification of firm-level production functions by Olley and Pakes (1996) and Levinsohn and
Petrin (2003) has gained wide popularity among practitioners. Structural in nature, the approach
makes use of the lagged inputs as the source of exogenous variation (under some assumptions about
the firm’s economic environment) and employs investment or intermediate inputs to proxy for latent
productivity.

The existing control-function-based identification strategies are however all exclusively con-
cerned with the estimation of single-output production functions despite that, in practice, most
firms produce multiple outputs. This paper seeks to fill in this gap in the literature. Building on
the framework of Gandhi et al. (2013), I extend the proxy approach to the structural identification
and estimation of firm-level production functions and productivity to the multi -product setting.

Specifically, this paper considers the estimation of multi-product production functions where,
motivated by Fernández, Koop and Steel (2000), I let outputs form an unspecified (aggregate)
index function. Such a treatment of multiple outputs differs from an a priori aggregation, which
most studies using a traditional single-output production function normally resort to, in that it (i)
does not use ad hoc aggregation weights1 and, more importantly, (ii) allows the identification of
cross-output elasticities representing the technological trade-off between individual outputs along
the firm’s production possibilities frontier, which the traditional single-output formulation is unable
to deliver. As in Levinsohn and Petrin (2003), unobserved firm-level productivity is proxied via
inverting the conditional demand for non-dynamic intermediate inputs. In order to avoid a likely
possibility of misspecifying the production function, I employ the nonparametric formulation not
only for the control function but also for the production function itself, including the output index.
Specifically, I estimate the multi-product production function along with the firm’s productivity
using cubic B-spline sieves. The identification strategy is robust to Ackerberg et al.’s (2006) and
Gandhi et al.’s (2013) criticisms. The proposed two-stage estimation procedure is implemented by
recasting it in a multiple-equation nonparametric GMM framework.

The approach to the identification of the firm’s production technology pursued in this paper
conceptually differs from other available alternatives in the literature, the bulk of which focuses
on the estimation of “stochastic frontier” models of production. Regardless of whether the firm’s
production process is formulated as a single-output production function or a multiple-output ra-

1Single-output production functions are usually estimated with the output defined as total sales, whereby individual
outputs are effectively aggregated using their relative prices.
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dial/directional distance function,2 most approaches to handling endogeneity in stochastic frontier
models rely on output and/or input prices as the source of exogenous variation needed to achieve
the identification of the frontier (e.g., Atkinson and Primont, 2002; Atkinson et al., 2003; Tsionas
et al., 2015; Kumbhakar and Tsionas, 2015; Atkinson and Tsionas, 2015). In many instances, they
also require additional assumptions such as the parameterization of the relationship between the
endogenous regressors and the stochastic component in the model (e.g., Kutlu, 2010; Tran and
Tsionas, 2013; Griffiths and Hajargasht, 2015). Some researchers may however have reservations
about the practicality of using the price information as the source of exogenous variation in order to
identify the firm’s production technology. Not only are the data on prices often unavailable to prac-
titioners or prone to measurement errors (Levinsohn and Petrin, 2003), but the use of prices may
also be problematic on theoretical grounds (Griliches and Mairesse, 1998; Ackerberg et al., 2006,
2007). Specifically, the validity of output and/or input prices as exogenous instruments is normally
justified by invoking the assumption of perfectly competitive markets in which firms operate. How-
ever, if firms were indeed price-takers, in theory, one should not observe the firm-level variation in
prices3 and, without such a variation, prices cannot be used as operable instruments. In contrast,
if a researcher does observe the variation in output and/or input prices across individual firms, the
latter variation likely reflects differences in the firm’s market power or the quality of either inputs
or output. In both instances, the variation in prices is unlikely to be exogenous to firms’ decisions
and hence cannot help the identification (see Gandhi et al., 2013, for more discussion).

In this paper, I therefore opt to pursue the structural identification strategy that does not rely
on the firm-level variation in output and/or input prices. Along the lines of Gandhi et al. (2013),
my approach to the identification of multi-product production functions relies on the information
contained in the firm’s first-order condition for an intermediate input, which does not require prices
to vary across firms. On a related note, Amsler et al. (2015) discuss few available methods in the
stochastic frontier literature that also do not require the price information for identification, which
make use of either higher moment conditions or copulas (e.g., see Tran and Tsionas, 2015).

The proposed methodology is showcased by applying it to study the multi-product production
technology of Norwegian dairy farms during the 1998–2008 period. To empirically assess the sensi-
tivity of the production function and productivity estimates to the treatment of multiple outputs
in the multi-product processes, I also estimate a conventional single-output production function
where multiple outputs are a priori aggregated into a single measure (real total sales). I docu-
ment dramatic distortions in farms’ input elasticities, returns to scale, and productivity estimates
obtained from a traditional single-output specification, which takes the multi-product nature of
production technology for granted.

The rest of the paper proceeds as follows. Section 2 describes the model of multi-product
production. I discuss the identification and estimation strategy in Section 3. Section 4 describes
the data. The results are discussed in Section 5. Section 6 concludes.

2 Multi-Product Production Function

Consider a standard formulation of the production process of a firm i (i = 1, . . . , n) in the time
period t (t = 1, . . . , T ) in which physical capital Kit, land Nit, labor Lit and materials Mit (in-
termediate input) are being transformed into a single output Yit via the time-varying production
function Ft(·) given Hicks-neutral productivity. The literature that seeks to estimate the produc-

2For theoretical underpinnings of the multi-output multi-input distance function models, see Färe and Primont (1995).
3Except maybe across different regions.
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tion function via the control function approach (e.g., Olley and Pakes, 1996; Levinsohn and Petrin,
2003; Ackerberg et al., 2006; Doraszelski and Jaumandreu, 2013) usually formalizes the stochastic
production process as

Yit = Ft(Kit, Nit, Lit,Mit) exp{wit + ηit}, (2.1)

where (wit+ηit) is the composite productivity term consisting of the persistent (first-order) Marko-
vian productivity wit and a random i.i.d. productivity shock ηit. The production function Ft(·)
is often assumed to take the Cobb-Douglas form with varying assumptions about the timing of
different input decisions.

While one can always justify a single-product formulation of the production process (2.1) by
defining Yit to be some aggregate measure of the firm’s output, such as deflated total sales or
revenue (in fact, as customarily done during the estimation), such a formulation is rarely an accu-
rate portrayal of the firm’s productive process in practice. Most firms produce multiple products
which exhibit varying degrees of substitutability or complementarity between one another. These
relationships between different outputs are of great interest to economists on their own, which one
however cannot discern using the formulation in (2.1).

I generalize a single-output formulation of the production process in (2.1) to the case of multiple
outputs along the lines of Fernández, Koop and Steel (2000). The multi-product (stochastic)
production process is given by

Ht(Y1,it, . . . , YS,it) = Ft(Kit, Nit, Lit,Mit) exp{wit + ηit}, (2.2)

where a firm i in the time period t is assumed to transform physical capital Kit, land Nit, labor
Lit and materials Mit into S outputs (Y1,it, . . . , YS,it) via the time-varying production function
Ft(·) given Hicks-neutral productivity. Following Fernández et al. (2000, 2002, 2005), outputs are
combined into an aggregate (index) function Ht(·).4

An evident assumption embedded in (2.2) is the (homothetic) separability of functions Ht(·) and
Ft(·). While at first this assumption may seem to be rather restrictive, it is however also imposed
onto a standard single-output production function where Yit is assumed to be separable from Ft(·).
Clearly, (2.2) nests the single-product formulation in (2.1) as a special case, i.e., the case when
S = 1 and function Ht(·) is normalized to an identity link function. Some recent specifications of
similar separable multi-product production functions include Greene (2008), O’Donnell and Nguyen
(2013) and O’Donnell (2014) among others.5

Further, if one is willing to parameterize production function Ft(·), say, by letting it take
the Cobb-Douglas form, then some obvious choices for Ht(·) include the CES or Cobb-Douglas
specifications. The only normalizing restriction required for the identification of Ht(·) is the (joint)
linear homogeneity of the latter in outputs (Y1,it, . . . , YS,it).

6 Note that the same normalization is
implied in the single-output production function (2.1), where the unknown coefficient in front of
Yit is being normalized to unity.

Following Ackerberg et al. (2006), I assume that, unlike a freely varying Mit, both Kit and Lit
are subject to adjustment frictions (e.g., time-to-install, hiring costs) and thus are quasi-fixed.7 It
is perhaps even more natural to assume that land Nit is also a quasi-fixed input. Thus, Mit is

4Note that, unlike in Fernández et al. (2000, 2002, 2005), I do not parameterize neither function Ft(·) nor function
Ht(·) leaving them to be unspecified nonparametric functions.

5However, note that in some applications, where different outputs require a different input mix, the separability may
be quite unappealing. Should that be the case, the use of the proposed model is left up to a researcher’s discretion.

6Which, if pursued, the CES and the Cobb-Douglas specifications of Ht can be easily required to maintain.
7Such a timing framework resolves the perfect collinearity problem pointed out by Ackerberg et al. (2006).
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determined by the firm in period t, whereas Kit, Nit and Lit are determined in period t− 1. Note
that, despite all three Kit, Nit and Lit being quasi-fixed, Kit and Nit are the only two that are
dynamic, i.e., state variables following deterministic (controlled) laws of motion.

Given the assumptions about the productivity above, the distributions of wit and ηit can re-
spectively be written as

Pw (wit| Ωit−1) = Pw (wit| wit−1) (2.3a)

Pη (ηit| Ωit) = Pη (ηit) , (2.3b)

where Ωit denotes the information available to the firm for making period t decisions. From (2.3a),
it follows that

wit = E[wit| wit−1] + ζit, where E[ζit| Ωit−1] = E[ζit| wit−1] = 0. (2.4)

Here, ζit is the innovation in persistent productivity, unobservable to firms in period t−1. Firms
do however observe wit ∈ Ωit, which consists of E[wit| wit−1] and ζit, in period t when decisions
concerning freely varying inputs are being made.

Similarly, from (2.3b), it follows that

E[ηit| Ωit] = E[ηit] = 0, (2.5)

where I normalize the mean of ηit to zero. The above implies that the random shock ηit is observable
to firms in period t only ex post, i.e., after all production decisions, including those about freely
varying inputs, take place.

The described framework of the production process is quite similar to that considered by Olley
and Pakes (1996), Levinsohn and Petrin (2003) and Doraszelski and Jaumandreu (2013). Putting
the issue of multiple outputs aside, the primary differences between this paper’s setup and theirs
are as follows. First, in order to address Ackerberg et al.’s (2006) criticism, I assume Mit is the
only freely varying input. Second, in order to minimize the chances of the misspecification bias, I
do not restrict the production function Ft(·) and the output index Ht(·) to take any prespecified
parametric forms but rather allow them to be unspecified (smooth) nonparametric functions.

3 Identification and Estimation Strategy

The estimation of the production function in (2.2) would have been trivial (given the assumptions),
had the persistent productivity wit been observable to an econometrician. Omitting it from the
regression is also not an option, since the latter would give rise to the endogeneity problem given that
wit is correlated with the inputs (directly and/or through wit−1). Conventional methods to tackle
endogeneity in the production function context, such as fixed effects estimation or instrumenting
for inputs using input prices, have been quite unsatisfactory in practice and problematic from the
perspective of economic theory [see Ackerberg et al. (2006) and Gandhi et al. (2013) for excellent
reviews]. Recent advances in the identification of firm-level production functions and productivity
primarily include dynamic panel data methods (Arellano and Bond, 1991; Blundell and Bond, 1998)
and control function approaches (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg
et al., 2006; Gandhi et al., 2013), which use the lagged inputs as the source of exogenous variation
(under some assumptions about the firm’s economic environment). In this paper, I follow the latter
strand of the literature by considering the control function approach.
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In what follows, I consider the identification and estimation of the gross multi-product produc-
tion function. My approach to identification builds on Gandhi et al.’s (2013) framework (where I
explicitly address their recent criticism), which I generalize to accommodate multiple outputs.

Making use of the definition of the (joint) linear homogeneity ofHt(·) in outputs — a normalizing
restriction I require for the identification, as discussed in Section 2 — for some scalar κ > 0, I get

Ht(κY1,it, . . . , κYS,it) = κHt(Y1,it, . . . , YS,it)

= κFt(Kit, Nit, Lit,Mit) exp{wit + ηit}, (3.1)

where I have made a substitution for Ht(·) in the second equality using (2.2). Setting κ equal to
the inverse of one of the outputs, say Y1,it, yields8

Y1,it =
Ft(Kit, Nit, Lit,Mit)

Ht

(
1,

Y2,it
Y1,it

, . . . ,
YS,it
Y1,it

) exp{wit + ηit}. (3.2)

Taking logs of both sides of (3.2), I get

y1,it = ft(Kit, Nit, Lit,Mit)− ht(1, Z2,it, . . . , ZS,it) + wit + ηit
def
= ft(Kit, Nit, Lit,Mit) + h̃t(Z2,it, . . . , ZS,it) + wit + ηit, (3.3)

where the lower-case variables/functions denote the logs of the respective variables/functions (e.g.,

y1,it = lnY1,it) and, for convenience, I have defined Zs,it
def
=

Ys,it
Y1,it
∀ s = 2, . . . , S and h̃t(·)

def
= −ht(1, ·).

The production function in (3.3) however contains the unobservable (to an econometrician)
productivity wit. To control for it, I make use of the conditional intermediate input demand
function Mit = Mt(Kit, Nit, Lit, wit) generated by solving the firm’s inter-temporal discounted life-
time profits maximization problem.9 Given the profit-maximizing behavior by firms, Mt(·)|Mit > 0
must be strictly monotonic in wit for any given (Kit, Nit, Lit) (see Levinsohn and Petrin, 2003).
This monotonicity condition is identical to that for the investment function derived by Pakes (1994).
Hence, Mt(·) can be inverted to proxy for persistent productivity via wit = M−1

t (Kit, Nit, Lit,Mit).
Specifically, from (3.3) I get

y1,it = ft(Kit, Nit, Lit,Mit) + h̃t(Z2,it, . . . , ZS,it) + ψt[wit−1] + ζit + ηit

= ft(Kit, Nit, Lit,Mit) + h̃t(Z2,it, . . . , ZS,it) + ψt
[
M−1
t−1(Kit−1, Nit−1, Lit−1,Mit−1)

]
+ ζit + ηit

def
= ft(Kit, Nit, Lit,Mit) + h̃t(Z2,it, . . . , ZS,it) + ϕt(Kit−1, Nit−1, Lit−1,Mit−1) + ζit + ηit, (3.4)

where I have also made use of the first-order Markovian nature of wit from (2.4) in the first equality

by letting E[wit| wit−1] be an unknown function ψt[·] and have defined ϕt(·)
def
= ψt

[
M−1
t−1(·)

]
in the

last equality.

3.1 Identification

The production process framework described in Section 2 implies that (i) Mit appearing inside
ft(·) in (3.4) is correlated with the transitory productivity shock ζit and (ii) the output ratios

8It is easy to show that the normalization is invariant to the choice of output.
9Note that the demand function for Mit is not inter-temporal, i.e., dynamic, since Mit is assumed to be a freely
varying input.
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(Z2,it, . . . , ZS,it) are correlated with both ζit and the random shock ηit as a result of simultaneity
of all outputs.10 One may think that the additive nonparametric model (3.4) can be seemingly
identified on the basis of the following (t− 1)[(S − 1) + 4] + 3 moment conditions:

E[ζit + ηit| Ωit−1] = E

ζit + ηit

∣∣∣∣∣∣
Kit, Nit, Lit,
Kit−1, Nit−1, Lit−1,Mit−1, Z2,it−1, . . . , ZS,it−1, . . . ,
Ki1, Ni1, Li1,Mi1, Z2,i1, . . . , ZS,i1

 = 0, (3.5)

where (Kit, Nit, Lit,Kit−1, Nit−1, Lit−1,Mit−1) instrument for themselves and one has the abun-
dance of exogenous lags of (Kit, Nit, Lit,Mit, Z2,it, . . . , ZS,it) to instrument forMit and (Z2,it, . . . , ZS,it).

However, despite the apparent abundance of valid instruments, equation (3.4) still is not identi-
fied due to the presence of freely varying Mit inside the production function ft(·) – an issue recently
pointed out by Gandhi et al. (2013). They show (in this paper’s notation) that, when conditioned
on the information set Ωit−1, Mit entering E[ft(·)|Ωit−1] in the identifiable conditional expectation
E[y1,it| Ωit−1] from (3.4):

Mit = Mt(Kit, Nit, Lit, wit)

= Mt(Kit, Nit, Lit, ψt(wit−1) + ζit)

= Mt(Kit, Nit, Lit, ϕt(Kit−1, Nit−1, Lit−1,Mit−1) + ζit), (3.6)

is a function of the following observables (Kit, Nit, Lit,Kit−1, Nit−1, Lit−1,Mit−1). Comparing these
variables with those entering E[ft(·)|Ωit−1] directly as well as the proxy for productivity ϕt(·), it is
evident that the only extra source of variation for Mit, which has not already been included on the
right-hand side of (3.4), is the unobservable ζit. In other words, Mit lacks an (excluded) instrument
from outside of the production function. To tackle this under-identification problem, I augment
the production function in (3.4) with an equation for the first-order condition (with respect to Mit)
from the firm’s profit-maximization problem, along the lines of Gandhi et al. (2013). Intuitively,
the approach resembles the estimation of the system of simultaneous equations.

Since materials are a freely varying input, the firm’s optimal choice of Mit can therefore be mod-
eled as the concentrated expected profit-maximization problem11 subject to the (already) optimal
allocation of all dynamic and non-dynamic quasi-fixed inputs (Kit, Nit, Lit), i.e.,

max
Mit

S∑
j=1

Pj,tE[Yj,it| Ωit]− PM,tMit =

S∑
j=1

Pj,t
Ft(Kit, Nit, Lit,Mit) exp{wit}E[exp{ηit}| Ωit]

H̃j
t (Zj1,it, . . . , Z

j
S,it)

− PM,tMit, (3.7)

where I have expressed each output Yj,it using (3.2) under the respective κ = 1/Yj,it normalization.

I add the superscript j to the normalized output index H̃t(·) as well as the output ratios Zs,it to
explicitly recognize that the index and the ratios change depending on the choice of the output used
for the normalization. Further, Pj,t and PM,t are the prices of output j and materials, respectively.
Following the discussion in the Introduction, note that these prices do not need to vary across
firms.

10As can easily be seen from (2.2).
11Under the risk neutrality of firms.
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The first-order condition with respect to Mit is given by

S∑
j=1

Pj,t
∂Ft(Kit, Nit, Lit,Mit)

∂Mit

exp{wit} × θ
H̃j
t (Z1,it, . . . , ZS,it)

= PM,t, (3.8)

where θ
def
= E[exp{ηit}| Ωit] is a constant. Taking logs of both sides and recognizing that [due to

the linear homogeneity of Ht(·)]

S∑
j=1

Pj,t

[
H̃j
t (Zj1,it, . . . , Z

j
S,it)

]−1
= [Ht(Y1,it, . . . , YS,it)]

−1
S∑
j=1

Pj,tYj,it,

from (3.8) I get

ln

[
∂Ft(Kit, Nit, Lit,Mit)

∂Mit

]
− ht(Y1,it, . . . , YS,it) + wit + ln θ = ln

[
PM,t∑S

j=1 Pj,tYj,it

]
. (3.9)

Adding the log of Mit to both sides of (3.9) and then subtracting the latter from the normalized
production function in logs (3.3) yields

ln

[
∂Ft(Kit, Nit, Lit,Mit)

∂Mit

Mit

Ft(Kit, Nit, Lit,Mit)

]
+ ln θ − ηit = ln

[
PM,tMit∑S
j=1 Pj,tYj,it

]
. (3.10)

For convenience, I define function Gt(Kit, Nit, Lit,Mit)
def
= ∂Ft(Kit,Nit,Lit,Mit)

∂Mit

Mit
Ft(Kit,Nit,Lit,Mit)

,

which equals the elasticity of the production function Ft(·) with respect to materials Mit. Further

note that Vit
def
=

PM,tMit∑S
j=1 Pj,tYj,it

equals the nominal share of materials in the total nominal output and

is usually observable from the data. Again, note that the construction of Vit does not require the
data on firm-level output and/or input prices; knowledge of the firm’s spending on materials and
total nominal sales would suffice. Therefore, from (3.10) I can obtain a nonparametric equation
that identifies both the function Gt(·)θ and the random productivity residual ηit, i.e.,

lnVit = ln [Gt(Kit, Nit, Lit,Mit)θ]− ηit, (3.11)

on the basis of the following moment conditions12

E[ηit| Kit, Nit, Lit,Mit] = 0. (3.12)

I next identify (up to a constant) the production function ft(·) from the already identified
function Gt(·) by integrating the ratio of function Gt(·) and Mit over Mit. Specifically, note that

Gt(Kit, Nit, Lit,Mit)

Mit
=
∂ lnFt(Kit, Nit, Lit,Mit)

∂Mit
=
∂ft(Kit, Nit, Lit,Mit)

∂Mit
, (3.13)

12Clearly, lags of (Kit, Nit, Lit,Mit) can also be added to the conditioning set. The entire set of valid moment
conditions is

E

ηit
∣∣∣∣∣∣
Kit, Nit, Lit,Mit,
Kit−1, Nit−1, Lit−1,Mit−1, Z2,it−1, . . . , ZS,it−1, . . . ,
Ki1, Ni1, Li1,Mi1, Z2,i1, . . . , ZS,i1

 = 0.
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which, if integrated over Mit, yields∫ Mit

0

Gt(Kit, Nit, Lit,Mit)

Mit
dMit = ft(Kit, Nit, Lit,Mit) + Ct(Kit, Nit, Lit), (3.14)

where Ct(·) is the constant of integration that is a function of (Kit, Nit, Lit). In order to identify the
production function ft(·), I first need to identify the constant of integration Ct(·), since the integral∫Mit

0
Gt(Kit,Nit,Lit,Mit)

Mit
dMit can be easily obtained (identified), say via the numerical integration,

using Gt(·) already identified from (3.11). For this, I first subtract (3.14) from the production
function (3.3), i.e.,

y1,it −
∫ Mit

0

Gt(Kit, Nit, Lit,Mit)

Mit
dMit − ηit = h̃t(Z2,it, . . . , ZS,it)− Ct(Kit, Nit, Lit) + wit. (3.15)

Next, note that the left-hand side of (3.15) is fully identified from earlier and thus is observable.

For convenience, I denote it as y∗it
def
= y1,it −

∫Mit

0
Gt(Kit,Nit,Lit,Mit)

Mit
dMit − ηit. From (3.15), it then

follows that productivity wit is given by

wit = y∗it − h̃t(Z2,it, . . . , ZS,it) + Ct(Kit, Nit, Lit). (3.16)

Using the Markovian nature of the productivity, I substitute the right-hand side of (3.16) for
wit in (2.4):

y∗it−h̃t(Z2,it, . . . , ZS,it) + Ct(Kit, Nit, Lit) =

ψt

[
y∗it−1 − h̃t(Z2,it−1, . . . , ZS,it−1) + Ct(Kit−1, Nit−1, Lit−1)

]
+ ζit, (3.17)

which is a nonparametric equation that identifies both h̃t(·) and Ct(·) (up to a constant) on the
basis of the following orthogonality conditions

E

ζit
∣∣∣∣∣∣
Kit, Nit, Lit,
Kit−1, Nit−1, Lit−1,Mit−1, Z2,it−1, . . . , ZS,it−1, . . . ,
Ki1, Ni1, Li1,Mi1, Z2,i1, . . . , ZS,i1

 = 0, (3.18)

where (Kit, Nit, Lit,Kit−1, Nit−1, Lit−1, Z2,it−1, . . . , ZS,it−1) instrument for themselves and the re-
maining lags are used to instrument for endogenous (Z2,it, . . . , ZS,it). Thus, having identified Ct(·)
I can now identify (up to a constant) the production function of interest ft(·) from (3.14).

3.2 Estimation Procedure

I estimate the unknown production function ft(·), the output index function ht(·) and the (un-
observable) persistent productivity wit via the following two-stage procedure, which can also be
combined into the multiple-equation nonparametric GMM system.

First Stage. I start by nonparametrically estimating the material share equation (3.11). In
this paper, I employ the nonparametric sieve estimator.13 Specifically, I approximate unknown
ln [Gt(Kit, Nit, Lit,Mit)θ] in the logs of arguments using a series of basis functions Br(·), i.e.,

ln [Gt(Kit, Nit, Lit,Mit)θ] ≈
∑
r≥1

αt,rBr(kit, nit, lit,mit),

13Feasible alternatives include the kernel-based Local Constant or Local Polynomial Least Squares estimators.
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where r = 1, . . . , Rn and Rn →∞ slowly with n . I use cubic B-splines14 for Br(·) due to their well-
known robust finite-sample performance. Some other valid alternatives include Hermite or Laguerre
polynomials as well as artificial neural network sieves. Given the orthogonality conditions in (3.12),
the approximated function ln [Gt(Kit, Nit, Lit,Mit)θ] can be fitted via either the nonparametric least
squares or nonparametric GMM method.

Recall that the residuals from fitting (3.11) are the (consistent) estimates of the random pro-

ductivity shock ηit. Using these estimates η̂it, I can consistently estimate θ
def
= E[exp{ηit}] via

θ̂ = (nT )−1
∑

it exp{η̂it}. The latter allows us to obtain the estimate of Gt(·) free of constant θ:

Ĝt(Kit, Nit, Lit,Mit) = exp

∑
r≥1

α̂′t,rBr(kit, nit, lit,mit)− ln θ̂

 ,

which I then use to evaluate the integral in (3.14) in order to construct the estimate of y∗1,it to be
used in the second stage:

ŷ∗it = y1,it −
∫̂ Mit

0

Ĝt(Kit, Nit, Lit,Mit)

Mit
dMit − η̂it.

Second Stage. Given the consistent estimates ŷ∗it from the first stage, I next proceed with the
nonparametric sieve estimation of (3.17), where I approximate (in logs) the unknown functions
h̃t(·), Ct(·) and ψt[·] using cubic B-spline sieves:

h̃t(Z2,it, . . . , ZS,it) ≈
∑
r′≥1

β′t,r′Br′(z2,it, . . . , zS,it)

Ct(Kit, Nit, Lit) ≈
∑
r′′≥1

γ ′t,r′′Br′′(kit, nit, lit)

ψt[·] ≈
∑
r′′′≥1

δ′t,r′′′Br′′′(·),

where r′ = 1, . . . , R′n, r′′ = 1, . . . , R′′n and r′′′ = 1, . . . , R′′′n ; R′n, R′′n and R′′′n all increase with
the sample size. The unknown functions above are estimated via GMM on the basis of moment
conditions in (3.18).

The second-stage estimation readily provides the estimates of the aggregate index function̂̃
ht(·) which informs us of the relationship between the multiple outputs that the firm produces.
The production function ft(·) is estimated from (3.14) using the second-stage estimates of Ct(·):

f̂t(Kit, Nit, Lit,Mit) =

∫̂ Mit

0

Ĝt(Kit, Nit, Lit,Mit)

Mit
dMit − Ĉt(Kit, Nit, Lit) ,

and the unobservable productivity wit is estimated using (3.3) as

ŵit = y1,it − f̂t(Kit, Nit, Lit,Mit)−
̂̃
ht(Z2,it, . . . , ZS,it)− η̂it .

In all stages, the number of equispaced knots Rn, R′n, R′′n and R′′′n are selected via the data-
driven generalized cross-validation of Craven and Wahba (1979). Lastly, building on Wooldridge’s

14More specifically, I use the tensor product of cubic B-splines for each element in (kit, nit, lit,mit).
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(2009) suggestion, I can estimate both stages as a (sequential) system in the multiple-equation
nonparametric GMM framework (where the instrument sets vary across equations), which not only
improves efficiency but also permits the derivation of the robust variance-covariance matrix that
accounts for the use of generated covariates in the second stage. A similar method-of-moments
interpretation of multi-stage (parametric) estimators has also been proposed by Newey (1984).
Specifically, I rewrite the two estimation stages in the form of the following orthogonality conditions:

E


[

lnVit −
∑

r α
′
t,rBr(kit, nit, lit,mit)

] B1(kit, nit, lit,mit)
...

BRn
(kit, nit, lit,mit)

[
y∗it(αt)−

∑
r′ β
′
t,r′Br′(z2,it, . . . , zS,it) +

∑
r′′ γ

′
t,r′′Br′′(kit, nit, lit)−∑

r′′′ δ
′
t,r′′′Br′′′

(
y∗it−1(αt)−

∑
r′ β
′
t,r′Br′(z2,it−1, . . . , zS,it−1) +

∑
r′′ γ

′
t,r′′Br′′(kit−1, nit−1, lit−1)

)]Ξit

 = 0,

where αt = (α′t,1, . . . ,α
′
t,Rn

)′ and Ξit is a vector of basis functions formed using the instruments
in (3.18). The vector of moment conditions above consists of two blocks, each corresponding
to one of the stages in the estimation of the production function and productivity. The two
blocks correspond to the moment conditions in (3.12) and (3.18), respectively. Under relatively
mild regularity conditions, this two-stage nonparametric GMM sieve M-estimator is consistent and
asymptotically normal (Chen, 2007; Chen et al., 2015).

4 Data

The micro-level data on dairy farms in Norway come from Tsionas et al. (2015) and are based on
the Norwegian Farm Accountancy Survey administered by the Norwegian Agricultural Economics
Research Institute. The survey includes the information on farm production and economic data
collected annually from about 1,000 farms from different regions, farm size classes and types of
farms. Participation in the survey is voluntary. There is no limit on the number of years a farm
may be included in the survey. Approximately 10% of the farms surveyed are replaced every
year. The farms are classified according to their main category of farming, defined in terms of the
standard gross margins of the farm. Hence, the dairy farms in the considered sample are the farms,
the largest share of the total standard gross margin of which is attributed to dairy production. The
sample is an unbalanced panel with 4,667 observations on 902 farms observed during the 1998–2008
period.

Norwegian dairy farming is highly regulated (Jervell and Borgen, 2000). Throughout the past
decades, various regulatory schemes have been set up to align aggregate milk production to domestic
demand. A quota-based regulatory scheme was set up in 1983. From 1991, quotas of dairy farmers
exiting the industry were used to reduce national milk supply, and there was no redistribution
of quotas. The individual quotas have been reduced on several occasions in order to adjust total
supply to domestic demand. The exit rate from the dairy sector was however slow for many years.
Partly as a reaction to this outcome, a limited quota-trading scheme with quota prices defined by
the government as well as the administrative reallocation of quotas was introduced in 1997. The
objective of the change was to introduce greater flexibility to the quota system and to encourage
structural changes in the sector. To maintain the regional distribution of production, the country
was divided into milk-trade regions, and quota transfers were restricted to a given region only. The
introduction of a quota-trading scheme in 1997 is likely to have led to structural changes in the
production technologies by dairy farms in response to the deregulation. To mitigate the potential
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Table 1. Summary Statistics for Norwegian Dairy Production, 1998–2008

Variable Description and Units Mean Median SD 2.5% 97.5%

Outputs
Y1 Milk, Liters 107,856.74 96,785.01 55,500.21 35,487.10 249,275.69
Y2 Other Outputs, Real EUR 48,026.89 42,503.79 25,731.02 16,940.81 112,309.04

Sales Total Sales, Real EUR 98,332.25 89,719.47 44,716.20 40,215.26 209,170.15
Share1 Nominal Milk Output Share, % 51.73 51.99 7.56 34.63 65.71

Inputs
N Land, Hectares (ha) 24.66 22.00 12.78 8.60 56.83
L Labor, Hours (hr) 3,858.57 3,700.00 1,226.59 1,985.95 6,756.34
M Materials, Real EUR 29,623.93 26,027.21 15,943.81 9,828.12 67,710.67
K Capital, Real EUR 28,992.50 25,726.11 15,969.56 9,865.54 69,873.07

Notes: SD is the sample standard deviation. 2.5% and 97.5% are the 2.5th and 97.5th percentiles of the empirical
distribution, respectively.

presence of discontinuous shifts in the production function across the pre- and post-1997 periods,
in this paper I opt to confine the analysis to the period from 1998 onwards.

Dairy farms are often involved not only in the production of milk but also in other farm produc-
tion activities, such as the production of various types of meat, crop, etc. Following Sipiläinen et al.
(2014) and Tsionas et al. (2015), I bundle all other non-milk products into an aggregate “other
outputs” measure. Thus, the two outputs considered in this paper are: Y1 – milk, measured in
liters sold, and Y2 – a single measure of all other outputs, which includes cattle and crop products.
Since Y2 includes several outputs, I measure it in monetary value terms, i.e., revenue from all these
outputs. To convert the nominal value into the real terms, I first deflate Y2 to real 2000 Norwegian
Krones (NOK) using a weighted price index for cattle and crops, which I then convert from NOK
to Euros (EUR) using the average exchange rate. Further, I specify the following four inputs: N
– land, measured in hectares, L – own and hired farm labor, measured in hours, M – materials,
including the cost of fertilizer, pesticides, preservatives, cost related to animal husbandry as well as
purchased feed, and K – physical capital, which includes farm machinery. Similar to Y2, materials
and capital are measured in real 2000 EUR. All are deflated using a respective price index. Table 1
reports summary statistics for the variables. It also includes the real total sales (Sales), a measure
of total output of a farm, as well as the share of milk products in the total nominal sales (Share1).

5 Results

This section reports nonparametric sieve estimates of the firm-level production functions and pro-
ductivity obtained using the proposed model, which explicitly formulates the multi-product nature
of the production process by dairy farms in Norway. The results are obtained via the two-stage
estimation procedure outlined in Section 3, which I estimate as a nonlinear system via multiple-
equation nonparametric GMM.15 In accordance with orthogonality conditions in (3.12) and (3.18), I
use the following instruments (in logs). The spline basis functions of (kit, nit, lit,mit) are used for the
first-stage material share equation (3.11). For the second-stage equation of the Markovian process
of the productivity in (3.17), I use the spline basis functions of (kit, nit, lit, kit−1, nit−1, lit−1,mit−1).
The Hansen J-test of over-identifying restrictions produces a p-value of 0.99768 lending strong as-
surance to the model. As explained earlier, I select the order of approximation for sieves (in this

15I use the gradient-based BFGS algorithm to numerically locate the minimum of the GMM objective function.
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Table 2. Production Function Estimates, 1999–2008

Multi-Product Total Output
Elasticity Mean Q1 Median Q3 Mean Q1 Median Q3

Land 0.386 0.310 0.367 0.454 0.276 0.249 0.276 0.303
(0.002) (0.001)

Labor 0.165 0.139 0.182 0.218 0.149 0.122 0.155 0.174
(0.002) (0.002)

Materials 0.290 0.267 0.295 0.317 0.290 0.267 0.295 0.317
(0.001) (0.001)

Capital 0.274 0.224 0.267 0.324 0.252 0.194 0.237 0.282
(0.002) (0.002)

RTS 1.118 1.041 1.121 1.201 0.969 0.891 0.961 1.053
(0.003) (0.004)

Cross-Output –0.759 –3.242 –1.358 –0.267
(0.132)

Notes: Q1 and Q3 are the first and third quartiles of the empirical distribution, respectively.
Bootstrap standard errors are in parentheses.

case, the number of knots) via data-driven generalized cross-validation. Also note that, since my
identification strategy requires lags (of at least the first order) to be used in the second stage, in
what follows I report the results for the 1999–2008 period, where the data for 1998 are used to
instrument for endogenous variables in the year 1999.

In addition to the preferred model of the multi-product production (2.2) [hereby referred to
as the “Multi-Product” model], I also estimate a more popular single-output production function
given in (2.1). As is oftentimes done in the literature, here I use the deflated total sales (Sales)
as an aggregate measure of the farm’s total output. This single-output production function is also
estimated in two stages via nonparametric GMM using cubic splines.16 The estimation procedure
closely follows Gandhi et al. (2013) and, essentially, is identical to the one developed in Section 3
except for the function h̃t(·) being suppressed in all equations. By estimating this single-output
model [hereby referred to as the “Total Output” model], I am able to empirically assess the sensi-
tivity of the production function and productivity estimates to the treatment of multiple outputs
in the multi-product processes.

5.1 Production Function Estimates

Table 2 reports the summary of nonparametric estimates of the elasticities of the production func-
tion with respect to inputs, i.e., ∂ft(Kit,Nit,Lit,Mit)

∂ait
∀ ait ∈ {kit, nit, lit,mit}, for both models. Given

that the elasticities do not have a closed-form expression owing to a nonparametric specification
of the production function, I compute them using numerical derivatives of the estimated function
f̂t(Kit, Nit, Lit,Mit).

The empirical evidence suggests that the Total Output model, which aggregates all outputs into
a single measure, tends to systematically underestimate the elasticity with respect to quasi-fixed
land, labor and capital. The latter is also vividly demonstrated in Figure 1 which plots kernel
densities17 of these elasticities over all farm-years based on the two models. The distributions

16To ensure maximal comparability of the results from the two models, I employ the same instruments as the ones
used for the Multi-Product model.

17The densities are estimated using the second-order Epanechnikov kernel with the optimal bandwidth parameters
selected using the leave-one-out cross-validation.

13



Table 3. Rank Correlation Coefficients of RTS and Productivity Estimates across Models

Returns to Scale Productivity
Year Rank Corr. SE Rank Corr. SE

1999 0.261 (0.047) 0.357 (0.047)
2000 0.291 (0.047) 0.331 (0.049)
2001 0.275 (0.045) 0.366 (0.049)
2002 0.284 (0.049) 0.387 (0.051)
2003 0.242 (0.049) 0.448 (0.045)
2004 0.268 (0.054) 0.437 (0.044)
2005 0.297 (0.050) 0.534 (0.035)
2006 0.368 (0.045) 0.467 (0.051)
2007 0.367 (0.050) 0.384 (0.055)
2008 0.396 (0.061) 0.467 (0.051)

1999–2008 0.286 (0.016) 0.405 (0.015)

Note: SE is the bootstrap standard error.

of estimates from the Total Output model are generally shifted leftward compared to those of
estimates from the preferred Multi-Product model. The differences across the two models are the
most distinct in the instance of the elasticity of land. The preferred Multi-Product model estimates
the average elasticity of land at 0.386, whereas the conventional Total Output model produces a
much lower average value of 0.276. Not only does the Multi-Product model predict the elasticity of
production function with respect to land of higher magnitudes, but it also points to its significantly
higher variability across individual farms as can be inferred based on the comparison of kernel
densities in Figure 1.

I next examine the scale efficiency of dairy farms in Norway, where the former is defined as
the firm’s attainment of the efficient scale size associated with (unitary) constant returns to scale.
The returns to scale measure is computed as the sum of estimated input elasticities, i.e., RTSit =∑

a∈{k,n,l,m}
∂ft(Kit,Kit,Lit,Mit)

∂ait
. The RTS measure of magnitudes less than/equal to/greater than one

corresponds to decreasing/constant/increasing returns to scale. The results from the two models
are summarized in Table 2.

While both models indicate the deviation from unitary returns to scale and hence point to
some degree of scale inefficiency in the Norwegian dairy sector, the nature of this “inefficiency” is
qualitatively different across the models. Specifically, while the Multi-Product model, on average,
produces evidence in support of significant increasing returns to scale exhibited by dairy farms of
magnitude at around 1.118, the competing Total Output model however fails to detect these scale
economies and produces the average RTS estimate of 0.969 corresponding to decreasing returns
to scale (i.e., diseconomies of scale). The dramatic differences in the returns to scale estimates
across the two models are illustrated graphically in Figure 1. The results based on the proposed
Multi-Product model are consistent with findings of increasing returns to scale enjoyed by dairy
farms both in Norway and other European countries documented in the literature (e.g., Reinhard
et al., 1999; Emvalomatis et al., 2011; Tsionas et al., 2015). Furthermore, not only does the Total
Output model seems to grossly underestimate returns to scale across farms, but I also document
very little correspondence between its estimates and those produced by the Multi-Product model.
The left panel of Table 3 reports the Spearman rank correlation coefficients (along with bootstrap
standard errors) for the returns to scale estimates from the two models for each year in the sample
period. Here, I find a positive but rather weak association between estimates from the two models
with the rank correlation coefficient ranging between 0.242 and 0.398.
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Figure 1. Kernel Densities of the Elasticity and RTS Estimates, 1999–2008
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Figure 2. RTS vs. Farm Size, 1999–2008

It is also noteworthy that the two models point to rather different relations between returns to
scale of a dairy farm and its size proxied by total sales/output. Normally, one would expect to see an
inverse relationship between the two. Figure 2 shows distributions of the return to scale estimates
across sample deciles of the farm size in the form of box-plots. The preferred Multi-Product model
generally finds a weakly negative relation between scale economies and the size of a farm. There is
an indication of an inverse relationship between the two amongst smaller farms in the bottom half
of the size distribution (deciles 1 to 5). While the relationship seems to slightly reverse in the top
half of the size distribution (deciles 6 to 9), the overall change in the median returns to scale from
the first to tenth decile is still negative. In contrast, the estimates obtained from the Total Output
model show a clear pattern suggesting that the magnitude of returns to scale is steadily increasing
with the farm size, which many are likely to find somewhat hard to explain.

Before I proceed to the discussion of the productivity of dairy farms in the sample, I also
consider the estimates of the cross-output elasticity

∂y1,it
∂y2,it

from the preferred Multi-Output model.

This elasticity can be intuitively interpreted as the technological “shadow price” capturing the
technological trade-off between the production of two outputs given an input allocation and the level
of productivity (along the firm’s production possibilities frontier). Using implicit differentiation of
the normalized multi-product production function in (3.3), I can compute the cross-output elasticity
as follows:

∂y1,it

∂y2,it
=

∂ht(z2,it)
∂z2,it

∂ht(z2,it)
∂z2,it

− 1
,

where elasticity
∂ht(z2,it)
∂z2,it

is obtained using numerical derivatives of the estimated function ĥt(Z2,it).

Table 2 reports the summary of these cross-output elasticity estimates. The empirical evidence
confirms the trade-off between the two outputs at the statistically significant average “shadow
price” of –0.759, suggesting that, on average, a 0.8% expansion in milk production can be attained
by means of reducing other outputs by about 1% ceteris paribus. The estimation of the alterna-

16



tive single-output model however does not allow us to identify this technological metric for dairy
production due to a priori bundling all outputs together.

5.2 Productivity Estimates

Following the literature (e.g., Olley and Pakes, 1996), I construct the estimates of farm-level pro-
ductivity using the definition of the multi-product gross production function (2.2), i.e.,

Pit = exp{ŵit + η̂it},

where ŵit and η̂it are obtained in the first and second stages of the estimation procedure, re-
spectively. Thus, in what follows I analyze the composite firm-level productivity defined as the
exponentiated sum of both the persistent and random productivity. I first point to a rather weak
association between productivity estimates obtained from the two models. The sample-wise rank
correlation coefficient is estimated at 0.405 with year-specific coefficients falling in the range between
0.331 and 0.534 (see right panel of Table 3).

The second column of Table 4 reports the annual estimates of the average productivity Pt for
all dairy farms in the sample. The average aggregate productivity is computed as the farm-total-
output-weighted average of farm-level productivity measures for each year, i.e.,

Pt =
∑
i

$itPit, where $it =
Salesit∑
j Salesjt

∀ t.

Since comparison of absolute magnitudes of productivity estimates across the two models is
somewhat meaningless,18 I normalize Pt to unity in 1999. Along with the weighted-average pro-
ductivity Pt, Table 4 also reports its corresponding annual productivity growth rates (see the first
column) computed as the log difference, i.e., d log(Pt) = log(Pt)− log(Pt−1).

According to the estimates from the preferred Multi-Product model, the average annual produc-
tivity growth rate in the Norwegian dairy sector from 2000 to 2008 was around –0.12% per annum
with some rather sharp, both up- and downward, fluctuations over the course of years, resulting
in a cumulative nine-year decline of 1.1%. While the Total Output model also detects fluctuations
in the productivity growth among dairy farms during the sample period, the 1999–2008 average
annual productivity growth rate is however positive and is estimated to be at around 0.44% per
year. While the finding of negative average productivity growth in dairy farming as suggested by
the preferred model may seem somewhat perplexing, similar results have also been reported for
other European countries, such as Poland (see Brümmer et al., 2002). Furthermore, a positive
productivity growth in dairy sectors found for other European countries like Germany, Iceland and
the Netherlands (Brümmer et al., 2002; Muluwork Atsbeha et al., 2012), which share an institu-
tional environment similar to that of Norway, or even Norway itself (Sipiläinen et al., 2014) are
likely to be biased and thus misleading. The cited studies model the dairy production process in
the form of either input or output distance function while taking the endogeneity of inputs and
outputs (due to simultaneity) for granted. Thus, those earlier estimates of productivity growth are
likely to suffer from simultaneity biases. In contrast, the proposed model takes careful account of
endogeneity of both inputs and outputs. Lastly, the finding of a negative trend in productivity
among dairy farms in Norway may be (at least) partly attributed to the regulatory environment
in the sector dominated by the Norwegian Agricultural Marketing Board that exercises a high de-
gree of control over milk pricing via price discrimination, pooling arrangements and price supports

18Because the normalized multi-product and single-output production functions have different left-hand-side variables.
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Table 4. Productivity Estimates

Decomposition Percentile Ratios

Year d log(Pt) Pt Pt Pt − Pt 75/25 90/10 95/5

Multi-Product

1999 1.000 0.997 0.002 1.147 1.339 1.465
2000 1.27% 1.012 1.010 0.002 1.124 1.296 1.457
2001 –2.67% 0.986 0.983 0.003 1.127 1.334 1.465
2002 –1.29% 0.973 0.970 0.003 1.117 1.310 1.467
2003 0.33% 0.976 0.971 0.004 1.165 1.366 1.510
2004 0.56% 0.982 0.978 0.003 1.154 1.358 1.523
2005 0.15% 0.983 0.975 0.007 1.179 1.383 1.568
2006 –0.95% 0.974 0.965 0.008 1.187 1.417 1.567
2007 –2.47% 0.950 0.941 0.008 1.175 1.404 1.582
2008 3.96% 0.989 0.979 0.009 1.198 1.406 1.627

1999–2008 –0.12%† 1.158 1.365 1.534

Total Output

1999 1.000 0.986 0.013 1.067 1.176 1.248
2000 –1.25% 0.987 0.972 0.014 1.069 1.158 1.241
2001 –1.26% 0.975 0.960 0.015 1.068 1.173 1.264
2002 0.10% 0.976 0.964 0.011 1.068 1.168 1.242
2003 –0.21% 0.973 0.963 0.010 1.067 1.166 1.238
2004 2.00% 0.993 0.983 0.010 1.077 1.158 1.228
2005 –0.39% 0.989 0.977 0.012 1.082 1.160 1.248
2006 0.59% 0.995 0.981 0.014 1.085 1.175 1.230
2007 0.26% 0.998 0.982 0.016 1.084 1.203 1.258
2008 4.17% 1.040 1.028 0.011 1.081 1.217 1.316

1999–2008 0.44%† 1.079 1.178 1.256

Notes: Pt is the normalized firm-output-share-weighted average estimate of firm-
level productivity; d log(Pt) is the first log difference in Pt; Pt is the normalized
simple average of firm-level productivity; Pt − Pt equals the sample covariance
between Pt and firm output.
† Annualized rate of growth.
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(Brunstad et al., 2005). These market distortions may well discourage individual dairy farms from
improving their efficiency and productivity. Furthermore, dairy farms in Norway may have even less
incentive to improve productivity of the milk production in the face of the government-subsidized
“multi-functionality” policies, where the latter refer to policies aimed to support non-agricultural
aspects of dairy farming such as environmental conservation, cultural heritage tourism and the
maintenance of countryside scenery.

Changes in the (weighted) aggregate productivity indices can be attributed to two primary
sources: (i) a secular increase or decrease in productivity across firms in the industry and (ii) the
reallocation of fixed factors towards more productive farms which would enable the latter to produce
more output (Olley and Pakes, 1996). To differentiate between these two sources, I decompose the
weighted aggregate productivity Pt into two components:

Pt =
∑
i

$itPit

=
∑
i

[$t + ($it −$t)]
[
Pt +

(
Pit − Pt

)]
= Pt +

∑
i

($it −$t)
(
Pit − Pt

)
∀ t,

where Pt = 1/nt
∑

i Pit and $t = 1/nt are the unweighted average productivity and unweighted
output share (a uniform weight), respectively. According to the above decomposition, the (aggre-
gate) weighted average productivity Pt is a sum of the unweighted average of farm-level pro-
ductivity Pt and a sample covariance between the farm-level (total) output and productivity
Pt − Pt =

∑
i ($it −$t)

(
Pit − Pt

)
. While changes in the first component represent a secular

trend in productivity, yearly changes in the covariance term capture the reallocation of economic
activity from less productive to more productive farms. The larger the covariance term, the larger
the (total) output share of more productive farms in the dairy sector.

The decomposition results are presented in Table 4 (columns 2 through 4). The Multi-Product
model suggests that there is a steady increase in the covariance between farms’ total output and
productivity during the sample period, which indicates that the decrease in the weighted aggregate
productivity Pt can be attributed entirely to a secular decrease in average productivity Pt as
opposed to the reallocation of resources towards less productive farms. The Total Output model
draws a starkly different picture, whereby no reallocation of resources towards more productive
dairy farms has largely taken place and the sector has rather enjoyed, with some fluctuations, an
overall increase in secular productivity. The differences in the dynamics of secular (unweighted)
average productivity across the two models are vividly shown in Figure 3, which yet again highlights
the importance of explicit modeling of the multi-product nature of production processes.

I next study the distribution of productivity across farms. I begin by looking at the variation of
productivity across farms, which I measure using the ratios of the 75th to 25th, 90th to 10th and
95th to 5th percentiles of the empirical productivity distribution. The last three columns of Table
4 report such productivity ratios for all years. According to the preferred Multi-Product model, I
find that the dispersion of the productivity distribution has been increasing over the course of years.
On average, a dairy farm at the 75th/90th/95th percentile was 16%/37%/53% more productive
than a firm at the 25th/10th/5th percentile. In contrast, not only does the Total Output model
provide a much weaker evidence of a widening productivity gap between farms on both ends of the
distribution, but it also finds this productivity gap to be of a significantly smaller magnitude.

Lastly, I examine the relationship (if any) between the farm’s productivity and its size proxied
by total sales/output. I seek to assess this relationship both distribution-wise and on average. To
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Figure 3. (Unweighted) Average Productivity with the 95% Confidence Bounds

accomplish the former, I estimate bivariate kernel densities19 of farm-level productivity and total
output (in logs) for both models. Figure 4 depicts a contour plot for these densities. The sub-figures
suggest that, when the multi-product nature of dairy production is modeled explicitly (as in the
Multi-Product model), the productivity appears to be distributed over farms of different size with
no particular pattern. However, aggregating both outputs into one (as in the Total Output model)
produces the results that are suggestive of a generally positive relationship between productivity and
size. I also reaffirm this finding at the mean. I do so by estimating a nonparametric local-linear
mean regression20 of (logged) productivity on (logged) total output, which produces farm-year-
specific estimates of gradients (marginal effects). I find that, in the instance of the Multi-Product
model, the marginal effect of the farm size on its (mean) productivity is statistically insignificant
for 82% of farm-years,21 whereas in the case of the Total Output model, the effect is significantly
positive for 99% of the sample.

To conclude, I document dramatic distortions in farms’ input elasticities, returns to scale, and
productivity estimates obtained from a traditional single-output specification of the production
function, which a priori aggregates multiple outputs.

19I employ an axis-aligned bivariate Gaussian kernel, evaluated on a square grid using the normal reference bandwidth.
20I use the second-order Epanechnikov kernel with the optimal bandwidth parameters selected using the leave-one-out

least-squares cross-validation.
21The remaining 18% of observations are split as follows: 15% are significantly greater than zero and 3% are signifi-

cantly less than zero.
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Figure 4. (Log) Productivity vs. Farm Size, 1999–2008

6 Conclusion

The existing control-function-based approaches to the identification of firm-level production func-
tions are exclusively concerned with the estimation of single-output production functions despite
that, in practice, most firms produce multiple outputs. While one can always opt to employ a
single-product specification of the production process by a priori aggregating the firm’s outputs,
such a formulation is rarely an accurate portrayal of the firm’s productive process.

This paper contributes to the literature by extending the proxy approach to the structural iden-
tification and estimation of firm-level production functions and productivity to the multi -product
setting. Specifically, I consider the nonparametric estimation of multi-product stochastic produc-
tion functions, where outputs form an unspecified (aggregate) index function. Such a treatment
of multiple outputs differs from an a priori aggregation, which most studies using a traditional
single-output production function normally resort to, in that it does not use ad hoc aggregation
weights as well as allows the identification of cross-output elasticities representing the technological
trade-off between individual outputs along the firm’s production possibilities frontier. To avoid
misspecification, I employ the nonparametric formulation not only for the control function but also
for the production function itself, including the output index. I showcase the proposed methodology
by applying it to study the multi-product production technology of Norwegian dairy farms during
the 1998–2008 period.
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